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composite) Lagrangians.
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I. INTRODUCTION•

The recognition of gauge symmetries of the second kind among

physical theories and the association of gauge particles with them has

alternated between internal and spin-containing symmetries. First in

this context was Weyl's recognition of the electromagnetic vector

potential (with its associated helicity-one photon) as the gauge field

corresponding to an internal symmetry, U(l)« Seoond was the recognition

by Weyl and "by Fook and Ivanenko that the vierhein field (belioity-two
graviton) was the gauge field corresponding to the spin-oontaining
symmetry SL(2,C), Third was the association "by Yang and Mills and by
Shaw ' of the spin-one iso-triplet field with the internal symmetry, SU(2).

Continuing the discussion initiated in a recent note, this paper

is concerned with the construction of a model whose Lagrangian is

invariant under SL(6,C) transformations of the second kind. This

symmetry incorporates "both the internal Stf(3) and the spin-containing

SL(2,C), in common with other gauge theories, this model involves a set
of gauge fields with universal coupling. A new feature is the oentral
role played by spontaneous symmetry "breaking. This is absolutely
necessary if the ghosts or infinite-dimensional multiplets implicit in an

unbroken non-compact symmetry are to be avoided. One oonsequence of the

spontaneous symmetry breaking is that we shall not be troubled by the

presence of maosless gauge particles. Indeed, this scheme is intended

as a symmetry of strong interactions.

The main problem is to set up a suitable Lagrangian for the gauge

fields and to analyse their particle content. In this paper we shall

exhibit an SL(6,C)-invariant Lagrangian whose structure is such that only

2 states (singlet and octet) are caused to propagate and thereby represent

the gauge degrees of freedom.

The symmetry group which we are using has the struoture of a semi-

direct produot

(P © SU(3J) © SL(6,C)

where P denotes the Poincare group, and SU(3) the internal symmetry

according to which physical states are classified. These are unbroken.

The remaining factor, SL(6,C), is a gauge symmetry of the second kind

and it is going to be spontaneously broken.
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The spin-unitary-spin containing SL(6,C) transformations are of

two kinds* (a) pure gauge transformations which approach the identity

asymptotically and so do not affect state vectors and (b) asymptotically

rigid (or first kind) transformations which do affect the state vectors

and which are spontaneously broken, i.e. which fail to leave the ground

state invariant. It is neoessary to distinguish between these two kinds

of transformation sinoe in order to compute anything one must begin by

choosing a gauge, i.e. by violating the invariance with respect to the :

transformations (a). The transformations (b), on the other hand, need ;

not be violated by the gauge-choosing mechanism. Their violation by the

spontaneous mechanism is therefore a meaningful effect; the two ;

mechanisms are logically distinct. \

In this paper wd shall deal with the classical equations of motion

and their interpretation. Quantum effects are not considered, Thus( we

shall look for a P x SU(3)~ invariant solution of the classical equations \

to represent the vacuum state. This solution will not be invariant under i

the rigid SL(6,C) transformations which are therefore to be thought of ;

as spontaneously violated* We next oonsider the effect of small |

perturbations about the ground state solution* The propagation of these i

excitations in the linear approximation determines the bare particle !
I

content of the system. We shall require that these perturbations carry i

positive energy and propagate with finite(less than light) velocities. .

To this extent the ground state is stable. In principle it would be \

possible to test this stability more deeply at the classical level by [

performing a complete canonical analysis and setting up the Hamiltonian. ;

However, we shall not attempt this here. i

The gauge field system involves, a priori, a large number of i

independent components. Many of these can be eliminated through the j

imposition of SL(6,C) covariant constraints. Since the gauge symmetry f

must in any case be spontaneously broken, the imposition of suoh

constraints will not lead to any further loss of symmetry. Their use

is optional. We shall make heavy use of such constraints in order to

simplify the structure of our Lagrangian.

The plan of the paper is as follows. In Sec. II the various fields

are introduced and the action of the group on them defined. A gauge-

invariant Lagrangian. is exhibited. (As a simple illustrative example the

SL(2,C) gauge-invariant Lagrangian of Weyl is given in Appx. I.) The

notion of covariant constraint is introduced and gauge conditions are
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discussed. In Seo«III the vacuum solution and bare particle Bpectrum are

obtained, (The same is done for an alternative Lagrangian in Appx,II,)

Sec,IV contains some general remarks about the structure of the gauge

system and what is likely to happen when interactions are taken into account.

The extension to SL(6,C) x SL(6,C) gauge symmetry is sketched.briefly,

Sec.V discusses the existence of conserved currents which close on the

algebra of SL(6,C). Sec,VI considers the interaction of the gauge fields

with matter. It is suggested that, though the new theory is unitarity

preserving, the predictions of the old phenomenological SL(6,C) theory may

perhaps be expected to persist in the present theory.

I I . M SL(6,0 )—IMVAHIAOT LACRAffGIAN

"We propose to set up a Lagrangian which i s invariant under SL(6,C)

transformations of the second kind. Although we shall be concerned only

•with the gauge field part of the system, i t i s useful in establishing the

notation to introduce a 12-component quark field T|> and i t s adjoint T]i .

These transform under the action of the full symmetry group

according to

(2,1)

y'(x') - V fVA)-1

- 4 -



where i' - A^s x y + "b̂  is a Poinoare transformation and the matrices

«.<A)» W » O »*« expressible lay

- W A (2.2)

L* (x)

with r«al paramstcra. Tb« transformations (2.1) form a group in the

sense that two successive actions combine acoording to the rule

where Jfl. is given by

This rule is consistent only if the transformations a (*) ilaoo are

themselves in SL(6,C) (which of course they are).

The system of gauge fields to he used in constructing the

Lagrangian comprises three distinct types, B^ , S and L w , which are

expressed in the Dirac basis "by
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I**,

The components B£ , B^5 , P
k , P^ (k - 1, 2, ••• , 8) and

The gauge fields transform aocording to

under the gauge group SL(6,C) and aooording to

a.« 5 i 1
 UJT^

co Lv a
1

under the asymptotio symmetry group P x SU(3) .

Th« v»otor Bp_ 1B the Tsaaio gauge field. It is used in the form
ing of oovariant derivatives! viz#,
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The analogue of B^ in Tang-Mills theory is the field which carries the

gauge quanta and couples to the conserved isospin current. In gravitation

theory B^ plays the role of a connection "but there it is essentially the

derivative of the field which carries the gauge quanta. (It will turn out

to have a similar status in the present model.)

The scalar, S(x) , is more subtle. If there were no gauge symmetry

of the second kind "but only the spontaneously broken ri^id SL(6,C) ,

then 5 would carry the Goldstone modes. These would be 70 massless

excitations represented by the components, P(x) , in (2.3). In systems

where gauge symmetry of the second kind is present these Goldstone modes

are not excited. More precisely, they are exactly compensated by the

longitudinal rodes in BM(x) insofar as gauge-independent quantities are

concerned. They can appear in gauge-dependent quantities. (However, it

is possible to choose a gauge in which P(x) = 0 (that is, S = l) and

the corre ̂-p on ding modes in B^(x) are suppressed. This is the so-called
unitary D̂.'.jje.) Notice that the components of S transform as bosons
under the asymptotic symmetry P x SU(3) but as quarks under the gauge
symmetry SL(6,C) ,

The third set of fields, ^ ( x ) » can be usefully

introduced into the gauge system. They are

not strictly necessary from the group-theoretical point of view, but

they can be made to play the role of canonically conjugate variables to

the ^ (x) . It is just the existence of this possibility which

distinguishes gauge theories based on a spin-containing symmetry, such

as Wiyl's SL(2,C ) gauge-invariant vierbein version of gravity theory,

from those, such as Maxwell or Yang-Mills theory, which are based on a

purely internal symmetry. In being conjugate to the connection Bu

the field L^ has many resemblances to the vierbein in general relativity
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theory. In faot, i t will become the carrier of gauge quanta* Moreover,

i t will be made to have a non-*vanishing value in the ground state,

" Y* * (2-7)

This equation reflects the absence of SL(6,C) symmetry in the ground
state* It i s , of oourse, invariant under P x SU(3) « In gravity theory
the analogous equation would toe

where T[ denotes the Minkowski tensor. This equation (first introduced

"by Einstein, though not in this quantum formulation), while "being Poincare

invariant, exhibits the lack of SL(2,C) gauge invarianoe in the vacuum,

(It also exhibits the "breaking of the co-ordinate transformation group

in Einstein's theory, "but from our present point of view this is not the

significance of this spontaneous symmetry-tweaking.)

TTote that the covariant derivative of the "vierbein" L^ , given

"by (2.6) cannot be made to vanish identically and here the resemblanoe

to general relativity is lost . There is no analogue of Riemannian

geometry in the present scheme,

The variety of gauge-invariant Lagrangians which can be invented

for the system, B̂  , S and L̂  , is large, A fairly simple example,

cloGest in form to Einstein-Weyl Lagrangian for SL(2,C), is obtained lay

requiring that no more than four fields and two derivatives ooour in eaoh

term. This is given by

Lv)

(2.9)
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in -which greek indices are to IDS saturated with the Minkowski tensor -*'.

She peal pa^ametera * , ^ t p> 2 t /S3 are at present arbitrary.

Our problem ie to find suitable values for them. That ia, we should

like the L&grangian (2,9) to yield a stable P x SU(3 ) - invariant vaouura

in which a 2 + massive nonet propagates,

Sinoe the vierbein field is not playing a fundamental group-

theoretio role in this system, we are free to reduce the number of

independent components contained in it by imposing constraints. Consider
k 1 k

the quantities, I and I „ , defined by

+ l s

This structure is gauge invariant. Indeed, acoording to (2.3) and (2,6)

we have

5 cc'

That i s , I lrJ is a nonet of second-rank tensors while I * c is a noneI
of pseudotensorB with respect to P x SU(3) .

To simplify the Lagrangian (2,9) and, what is more important, to

ensure that the ground state value ^IJII"^ *• X, is a stable solution, we

shall impoee the constraints '

= 0 . (2.11

For tho construints (2,11' ) to be realized, one can show that <̂ L ")>= v

is a sufficient condition. In the unitary gauge these SL(6,C)-covariant

constraints take the simple form
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It will be shown in Sec, III that the free-field approximation to

the Lagrangian (2.9) reduces to the Fierz-Pauli^fonn fo* the following

special values of the parameterst

2 k
ti

III. VACUUM SOLUTION AHD PARTICLE SPECTRUM

Having adopted the Lagrangian (2.10) and the constraints (2,11),

our problem now is to determine the free parameters in such a way that
(of stable solutioas)

a consistent perturbative acheriieVcan "be set upt This means, first of all,

that the Euler-Lagrange equations should have a P x SU(3)—invariant

solution and, seoondly, that small perturbations ahout this solution

should carry positive energy. We shall require, further, that these

small excitations have the character of a 2 + nonet.

Because of the SL(6,C) gauge invariance, the classical equations

of motion are under-determined. They must "be supplemented "by a set of

70 gauge conditions. A convenient choice of gauge for the considerations

which follow is given "by P(i) = 0 or, equivalently,

S(x) = 1 . (3.1)

Those conditions specify the so-called unitary gauge ' . This gauge

has the advantage that no zero-mass excitations appear in i t . In other

gauges such as, for example, the Landau gauge, 9UBH » 0 , zero-mass
7)excitations do arise Taut only in gauge-dependent quantities .

Rather than deal directly with the equations of motion, we shall

roquire that the values

< O - 0 , <S>- 1 (3.2)
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represent an extremum of the action with respect to small variations*

The paranotarB W> (3.,, fiz, fi^ muat "be adjuoted BO aa to assure this.

The small variations must,of course,he compatible with the constraints

(2.11) and with the gauge condition (3.1). Into the Lagrangian substitute

the expressions

(3.3)

+ Z

where ^n^ ** <jC,, • Treat the components ip and B as small quantities
and retain only the first-and second-order contributions. The single
first-order term is proportional to y ^ and this will vanish if we take

C 3 ' 4 )

The second-order terras then assume the form

2

The excitation speotrum to which the Lagrangian (3.5) gives rise can

test he analysed "by eliminating the algebraic variables, B. That i s ,

one solves the algebraio equations, bj[(y/d% • 0 '"to obtain (provided
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(3.6)

and substitutes these expressions •back into (3.5). The result is

V (3.7)

The values (2.12) have "been ohosen suoh that (3.7) takes the well-known
Fauli-Fierz form

- M' (3.8)

The parameter, IC , whioh can "be removed from the "bilinear expression,
JL(n\ > ̂ y *^0 resoaling *j> -^ (Cw t B -> K,B is to he interpreted as
the universal coupling constant of our gauge theory.

The arbitrary parameter ot must not vanish. In the simpler gauge
modal in whioh SL(6,C) i s replaced hy SL(2,C) this parameter oan

2)
vanish, in vhioh oase the VTeyl-Einatein Lagrangian results J*

A diffarant 5L(6,C)—invariant Lagransiaii, vMob also contains
one free parameter (in addition to K> and M), is treated in Appx.II.
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IV* INDEPENDENT DEGREES OF FREEDOM

us

(3*6) when we take into account the complete Lagrangian $~ , rather than

just its "bilinear part X g •

The fields; B., and Bue. - no longer vanish as a oonaequenoe of the

equations of motion* However, sinoe the oomplete Lagrangian contains no

derivative* of B , the modified equations will simply express the fields
k kB^ ' and B _ a3 implioit "but purely algebraic functions of the other

fields in the theory ((j>̂  and B ^ ^ , ) . The two fields BJJ[/ and ^

are thus algebraic composites of the other independent fields, with no

propagation character of their own* It was indeed to guarantee this

algetraio-oompoaite oharaoter for B and B ,- that the S-field-
r r?

containing term was introduced into the Lagrangian in the first plaoe,

It is perfeotly possible to introduce one simple additional term

in the Lagrangian whioh would ensure a propagation of 1 and 1

particles corresponding to these Yang-Mills-like fields Bĵ  and B ,_ *

The term in question has the same form as the third term in (2*9) except

that ( S ^ S ) is replaced by B ^ j i . e . , take

L^-ii'TkL^L,,'^,, (4.1)

where B . denotes the oovariant curl

The "bilinear generated "by (4.1) is proportional to

(4.3)

k k
The important point to observe is that (4.3) involves B and -B _

fields alone. There is no_ contribution to the spin-2+ bilinears. This

is not, of course, true of the trilinear and quadrilinear terms which

arise in the interaction Lagrangian given hy (4.1). These will in

general involve the spin-2+-describing fields ^tx&-^
 a s w e l 1 a 3
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first derivatives in combinations like (^(JA) (^ "^M. fat 6 3' *

This appearanoe of first derivatives of B*,. ., is a new feature.
P-tabj '

peculiar to the Lagrangian (4.1)« It is to "be stressed that these

derivatives do not appear in the "bilinear terms, where their presence

would signal ghosts, but only in the trilinear and qua&rilinear

interaction terms. Their existence must mean that B7"r ,w are no
/HabJ .

longer algebraio variables canonically conjugate to the Lpy" . 'si , "but

are independent dynamical variables. The particle spectrum given by the

bilinear terms would thus probably be altered. Also, the stability of

the vacuum can no longer be taken for granted.

In view of these uncertainties, the safest procedure seems to be

to discard (4*1). The theory as it stands will therefore not allow

for the propagation of Yang-Mills-like ' degrees of freedom B , B C .

To summarise, of the eight sets of fields introduced into the

theory (*. «£„ , ^ , B ^ , B* , jfc. , ,£, , Pk , P* )
two sets (9u-oc an<i ^ e antisymmetric parts of VP . ) are removed by

/ r-* b. k k

imposing SL(6,C) oovariant constraints. Three sets, P £ P^Q > P i Pc

are eliminated by choice of a special gauge. Two further sets,

B nd B

are eliminated by choice of a special gauge. Two further sets,

and B - > are completely determined as algebraic functions of theB

rest, through the Lagrangian field equations. There then remain in the

theory just the symmetric parts of ^ ^ (TiW " T M . ) an<^ 'tlie^r oanonically

conjugaxe variables B̂ r̂ a-i . Our choice of the constants J3, , ̂ 2 » $\

was dictat«d by the requirement that the bilinear part of the Lagrangian

should ooinolde with the Pauli-Fierz Lagrangian describing the propagation

of a nonet of 2 + particles only* '

Does this requirement guarantee that in addition to these 2

degrees of freedom, represented in the rest frame by the traceless

symmetric fields, U. . " r 5. .f * no further degrees of freedom
' J i j i i j ' m m ' ™

(corresponding to rest-frame spin-one fields ^ Q . (**^-Q) S"1^ spin-zero

fields ^ Q 0 and fp. . ) will ever get excited as a consequence of the

interaction terms and propagate^or example^as composite bound state fields?

It is clear that, in the absence of a higher-gauge symmetry

affecting just these degrees of freedom, we cannot answer this question

in any general manner. For Einstein's generally covariant theory of

an SI7(3) singlet helicity-two partiole, general covariance does provide

just the requisite higher symmetry GEL(4»R) whioh guarantees that the spin-one

- 14 -



yQi fields do not propagate. But for the zero-spin degrees of freedom

.<p00 and tpii (even in the Pauli-Fierz theory) there is no suoh

higher symmetry, nor any guarantee of absence of propagation, aa has

reoently teen stressed "by Boulware and Deser .

We oonjecture that if the SL(6,C) symmetry of the present paper

is extended to a still higher symmetry - possibly U(6,6) - we shall Toe

able to construot a theory where the non-propagation of all the unwanted

degrees of freedom is guaranteed "by the extended gauge invarianoe of the

theory, rather than "by the ohoosing of special values for the parameters.

In this sense the theory presented in the present paper will need

further elaboration.

One last remark. One can construot a theory of 2 + and 2 nonets

which utilise both ^uv a n d *?av5 degrees of freedom "by extending the

gauge group to SL(6,C) x SL(6,C) . The formalism is a simple extension

of that presented in Sec, II with

Sl(x) XK

(4.4)

Note that fL is not pseu do-unitary; ii(z) £ Cl (x) .

We introduoe the two distinot gauge fields, B and C , and two sets
T 2 " r

of vierbeins, LM and LM , which transform as

(4.6)

and

(4.7)

(SL)'1 L' IT' . (4.8)
-/A -* {""I - f



We also introduce the field S , expressed in the Eirao "basis "by

S - e,j> i (Fk
+ f 4 ̂  +1% Us) I

and which transforms aooording to S —*• il S • The oovariant derivatives

transforming as soalars under SL(6,C) x SL(6,C) .

To replace the oovariant constraint (2«ll)t ve shall require that
2 1

LH be expressible as a funotion L» and S * The new constraints -
analogous to (2 .II1 ) are given "by

(4.11)

Note that these constraints guarantee that in the expression

1 > W b b L
] *"T~ i i 6 G y 0

the two fields i^^ and i - ooour symmetrioally with the same metric*

In addition, the larger gauge group SL(6,C) X SL(6,C) permitB the

imposition of constraints similar to (2*11)i
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k k
whi,oh makes t h e s y m m e t r y "between lilf. a n d ^ . , v K e v e n more p i q u a n t . I t

H * M*P (everywhere)is an easy matter now to oonstruct the required Lagrangian (replac eV^L. L

by L L̂ >) whioh ensures the propagation of 2 and 2 nonets.

V. SL(6,C) CUBEENT ALGEBRA

So far in this paper we have "been dealing with purely field-

theoretio matters. To conolude, we shall make a few "brief remarks on

the algebraio potential of this kind of model and, in particular,

indioate how a set of conserved SL(6,C) ourrents oould "be constructed.

The first otep is to define owionioal raodenta and impose tbe usual

Poisson "braoket relations. Of oourse, when a Lagrangian carries a gauge

symmetry of the second kind, the canonical momenta are not all independent*

However, this problem is easily circumvented by the standard method of

imposing a gauge-choosing meohanisra; one merely adds to the gauge-

invariant Lagrangian a Lagrange multiplier term which breaks symmetry

transformations of the seoond kind while respeoting those of the first

kind. In this way one oan arrange that, for example, the oanonioal

momenta

T\ -

are all independent. The infinitesimal (rigid) transformations,

are then generated (in the sense of Poisson brackets) by the functional

This suggests that a suitable definition for the ourrent

would be

- 17 -



\i\. —
'V U>

/ * •

(5.2)

(We have not written in all the independent contributions to this current.
Each field whose time derivative appears in the Lagrangian would make such
,a contribution•) It is well known ' that, for gauge theories, ourrents
constructed in this way either vanish when the equations of motion are
used or take the form

121
where P v is antisymmetric . The form of F,^ oan "be modified "by

adding to the original Lagrangian a 4~divergence which is variationally

insignificant. Whatever the chosen form, however, one oan "be sure that,

in view of their oanonical derivation, the time components of these

ourrents must satisfy the SL(6,C) algebra.

For illustration, we construct ourrents for the Weyl-Einstein

Lagrangian which is SL(2,C) —gauge invariant. In the Lagrangian (2.9)

set 0( -(3, - $is (*3 =0 to obtain

£m iTn^L^^L^-y^^L^ . (5.4)

A l i t t l e algebra then shows that i t oan be oast into the more familiar
form:

- ; T A (-r [ L M , L V ] B^V) + surface term
4 \ •

s 1 T A ( 3 L B V B M [ L ^ , L V ] - i t B ^ . B j t L ^ . L ^ l + surface term
Ki (5.5)
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Discarding the surface term, we compute the derivatives

Acoording to (5.2

Jv
(5.6)

We adopt this as the definition of the current. One can easily ve-rify that,

"barring Schvinger terms, it generates the algebra of SL(2,C). Note that it

equals

so that when the field equations are satisfied the first term vanishes

and Jv equals

In this fona Jv ia identieally sonserved, (Our derivation is in-

complete, of oour««, "booauso we hav* not' explicitly shown how to over-

ootne the gauge difficulties through inplusion of the contribution of the

Lagrange multiplier. )

In connection -with the matter field contributions to the current,

it should be remarked that the variable whiob is canonically conjugate

to the quark field 1jJ (for example) is not ^ b u t , rather, Y Lo •

(The Poisson bracket of TJJ and *\j» is therefore quite complicated.)

Nevertheless, the ourrent retains the simple form -L^-vyY . That is,

- 19 -



the SU(3) currents, in particular, take the form

which is obtained from the naive ourrent by the simple replacement

VI. SL(6,C) GAUGE-INVARIANT QUARK LAGRAFGIM AHD STJ(6) SYMMETRY

The SL(6,C) gauge-invariant quark Lagrangian i s simple to wr i t e

downt

L m ~y L^1^ Y + fo.c; - m^lf . (6.1)

Likewise, the Lagrangian describing a 35 of SU(6) interacting through

the exohange of the gauge nonet of 2+ gluons is given by

L = i- (6.2)

where (§ is the seoond-rank multi-spinox* Both these are familiar
Lagrangians from the Bargmann-¥igner ' theory of SU(6) super-

raultiplets, except that the Dirac matrix Yu ^ a s Taeen replaoed by
the field !>„ and the ordinary derivative ()„ by the covariant
derivative Vu . This change, however, is decisive in that whereas

r
previously the kinetic-energy terms in the multi-spinor Lagrangiana
were notoriously non-invariant for the SL(6,C) symmetry, the replaoe*
roent of ^u - ^Ln^ ^y Lu *&& M̂ "by Vw makes the kinetic energy
terms also part of a gauge-invariant construct. A parallel ohange
which occurs in the SL(6,C) currents has been noted in the last
section. The variable oanonioally conjugate to \JJ ia not "ty Yo but
*U;(X)LO(X) SO that the correct (conserved) set of SL(6,C) quark
ourrents involves replaoing ^ y w »i» ^Q earlier versions of SL(6,C)
theory, by \f(x)L (x) .
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The important question which arises here is this» We possess now

an SL(€tG) gauge-invariant Lagpangiaa, deao^ifeing a, peai!6ive"£*96Lua»ay

nonet of 2 particles; we also possess SL(6,C) r- gauge-invariant

Lagrangians describing quarks (6.1) and the quark-antiquark system (6.2).

Presumably, with some effort one can construct gauge-invariant Lagrangians

for higher SU(6) quark supermultiplets, where everywhere the Dirad

matrix y - (h^) will "be replaoed "by lAx) and d^ Toy V̂  . Unlike

the old SL(6,C) theory, in th« n«w Lagrangian the kinetio energy terms

are part of an Sl(6,C) gauge-invariant structure. The question ist how
practice

in ^ does the availability of this unitarity-preserving SL(6fC) gauge-

invariant theory (or, equivalently, of a spin-unitary-spin-containing ' ,

algebra of SL(6,C) conserved currents) modify the earlier

results of the phenomenological SL(6,C) 7 The answer seems to "be:

hardly at all - except for the new couplings of the 2+ nonet with matter.

The reason is that crucial to our theory is the spontaneous

symmetry-breaking mechanism of Einstein, whioh replaces L^^) by

(La(xJ) • . )f in the leading approximation. This mechanism ensures

that the physical particle states are indeed Poinoare x SU(3) states.

The spontaneous symmetry-breaking mechanism implies that the symmetry

of the Lagrangian is not refleoted in the symmetry of the S matrix,

which for all quark multiplets s t i l l proceeds through the familiar
progression of the SU(6) residual symmetry for the one-partiale et&tee
and the oollinear U(3) x U(3) for ths reeidual ipunQtry of tin vtrtio«ii
Tho only surprise in the situation is that the purely gauge part of the
Lagrangian described by the L , B and S fields gives rise to a

multiplet of pure spin-two particles, which constitutes only an incomplete

multiplet of the quark-based phenomenologioal SU(6) « The situation here

is completely analogous to non-linearly realised ohiral theories, whioh

also display incomplete multipleta of the larger symmetry group. Clearly

the non-linear constraints like (2.11*) or (4.11) are playing a role in

producing our incomplete multiplet.
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APPENDIX I

For completeness we summarize here the treatment of SL(2,0) gauge

invarianoe given in Hef*2*

The 3L(2,C) gauge transformations, y •> Six? » are representable in

the form

The matrix SL Is pseudounltary, & - *VO&*YQ * T]a* 3muS* fields
and L are represented in the Dirao "basis by

These fields transform aooording to

* Si B^ JI~1

Corariant derivatives are formed as in the text. For example,

The simplest SL(2,C) gauge-invariant Lagrangian for L and B is given "by

. (A)

There is no need to introduce the Ooldstone fields S(x) in this case*

Thus, the field values

> ^ ' > = o

are indeed a solution of the Buler-Lagrange equations, and small perturbations

on this solution can be shown to oarry positive energy* The expression (A)

is equivalent to the Palatini form of Einstein's Lagrangian* The remark-

able faot about i t is that i t is also a scalar density under general oo-

ordinate transformations if we adopt the transformation rules,
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APPEJTOIX II

The Lagrangian (2.9) i s not the only gauge-invariant one which

•gives r ise to a pure massive 2 nonet. A different one-parameter family

is arrived at by considering the expression

J (A.I)

This Lagrangian also reduoes to the Pauli-Fiera form in the free field

approximation if the following values for the parameters a- , • • • , ac

are adopted!

1" Kl Jft

a (A.2)
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The components of B are given in this approximation by

( A- 3 )

provided X jt - 1 , l / 3 f +1 .
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3) Although (2,9) is not, as it stands, invariant with respeot to

the general coordinate transformations of Einstein, this could be

easily arranged* One could, for example, define a metrio tensor

with which to saturate greek indices and a Christoffel symbol,

(v J > w^*n which to form covariant derivatives. Typioally

However, we shall not pursue this refinement here.

4) The importance of constraints in SL(6,C) —invariant theories

(not gauged) was first recognized by F. Gursey, in Contemporary

Physios, (Trieste Symposium, 1968), (IAEA, Vienna 1969).
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T.W.B.Kibble, Phys.Hev. i5_5_,1554(1967); B.W.Lee and J. Zinn-Justin,

PhyB.Rev. I>5_, 3137(1972); Abdus Salam and J. Strathdee, Nuovo Cimento

11A,397(1972).

7"). The Landau gauge, however, does have the advantage that i t respects

the rigid SL(6,C) transformations whereas the unitary gauge does

not. I t is therefore muoh easier, for example, to define the

currents which generate suoh transformations in the Landau gauge.

8) We call these Yang-Mills-like degrees of freedom because the

corresponding fields occur in the covariant and universal

combination V « (6,, + iB,,) .
f* /* r

9) Of course, by choosing a different covariant Lagrangian, a different

set of oovariant constraints and a different set of relations

between the parameters, i t may be possible to arrange that,besides

the 2+ nonet, other 1+ and 0+ particles may also propagate with

positive frequencies, at least so far as the bilinear part of the

Lagrangian is concerned. We have not attempted suoh extensions of

the theory.

10) D.O. Boulware and S. D«aar, Seattle preprint, ELO-1388-825 (1972).

11) A. Trautman, 1964 Brandeie Lectures,.E&a. S. Desor «nd K. Ford

(Prentice-Hall 1965).

12) This means that the total SL(6,C) oharges are represented by

2-dimenaional surface integrals* Their matrix elements between

physical states must therefore vanish since the gauge-dependent

masaless excitations cannot contribute. We have an algebra of

currents but not of charges. This phenomenon is familiar in Yang-

Mills-like theories where spontaneous symmetry breaking gives

masses to the gauge particles. In such theories the "broken" charges

are zero. (See B. Zumino,'Cargese lecture notes", CEHN

preprint, Th 1550 (1972).) This is presumably in aooord with

Coleman's theorem, (jBy splitting off from the ourrent those terms which

- 25 -



depend on spontaneous eymmetry-'breaking parameters*it however seems

possible to define new (partially oonserved) "currents" which do
olos* on th* algtbr* but do not yl*ld asaro oh*rg«B, Wa do not
elaborate on this here.)

13) R« Delbourgo, M.A. Rashid, Abdue Salam and J. Strathdee, in High-

Energy Physios and Elementary Particles (IAEA, Vienna 1965), p.455.

In the present paper the notation used is that of this reference.

See also F. Gursey, Ref.4*

14) It ia important to stress that our group, which includes

0(3,1) (*>SL(6,C), oontains spin in two places j "ortital" spin within

the 0(3»l) subgroup of the Poinoare group P , typified "by the 4-

vector indices yU,V, *.* attached to L^ and B^ , and also

"intrinsic" spin within the SL(2,C) contained inside SL(6,C).

(See also A.O, Barut, P. Budini and C. Fronsdal, Proo* Roy* Soo* (London)

29-1A, 106 (1965)») In a crude sense, ours is the gauge

theory of the 0(3) X Str(6) particle-generating symmetry.
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