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ABSTRACT

We construct an SL(6,0) gauge~invariant Lagrangian which describdes a
nonet of massive positive energy 2t particles, Of importance for the
model are the concepts of covariant constraint. and.:_spontaneous symmetry breax-—
ing. The distinguishing feature of the present tﬁeory ig the wmet of con~
served ourrents which generate the algebra of SL(6,C) . We &lso present
gauge=invariant and unitarity-preserving gquark and meson (quark-antiquark
composite ) Lagrangians,
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I. INTRODUCTION -

The recognition of gauge symmeiries of the seocond kind among
physical theories and the association of gauge particles with them has

alternated between internal and spin-containing symmetries. First in

this context was Woyl's recognition of the electromagnetic vector

potential (with its associated helicity-one photon) as the gauge field
corresponding to an internal symmetry, U(l), Second was the recognition

by Weyl and by Fock and Ivanenko that the vierbein field (helicity-two
graviton) was the gauge field corresponding to the gspin=containing

synmetry SL(2,C)s Third was the association by Yang and Mills and by

Shaw 1) of the spin-one iso-iriplet field with the internal symmetry, SU(2).

Continuing the discussion initiasted in & recent note?)this paper
is concerned with the construction of a model whose Lagrangian is
invariant under SL(6;C) trangformations of the second kind, This
gyumetry incorporates both the intermal SU(3) and the spin-containing
SL(2,C)s In common with other gauge theories, this model involves & set
of gauge fields with universal coupling. A new feature is the central
role played by spontaneous symmeiry breaking, This is absolutely
necessary if the ghosts or infinite-dimensional multiplets implicit in an
unbroken non-compact symmetry are to be avoided. One consequence of the
spontaneous symmetry breaking is that we shall not be troubled by the

presence of massless gauge particles., Indeed, thig scheme is intended

as & symmetry of sirong interaciions,

The main problem is to set up a suitable Lagrangian for the gaugse
fields and to analyse their particle content, In this paper we shall
exhibit an SL(6,C )~invariant Lagrangian whose structure is such that only
2% gstates (singlet and octet) are caused to propagate and thereby represent
the gauge degrees of freedom, '

The symmetry group which we are using bhas the siructure of a semi~
direct preoduct
(P@suu)) @ SL(5,0)
where P denotes the Poincaré group, and SU(3) +the internal symmetry
according to which physical states are classified, These are unbroken.

The remaining factor, SL(6,C), is & gauge symmeiry of the second kind
and it is going to be spontaneocusly broken,
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The spin~unitary=-spin containing SL(6,C) transformations are of
two kinds, (&) pure gauge transformations which approach the identity
asymptotically and so do not affect state vectors and (b) asymptotically
rigid (or first kind) transformations which do affect the state vectors
and which are spontanseously broken, i.,e, which fail to leave the ground
state invariant, It is necessary to distinguish between these two kinds
of transformation since in order to compute anything one must begin by
chooging a gauge, i.e. by violating the invariance with respect to the
transformations (é). The transformations (P), on the otber hand, need
not be vioclated by the gauge-choosing mechanism, Their violation by the
spontaﬁeous mechanism is therefore a meaningful effect; the two

mechanisms are logically distinct,

In this paper we shall deal with the olassical equations of motion
and their interpretation. Quantum effects are not considered. Thus, we
shall look for & P x SU(3)- invariant solution of the classical equationms
to represent the vacuum state, This solution will not be invariant under
the rigid SL(6,C) transformations which are therefore to be thought of
as spontanecusly vioclated, We next oonsider the effect of small
perturbations about the ground state solution. The propagation of these
excitations in the linear approximation determines the bare particle
content of the aystem., We shall require that these pérturbations carry
positive energy and propagate with finite(less than light) velocities.

To this extent the ground state is stable, In principle it would be
poasible to test this stability more deeply &t the classical level by
performing & complete canonical analysis and setting up ithe Hamiltonian,

However, we shall not attempt this here.

The gauge field system involves, a riori,-é large number of
independent components, Many of these can be eliminated through the
impogition of SL({6,C) covariant constraints., Since the gauge symmetry
must in any case be spontaneously broken, the imposition of suoch
constraints will not lead to any further loss of symmeiry, Their uss
ig optional. We shall make heavy use of such constraints in order %o

simplify the struoture of our Lagrangian.

The plan of the paper is as follows. In Sec, II the various fields
are iniroduced and the action of the group on them defined. A gauge-
inveriant Lagrangian is exhibited. (As a simple illustrative example the
SL(2,C) gauge-invariant Lagrangian of Weyl is given in Appx. I.) The
rotion of covariant constraint is introduced and'gauge conditions are
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digcussed, In Sec,III the vacuum solution and bare particle spectrum are
obtained, (The same is done for an alternative Lagrangian in Appx.II,)
Sec,IV contains some general remarks about the structure of the gauge

system and what is likely to happen when interactions are taken into account.
The extension to SL(6,C) x SL(6,C) gauge symmetry is sketched briefly.
Sec.V discunses the existence of conssrved currents which close on the
algebra of SL(6,C). Sec.VI considers the interaction of the gauge fields
with matter. It is suggemted that, though the new theory is unitarity
preserving, the predictions of the old phenomenological SL(S,C) theory may

perhaps be expected to persist in the present theoxy.

II, AN SL(6,0)==INVARIANT LAGRANGIAN

We propose to set up a Lagrangian which ig invariant under SL(6,C)
transformations of the second kind. Although we shall be concerned only
with the gauge field part of the system, it is useful in establishing the
notation to introduce a 12=component quark field VY and ites adjoint ﬁ .

These transform under the action of the full symmetry group

P® SUB3) @ SL(6,0)

according to

n

yx) - () a(p)w Q069 px) o)
2,1

1

Yx) - y' () PN W alh)”
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where x' = !\‘m:xv + ?p is & Poinoaré iransformation and the matrices
alA)y w » £} are expressidle by

alA) = expi—_ Bea (M) Oy e

w = exp-i- wh‘)\h (2.2)

\ h 1 h b.
R = ey %[.Q () + 3 ‘Q‘ag (x) 64t .Q.: (x) ys] A

with real parameters. The transformations (2.1) form & group in the

aense that two successive aotions combine according to the rule
[]
&y “Q'\ alwz'n'z. = dqa, W, "Q“l ‘Q'z
where .ﬂi is given by

) -1 -1
52.1 = a, Jl.‘aawz

Thie rule is consistent only if the transformations a.-lw_lﬂ al® are

themselves in SL(6,C) (which of course they are).

The system of gauge fieldes to be used in consimc‘bing the
Lagrangian comprises three distinct types, BM y B and LP- s Which are
expressed In the Dirac basis by

R
R v ok k ) A
BM- - (Bp\ * 2 Bpn[rx@] “weg t BM.S Y5/ 7

R
A
S = expi(?ﬂ %\F’hﬁ‘ +P:7’5>-

[upl o

e — ——— : . e —— e —

- . o - K '



R ko
LM B (Lpu Ta ¥ LpotS 1Ym¥s)>\ : (2.3)

The components Bﬁ y Bﬁs ’ Pk ' Pk' k=1, 2, ¢#¢ , 8) and ]3]‘c

5 wixg?
lc k k
P['*ﬂ] ’ LP-" ’ L,uu‘j (k = 9, 1, ees , 8) are all real,
The gauge fields transform according to
-t _ _I_ ﬂ"“
g - 5
-1 .
. 2' 5\
Lp—*.Q.LM..Q. o (3,_ 4)
under the gauge group SL(6,C) and acoording to
: -1 -1
B A awB d w
S = awddw
L. A, awl, " (2.5)
M MV v

under the esympiotic symmeiry group P x SU(3) .

The vector Bu is the basioc gauge field, It is used in the form-
ing of covariant derivatives, viz.,




vV, $ = a}LST B, S

v, L d Ly + 1B, L], | (2.6)

The analogue of Bg in Yang<Mills theory is the field which carries the
geuge quanta and couples to the conserved isospin current. In gravitation

theory 3B plays the role of a connection but there it is essentially the

il
derivative of the field which carries the gauge quanta, (It will turn ocut

to have a similar status in the present model, )

The scalar, S(x) , is more subtle. If there wers no geuge symmetry
of ibe second kind but only the spontaneously broken rigid SL(6,C) ,
then S5 would carry the Goldstone modes., These would be 70 massless
excitaiions represented by the components, P(x) , in (2.3). In systems
where gauge symmetry of the second kind is present these Goldstone modes
are not excited, More precisely, they are exactly compensated by the
longitudinal rodes in Bp(x) ingofar as gaugs-independent quantities are
concerned. They can appear in gauge-dependent guantities, (However, it
is possible to choose & gauge in which P(x)= 0 (that is, S= 1) and
the corresronding modes in Bn(x) are suppressed, This is the so=-called
unitary couge.) Notice that the components of § transform as bosons
under the asymptotic symmetry P x SU(B) but as quarks under the gauge
symmetry SL(6,C) .

The third set of fields, LM(x) y can e usefully
introduced inte the gauge gystem, : They  are
not strictly necessary from the group-thecretical point of view, but
they can be made to play the role of canonically conjugate wvariables to
the Bp{x) . It is just the existence of this possibility which
digt .nguishes gauge theories based on a gpin=-containing symmetry, such
as Wiyl's B8SL(2,0) gauge=~invariant vierbein version of gravity theory,
from those, such as Maxwell or Yang-Mills theory, which are based on a
purely internal symmetry. In being conjugate to the connection Bp
the field Lp has many resemblances to the wvierbein in general relativity
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theory. In faot,it will become the ocarrier of gange quanta, Moreover,
it will be made to have a non-vanishing value in the ground state,

<L}-A-> = YM . . (2-7)

This equation reflects the absence of SL(6,C) symmetry in the ground
state, It is, of oourse, invariant under P x SU(3) , In gravity theory

the analogous equation would be

<L/ud> = Nux (2.8)

vwhere 1| denotes the Minkowski tensor. This equation (first introduced
by Einstein, though not in this quantum formulation), while being Poincaré
invariant, exhibite the lack of SL(2,0) gsauge invariance in the vacuum,
(It also exhibits the breaking of the co~ordinate transformation group

in Einstein's theory, but from our present point of view this is not the

significance of this spontaneous symmetry-bresking.)

Note that the covariant derivative of the "vierbein" Lp y &lven
by (2.6) cannot be made to vanish identically and here the resemblance
to general relativity is lost., There is no analogue of Riemannian

geometry in the present scheme.

The variety of gauge-invariant Lagrangians which can be invented
for the systen, bp s S5 and LM ,is large. A fairly simple example,
closest in form to Einstein-Weyl Lagrangian for SL(2,C), is obtained by
requiring that no more than four fields and two derivatives ocour in each

term., Thig is given by

i- LT [— = (VM L% L, - T La%L,)
ral, (59 S, 59, s




in which greek indices are to be saturated with the Minkowski tensor 3).
The real parameters w , pl ’ /32 ' gs are at present arbitrary,
Our probvlem is to find suiteble values for them, That is, we should
like the Lagrangian (2,9) to yield a stable P x SU(3)-—invariant vacuunm
in which a 2% massive nonet propagates,

Since ihe viexbein field is not playing a fundamental group=—
theoretic role in this system, we are free %o reduce the number of
independent components contained in it by imposing constraints., Consider

the quantities, { and -{:m5 , defined by

k
T

- / ! k .
ST LS = (Mua¥y + fpes 3% X (2.10)

This structure is gauge invariant. Indeed, according to (2.3) and (2.6)

we have
-\ -1 =i
S LMS - awS LP_So.w

. . k .
is a nonet of second-rank tensors whils £uu5 is & nonet

That is, 5:m
/

of pseudotensors with respect to P x SU(3) .

To simplify the Lagrangian (2.9) and, what is more important, to
ensure that the ground state value (LP>-sﬁﬁ is a stable solution, we

shall impose the constraints 4)
k k
ﬂm— Ayw =0 (2.11)
k  qq0s
Lioc=0 . | (2.11+)

P s

For the construints (2,11') to be realized, one can show that (L )= Y
1ls a sufficicnt condition, In the unitary gauge these SL(6,C)-covariant

congtrainis take the simple form




It will be shown in Sec, III that the free=field approximation to
the Lagrangian (2.9) reduces to the Fierz~Psu1fnform foer the fellowing
special values of the parametexs:

M M®
G=-za > b= - = e . (2.12)

III., VACUUM SOLUTION ARD PARTICLE SPECTRUM

Having adepted the Lagrangian (2.,10) and the constraints (2.11),
our problem now is to determine the free parameters in such a way that
. (of stable solutions)
a consistent perfturbative schemeVcan be set up., This means, first of all,
that the Buler-Lagrange equations should have a P x SU(3)—invariant
golution and, secondly, that small perturbations about this solution
should carry positive energy. We shall require, further, that these

gmall excitations have the character of a 27 nonet.

Because of the BSL({6,0) gauge invariance, the classical equations
of motion are under~determined. They must be supplemented by a set of
70 gauge conditions. 4 convenient choice of gauge for the considerations

which follow is given by P{(x) = 0 or, eguivalently,
S(I) = 1 . (3‘1)

These conditions specify the so-~called unitary gauge 6). This gauge
bas the advantage that no zero-mass excitations appear in it., In other
gauges such as, for example, the Landau gauge, a“Bﬂrn 0 , zero-mass

7).

excitations do arise but only in gauge-dependent quantities

Rather than deal directly with the equations of motion, we shall

require that the values

Ly =y, B=o, <=1 6.2)

- 10 -




represent an extremum of the action with respect to small variations.

The parameters &, 8., f,, @3 must be adjusted mo am to amsure this,

The smell variations must,of course,be compatible with the constraints
(2,11) and with the gauge condition (3.1)., Into the Lagrangian substitute

the expressions

k k
L= Yt S ¥

(3.3)

ok
) ok kT))‘

k
B}*‘- = (B}u +‘Z B#[“@] o-o(p + BP‘S 5 E

where ‘Pl’iu = lflfq* « Treat the components ¥ and B as small quantities
and retain only the first-and second-order contributions. The single

first-order term is proportional to 92P‘ and this will vanigh if we take

e1 t 9@2_ - LP@3 =0 . (3.4)
The second-order terms then assume the form

k& k
2
I(;_) R ! B,,,L[vot] (lfpof,v - Y\,uV Lf}m(,)«)

| R R k k
"-'IEL (BHE)MJ Bv[,ud] ‘ch'pﬂ Bv[Vo(I) :

R _k R _k Bk Rk
t o (B,u B.\t + B}AS BPS) +2Fa(ﬂw(tfpv t L"(pz.-@-!) ?}A‘H ‘fw ' (3‘5)
The excitation spectrum to whioh the Lagrangian (3.5) gives rise.can
best be analysed by eliminating the algebraic variables, B. That is,
one solves the algebraio equations, b;fca/aB = 0 to obtain (provided
K¢ 07,

R
BM = 0
R

gpg;-o

- 11 =-



R R
-y

and substitutes these expressions back into (3.5).

R
\
;ftn = (‘fuv,u lﬂDpV,o(

k. R

i
T 2 Ppu,p Sayy T 2

) k S
TRV Taw Fan,n Eq,.w; an, v

The result is

R k )
Tup, o Yyy,

(3.6)

- R R R
F 88y Gy pv T k(G 6,) G oy - (3.7)

The values (2.12) have been chosen such that (3.7) takes the well-known

Pauli~Fierz form

vk R

PO LI LN
() K (fpv,u ‘fp.v,o: - Z‘Jootp,p Fuv,v =z Supw Pov, %

L kR ]
- Ma((ﬂuv 5°,w - Lf/,wl ?VU)-J v (3-8)

The parameter, K , which can bhe removed from the bilinear sxpression,
cf_(z) s by the rescaling SO-)K,;P y, B= KB is to be interpreted as

the universal coupling constant of our gauge theoxry.

The arbitrery paramefter o« must not vanish. In the simpler gauge
modal in whioh SL(6,C) is replaced by SL(2,C) this parameter oan

vanish, in which case the Weyl=Einsteln Lagrangian results 2).

A different SL(6,C)==invariant Lagrangian, whioch also contains
one free parameter (in addition to K and M), is treated in Appx.II.




IV, INDEPENDENT DEGREES OF FREEDOM

et us eennider what happens e #he Fipad Jwe aguasions o madien
(3.6) when we take into aoccount the complete Lagrangian 4. , rather than
just its bilinear part £,

k
The field B and B
olds By, M5

equﬁtions of motion., However, sinoce the complete Lagrangian ocontains no

- no longer vanish as & oonseguence of the

derivatives of B'u , the modified equations will simply express the fields
L. k

de and BP«5 as lmplio:.t but purely algebraic functions of the other
k k
Th :
fields in the theory (50’_W and B}l[“-ﬁ]) e two fields B, and B

are thus algebraic composites of the other independent fields, with no
propagation character of their own., It was indeed to guarantee this
algebraic=composite charactier for ZB]‘c and Bk5 that the S«field-

containing term was introduced into the Lagrangian in the first place,

It is perfeotly possible to introduce one simple additional term
in the Lagrangian which would ensure a propagation of 17 and 17
particles corresponding to these Yang~Mills-like fields Bﬁ and Bk5 .
The term in queatlon has the same form as the third term in (2.9) except
that (89, S ) is replaced by Byy ; i.e., take

! .
Lym= 5 & T Ly By Ly Byy (41)

"Where B}N denotes the covariant ocurl
By = OuBy - 2y Bu v i[B,B] C (4.2)

The bilinear generated by (4.1) is proportional to

2
R R R kR \%
(a}* By -0y Bul + (a# Bvs - av Bus) - (4.3)

‘ . K
The important point to observe is that (4.3) involves B and B 5
fieids alone, There is no contribution to the apin-2+ bilinears. This
is not, of course, true of the trilinear and quadrilinear %erms which
arise in the interaction Lagrangian given by (4.1), These will in
. ‘s . < .
goneral involve the spln-zf-descrn.‘olng fiselds Bp[a‘b] as well as their

*
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2 <
first derivatives in ocombinations like (qQ@) (av E§¢[¢@]) '

This appearance of first derivatives of Bﬁ[ﬁﬂ is a new feaiure,
peculiar to the Lagrangian (4,1), It is to be stressed that these
derivatives do not appear in the bilinear terms, where their presencs
would signal ghosts, but only in the trilinear and guadrilinear

interaction terms. Their existence must mean that Bk[g@ are no

longer algebraioc variables_canonically conjugate to tﬁ; ?:;J 'at, but
are independent dynamical variables, The particls speotrum given by the
bilinear terms would thus probably be altered, Also, the stability of

the vacuum can no longer be taken for granted.

In view of these uncertainties, the safest procedure seems to be

to discard (4.1). The theory as it stands will therefore not allow

for the propagation of Yang~Mille~like 8) degrees of freedom Bk ’ Bk .

>

To summarise, of the eight seits of fields introduced intop;he g
theory (viz.k (jf;’w , q};ﬁ . Bi[&m , 31; , 131;“5 , Phgs BT, Plg )
two sets (l,pm)5 and the antisymmeiric paris of ‘fuv } s&re removed by
imposing SL(6,C) ocovariant constraints., Three sets, P & o ! X ' Pg ,
are eliminated by choice of a special gauge. Two further sets,
Bﬁ and Bﬁﬁ, are completely determined as algebralc functions of the
reagt, through the Lagrangian field equations, There then remain in the

theory just the symmetric parts of SPﬁV (gﬁg = ?%H) and their canonically
. B . k . :

conjugaie variables Bp&xﬁ] . Our choice of the constants S, , 8, ﬁé

was dictated by the requirement that the bilinear part of the Lagrangian

should coinclide with the Pauli-Fierz Lagranglan desoribing the propagation

of & aonet of 27 particles only. 9)

Does thie requirement guaraniee that in addition to: these 2t

degrees of freedom, represented in the rest frame by the traceless

symmetric fields, Lylifa _% 55_3301';11 s no further degress of freedom

(corresponding to rest-~frame spin-one fields sPOi (n‘fio) and spin-zero

1

-

fields ﬂgo and fPEi } will ever get excited as a consequence of the

interaction terms and propagate,for example,as composgite bound gtate fields?

It is olear that, in the absence of a higher~gauge symmetry
affecting just these degrees of freedom, we cannot answer this gquestion
in any general manner, Tor Einstein's generally covariant theory of
an SU(3) singlet helicity-two partiocle, general covariance does provide
just the requisite higher symmetry GL({4,R) which guarantees that the spin-ocue

- 14 =




?Oi fields do not propagate, But for the zero=spin degrees of fraed.om
Poo and ¥.. (even in the Pauli-Fierz theory) there is no such
higher symmetry, nor any guarantee of abasence of propagation, as has
recently been stregssed by Boulware and Deser 10>.

We oonjecture that if the SL(6,C) symmetry of the present paper
is extended to a still higher gymmetry = possibly U(6,6) =~ we shall be
able to construct a theory where the non-propagation of all the unwanted
degrees of freedom is guaranteed by the extended gauge invariance of the
theory, rather than by the choosing of special values for the parameters.
In this sense the iheory presented in the present paper will need
further elaboration, |

One last remark. One can construot a theory of'2+ and 2 nonets
which utilise both g’ﬁicv) and l?llivs degrees of freedom by extending the
gauge group to SL(6,C) x SL(6,C) . The formalism is a simple extension
of that presented in Sec, II with

SL(X) = exp -;_ [JLh()t) +21_ &:@(x)ﬁ'd(s + ..Q.L;(x) YSJ’\h

1k N 1k
X exf?[-ﬂ- (x) ts3 JZW (%) 0;@ +._Q.S (x) )./S:I )h
‘ (4.4)
Note that f1 is not pseudo~unitary; (x) ¢ .Q,_l (x) .
We introduce the two distinot gauge fields, B and C, , and two gets

M I
of vierbeins, L}]i and Lp y Which transform as

(B+iC) > 2(B+i0), L' -1 23, & (4.5)

(8-i0 > (A (610, A-L(@' & s
and |

L’,v- O NI ) (4.7)

Lo @)Lt (4.8)
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We also introduce the field S , expressed in the Dirac basis by

R
R ok R

S exp (P 4 s Ty O + B %) %

R

R k A

% e.aap(Q +J§Qd‘sc;‘@+Q:75);

and which transforms according to S5 — (15 , | The covariant derivatives

Ve Ly = 3, Ly il 1] - {C, L (4.9)
v, = 9, L, + 1B BT +{c,, 1) (4.30)

. ¢ 2 . . . 1 2 )
franeform like L}.& and LM y With quantities like (VM- LM vv LM

transforming as scalars under SL(6,C) x SL(6,C) .
To replace the covariant constraint (2,11), we shall require that

Lf._ be expressible as & funoction L’J; and S o The new constrainis -
analogous to (2,11') are given by ~ '

4,4 = R kR . R
ST = (R Yy + Auws 10750 A
. X (4.11)

R .
S L,u S = ('q}m Yo = Aues Yy, 75) )\k .

Note that these constraints guarantee that in the esxpression

12 Rk R k
'!S‘TJ\ Lf" LP = XM te}&& + IM'-*S ‘E}Lds

tha two fields 2::& and frl:w ocour symmetrically with the aame metric,
In addition, the larger gamuge group SL{6,0) x SL(6,C) permits the
imposition of constrainte similar to (2.11):

k R
Dus = Lau
k R
ﬂ}us = 10‘}#5




k aven more piquant., It

wx5 everywhere;
is an easgy matter now to oonstruct the required Lagrangian (repiaoeY Lu;v

which makes the symmetry between Eﬁu and £

by E&LS) whioh ensures the propagation of 2% and 2" nonets.

V.  SL(6,C) CURRENT ALGEBRA

So far in this paper we have been dealing with'purely field=-
theoretic mattérs. To conolude, we shall make a few brief remarks on
the algebraio potential of this kind of model and, in particular,

indicate how a set of conmserved SL(6,C) ourrents could be construoted,

The first step is i0o define canoniocal momentsa and impose the usual
Poisson bracket relations, Of course, when a Lagrangian carries a gauge
symmotry of the second kind, the canonical momenta are not all independent.‘
However, this probdlem is easily ciroumvented by the standard method of
imposing a gauge-choosing mechanism; one merely adds to the gauge-
invariant Lﬁgrangian a Lagrange multiplier term which breaks aymmetry
transformatidns of the second kind while respecting those of the first
kind, In this.way one can arrange that, for example, the canonioal

momenta

T, - 02 foL, 0 | B (5.1)
are all independent, The infiniteaimalCrigid)tréﬁsformations,

§Lu = -'.[é.Q.,LM]
are then generated (in the sense of Poisson brackets) by the functional

86 = [dyx LT (168 [LuT]) |

This suggests that a suitable definitiom for the ocurrent 4-vector

would be

-17-‘-



7= il 2
oL,

oy : (5.2)

(We have not written in all the independent contributions to thie current.
Each figld whose time derivative appears in the Lagrangian would make suoch
.8 oontrlbutlon.) It is well known 11) that, for gauge theories, ocurrents
‘oonstruoted in this way either vanish when the equations of motion are

used or take the form

JV - bp va | (503)
. . . 12) . o
where F,u.v is antisymmetric « The form of Fp_\? can be modified by

adding to the original Legrangian a 4-~divergence which is wvariationally
insignificant, Whatever the chosen form, however, omns can be sure that,
in view of their canonical derivation, the time components of these

currents must satisfy tha sL(6,C) algebrs,

For illusitration, we construct ocurrents for the Weyl=Einstein
Lagrangian which is SL(2,0)-—gauge invarlant. In the Lagrangian (2.9)
get o= (31 = @2 (33 =0 to obtain '

Lot T (Tuly Wl -9l L) . (5.4)

2)
A little algebra then shows that it can be cast into the more familiar

form;

i = I;..T}L (% [LM,'LLV] B}*v) +-si.1rf_a.ce term

I

l{,i )L(IBVBM[L;.LV] - i[Bpti][L}MLv] 4+ surface term.
. _ (5.5)
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Discarding the surface term, we compute the derivativas

z .
a__. = 1—- JP[LM, Ly] + [BMJ[LP,’L\)]]

°B, i
28 1
‘EL;; = -"V(MV[L)\;B),] "'—[Bw\-v]

According to (5.2),

I, = [t tueed] « [LorsaeLa)]

- (5.6
= [Bp.’“-;.ul'v]] . )

We adop® this ,aé‘ the definition of the current., One can easily verify that,
barring Schwinger terms, it generates the algebra of SL(2,C). Note that it

equals
b_.i'_l_f — J_ d [L ' Lv]
2B, i M7

po that yhen the field equations are satisfied the first term vanishes
and J,, equals "

In this ferm J,, is identically consexved, (Our derivation is ine
complete, of course, because we have not:expliciily shown how to over=
come the gauge diffioculiies through inolusion of the contribution of the
Lagrange multiplier, )

In connection with the matter field comtributions to the current,
it should be remarked that the variable whioch is canonically conjugate
to the quark field 1Y (for example) is not \_{)k’o but, rather, fPLO .
(The Poisson bracket of VY and Yy is therefore quite complicated, )
Nevertheless, the ourrent retains the simple form = 1;\p\\f + That ias,
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the SU(3) ourrents, in particular, take the form

(5.8)

NI):_,

YL

which is obtained from the naive ocurrent by the simple replacement
v = ) =Ly,

VI. SL(6,C) GAUGE-INVARIANT QUARK LAGRANGIAN AND SU(6) SYMMETRY

The SL(6,C) gwge-invariant quark Lagrangien is simple to write

downt

LAl Ly she -mgy (6.1)

Likewise, the Lagrangian desoribing a 35 of SU(6) interaoting through
the exchange of the gauge nonet of 2t gluons is given by

= %Tn@[_l-wv,*fﬁ]-mﬁé | (6.2)

where ¢ is the second-rank multi=gpinor. Both these are familiar
Lagrangians from the Bargmann=-Wigner 13) theory of SU(6) super=—
nultiplets,y except that the Dirac matrix Y}L has been replaced by
the field L|1 and the ordinary derivative % by the covariant
derivative ¥V, , This change, however, is decisive in that whersas
previously the kinetic-energy terms in the multi=-spinor Lagrangians
were notoriously non-invariant for the SL (6,0) gymmetry, the replace=
ment of ‘ép - (Lp> by LP- and 3‘{'l by Vp makes the kinetic energy
terms also part of a gauge—-invariant construct. A parallel change
which ococurs in the SL({6,C) ocurrents has been noted in the last
section, The variable canonically conjugate to Y is not WYO but
‘qJ(I)L (x) so that the corTect (conserved) set of SL(6,C) quark

currents involves replaoing '\P’YH yin the earlier versions of SL(6,C)
theory, by \V(I)L (x) »




The important question which arises here is this, We possess now
en BL(§,8) gauge~invariant Lagrangian, deseribing a pesiiivewfraguenay
nonet of 2% particles; we also possess SL(6,C)- gauge~invariant
Lagrangians describing quarks (6.1) and the quark-—antiquark system (6.2).
?resumably, with some effort one can construct gauge—invariant Lagrangians
for higher SU(6) quark supermultiplets, where everywhere the Diradm
metTix Y, = (Lp) will be replaced by L“(:) and 0, by Vy + Unlike
the old SL(6,C) theory, in the new Lagrangian the kinetic energy terms
are part of an SL(6,C) gauge~invariant structure. The question is: bow

practice
in does the availebility of this unitarity-preserving SL(6,C) gauge-

invariaﬁt thaory(br, egquivalently, of a spin-unitary-spin—containing“).
algebra of SL(6,C) conserved currents) modify the earlier
results of the phenomenological SL(6,C) 2 The answer seems to be:
bardly at all = except for the new couplings of the 2% nonet with matter.
The reason is that crucial to our theory is the spontaneous
symmetry=breaking mechanism of Einstein, which replaces LM(x) Yy
<L“(xj>l-b3ﬁ in the leading approximation, This mechanism ensures

that the physical particle states are indeed Poincaré x SU(3) states.

The spontaneous symmetry-breaking mechanism implies that the symmetry

of the Lagrangian is not refleoted in the symmetry of the S5 matrix,

which for all quark multiplets etill proceeds through the familiar
progresaion of the SU(6) residual symmetry for the enerpariicle mtaetes
and the oollinear U(3) x U(3) for the residual symmetry of the vertioes,
The only surprise in the situation is that the purely gauge part of the
Lagrangian described by the L , B and S fields gives rise to a
multiplet‘of pure spin-two particles, which constitutes only an incomplete
multipiet of the quark~based phenomenoclogical SU(6) ., The situation here
is completely enalogous io non-linearly realised chiral theories, which
also display incomplete multiplets of the larger symmetry group, Clearly
the non=linear constraints like (2,11') or (4.11) are playing a role in
producing ocur incompletse multiplet,
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APPENDIX I

For completeness we summarize here the treaiment of SL(2,0) gauge

invariance given in Ref.2,

The SL(2,C) gauge transformations, 1P-+-Shq:, are representable in
the form . :

1
Rex) = exp Slyg (%) Sy -

The matrix JSL is pseudounitary, .Q.-l - 70R+70 . The gasuge flelds B,
and LH are represented in the Dirac basis by

By = 7 Burugs g

M
LM =Lu Y“ .

These fields transform acoording to

e -1 1 -1
;ﬁ - .Sl.[SH,JL - E—Jl 3*“5L

LF > ™
Covariant derivatives are formed as in the text. TFor example,

v= 3[BT,

Buw = 3,8,-23,B, +i(B,,8,],

The simplest SL(2,C) gauge=~invariant Lagrangian for L and B is given by

T AR D | (4)

There is no need to introduce the Uoldstone fields S(x) in this case.
Thus, the field values ‘ '

(o) = yP, Bua) =0

are indeed a solution of the Buler-Lagrange equations, and small perturbations
on this solution can be shown to carry positive enéigy. The expression (A)
is equivalent to the Palatini form of Einstein's Lagrangian; The remark-
able faot about it is that it is also a scalar densiiy under general co-

ordinate transformations if we adopt the transformation rules,

2P



ox”

Bu(x) = B, (%) = SO B"(x.)
e, M M ox |2 v
APPENDIX TI

The Lagrangian (2.9) is not the only gauge-invariant one which
‘glves rise to a pure massive 2" nonet, A different one-paramsier f&gily

is arrived at by considexring the expression

1 |
i - gT’\- [“1% LBlu + % LN 5 + oL, Ly

+ 209, 57 {L LIS 4 209,570,119, 8

ra L L, +a, ]-prLva + G LﬂLvLﬂLv] . (fA.l)‘
This Lagrangian also reduces to the Pauli~Fierz form in the free field
approximation if the following values for the parameters a1 y *** 5 Bg

are adopted:

1 1-3X 1 T-3x
%y Kt ax 5 PLEEE PR
P o= 2 M2
27 kr % (- 2 Wt
2
_ 1 ‘H-M Oy = ! ﬂ
%3 = " o 7 g K
3
[ ELS ' I M
- a — - —— - A.2
a"t R+ 143K 8 g K (_ )




The components of B are given in this approximation by

Rk
B, = 0

R
By,=

® 1436, R R
Butwas = = oo (Goue - Fa,v)

Y k k
ppY ('\PN D~ "t 'a’n,v) (A.3)

-providod o f -1, 1/3, +1 .

1)

2)

4)
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