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ABSTRACT

The Feynman rules of electron-graviton interaction are used to
calculate the graviton self-energy and the ﬂo + 2g matrix element, the
direct analogues of the photon self-energy and no SO The lowest-

order perturbation result leads to the modified PCAC relation,

/7681

" ™© +
I odas = 2mg * e aBys’ a8¥y8 0™ * CxnRirpcfuvpo

where the anomalous terms on the right are the lowest-order non-generally
covariant contributions of infinite-mass regulator fermion loops. The
important question of whether the gravitational anomaly should be generally
covariant and(ﬁf higher-order calculations show that this is not the case)
whether compensating leptons are an absolute must, is,unfortunately, left

open to the order we have worked.



I.  INTRODUCTION
1)

Anomalous Ward-Takahashi identities have had an important impact
on at least two branches of elementary particle physics. In the first
place, they have proved relevant to the dtermination of pseudoscalar

meson lifetimes and,in the second place, they have placed strong

2)

restrictions on the acceptability of renormalizable models based

3
on spontaneous. symmetry breaking waich unify weak and electromagnetic

k)

interactions . This paper generalizes the triangle loop anomaly to

gravitation. We find that in lowest—order perturbation theory the
PCAC relation is modified to
3 2 2 o
iy = 2mig + e Gq?YEFRFF%£/16“ + € apy Rerpa Rpuvpa/ 7087 (A)
where the corrections on the right are associated with infinite-mass

regulator loops.

Since the Riemann tensor RGBYG plays the analogous role in gravity
theory to the electromagnetic tensor FaB , it is interesting that the form
of the gravitational anomaly for “0 + 2g parallels the form for the
electromagnetic anomaly ﬂo + 2Y . An important problem, héwever, remains.
Are there also anomalous terms in the ﬁo + 3g , no + Lg ,... processes
of a form such that they all sum together to make the expression €&RR
manifestly generally covariant? If this does not happen, would there be a
disaster for gravity theory - e.g. emergence of a non-zero graviton self-
mass or eventually a breakdown of the equivalence principle (i.e. & clash
between the predictions of the theory and the EStvos experiment)? If this
happened, the existence of compensating leptons to remove the anomaly would
become a necessity, not Just for reasons of renormalizability, but for

deeper physical reasons connected with the equivalence principle.

Unfortunately the work presented in this paper does not include ﬁo > 38 ,
“0 + Lg , or higher processes, and we cannot make any definitive statement
about the question raised above, though a few discussion remarks are presented
in the last section. We do, however, consider another problem which concerns

the general attitude about the interpretation of the anomalies.

-



While one cannot dispute the truth of this relation'(A) - it is an

5)

algebraic identity once the j“5 and js elements are given —~ one can
still question the interpretations that have been given to it. To take
a famous example, the photon self-energy H when calculated in lowest-
order perturbation theory shows up a quadratlc self-mass A q“r

which is just as anomalous and quite intolerable in view of the fact
that a miraculous cancellation between bare and self mass is called
for with little sign of gauge invariance at the level of the bare

Lagrangian, Of course the satisfactory wayoufdfthe dilemma is well knowm:

6)

one must regularize the self-energy gauge invariantly from (| to the

correct value'ﬁ’which then becomes divergenceless., But one must apply
this procedure everywhere else for consistency. We wish to argue that the
so-called anomalies under discussion possess the same status in basic theory
as the self-mass of the photon, no more and no less. They represent short-
comings of the conventional calculationdmethod and do not represent a break-

down of basic things like gauge invariance or W-T identities.

The plan of the paper is as follows. We illustrate the gauge-invariant
method of regularization for vacuum charge and mass polarization in Sec.III
after evolving the Feynman rules of calculation for the electron in Sec.II;
we also show,so far as two-point functions are concerned, that such regularization

p)
is essential to establish the Borchers' equivalence between Lagrangians

involving electron fields connected by & chiral transformation. In Sec.IV

we carry the argument over the famous VVA triangle graph where the anomaly

is connected with the regulation of the element 1) <3amj >> and one is able to
assert that the "correct" elements do satisfy PCAC in the form <Ba'a5 T)

<2m35> This is similar to a point of view argued also by Hagen
Our contribution is to show that precisely the same viewpoint is necessary
in order that the axiomatic Borchers' equivalence theorems 8) for chirally
related Lagrangians continue to hold for the theory in question. Lastly,
we deal with the gravity analogue in Sec.V and once again find that the RR
anomaly can be incorporated with JS into the correct pseudoscalar element

2m35 in accordance with Borchers' equivalence theorem.



There are two physical consequences when one adopts this point of view.
First 4 . one is no longer able to calculate the ﬂo lifetime from smooth
PCAC 9) because one is asserting that the perturbation result for the fermion
loop is wrong and requires a regularization. Second, the problem of non-
renormalizability remains, regardless of one's interpretation. For spontaneously
broken gauge models of weak interactions one is led to consider compensation
mechanisms 10)
non-polynomiality, compensation may not be necessary as finiteness can be achieved

to guarantee renormelizability. For gravity, with its intrinsic

x 11
in other ways p However, here the demand for general covariance may lead

to the same conclusion, that new leptons are indeed needed, as discussed before.

II. FEYNMAN RULES IN A SPINOR MODEL

: Fa it v iy 12) b BT e s
Anomalous Ward-Takahashi identitics are associavea witu
fermion loops 1). As a necessary preliminary to their study we shall
set up the Lagrangian framework and ensuing Feynman rules for a
charged massive fermion field which therefore undergoes electro=-
magnetic and gravitational interactions. Later we shall describe

the modifications needed for dealing with neutrinos and further

pseudoscalar-pseudovector interactions.

Begin with a world of photons, gravitons and electrons, waere

the Lagrangian is known to.be 1)

- ’ u X KA @V -2 Vv A AKX AA Ak
‘I(A,g,\y)l-g‘a = -t g SP FuPF)«v » %f SP (PPKI va© l}.vluu\)

+ [-g\-w Al I‘{/Y’n(v}i‘g‘* + e Ar)-\'}'

- jeel™ Y (m o+ BB Y v ) (1)

w signifying the weight of the fermion field. As usual,

X

I :\, = go{rw, ﬂ

b
Blmn = Ly Bkmn

= Yhv= A,

(] B
z 8 (a.- El‘")‘ + -ar Bvy» =@y gpv)

NP n v
Ly L ( anlw- a.,\LnH) (2)
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and B and | are the spinorial and vectorial connections needed for

covariant differentiation. The symmetric tetrad field gg' is daefinod

pov, mn _ pv v np o .omn oo p :
by Lm an =g § me= Sf“’ Lm y L = ‘;l Lm y etca, Tl being

the Minkowski metric (latin indices) and g the space-time metric
(greek indices) .

Because we shall be setting up a perturbation expansion in powers

of the fine-structure constant = 92/4n' and the Newtonian gravitational

constant G = fZ/Sﬁ} it will be necessary to expand the metric about the

local Minkowski value. The question of how to choose a suitable inter-
polating graviton field then arises. Now it is known that the awkward
factors involving determinant of g can be absorbed for the pure
gravitational Lagrangian when the Lagrangian is expressed in terms of the
denaityu)

nJ

Y= gM-g|? = n L Ly R (3)

Clearly then,if we attach weight w = - %- to the fermion field,the same can
be done for the kinetic part of the graviton-spinor Lagrangian which reads:

v <« ' - :
JLIPYC Y+ eay) - He ™ n g v Y -0l-TF]Y o

where ' = EE fz ' Eﬁ = L:;|-L]_U2 . In this form the non-poly-
nomiality is carried by the photon—graviton interaction Lagrangian
%-"KA Fiad FKu 1'-'>‘\J|--§|_'U2 and the mass and spin terms. Define the physical

graviton field hn through the relation

¥ = ¥ o+ e . (5)
n n n

The substitution of (5) into (1) will yield an expansion of iito any
desired power of fh = in fact for our discussion of the simplest
anomalies the order fah2 will prove sufficient. In this linearized

version, all summations,etc.,have meaning relative to the Minkowski

_5_ .



metric of special relativity, so we shall revert to the commonly used
notation of lower-case greek indices throughout the remainder of this

paper. Inserting

~ pv 2.2
gl - T[i""+ 2fhp + I"h7
T fzh
L "'? lev + - -es
kﬂmn kﬂmn klmn “F -
€ Bigm Vn = € Ly mu'\rLEY Llog ‘J[L l"LI —] (
2
f (KA]"\' hAP K P"’(v+...
o~ 2
|-le._) 1 + %fhl"“‘ - %f hl"‘v I-‘“" + f hi‘r‘hvv e

into-i we obtain to order fa,

Llhgy) = L(ADm) + -\y(%n..d rek-mdy +
< i L.
+ fh \r(%:. {l_ g+ e(A )y - fzeuapv(hAF-anhpp) (,‘*1 ' 5,,{.)

- ('g\__'f rr"‘ '&'f h}“vhl‘v + f h l‘ VU') 'q:ql‘ + L (6)

from which we can state the Feynman rules (Table I) for vertices giving

emission of a photon (~~~~») and up to gravitons (/=2) from the electron.

$ 3 .
> $ > e Yu 1 zef [‘(r:’]w r Yvr]uq«]
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TABLE I. Feynman rules for photon and graviton emission.
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These rules should be supplemented by the photon-graviton and graviton-
graviton vertices, as well as the fictitlous particle vertices duc to
the choice of gauge and the canonical &-4(0) ‘vertices arising from the
coupling of the graviton field to the kinetic matter Lagrangian.
Fortunately they are not needed for the subsequent analysis of anomalies

though they are relevant to the problem of the graviton self-energy.

Next, suppose that we are concerned with neutrinos. Their left-
handed character and the parity violation they cause is automatically
incorporated in the Lagrangian by simply replacing 7, by - -3';‘{'\(1-:‘:.5)
everywhere in Isince the spinorial affinity B commutes with the two-
component projector %(1-1‘(5). An equivalent formulation of the effect
is to say that the stress tensor for ncutrinos consists of equal and
Seoosiibe: novmal | 0, ,~ 2**) and abnormal ( was ~ 277) pieces in
analogy to V-A theory.,

We shall be scrutinizing the axial W-T identity for photon and graviton

emission and considering processes like “0 + 28 . Introduce pseudoscalar

mesons interacting axially (i.e. derivatively) with the fermions through the

terms:
e =3 6 Qidedf €% ¢ 1l e I Py st or
Lgy498) = & (§,h) + ig .}3({)‘(5 ¢ + igf h}W q,,'\{rﬂ(sqr}v_({q (7)

which provide the additional Feynman rules listed in Table II.

.' ',
‘T k q{_k
. g x-fs , —_— 5 %gf(?r ky + 7, kr) [5
P p' P % p'
r\'\l

TABLE II. Feynman rules for graviton emission from an axial vertex.

i



Here again there exist supplementary meson-graviton vertices which are

irrelevant to the problem of &nomalies. If we perform a chiral gauge 1k)

Ysg?

transformation on the fermion field, V' =e Y , the divergence of the

axial current in (7) is converted into a non-polynomial pseudoscalar current:
~2gY5 ¢
W . - ~
\){.int(q‘"\i"sg) = -m [e >7 . 1]@"-11!% . (8)

As we shall see, the Borchers' equivalence of Lagrangian (8) with (7) will
provide us with what we believe is a more reaébnable interpretation of the

anomaly .

At the final level of sophistication one can conceive of internal
symmetries 15) and multiplets of fermions interacting with vector (V),
axial vector (A) and tensor (T) meson multiplets. Although the
generalization of the work iz straightforward, we shall not go so
far as to consider the possibility here because many of the relevant

anomalies occur already at the U(1) gauge group level.



III. GAUGE-INVARIANT REGULARIZATION AND SELF~ENERGY PARTS

Let us try to draw some lessons from the problems of photon and
graviton self-mass. In lowest—order perturbation theory the vacuum
charge polarization is given by (<:> stands for tracing)

1T o

The expression
k‘kﬁl‘“F

n

i G- G-y . @

]

i [ap C LW -1 = (v ¥ - Jxd

would vanish were it not for the quadratic infinity sabotaging a shift
of integration variable. However, the convergent sccond mass derivative
satisfies

( ""/‘mz)ak lcﬁ]T = 8ie 5dp<k.p[p -n "3 - ke(p+k) [(p+k)2-m2-'-3> =

Let us therefore redefine the "correct" covariant self-energy T‘ (k)

to be the second 1ntegra1 of the second derivative,

2
ﬁﬁ( =jdl¢&_i}x(b)r(k,u)

2
m -y
dx x(‘l-x)j.dl-la R.n[kzx('l-x)-MZJ .
b= V]

2 .

i—;g (k“k(1 - k%1 ) 30
(10)

Effectively, we are performing a gauge-invariant regularization of the
expression (9) wherein we can recognize the logarithmic wave-function
renormalization by the divergence of the mass integral at -w, In a
renormalizable theory having quadratic infinities,at worst the operation
Sdmz (3/Bm2) needs to be carried out twice for each charged loop
and clearly has no effect on absolutely convergent integrals. It is

6) with zero first moment.

the same as adding two regulator fields
Consider next the équally fundamental problem of the graviton self-
energy due to the fermion. To order G, there are four proper graphs to

be taken into account (Figure 1): one bubble graph, one seagull graph,

and two tadpole graphs, all superficially quartically infinite.

-0-



In place of the salf-energy'rr;krv‘we shall find it preferable to study

the related vacuuum mass polarization

O = Ty = #aT 2

KA AV KAV Ka\:l)' ]]n -]r-e\-“[’r-f'" ],\AV
since it is more closely connected to the stress tensor expectation
value <0xa0yv>' We shall also fix the graviton gauge so that the sum

of tadpole and seagull graphs is proportional to the tensor

(aqgaqpf_qhthf'““Vnﬁ) apart from the spin contribution. Explicitly,

eki v (k;ma) = ,6 j dp{l:(ap-{-k) Y\ (2é+/_2m):l (ﬁ_m)
) " L2 P+k)‘7v-\} (25+K-2m)] (ﬁ+K-m) >

+

Edp<8fl \vgo' I I’Y5 : m)uq T m";r]lm')(ﬁ_m) >

+ (eoe N and ,.Af.-av) (12)

showing that

k kX x k (O

AIJ\ 1

i £° S‘dp (1:1* + ;{[(k.p)z(;é-m)'1- (k-p+1ia)a(;{5+}€“m)—11 }

is nonwero because of the presence of a real quartic infinity quite

nhpv

apart from the difficulty with the shift of integration variable.

Nevertheless,

i

(Yom )3k k krk © 2%if2§hp<kk.p)%§2-m2] = (kep+k )3(p+k)2 2 =5 .

I

karv
= 0

Therefore, in exactly the same way as before, we regularize by calling
the "correct self-cnergy e“r“ to be the third integral of the third
mass derivative; this ensures that © nas a vanishing four-divergence
in agreement with intuitive ideas about graviton selfi-mass and the
commutation rules of the stress tensor. The result of a long but

straightforward calculation can be sunmarized in the form

-10-



3 VP 2 (ax (1-21)2 k*(2a . a -d d,, = d. 4. )
k.'.\rw'

5 L i & v phav = Gy
yn 165° J [KPxC1=x0-"]% b o

k23(1-x)-m

2 '(,d'w.ludiw & d:.vd,\';-)

5 _ 2 (13)
with d,, =", kk,/k%
and (= following by mass integration. Although gauge invariant, the
answer carries a quadratic as well as a logarithmic infinity which has

bearing on the renormalization programme for gravity-

We can now turn to the implications of the regularization procedure
for other self-energy parts and for PCAC. The lowest-order contribuiion

to the axial self-energy,
]T d5F5(k'm2) = —isaj‘dp <YJ\(5(Z‘ . m)-lf.a"{s(ﬁ W K = m)-1> (14)

differs from the vector self-energy by a term of order maq«ﬁ times

a logarithmic infinity. We would be tempted to say that whe; m =+ 0 the
result is (chiral) gauge invariént. However the infinity precludes such
a statement. Indeed the regularization needed to make the entire self-
energy calculation consistent gives a non-gauge~invariant answer —
this conflict between finiteness, gauge invariance and chiral gauge
invariance is usually highlighted with reference to the three-point

V V A vertex, but in fact the repercussions already enter at the level

of the two-point A A vertex compared to the V V vertex. Since

D \2" 2 % -
(;‘;é’) Tl—u5!a5 = -;-iaj\dx lczx(’l-x)-ma] 2[(1{11%“]‘{2::(1—::) - mam!&_[(w)

—

we conclude that the correct self-energy | d5§5 has to be renormalized
in both its transverse and longitudinal components.
At this stage it is worth commenting on the validity of W=T

identities. Intuitively, one would expect from the fermion bilinear

=11~



commutators [305’ j05] = 0 and [305, jE] = jE?, that
' ; : 2 : .
Eu,.ﬁﬁ(T (st 3{)5)> = 4m <T(35 j5)> + m 3D (16)

vhere j is scalar, j5 is pseudoscalar and j‘_&,5 is pseudovector. An
equivalent way of restating the identity in a Lagrangian context is
to ask that the propagators in theories (7) and (8) ve the same, at
least on the mass shell, viz. that to order ga the bubble graph of
model (7) should equal the sum of bubble and seagull graphs of model
(8). As to whether this assertion is right or wrong, explicit

perturbation calculation gives

e a5 = i {ap(yg (e T g ™Y - b ap < (-m) ™)

' - igdp<(}€+2m) [(z‘i+1£-m)-1 - (ﬁ-m)ﬂj)
so the self-energies apparently do not match even at pa= ra. The causc
is clearly visible and has to do with shifting the integration wvariable;
the same reason why the photon appears to have self-mass. The cure is
to regularize consistently via the operation Kdma(ﬂ/bmz), when we find

that the correct propagators do agree,
-k lcﬁ. _— tn® 1T i frm-l—\ . (1?7
« P %505 55
Tt may appear from all this discussion that we are being

somewhat pedantic with . our treatment of perturbation integrals,

W)
integrals which are intrinsically badly defined and which in any case

give much latitude to other possible treatments. However, vhen we turn

to the veriex functions in the following sections, we shall find that
this care will help us preserve the W-T identities in spite of their apparent

violation by naive lowest-order perturbation calculations.



IV. VERTEX ANOMALIES AND ELECTRODYNAMICS

) '
The traditional triangle anomaly is the statement that, in the
lowest relevant order, a perturbation calculation of the potentially

divergent (but actually convergent) 1ntegra1‘ﬁd for the graph

Aok 0
involving two vector currents and one axial current does not satisfy

the expected W-T identity relating it to the integral F involviug

€x, 5
two vectors and one pseudoscalar. Thus in perturbation theory,

. 2 -1
_11{3«31"“'%“35(1: 1:.3,131 ) = 2m Mﬁ(k Ieleg,m®) +4 7 (k1,m) ﬁdp(-ka,—m)

“'L
(18)
where
- ' -1 , -1
Byg5tem) = 2 fap (Y- Yy G k-wTy (19)
Vertices 1 and 2 are V, veftex 3 is A or P and their associated incoming
momenta are k,,k, and k3 Formally one expects the difference A 51

on the right of (18) to vanish because it is connected to the commutator
of uncharged V and A currents. Had (19) not been divergent, the
difference, and indeed both A individually, would have vanished.

The disaster is that, far from vanishing, an actual computation gives

-1 g i
-4, as finite and nonsero, viz.

; By
-1k3“ r'd,dzd}5(k’m ) = aml 5(k m ) + ge C“

oo, iy po ¥ap 35/2“

(20)

the second term on the right being the so-called anomaly. Specifically,

on the photon mass shell, one arrives at the integrals 5),

o
rm - ¢ Kk .mageag 0 (1=x=-v) dxdy (21)
o5 AP P07 TP T20 w2 y [k;xy 2 ma]
3 2 i
: 3 0(1=x=y) dxdy.x:
N =k, € . G B0 g : Xy (22)

w8



From the point of view of gauge models of weak intcractions,'another
more relevant way of stating the anomaly is to say that the equivalcice
between the Lagrangian models (7) and (8) appears to be destroyed, in
spite of the fact that the chiral transformation connecting them is
localizable 1?). Thus, according to equivalence theorems 8), the mass-
shell matrix element of the process ¢:yay should be independent of

whether we use 4 or q,' as the basic field variables since they possess
the same one-particle elements. On the other hand, the perturbation cal-
culation does not bear out the assertion of the theorem since karas # 2mT; .
Following the procedures of Sec.II, one may,however,observe that
while L'.:I"l - 1351 # 0, it is nevertheless true that (0/¢ mz)(a:l'1 _qu)
5 4 - 2 5] 2 " r‘ . .
vanishes so that (?/¥m”) ku‘115 = (¢/om7)(2mi 5). Starting from this

1] U]
vantage point and defining the correctly repularized vertices through a

mass integration, one recovers the W=T identity in the form
- - . - - ~ T F
2ni P(m) = aui Pgn) =k, [F5m) - T 500]

The important remark is that while k&p Ta5(M) =0 ,

[ee)
- - 2 2 -
1im 24 [.(M) = ge“ € k,k,/2%° , (23)
3 5 172
R TV
a fact that was recognized by Adler and Hagen 1)’7).

One can now give two interpretations to the anomaly. The Adler

5)

interpretation is that the conventional calculations of potentially

divergent integrals like f“5 and RNS give the right matrix elements to

this order as they stand and need no subtraction since they happen to

be finite (after gauge invariance is imposed in the axial case). Such

an interpretation violates the W-T identity and, much worse, the equiv-

alence theorem for chirally related Lagrangians. Alternatively, we choose
7)

to believe, withHagen , that calculations of potentially divergent

but superficially convergent integrals like lﬂ5 can be quite misleading

. [



and may require & regularization to aceord with other theorems of field theory,
like, for example, the Borchers' equivalence theorem,which asserts equivalence
of Lagrangians (7) and (8). 1Indeed,if we follow our treatment of the photon

and gravition self-energies, we should define the correct value of the
pseudoscalar vertex to be

2
1= x-y) dxdy '( Xy
2ml’ am® Lcaul” X ge j X L7
a5 3 }Ma dot;:'a q'u,_ga' “1p" 20 2 [k3xy _ mz]
(24)
and likewise the correct value of the axial vertex as
— mZ
. 2 "\
M.“;Ciﬁ _S o 2 ru(dfx 5 . r“.d\.ﬁﬁ (25)

In this way we achieve regularization of ambiguous graphs and carry

out all appropriate subtractions in a manner which respects equivalence
theorems. From this point of view then it is the traditional evaluation
of the potentially divergent quantity which is at fault with its

resulting modification of PCAC to

J { 2, Y
dudus emjs + e u,{“{ ” !b/16¢2 . (26)

The correct evaluation of r5 being given by (24) respects the V=T identity

-\ - 22 ——

This means that we are abandoning any chance of calculating the w°-2 ¢

lifetime via smooth PCAC.

To support this viewpoint, one can compute the potentially divergent

but actually finite vector-vector-scalar vertex B in lowest order,

o Ay

N “\
where from gauge invariance one expects kﬂfﬂ*#dlz kaﬂLrL@Qf 0.

_15—-



A calculation completely analogous to Steinberger's give a nongaupge -
jnvariant result even on the photon mass shell:
2

r& o 92 e S‘ 0(1=x=y) (1=lxy) | )
—_—t e — + - dxdy (23)
m e Y\a'u‘- 2r’ S [lc;xy - m2] ¢

showing once again that the traditional perturbation ‘evaluation of an
ostensibly finite quantity can be quite misleading. A gauge-invariant

ansver using

2
m
a 2 (T

m-1paa =S
T -0d ?‘MZ

automatically gets rid of the troublesome 1an term.
VO

‘xld;)

1f one takes over the method to the A A A vertex, one finds that

— —

Gt kws(‘a.ﬁ Q595 = 2ul", 545 (29)

where perturbation theory gives

-3 kix;ra,suﬁ G5 5B Fdlsa,j 4 5926&,«;9@ k1pkaa/6“2' (30)
the anomaly being shared equally among the three legs as expected by
symmetry. (The relevant off-shell integrals are all exhibited in the
apnendix). Finally one can extend the discussion to other triangle
vertices such as A A S, etc. In no instance is there any contradiction
between the correctly regularized functionslf. which satisfy their appro-
priate W-T identities. From the present point of view, we may note
that when neutrinos are involved, one should take an m # O situation
first, regulate, and then take the limit m - 0 at the end. In this
way, a qrszv transition can occur even through zero-mass fermion

loops, when we have

"= }Lﬂ;ro{,aﬂs = agqe“.“affk1?k25/3ﬁ ’
‘a result which is consistent with analyticity because the axial

vertex carries a k3i/k§ threshold singularity in this limit.
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V. VERTEX ANOMALIES AND GRAVITATION

The analogue of 1 °— 27Y in electrodynamics is T° = 2g in
gravitation. Let us see how PCAC applies here, with reference to the
spinor loop. What makes the calculation of the two-graviton mode so
similar to the two-photon mode is gauge invariance. On general
principles, we expect that with physical gravitons (i.e. upon
contraction over the graviton polarization tensors) the T T P vertex

should have the kinematic structure,

P'v' P"vlj = el‘“[":—f‘"k'T Pkaa-( “)V' V:..k"l -ka - kzv'k,l VJ_) GP .

+ & v perms . (31)

These extra four powers of momentum are sufficient to make the
invariant function G, converge. Similar considerations apply to the
T T A vertex.

In performing the perturbation calculations for gravity one must
be very careful to include all graphs to the given order, and there
are very many more diagrams than in the corresponding situation for
electrodynamics. For n°-4>23 we need to consider the whole set of
diagrams shown in Figure 2. However as the pseudoscalar-graviton
transition must vanish and the graviton is on its mass shell, all
graphs but the first three can be dropped. A straightforward, if

tedious calculation gives the non-gauge-invariant answver,

"\

2.2 il &
2 = C k k. nig A DA bxy(k, ok i e, k 0
¢ [k3 Xy = m ]
s 1 Y i
+ ( pe v perms) 8 v (32)

If one proceeds as for the V V S vertex by regularizing the ratio

/m , then one will simply drop the offending e terms

Pt‘t"t}"a-"ﬁ 1V2
a7



in (32) to get the naive gauge-invariant perturbation result GP for

the T T P vertex. However to be perfectly consistent, one should
instead regularize the product 2m [’ via the operation\gdmzfa/ama)
to obtain

2.2 2 2

2 o
amG, = L& X 9(1_?-5) Xy G . ong, - 78 . (33)
21 & Ll‘%xy-‘ ] L8r

—

The difference GP - GP is the anomalous contribution arising from
the infinite-mass regulator loop.
A similar calculation based on the diagrams of TFigure 2 can be

performed for the two-graviton mode of the axial current. Here the

kinematic structure reads

PP V205 " k3°fEt‘lr‘x\"°”k1Pk2°“(q";”:.k1 kp = Kok Gy

+ p© v perms (3k)
and can be deduced from the fact that a 1* object cannot couple to
two gravitons, so that f;must vanish vhen contracted over (:'a:(k3),
or else by using the commutation rules Eﬁ} G] = 268, (6 yA) = DAL
and (T(G A)> = 0. We can straightforwardly extract the gauge-

invariant result

2 ¢! 2 2

- ifz \ 0(1=x-y) x"y~ dxdy

Gy *om > 2 > Gy (35)
2w Yo LKB Xy = m j

and observe that the correctly regularized vertices do satisfy the

W=T identity,

2 — - rd
-ik _,P | = am[ or ~ik; G, =G (36)
3% PMMYAS P2 1= Yk - ?
whereas the perturbation values &
pale
-iky G, = 2mG, = gG/6T (37)

-18-



do not match owing to the gravitational anomaly. Relation (37) can be
restated as an apparent gravitational violation of PCAC,

f__2 -y
RKAFTR&Vﬁf/?DB" (33)

°.3 = 2m 4 €

6‘13&.‘5 j5 LRIAV
to this order in G, if one recasts the structure of the T T P vertex
in terms of an effective Lagrangian:

(:h]*zf"f[a"lar Ep,v, Da“ Bpavy Bi\ Ef“ gm E}.. ba.\":.-l

Ghi‘}‘x-" [?“A El‘lvllr) a)\ {}szl,ﬂ'} = evL{}";Vl,P‘ktvi‘\.}\a"’:.,f}j $

z CpapvRianpRpver (39)

The analogy between (26) and (38) is complete and demonstrates the

similarity between the Maxwell tensor of electrodynamics and to this

order the Riemann tensor of gravitation.

One may generalize to neutrino loop anomalies (which do not occur

in qe.e.d. but can arise in weak interaction models) by making the
usual %{l - iYS) projection of the stress tensor, a normal piece 0
an abnormal piece 0

(9-35) (6 -

by taking the m - 0 1limit of a mass m fermion loop. For m f 0 one finds

and
HV
5 - The overall abnormal structure of the %{3—35)
05) vertex, which bears the mark of an anomaly, can be calculated

ab _a o 8m2 24 3& e(1-x—y)(1-x-y)dydy
Fviava % WV el . [P 3 kﬂk a m2]3 o
'[(r pap & 19 2':(“’ ’]vv" xy‘:.w 21»*) N Pems]
(40)
- ab _ & 2.2 0(1=x=y) (1=x-v) dxdy
| KV paYak ' DA TR S i 2

l.Pa + 11’.33{)' 2]3 -

q
.[?Fﬁﬁﬁif(k1-k2)?(%p2qvﬁ: xykTKFZu)+perms |
L)

=10



which provide corrections m2 multiplying a logarithmic infinity to the
previous results (33) and (35). So far as the overall abnormal pért of
the vertex is concerned, the PCAC rule in its original and corrected
forms, (37) and (36),respectively, is unchanged and in the zero-mass

linit we get

iks-irm"u*,.% = 80Uy kgy = ReokaTy)€p o ifiag /67 * Bm’wn?f L
2

0f cours: we do not anticipate any problems for the overall normal pari
of the vertex.

Finally. we can inquire into the possibility that (38) can be made
generally covariant. We have only some preliminary remarks to offer
in this direction as this is a difficult problem which is intimately
tied in with the renormalization of gravity theory itself. First, one
needs to work out the GN corrections of the basic fermion loop at which
level we shall suppose that gravity itself is unquantized, and we can
confine ourselves to external h lines emanating from the loop in tree
approximation. From the form of (4) and (6) we see that multigraviton
emission vertices each carry at' most one field derivative. In particular,
it is only the one-graviton emission vertex associated with L which
carries the momentum of the spinor line, while the multigraviton
complements associated with the spin connection (B-type) and the mass
(M-type) carry a single power of momentum of gravitons or a mass.

The information embodied in the single (L-type) graviton vertex
is actually quite strong‘18). Thus from the W-T identity for the

canonical stress tensor,

(ﬁ+K-m)-1k?[qP¢(p+k,p)(ﬁ-m)'1 = [Pv* ﬁiﬁ;vkyl(ﬁ-m)'1 -
- o) T [(pri), # TGk ] (43)
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one derives that, 6 to order ka,

(Bem) ™' T (i, 2) (Bom) ™" = =3 [g;%w -g-i)-vprj(ﬁ-m)-1 .

e z dp \dpv dp, Adgﬁ

A
y d 1.,4 — ad | -
— pde —) — -
‘ qrv dP.\+"1(dP, - de”)J (Z-m)

+ 0(x%) (L)

in analogy to the electrodynamics vertex
(Brken) [ (prk,p) (Fom) ™1 = = S= (Fom)™! + OCK) -
I‘ Y dpl'.'

Therefore, for a properly renormalized closed fermion loop diagram

which emits an L-graviton with momentum k, we obtain by partial
integration that the matrix element Tkv(k,...)vanishes as ka, and

this applies to eachsoft graviton — it is of course entirely analogous

9) that T (k,.e.) vanishes as k.

to the closed loop photon re:su.lt'1
Thus a closed loop emitting a number n of L-gravitons and a pseudo=-

scalar meson can be expressed in the form

amP; ~ € EKD)D L (k) = € (£x%)® maj.dz P:l-(ka,z,ma)

where Pnfv (Zkazz' - mz)n is a polynomial of degree n in kz, m2 and
the Feynman parameters z.Thusin spite of appearances, the integrals
for L-graviton emission, when regularized, must converge (just as
photon-photon scattering converges because of gauge-invariant regular-
ization). The same applies to emission of L-gravitons and an axial
meson.

To proceed with the argument, we need to study the remaining
diagrams involving B-type gravitons and M-type gravitons (either from
internal lines or the P vertex) which follow from the interaction

‘L [iekmpv BK.A}AYV\{5 =R G_il% -1+ 2mgf5i-z‘%] v

o



The B-graphs become more convergent as the number of B-vertices is
increased and from that point of view, present no particular problem
for higher orders. One could say the same for the iM=-graphs except

for one fact:the proliferation of mass factors in conjunction with
propagators can lead to nongero contributions, i.e. anomalies, in
arbitrarily high orders. Thus a diagram which sprouts n M-line
vertices (n ) 4 necessarily), on dimensional grounds, is expressible
as 2ulg = £ ¢ ka2 Sdz P%nﬂ(ka,z,mz) . and while it is true
that the P5 integral converges, it is likely that a nonzero
subtraction term survives in the limit m-S®. In fact it is perfectly
conceivable that when the whole collection of graphs is added to give
the perturbation value of 2m[1g and is compared to -ik3¥rag, then
although the latter obviously vanishes as k3->0, the former may not,
unless one adds successions of anomalous terms of order £ which
correspond to infinite-mass gauge-invariant regulator contributions.
lowever, one might expect that the correct verticesizgfs and ng do

obey a generally covariant W-T identity, in contrast to the perturbation

values 2mr5 and r;5 which need supplementary higher-order anomalous

terms. Needless to say, this argument is only meant to be suggestive, and
a much more rigorous study is needed before one can categorically say whether

there exists a manifest generally covariant W-T identity.
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VI. DISCUSSION

In this paper we have tried to give several illustrationz to
stress the importance of correctly regularizing Feynman integrals
in order that the basic tenets of field theory be preserved: gauge
invariance, equivalence theorems, PCAC,.., Thus, it is not the validity
of the relations (26) and (38) which is in doubt but their inter-

), 7)

pretation’ « But whether or not the reader is sympathetic to

the point of view which we have taken, there is no question that the
anomalous terms FF or ﬁg'behave badly as kaw and lead to a theory
that is nonrenormalizable even if il seemed renormalizable to begin with;
for instance, in a theory involving ﬂ“mesonq and photons, one can
easily check that when PCAC is used in one form or another, the
photon self-energy due to a ﬁgzintermediate state is quadraticaily
divergent with triangle vertices, and that the situation deteriorates
in higher orders. In this light, a compensation mechanism is a

prerequisite for an acceptable finite theory of weak interactions.

In the case of gravity, with its inbuilt non-polynomiality and the consequent cut-
-1
off G

clearcut, so far as infinity suppression is concerned. However, if one can

1

, the necessity for compensating fields and interactions is not so
show that the lack of manifest general covariance of the "anomaly" leads

to ph}sical effects ~ like non-zero graviton self-mass -~ then a compensation
mechanism or a postulation of new leptonsf%ancel the "anomaly'" would become

a necessity, not for securing renormalization, but for deeper reasons,
connected (however distantly) with Yeequivalence principle of general relativity
and the results of the EStvds experiment,
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APPENDIX

OFF-SHELL VERTEX FUNCTIONS
We give here a quasisymmetric expression for the VVA vertex,'and
then state the result for the symmetric AAA vertex. Expand the vertex

in the form

Pc(‘a,_o‘.&S

—
r
A
+

T, Ky, * T3 k3r\] € pt otuty
S T

Hop kg, + Hpliey = keydy [l degy ‘pcxga,

r-t'\
‘G
-
3
-—
B
+

+
ol
=y
+

Hy(kq = kZ)d3] %10 K2y Cpvaon, .

Although nine form factors have been used above, only six kinematic

terms are needed for the expansion. For example, the Rosenberg 5)
amplitudgs are given by
Ay =F, - F3 + 1{2.1:5 3 * ka.(k,‘-lca)HB !
A, = Fa -F; -k .1c3G5 - k,l.(k,l--ka)ﬂ3 '
AB = 3 + ZH 3 ’
Aé = 3 + ZH + H3 ’
Ay = 5 = Gy + Hy yr Hy
A5 = G1 + G3 + H1 - H3 .
With our form factors. the divergence property reads,
k30(,_. ro(la,ofsl,'"' l.Fz »-Fq ¥ l‘§G3 + (1“2 > 1€§)H3‘] k"l*ka"'ef*"“\“:. ,etee

The basic integral for the triangle can be reduced to

_ 3|04, dxdydz 8 (1=x-y-2) Ay ¥ = +m) )
Miats = e e Bt grmdY, (Brdgrm) Y, (Brd )Y, Y5

+ surface term,
where K2 = :ayz + kazx + kzxy Q.= K. y=-k, z, q.= k,z=k.x, q,= K,X=Kk Y.
‘] 2 He 1 3 2 ' "2 1 > R 2 1
The surface term arises as a consequence of shifts of the integration
variable and could be dropped if the integral were no more than

logarithmically divergent. For m £ 0 we list the off-shell form factors:

=24



[~ .2 2 2 *
B o] k'dxdydz $(1=xay-g) | =@ (¥-3) + kyy(1-y) - kaz“"”;
Vol (k% - 0] | -2(k%- 0®) = 3n°(1-y) ]
FZ T S " *-mz(z-x) + kfz(‘l-z) - kgx(‘l-x)
Lj-E(I(a- ma) + 3m3(1—x)
F3 =n j n ':-ma(x-y) + kgx(1-x) - k?y(1-y5]

-[ byz + x(1-xi]

"
i
e

. E x(y-z)]

==}
-

]
‘..-'-‘.\

with Gz, G3 and Hz, 1-I3 obtained by cyclic permutation from G1 and H1,

respectivelye.
The AAA vertex is identical to the above except that the square

bracket in F1

> and F3 obtainable by cyclic permutation. It is obvious that these

form factors possess the requisite symmetries,

is replaced by [-4m2(y-z) + k§y(1-y) - kiz(1-zf] with

T

F1(1,2,3) = -F1(1,3,2) -F2(2,1,3)

G1(1,2,3) = G1(1,3,2) G2(2,1,3)

n1(1,2,3) = -H1(1,3,2)

]

-H2(2,1,3) , etce

Similarly we may write the VVP and AAP vertices in the respective

forms
2mlq - EE .dxdydz 8(1—x-y-z) X k. €
a5 = 12 T “In2v © vy
and
2 n
. o | dxdydz §(1mx=y=2) (1=-22)
o r(‘{dl_ﬁs ne S [K2 - ma] k1l'\kav Gl“"u'di

One can check that, as they stand, the integrals above do not satis{y

2
the W=T identities, but that upon differentiation with respect to m  they
do.
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FIGURE CAPTIONS

Figure 1. Graviton self-energy contributions to —order G.

Figure 2. The TTP or TTA graphs to order G.
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