International Atomic Energy Agency
and
United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

SPECTRUM-GENERATING ALGEBRAS AND CANONICAL REALIZATIONS †

H.D. Doebner * and B. Pirrung **
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

A general formalism for the embedding of operators into canonical realizations of Lie algebras is applied to Hamiltonians and to so(2,1). A fairly complete list of potentials with so(2,1) as spectrum-generating algebra is derived.

MIRAMARE - TRIESTE
July 1972

† To be submitted for publication.
** On leave of absence from Department of Physics, University of Tabriz, Iran.
1. INTRODUCTION

The spectrum, the eigenfunctions and the matrix elements of a linear operator A with domain \mathcal{D}_A in a Hilbert space \mathcal{H} can be determined by pure algebraic methods if there exists a Lie-algebra G with a representation $D(G)$ on \mathcal{D}_A such that A can be identified with a linear combination of the generators $D(g_i)$, $i = 1, \ldots, m$, of $D(G)$.

For applications to physically interesting operators, e.g. quantum-mechanical observables, it is reasonable to consider only those $D(G)$ which are canonical realizations $\sigma(G)$ of G. These are representations with generators $\sigma(g_i)$ given as functions of momentum P_j and position Q_j operators, which form together with the mass operator C, an integrable irreducible representation \tilde{H}_n of the abstract Heisenberg algebra H_n

$$[P_j, Q_k] = \delta_{jk}, \quad [P_k, P_j] = [Q_k, Q_j] = 0, \quad j, k = 1, \ldots, n$$

and which are given up to unitary equivalence in the Hilbert space $L^2(\mathbb{R}^n, dx^n)$ by

$$P_j = -i\partial_j, \quad Q_j = x_j, \quad C = -im \quad .$$

Strictly speaking, $\sigma(G)$ is obtained through an isomorphism σ mapping G into a suitably defined function space F_n over $2n$ partly non-commuting variables P_j, Q_j. F_n is equipped with a Lie bracket through the operator product in L^2. To simplify its calculation we choose for F_n a tensor product of two function spaces W_n, V_n defined over the abelian subalgebras P_j and Q_j, $j = 1, \ldots, n$, respectively. To avoid functions like $(P_j)^{-1}$ we use for W_n a polynomial space. This construction yields for $n = 1$ ($P = -id/dx$)

$$F^0_1 = \left\{ f(P, x) \mid f \in F_1^x, \ r \ \text{integer} \right\}$$

$\sigma(G)$ is a representation of G in L^2; its integrability depends on σ.

-2-
with

\[F_1^r = \{ f(P,x) \mid f = \sum_{i=1}^{r} v_i(x) P^i, v_i \in V_1 \} . \]

If a linear operator \(A \) can be written as

\[A = \sum_{i=1}^{m} \alpha_i \sigma(g_i) \in F_n, \alpha_i \text{ real or complex}, \]

then \(\sigma(G) \) is called a canonical \(F_n \) embedding of \(A \) in \(G \), and it yields a method for a discussion of differential operators \(^2\) and for an algebraic formulation of non-relativistic and relativistic quantum systems \(^3\)-\(^7\). In this context it is interesting to calculate the set \(\{ G, F_n \} \) of all Lie algebras \(G \) with canonical \(F_n \) realization and the set of operators \(\{ A \} \) with a canonical \(F_n \) embedding. To carry out this programme in its full generality does not seem feasible; some restrictions are necessary.

We assume that \(G \) is given, and we take \(G = so(2,1) \) with commutation relations in its standard basis

\[(I) \quad [g_1, g_2] = -ig_3, \quad (II) \quad [g_2, g_3] = ig_1, \quad (III) \quad [g_3, g_1] = ig_2.\]

Furthermore, we discuss only \(F_n^G \) embeddings of the following class of Hamiltonians:

\[H_1^2 = \{ H \mid H = aP^2 + v_1(x)P + v_2(x) \mid a \neq 0, \text{ real}; v_1(x) \in V_1 \} , \]

i.e., we calculate those Hamiltonians in \(\{ A \} \)

\[\{ A \} = \{ A \mid A = \sum_{i=1}^{3} v_i \sigma(g_i) \mid \sigma(g_i) \in \sigma(so(2,1)) \subseteq F_1 \}

which can also be found in \(H_1^2 \). A canonical embedding of a Hamiltonian is referred to as spectrum-generating algebra.
Our main result is Theorem 1. To prove it we split \(H_1^2 \) into equivalence classes \(Y(H_1^2) \) each of which contains a representative element of the form \(\hat{H} = \frac{1}{3} \hat{P}^2 + V(x) \) (Sec.2.1). Then we find (Sec.2.2) all \(\hat{H} \in \{ \hat{A} \} \), i.e. all potentials \(V(x) \), which can be embedded into \(so(2,1) \) up to equivalence. Our solution is complete, except the "light-cone" case

\[
H = \sum_{i=1}^{3} \sigma_1 \sigma(G_1), \sigma(G_1) \in \sigma(so(2,1)) \text{ with } \sigma_1^2 + \sigma_2^2 = \sigma_3^2
\]

which is discussed in Appx.A.2.

2. A SPECIAL EMBEDDING PROBLEM

2.1 Equivalence classes of realizations

To simplify the calculations we introduce equivalence classes of canonical realizations of \(G \) in \(F_n \). Consider for a given \(F_n \) and \(\sigma(G) \subset F_n \) the set

\[
N_n(\sigma(G)) = \{ f | f, f^{-1}, f^{-1} \sigma(G)f \in F_n, \forall g \in G \}.
\]

Then with \(\sigma(G) \), also \(f^{-1} \sigma(G)f = \sigma'(G) \) is a \(F_n \) realization of \(G \). If \(N_n \) is closed under multiplication, \(\sigma \) and \(\sigma' \) are called equivalent; and the set \(\{ \sigma \} \) of canonical \(F_n \) realizations of \(G \) decomposes into equivalence classes

\[
Y(\sigma(G)) = \{ \sigma'(G)| \sigma'(G) = f^{-1} \sigma(G)f, f \in N_n(\sigma(G)) \}.
\]

As we have chosen \(F_1^0 \) for \(F_1 \), the set \(N_1 \) is contained in \(V_1 \) and is independent of \(\sigma(G) \). The mapping \(\tau(f) = v^{-1}fv, v \in N_1 \), sends \(H_1^2 \) into itself and \(H_1^2 \) can be split into equivalence classes in respect to \(N_1 \).

Hence it is necessary to determine canonical \(F_1^0 \) embeddings in \(so(2,1) \) only for one representative element \(\hat{H} \) in each equivalence class \(Y(H_1^2) \) of \(H_1^2 \).
Choose \(v = 2v_1 \), put for technical reasons \(a = -1/\hbar \), and we find as representative Hamiltonian

\[
\hat{H} = -\frac{\hbar^2}{4} P^2 + V(x).
\]

2.2. Potentials with \(\text{so}(2,1) \) as spectrum-generating algebra

The problem is now to calculate the potentials \(V(x) \) for which an embedding exists. The result is presented in Lemmas 1, 2 and 3 and is summarized in Theorem 1. The proof of Lemma 1 is given in the appendix, Lemma 2 is obvious and Lemma 3 can be verified using the same methods as in Ref. 4.

Lemma 1:

Let \(g_1, g_2, g_3 \) be a standard basis of \(\text{so}(2,1) \). Then every isomorphism \(\sigma \) mapping \(\text{so}(2,1) \) into \(F_1 \) with \(\sigma(g_1) = \hat{H} \) or \(\sigma(g_2) = \hat{H} \) or \(\sigma(g_3) = \hat{H} \) is an isomorphism into the subspace \(H_1^2 \) of \(F_1^0 \).

Lemma 2:

Let \(g_1', g_2', g_3' \) be a standard basis of \(\text{so}(2,1) \) and let \(M \) be an operator with

\[
\sum_{i=1}^{3} w_i \sigma(g_{1}) = M, \quad w_i \text{ real, } w_1^2 + w_2^2 \neq w_3^2.
\]

Then there is a transformation into another standard basis such that \(\sigma(g_1) = k \cdot M \) or \(\sigma(g_3) = k \cdot M \), \(k \) real.
Lemma 3:

Any isomorphism σ mapping $\mathfrak{so}(2,1)$ into \mathbb{H} with $\sigma(g_3) = \hat{H}$ (case I) or $\sigma(g_1) = \hat{H}$ (case II) is determined by three (complex) numbers a_1, b_2, λ (case I) or α_3, b_2, λ (case II), respectively. The generators $\sigma(g_i)$ are:

1. For case I: $\epsilon_1 = 1$, $\epsilon_3 = -1$; $\nu = 1$, $\mu = 3$ for case I; $\nu = 3$, $\mu = 1$ for case II.

$$
\begin{align*}
\sigma(g_1) &= a^v (d/dx)^2 + 2i\epsilon_3 a^x - \frac{3}{2}\epsilon_3 a^x - 2a^v c - \epsilon_5 \gamma_v, \\
\sigma(g_2) &= a^v (d/dx)^2 + 2(\epsilon_3 a^x - 2a^v c - \epsilon_5 \gamma_v), \\
\sigma(g_3) &= -\frac{1}{4} (d/dx)^2 + c.
\end{align*}
$$

The constants are related by

$$
\begin{align*}
a_1^2 + \epsilon_3 a_1^2 &= \frac{1}{16}, \\
a_2 b_2 + \epsilon_3 a_2 b_2 &= 0, \\
\gamma_v &= \frac{1}{2} a_2 + 4a_2 (b_2^2 + \epsilon_3 b_2^2), \\
\gamma_2 &= \frac{1}{2} a_2^2 - \epsilon_3 a_2 (b_2^2 + \epsilon_3 b_2^2).
\end{align*}
$$

The generators $\sigma(g_i)$ are symmetric on a dense set D_0 in L^2 for real a_2, a_3, and imaginary b_2, b_3.

Theorem 1:

Let g_1, g_2, g_3 be a standard basis of $\mathfrak{so}(2,1)$. Let σ be an isomorphism of $\mathfrak{so}(2,1)$ into \mathbb{F}_1 and let w_1, w_2, w_3 be real numbers such that

$$
w_1^2 + w_2^2 \neq w_3^2 \quad \text{and} \quad \sum_{i=1}^3 w_i \sigma(g_i') = \hat{H} \epsilon_1^2
$$

holds. Then
1. \(\sigma \) is an isomorphism of so(2,1) into \(H^2 \subset F^1 \).

2. All Hamiltonians equivalent to

\[\hat{H} = a(d/dx)^2 + b(x-d)^2 + c(x-d)^{-2}, \quad a \neq 0; \quad a, b, c, d \text{ real} \]

have a canonical \(F^\infty \) embedding in so(2,1).

We remark that the representations \(\sigma(\text{so}(2,1)) \) obtained in Lemma 3 are integrable if the generators are symmetric on \(\mathcal{D}_0 \) and if \(\lambda > 0 \) holds. This can be shown through a discussion of its Nelson operator \(\hat{N} \):

\[\Delta = \sum_{i=1}^{3} \sigma(g_i)^2 = 2\sigma(g_3)^2 - C_0 \]

which is essentially self-adjoint on \(\mathcal{D}_0 \). The Casimir operator of \(\sigma(\text{so}(2,1)) \) is denoted by \(C_0 \) and \(C_0 = \lambda - 3/16 \) holds.

For the light-cone case \(\omega_1^2 + \omega_2^2 = \omega_3^2 \) the theorem does not apply and other types of operators or potentials appear (see Appx. A.2), e.g. the potential of a constant force. A complete classification of all potentials in this case is not known.

The physically most interesting problem of embedding Hamiltonians in \(F^3_3 \) can be treated along the same lines, but unless restrictive conditions are imposed on the Hamiltonians \(3 \) the necessary computational work becomes difficult. The same holds for the construction of operator embeddings via canonical realizations of higher-dimensional Lie algebras.

ACKNOWLEDGEMENTS

It is a pleasure to thank Dr. J. Hennig for interesting discussions. We are grateful to Prof. Abdus Salam, the International Atomic Energy Agency and UNESCO for hospitality at the International Centre for Theoretical Physics, Trieste. One of us (BP) wants to thank the Vermittlungsstelle für Deutsche Wissenschaftler im Ausland for partial financial support.

-7-
APPENDIX

A.1 Proof of Lemma 1

We consider the case $\sigma(g_3) = \hat{H}$; the calculation for the other cases is analogous. The generators $\sigma(g_i)$ are of the form

$$\sigma(g_i) = \sum_{j=0}^{r} a_{ij}^r(x) \frac{d}{dx}^{r-j}, \quad i = 1, 2$$

$$\sigma(g_3) = -\frac{1}{4} \left(\frac{d}{dx} \right)^2 + V(x).$$

The commutation relations are given in (I), (II), (III).

We start with $r = 3$ and assume $a_{10}^3(x) \neq 0, \quad i = 1, 2$. Apply both sides of (I) on a function $f(x)$ taken from $C^0(R)$ and compare the coefficients for $f^{(j)} = (d/dx)^j f(x), \quad j = 5, \ldots, 0$. The resulting equations are denoted by (m), with $m = 6 - j$. Similar equations follow from (II) and (III) denoted by (m') and (m''), respectively; $m', \quad m'' = 1, \ldots, 5$. All these equations can easily be computed and will not be given here. They yield a system of first-order differential equations for $a_{ij}^r(x)$ (constants of integration a_{ij}^r).

Eqs. $(1')-(3'), (4'$); $(1'')-(3''), (4''$) yield (the upper index 3 is omitted) $a_{10}, \ldots, a_{12}^3, a_{13}^3, a_{20}, \ldots, a_{22}^3, a_{23}^3$ respectively. It is easy to check that (1) is automatically fulfilled. Eqs. $(2)-(4)$ give relations between the α_{ij}^r, e.g. $\alpha_{10}^1 = \pm i \alpha_{20}^1$ is derived from (2). But (5) and (5'') are both differential equations for $V(x)$ having different solutions. So the commutation relations cannot be valid except for $a_{10}^r = a_{20}^r = 0$ and our assertion is proven for $r = 3$. The case $r = 4$ can be handled in the same way and with the corresponding result.

Suppose now $r > 5$ and $a_{10}^r(x) \neq 0, \quad i = 1, 2$. Commutator (II) leads to a recursion formula for $a_{1j}^r (B_j^r$ are binomial coefficients; in a_{1j}^r the index r is omitted; $a_{1j}^r = 0$ for $j < 0$):

$$a_{1j}^{(1)} = 0$$

$$a_{1j}^{(1)} = -2a_{2(j-1)}^{(1)} - \frac{1}{2} a_{1(j-1)}^{(2)} - 2 \sum_{k=0}^{j-2} B_k^{r} a_{1k}^r V^{(j-k-1)}.$$
Commutator (III) implies
\[
\begin{align*}
a_{20}^{(1)} &= 0 , \\
a_{2j}^{(1)} &= 2ia_{1(j-1)} - \frac{1}{2}a_{2(j-1)} - 2 \sum_{k=0}^{j-2} \beta_k a_{2k} v^{(j-k-1)} .
\end{align*}
\]

Commutator (I) gives 2r equations. They imply
\[
\alpha_{1j} = +ia_{2j} \quad \text{or} \quad \alpha_{1j} = -ia_{2j} , \quad j = 0,1,\ldots,r-1
\]
which can be proven by induction. From the general form of \(a_{1j}^{(1)} \) and \(a_{2j}^{(1)} \), one derives
\[
\begin{align*}
a_{1j}^{(1)} &= +ia_{2j}^{(1)} \quad \text{or} \quad a_{1j}^{(1)} = -ia_{2j}^{(1)} , \quad j = 0,1,\ldots,r-1,r
\end{align*}
\]
Thus we have
\[
a_{1j} = \pm ia_{2j} , \quad j = 0,1,\ldots,r-1
\]
and with complex \(\delta \)
\[
a_{1r} = \pm ia_{2r} + \delta
\]
and (I) cannot be valid except for \(a_{10} = a_{20} = 0 \). This completes the proof.

A.2 The case \(v_1^2 + v_2^2 = v_3^2 \)

We consider only the case \(r = 4 \). After a \(\text{so}(2,1) \) basis transformation such that \(\hat{H} = k^{-1} (\sigma(g_1) + \sigma(g_3)) \) (this transformation exists because of \(v_1^2 + v_2^2 = v_3^2 \)) the generators are
\[
\begin{align*}
\sigma(g_1) &= \sum_{j=1}^{4} a_{1j}(x) (d/dx)^j , \quad i = 1,2,3 \\
\sigma(g_1) + \sigma(g_3) &= -k \cdot (d/dx)^2 + V(x) \quad (*)
\end{align*}
\]
The commutation relations yield
\[
\begin{align*}
a_{1h} &= a_{1h} \\
a_{13} &= a_{13} \\
a_{12} &= \frac{2}{k} a_{1h} v + \frac{i}{2k} a_{23} x + a_{12}
\end{align*}
\]
\[a_{11} = \frac{2}{k} \alpha_{14} V^{(1)} + \frac{3}{2k} \alpha_{13} V + \frac{i}{2k} \alpha_{22} x + \alpha_{11} \]

\[a_{10}^{(1)} = \frac{1}{k} (\alpha_{14} V^{(3)} + \frac{3}{4} \alpha_{13} V^{(2)} + \alpha_{12} V^{(1)} + \frac{2}{k} \alpha_{14} VV^{(1)} + \]

\[+ \frac{i}{2k} \alpha_{23} x V^{(1)} + \frac{3i}{4k} \alpha_{23} V + \frac{1}{4} x + \frac{i}{2} \alpha_{21}) \]

\[a_{24} = 0 \]

\[a_{23} = a_{23} \]

\[a_{22} = a_{22} \]

\[a_{21} = \frac{3}{2k} \alpha_{23} V - \frac{1}{2} x + \alpha_{21} \]

\[a_{20} = \frac{3}{4k} \alpha_{23} V^{(1)} + \frac{1}{k} \alpha_{22} V + \alpha_{20} \]

\[a_{3j} \] can be obtained from the \[a_{1j} \] with (*).

The \[a_{ij} \] fulfill the relations

\[\alpha_{14} = -(2k)^{-1} \alpha_{23} \]

\[\alpha_{13} = -k^{-1} \alpha_{23} \alpha_{22} \]

\[\alpha_{12} = \frac{k}{2} - (2k)^{-1} \alpha_{22} \]

\[\alpha_{11} = i (2k)^{-1} \alpha_{23} \]

\[\alpha_{10} = i (4k)^{-1} \alpha_{22} \]

\[\alpha_{21} = 0 \]

\[\alpha_{20} = -\frac{i}{4} \]

\[\alpha_{22} \] and \[\alpha_{23} \] are arbitrary constants.

\[V \] is a solution of the non-linear differential equation

\[\frac{1}{4} \alpha_{23} V^{(3)} + \frac{3}{2k} \alpha_{23} VV^{(1)} - \frac{i}{2} x V^{(1)} = i \]

\[V \]

-10-
with solutions, e.g.,

\[V(x) = -2k x^{-2} \]

or

\[V(x) = i k (\alpha_{23})^{-1} x \]

Hence in this case \(r = 4 \) potentials appear which have not been obtained from Theorem 1. The type of differential equation for \(V \) depends on \(r \). One can check that for \(r = 5,6,7 \) the equation has exactly the same form as above; for \(r = 8,9,10,11 \) it reads

\[
\alpha_{25} \left[\frac{1}{16} V^{(5)} + \frac{5}{8k} V^{(3)} + \frac{5}{4k} V^{(1)}V^{(2)} + \frac{15}{8k^2} V^{2}V^{(1)} \right] + \\
\alpha_{23} \left[\frac{1}{4} V^{(3)} + \frac{3}{2k} V^{(1)} \right] + \left[-\frac{i}{2} x + \alpha_{21} \right] V^{(1)} = i V
\]
REFERENCES

3) P. Cordero, S. Hojman, P. Furlan and G.C. Chirardi, Nuovo Cimento 3A, 807 (1971); see this paper also for further references.

CURRENT ICTP PREPRINTS AND INTERNAL REPORTS

IC/72/22 V.S. KAUSHAL and M.P. KHANNA: PC non-leptonic hyperon decays.

IC/72/23 G. ALBERI and M.A. GREGORIO: Spin structure in the nucleon-deuteron cross-section defect.

IC/72/24 P. CORDERO and G-C. GHIRARDI: Dynamics for classical relativistic particles - I: General formalism and circular orbit solutions.

IC/72/25 P. CORDERO and G-C. GHIRARDI: Dynamics for classical relativistic particles - II: The non-relativistic limit.

IC/72/26 M.A. GREGORIO and D.R. AVALOS: Faddeev-like equations with multibody forces.

IC/72/27 A. MAHESHWARI: Scattering amplitudes in the Bloch-Nordheim model field theory.

IC/72/28 F.A. BARAGAR and A.N. KAMAL: Jost-Lehmann-Dyson representation and scaling. (Libraries only)

IC/72/30 N.M. BUTT: A detector for Mössbauer nuclear resonance of Fe57 through internal conversion x-rays.

IC/72/31 L. BERTOCCHI and A. TEKOU: Quadrupole moment effect in quasi-elastic deuteron-deuteron scattering.

IC/72/32 N. MURAI: Properties of real photon and photon-induced pseudoscalar meson inclusive reactions.

IC/72/33 P. ROTELLI and L.G. SUTTOR: Iso spin sum rules for inclusive cross-sections.

IC/72/34 J. SCHMIT and A.A. LUCAS: Plasmon theory of the surface energy of metals.

IC/72/35 D.S. NARAYAN: A note on the use of the new variable n^2 for elastic scattering and inclusive reactions.

IC/72/36 F. CSIKOR: Consistent resonance dominance of form factors using sidewise dispersion relations.

IC/72/37 J. SCHMIT and A.A. LUCAS: Plasmon theory of the surface energy of metals - II: Transition metals.

IC/72/38 P. BUDINI and P. FURLAN: On possible composite lepton states induced by neutrinos.

IC/72/40 P. KOČEVAR: Non-ohmic transport and phonon amplification in polar semiconductors.

IC/72/41 C. CRONSTRÖM: Generalized $O(1,2)$ expansions of multiparticle amplitudes - II: The $O(1,2)$ Laplace transform.

IC/72/42 K.C. WONG: The approximate calculation of electronic band structures - application to palladium.

IC/72/43 A.N. KAMAL: Fourier-Bessel transforms of helicity amplitudes.

IC/72/44 C.J. ISHAM, ABDUS SALAM and J. STRATHDEE: CP-violating gauge interactions.

IC/72/45 Chr. CHRISTOV and T. TODOROV: Asymptotic numbers - one generalization of the notion of number.

IC/72/46 V. BORTOLANI and G. GIUNCHI: Resistivity and thermoelectric power of liquid Zn: role of u-states.

IC/72/47 A.R. HASSAN: Indirect exciton transitions in the two-photon absorption in semiconductors.

IC/72/49 K. TAHIR SHAH: Conjugacy and stability theorems in connection with contraction of Lie algebras.

IC/72/50 M. ŠUNJIĆ and A.A. LUCAS: Spectroscopy of surface collective excitations.

IC/72/51 M.M. BAKKI and B.I. SOROUR: Scattering of electromagnetic waves by a uniformly rotating magnetically active plasma cylinder at normal incidence.

IC/72/52 U.N. UPADHYAYA: Magnetic breakdown for Bloch electrons.

IC/72/53 M. KOCA: An application of the SU(4) bialical current algebra to the inclusive reactions $e + N \rightarrow e +$ soft pion + anything and $e + N \rightarrow e + \gamma +$ anything.

IC/72/54 P. BUDINI: Virtual neutrino effects.

IC/72/56 S.J. HAKIM: A new determination of the pion-nucleon sigma term.

IC/72/57 L. HEDIN: Many-body effects in high-energy spectroscopy of solids.

IC/72/58 K. TÖTH: The Fourier-Bessel expansion of the scattering amplitude at zero-momentum transfer for particles with unequal masses.

IC/72/59 N. MURAI and K.K. PHUA: On the vector meson dominance in inclusive reactions.

IC/72/60 S. MARČELJA: Molecular model for phase transition in biological membranes.

IC/72/61 K.N. PATHAK: Collective excitations in classical liquids.

IC/72/63 K. KOLLER: On quantum field theories with homogeneous interactions.

THESE PREPRINTS ARE AVAILABLE FROM PUBLICATIONS OFFICE, ICTP, P.O.BOX 586, 1-34100 TRIESTE, ITALY.
IT IS NOT NECESSARY TO WRITE TO THE AUTHORS.