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ABSTRACT

A lagrangian field theory described by the interaction J.. =
K9

 1

(e - l) is considered where tp and 6 are scalar fields with

masses u and zero respectively and X,K are the coupling constants. It

is shown that the sum of a particular class of ladder graphs for f^f •> if if

scattering is polynomially bounded in s , the square of the incoming centre-

of-mass energy. This is true although an individual ladder with n rungs

grows like exp[o s' J for increasing s
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I. INTRODUCTION

l)-h)
It has been shown for the exponential interactions using the

non-polynomial perturbation-theoretic methods that.amplitudes can be construct-

ed to all orders in the major coupling constant so that they are finite, unitary

and contain no arbitrary parameters. The problem of the high-energy behaviour

of this and all other non-polynomial theories has, however, remained untouched .

For most theories the amplitudes evaluated to second order in the

major coupling constant increase like exp[o*s ] for increasing energy. For
7)certain theories this increase lies below the Jaffe bound for localizability,

3)It has been demonstrated by Taylor that the exponential interactions are

localizable in every order of perturbation theory and there are indications

that this may be so for other theories localizable in second order. On this

basis the Jaffe criterion has been employed to classify theories as localizable

or non-localizable depending on their high-energy behaviour in second order.

So far there has been no analysis of the high-energy behaviour of sums of graphs

of different orders in the major coupling constant which could provide a more

realistic estimate of the high-energy behaviour of these theories and according-

ly a more realistic basis for classification into localizable and non-localizable

types.

8)

Since the work of Epstein, Glaser and Martin , which showed poly-

nomial boundedness of the two-particle scattering amplitude in the framework

of the theory of local observables of Araki and Haag, it has always been hoped

that some of the theories which appear to be localizable in the second order
9)would prove to be polynomially bounded. In particular , the belief has been

expressed that the summation over the major coupling constant should dramatically

alter the high-energy behaviour of these theories.

In this paper we should like to show,by considering a particular class

of ladder graphs for the exponential interactions,that although each of the

ladders with n rungs grows like exp[cr s ] the summation over these

ladders yields a polynomially bounded result. The details are presented as

follows.

In Sec.II we discuss the definition and the high-energy behaviour of

the second-order scattering amplitude (the superpropagator). In Sec.Ill we .

first obtain an approximation for large s to the ladder amplitude with n

rungs. This approximation is summed and shown to have a polynomial bound.

Our analysis is based on the euclidicity postulate by which we first define

all our amplitudes in the space-like region and then continue to other direct-

-2-



ions in the complex s plane. In.order to display the actual bound and there-

fore the corresponding Regge trajectory, it is necessary to solve a transcend-

ental equation. Coupled with the fact that one has arbitrary coupling const-

ants and mass, this cannot be achieved analytically. In the Appendix ve carry

out an analysis for the X<|> theory in an analogous manner displaying the well

known results

II. THE SUPEKPROPAGATOR

In the theory with

L - i. X<}>V6 - 1) (2.D
mt 2

where <f> and 6 are scalar fields with mass u and zero respectively, and

\ and K are the so-called major and minor coupling constants respectively,

the superpropagator Z(s) given in Fig.l is well known and for s > 0 is

equal to

where Gmn(ctL ) is the Meijer function
pq o

This answer for the superpropagator is usually evaluated in the follow-

The amplitude is t

which one obtains the result

2
ing way. The amplitude is first defined for space-like s and JC < 0 for

2 < d l s U £ H -2,0,-l| . (2.3)

—iff
Continuation of ]s| to time-like s is performed by |s| •* s e ,

2
whereas that of K is in principle arbitrary with an associated ambiguity.

Unitary amplitude is obtained by taking the average of the continuations
P P +T tt

|K I •+ K e~ . By this procedure the ambiguity is also put equal to zero,
l) 3)

in accordance with Lehmann's ansatz . It is claimed that these continu-
2

ations of s and < also yield unitary results for the amplitudes in higher

orders. Therefore we shall, in the next section, choose these continuations

for defining the ladder amplitudes.

-3-



The high-energy (a -+• + « ) behaviour of the superpropagator E(s)

is given by '

r 2 ^
K S2

^16TT J

~ 3
sin

3/3
2

r<2s]
L67r2J

i
3 7T

+ ?
exp 3

2
K s'

2

"3

exp
< s

1 + 0

1+0

(2.1*)

It is thus seen that the imaginary part of the amplitude has an order

of growth 1/3 and the real part tends to zero rapidly. It should be noticed

that the Mellin transform method is not applicable for finding the high-energy

"behaviour of this amplitude or, as we shall see in the next section, the be-

haviour of the individual ladder graphs. It is simply because the Mellin

transform of these amplitudes does not allov the contour to be collapsed on

the left.

III. THE LADDER GRAPHS

We shall consider the amplitude, as given in Fig.2, for the ladder
2

graph with n + 1 rungs for s < 0 and K < 0 .

Each of the rungs of the ladder is a superpropagator 2(p ) given

by Eq.(2.3) or by the representation

where p

c-ioo
0<c<l

2 ^ -»-2
= P Q + P •

Using Feynman parametrization

(P2 - v'
(3.1)

12) as shown in Fig.2 for all the mo-

mentum denominators and doing the loop integration, one obtains for s < 0 ,

t < 0 and < 2 < 0 ,

-W



c_+ioo c

Ajs.t) =
2iTi

n+1 I -I
c -i« c -i°o0 n

v. 12)where

~, 2 2

n

0 j=0 (3.2)

1 i n

• a)
n n

C2n(a,$,y)

n n

L i=O

n

V2 C(a,$,Y)

C(a,$,Y)

C(a,0,Y) is a homogeneous function of order n in a,3 and

(3.3)

and C(a,B,Y)

a.=0
i

n

= C(0) = (3, + y,), d(a,g,Y) is a linear homogeneous

,5=1

function of all the relativistic invariants appropriate to the amplitude with

coefficients which are homogeneous functions of order n+1 in a,6 and Y

and polynomials of order n in a. . For a. = 0 ,

d(ct,B,Y)
a.=0

d(0) ='C(0)

In Eq.(3.3), for |s| +<» i n any direction,the main contribution

to the integral comes from the region near a. = 0 . Since both C((X,3,Y)

and d(a,B Y ) are slowly varying in this region we can obtain a high-energy
2 2 2 2

approximation H'(U O'**U i
8**) of HCU 0* "y n;

s> t) ^7 setting <x±
 = ° in



2 2
C{a,6,Y) and d(a,$,Y). Substituting this approximation of S(u ••-p ;s,t)

O n
in Eq.(3.2), ve obtain.a highr-energy approximation A'(s,t) of the amplitude

' n

A (s,t) which is valid for all arguments -of s . For space-like s, A'(s,t)

can be evaluated and the result can be continued to the values of the energy

in the physical region.
From Eq.(3.3) we obtain for space-like s

0 n* '

oo oo

0 0

x C"2(0) exp

n

- d(0)
L i=0 (3.1*)

2 2
Substituting H'(uQ*•*y ;s,t) in Eq.(3.2), one can interchange the

a-integrals with both the v? and the^z-integrals . Performing the u.-
* J

integrals followed by the z-integrals; we obtain

i-0 j=l

x C"2(0) exp

i=0

- d(0) (f^O)

(3.5)

The a-integrals can be performed successively using the relations13)

da

m-1

for m = 1,2...

and

V
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One then obtains

An(s,t)

x G n + 2

0 2n+3

.2n n+1

cfoT -2 2,0,-1 1

n+1
(3.7)

In order to perform the '$ and y integrals we express the Meijer

function as an inverse Mellin transform and so obtain

fi<2n
rr 2iri

2(n+1) c+ioo

r(-»;

vhere

U)(z) = ] [* d.3̂  d.Yj C"2"z(0)

r oo «o

3=1

dY (0 + [Vexp[-u2(3
u o o

r(-a)
n

Hence

c+iw

dz T(-z)

16TT*
1+7T

In the forward direction

n + 1 r , K 2 ,

n

for Re z < 0

Y\

J13-8)

C3.9)

(3.10)

i ^

TTT
,2n+2 0

3n+3

-7-
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Continuing *e g > 9 insi K ^ fl, the leading ftBymjrbotio Isabaviouj* of

A'(s,t=0) can be found to be

2 M

exp

exp -iir
(2n+l)(S+9n)

exp ITT
(2n+3)(8+9n)

(3.12)

F =-.
2 2 , n + l

sl/3nj.
in theThus each of the ladder graphs has a growth ̂  exp o s

forvard direction. It should be noted that, unlike the \§ theory (see Appx.l),

the contour in Eq.(3.10) cannot be collapsed on the left to pick up the lead-

ing asymptotic behaviour. This is reflected in the fact that each of the

ladder graphs does not have, a polynomial bound. In order to obtain such a

bound we first perform the summation over the major coupling constant to get

n=»0

1+TT
dz

r ( . z ) r ( - 2 - z ) fi.Bl.lic

provided

NCz)| <

on the contour of integration. Here

(3.13)

C3.1U)



2\«H)Z fM^Q2 rc-zjrc-a-z) _ f z._ /2. It]} ,. _

For every Re z, as Im z,-»-±oo t v(z) goes to zero exponentially and

therefore one can always choose a contour parallel to the imaginary axis such

that v(z) is bounded. That is to say, one can always find restrictions on

the coupling constants X and < and the mass p so that condition (3.1*0

is satisfied. For example, if for forward scattering the contour is placed
2 2 1—£ 2 1—£

between -2 and -1 , we obtain a.condition like X (K ) /(u ) < some

constant, where 1 > £ > 0 . This can easily be satisfied by choosing small

coupling constants and/or large mass u • Evidently the contour should not

be placed too far to the left so that reasonable constraints can be placed on

these constants in order to achieve condition (3.lM«

It should be noted that, as in the case of the ladder graph with n

rungs, the contour can be collapsed only on the right. Now, however, the

pole structure of the integrand is completely altered and, in particular, the

unbounded set of poles at z = -1,0,1... no longer appears. The only possible

poles are located at the solutions of the equation

V(z) = 1 . (3.16)

Along any ray which is not parallel either to the real or the imaginary

axis, v(z) *\» exp[-(Re z) In z] . Therefore, for a ray directed in the right

half plane, v(z) decreases rapidly, and along a ray in the left half plane it

increases very fast. Hence along these rays Eq.(3.l6) has no asymptotic

solutions. The same can be shown for the rays which are parallel to. the

imaginary axis.

The contour in Eq.(3.13) can now be collapsed on the right as shown

in Fig.3 so that the new contour T encloses all the poles that were to the

right of the contour in Eq.(3.13). These poles lie within a circle of finite

radius except for possible ones on the real axis which may lie outside it.

One can now make the continuation of A*(s,t) to s > 0 and K > 0

to obtain

1+TT
dz r(-z)r(-g-z)

r(2+z)
sic

1 - e
1TTZ

-9-



}.. - e~
17rz V'(Z)

where V (z)
.2.2

, t < o
(3.17)

and the contours I*1 and T are obtained "by continuously distorting the

contour V so as not to cross any poles. In the case that the contour gets

pinched by certain sets of poles, one should add the additional contribution

to Eq.(3.17).

We now consider the solutions of the equation

1 = e i 9 z v'U) (3.18)

As before, one can again shov that along any ray' through the origin,

except for the real and imaginary axis, there are no asymptotic solutions.

Along the imaginary axis,except for 6 = ±u/2 , e \/(z) either decreases

or increases exponentially. For 8 = ±tr/2 it decreases exponentially along

one of the directions and like a power along the opposite direction. There-

fore, again along the imaginary axis, there are no asymptotic solutions. On

the real axis for 9 ^ 0 , the equations may have a solution only for z = rnr/9 ,

for otherwise the right-hand side of the equation has either an imaginary

part or is zero. For 0 = ±t , however, the solutions may "be only at the

integers.- For z = n = 0,1,2...

n

r(n-l"r(3/22i i) (-*Ay2) * 1 for t S 0 .
1=0

Therefore, at these values, since F(-z) and r(-2-z) have poles,

the equation again has no solutions. For z = -3,-^ ... and j-fc/Uy [ < 1 ,

v'(2) is equal to zero and,therefore, for 8 = ±u on the real axis there

could be a solution only for the values z = -2 and z = -1 and only for

appropriate values of the coupling constant, mass u and t .

What we have therefore shown is that for 6 = ±TT , Eq.(3.l8) has no

asymptotic solutions. For -TT < 0 < IT , if there are any asymptotic solutions

of the equation then they all lie on the real axis. This means that in dis-

torting contour Y to T* and I*" there is no possibility of pinching the

contour asymptotically. Therefore, the pinch contribution that may have to

be added to Eq.(3-17) is polynomially "bounded. Also the contours Y , Y and

r*' will coincide asymptotically. Since for 8 = ±ir there are no asymptotic

-10-



solutions of E<i<(3.lB), the contours F1 and r1 in Eq.*(3»17) can te cut
off as in Fig.1*. From this it automatically follows that the amplitude A(a,t)
is polynomially bounded. It appears from Eq..(3.17) that thie is so in any

direction in the s plane.

To determine the exact Regge type behaviour one has obviously to solve

a transcendental equation for z in terms of the parameters A,K,U and t .

This,of course, is very difficult to do analytically and one necessarily has

to resort to numerical methods. From the behaviour of the F-functions one

can easily determine where the asymptotic formulae one has used to analyse the

transcendental equations become valid. This is for Re z « 15 implying that

the bound would be veil belov this value. Whether it is interesting to attempt

to find the exact bound for this model theory is questionable.

Finally we would like to point out that a similar analysis yielding

a polynomial bound can be carried out for rational non-polynomial theories

like L. = — X(f (1/@-+K9)) if the questions of ambiguity are ignored.
XXl <L

IV. CONCLUSION

We have shown explicitly that for the exponential interaction with

interaction Lagrangian L = r- X̂> [e -l] the summation over a particular

class of ladder graphs yields an amplitude which is polynomially bounded in

the complex s plane, even though the ladders in every order of perturbation

theory grow like exp[a s ] as s -*••*>. This bound cannot be explicitly

calculated because of extreme technical difficulties of solving analytically

the transcendental equation. Our result clearly substantiates the hope that

the amplitudes in non-polynomial theories after summation over the major coupling

constant will be polynomially bounded.
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APPENDIX I

For the(l/3OA<j) theory, the amplitude A (s,t) corresponding to

the ladder graph with n+1 rungs is given by

A (s,t) = ( A 2 ) n + 1 r(2n+2)
n

JL r n

C2n(a,B,Y

• n n

u C(a,0,Y)

where C(a,6,y) and d(a,&,y) are defined in the text.

i=0

I-2(n+1)

(AI.l)

Repeating the same argument as before, one can get an approximation

A (s,t) of the amplitude A (s,t) for large s . For s < 0 this can "be

written as

A (s,t) K A'{s,t) =
n n

oo «> n n
M2,n+1 f f T T _,

ft o i=o

exp

"2
dYj C"2(0) exp -d(0)

n n

i=0 i=0

n

J=l

• n

o o i=o j=iC-ico
c<0

x exp dCo) -
• n n

K=0

r n

i-0

(AI.2)
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If c is restricted between -1 and 0 , the a,3 and y inte-

grations can "be done explicitly giving

An ( s» t ) *2 (c+1~,

-Kc<0

^ r(-z)rts+l) ;-^! Ay2}

The summation over the ladders can be carried out to give

'(s,t) = } A^(a,

n=0

(AI.3)

l.sl

F Ci,-*;
2 i

provided there is a c between -1 and 0 such that

|o)(z)| < 1

for z on the contour. Here

= ̂  r(-a)rCz+l) -F.U,-a;3/2i-|tlAii2) .

(AI.5)

CAI.61

For forvard scattering it can be shown that the maximum of J

on the contour of integration occurs on the real axis. Thus condition (AI.5)

becomes

X2,

V2 simrc
< 1 (ALT)

2 2
/y

2
Therefore, in order to obtain the biggest possible range for X /y

satisfying this inequality we choose c = - p- . For any value - t , [w(z)[

falls off rapidly as y •* ±<» and thus the inequality (AI.5) can still be
2 2

maintained vith possibly a more restricted range of X /u

-13-



In contrast to the interactions considered in the text, the con-

tour in this case must be collapsed to the left for large |s| . Thus after

the continuation to s > 0 ve obtain

2TT1 j .2

Y i - ~ r(-z)r(z+i) ̂ d.-z^^^Au2)

where Y is given in Fig.5»

The leading contribution to the integral comes from the right-most

pole under Y which occurs at

X2 X2

z = -l + — + -j- t + • • • for small t .
y 6y

This reproduces the well-known result of the <J> theory

-1U-



APPENDIX II

a) The representation of the superpropagator [Eq.(3.l)l

2iri J

C+ioo

dz

C— l e a

O<C<1

deir2)2"1 ru)r(z) ?)2 (AII.l)

converges veil.

We first consider the u^-integral. By cx-parametrizing the momentum

denominator

2 .

1
 g 2 = I da a expl-«(v + p )J (All.2)

and taking the y integral through,one obtains
oo oo so

d a a e dy(vi) e - da F(z) a

o o

Nov, exchanging the z-integral with a-integral ve get

r(-

for Re z > 0 .

(All.3)

(AII.U)

0<c<l

which by changing variables 1-z = X, can be written as

da e
-ap 2 l

2iri rti - *• K

(All.5)

For jlm £J -»• co , the integrand of the ^-integral behaves like |lm X,\

The integral therefore converges for Re ? < r and 5 must therefore be re-

- 2

s t r i c t ed "between 0 and — ••

r(c -
,2

01

ic
2 1 (All .6)
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converges and

£(p2) = J da e ^ afQ ̂ - | 2 ij (AII.7)

and therefore the above representation could have been used to arrive at Eq..

(3-5) for space-like s

b) The left-hand side of the formula (3.6) does not converge as it stands

and therefore has to be defined as

00

OT mO
dot G(OLB\2,1) Gn - ..(aA -2•••-2,0,-1 1) =J( :

m-1

* lim j to a a GgJ(aB|a,l) Go°2m-1 ̂ '~2' * '-2*0*'1' "-'•l)

a->0

(All.8)
The' a-integral converges for 1 - 0 < Z to the Mellin transform of G_ (aA)

mO 2m-l
as a function of a + £ + 1 since Gfi . (aA) goes to zero exponentially as

_2 1

a -*• ©Q and like a as a •+ 0 Therefore, for a > — the double in-

tegral is defined and equals

L. + Z, + O)\ j,r - \ .-G-^-l fATT Q)

which converges to

The limit of this expression exists and equals

-16-



APPENDIX II

a) The representation of the superpropagator [Eq..(3.l)l

27T1

C-ieo
0<c<l

r(-2)Oc2)z f" 2 (y2)2
••••— dy —r^

(16TT2)2"1 r tz)r(z) I (p2 + y

- 1

¥ (AII.l)

converges well.
p

We first consider the y -integral. By a-parametrizing the momentum

denominator

, 2 2,2
(p + V )

a exp -v(u + p )J (All.2)

.2 .and taking the y & integral through,one obtains

da a - [ da F(z) a1

o

Now, exchanging the z-integral with a-integral we get

1-Z

for Re z > 0 .

(All.3)

(AII.U)

0<c<l

which "by changing variables 1-z = C can "be written as

da e
-ap2 l

2Tri Til - (All. 5).

For |lm e| -*• co , the integrand of the ^-integral "behaves like |lra ?[

The integral therefore converges for Re 5 < 77 and g must therefore he re-
1

stricted between 0 and — .'

- 2

• 2wi T(l -
2 1 (All.6}

-15-



converges and

Z{p2) = | da e"0*2 G°J ̂ f- | 2 Ij (All.7)
o K

and therefore the above representation could have been used to arrive at Eq.

(3.5) for space-like s

b) The left-hand side of the formula (3.6) does not converge as it stands

and therefore has to be defined as

CO

f 0 1 mO •

da C-CaB 2,1) Gn _ -(aA -2" - -2 ,0 , -1 1) =
J 2 0 U £3n-l -_
0 m-i

00

= lim I da a° G°J(aB|2,l) G™°. . (aA|-2-•--2,0,-1-•--l)
_ - j d.\j u «an-x0+0 J

The a-integral converges for 1 - a < £ to the Mellin transform of G^ ,. . CotA)
Q 0 dm-las a function of a + z, + 1 since Gn -^.^CaA) goes to zero exponentially as

a •*• 00 and like a" as a

tegral is defined and equals

a •*• 00 and like a" as a •*- 0 . Therefore, for a > ~ the double in-

r(i - c - a) 1) A CAII.

which converges to

G S + 1

The limit of this expression exists and equals

2...-2,0,-1----I) . . CAII.10)

-16-
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FIGURE CAPTIOUS

Fig.l

The superpropagator 2(s).

Fig. 2

The ladder amplitude with n rungs showing the Feynman parameters

corresponding to each of the propagators.

Fig. 3

The contour T . All the poles of the integrand lie only in the

shaded area, and asymptotically only along the real axis.

Fig.U

The contours F and T . All the poles are again in the shaded

region.

Fig. 5

The contour Y •
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Fig. 1
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Fig. 2
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ig. 4

Fig. 5
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