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ABSTRACT

A lagrangian field theory described by the interaction £

int
= %Aga(eKe ~ 1) is considered where ¢ and 6 are scalar fields with

Y and zero respectively and A,k are the coupling constants.

masses

I
is shown that the sum of a particular class of ladder graphs for Py + @i

scattering is polynomially bounded in s

s the square of the incoming centre-
of-mass energy.

This is true although an individual ladder with n rungs
. s . .
grows like exp[on & ] for increasing s .




1. INTRODUCTION
1)-4)

non-polyncmial perturbaticon~theoretic methods that amplitudes can be construect-

It has been shown for the exponential interactions using the

ed to all orders in the major coupling constant so that they are finite, unitary
and contain no arbitrary parameters. The problem of the high-energy behaviour
of this and all other non-polynomial theories has, however, remained untouchedS).

6)

For most theories the amplitudes evaluated to second order in the

. . . a . .
major coupling constant increase like exp[0s ] for inecreasing energy. For

7)

certain theories this increase lies below the Jaffe bound for localizability.
It has been demonstrated by Teylor 3) that the exponential interactions are
localizable in every order of perturbation theory and there are indications

that this may be so for other theories localizable in second order. On this
basis the Jaffe criterion has been employed to classify theories as localizable
or non-localizable depending on their high-energy behaviour in second order.

So far there has been no snalysis of the high-energy behaviour of sums of graphs
of different orders in the major coupling constant which could provide s more
realistic estimate of the high*enérgy behaviour of these theories and according-
ly a more realistic basis for classification into localizable and non-lécalizable

types.

Since the work of Epstein, Glaéer and Martin 8), which showed poly-
nemial boundedness of the two-particle scattering amplitude in the framework
of the theory of local observables of Arakl and Heag, it hés always been hoped
that some of the theories which appear to be localizable in the second order
would prove to be polynomially bounded. In particular 9),.the belief has been
expressed that the summation over the major coupling constant should dramatically

alter the high-energy behaviour of these theories.

In this paper we should like to show,by considering a particular class
of ladder graphs for the exponential interactions,that although each of the
1/3n

lsdders with n rungs grows like exp[Un s 1 the summation over these
ladders yields a polynomially bounded result. The details are presented as

follows.

In Sec.II we discuss the definition and the high-energy behaviour of
the second-order scattering amplitude (the superprOpagatorj. In Sec.III we

first obtain an approximation for large s +o0 the ladder amplitude with n

rungs. This approximation is summed and shown to have a polynomial bound.
Our analysis is based on the euclidicity postulate by which we first define

all our amplitudes in the space-like region and then continue to other direct-
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ions in the complex s plane. In .order to display the actual bound and there-
fore the corresponding Regge trajectory, it is necessary to solve a transcend-
ental equation. Coupled with the fact that one has arbitrary coupling const-

ants and mass, this cannot be achieved analytically. In the Appendix we carry
out an analysis for the k¢3- theory in an analogous manner displaying the well-

known results 10)_

IT. THE SUPERPROPAGATOR

In the theory with

- _]_._ 2, kg ' (2.1)
Lt =3 A (e 1)
where ¢ and 6 are scalaer fields with mass Y and zero respectively, and

A and K are the so-called major and minor coupling constants respectively,

L)

the superpropagator I{s) given in Fig.l is well XKnown and for s > 0 is
equal to
22 2 (2 _-omi
2 -
Yis) = %— [ﬁ—ﬂ] {Ggg[ < ; l-2,o,-1] + Gog[f-if—g—- |-2,o,-1]} S -
167 LA :
where G;Z(ulg) is the Meijer function ll).

This answer for the superpropagator is usually evaluated in the follow-
ing way. The emplitude is first defined for space-like s and K2 < 0 for

which one obtaihs the result

212 2
P%%J% Ggg{LillE§L| -2,0,=1| . (2.3)

16w

Continuation of |s| +to time-like s is performed by [s| = s e 17

whereas that of K2 is in prineiple arbitrary with an associsted ambiguity.
Unitary emplitude is obtained by teking the average of the continuations
|K2| + K2 eii1T . By this procedure the ambiguity is also put equal to zero,
in accordance with Lehmann's ansatz l).' It is claimed 3) that these continu-
ations of s and K2 also yield unitary results for the amplitudes in higher

orders, Therefore we shall, in the next section, choose these continuations

for defining the ladder amplitudes.




The high-energy (8 + + ) behaviour of the superpropagetor LI(a)

is given by 11)

2 % o+ Y T 241
i R b IR s N CR o | E
/3 L6n 2 Len 3 2\yen®) | s
k
. 2 3 2 9 -
+ == Fiifﬂ exp 3{ ks [l + O{£¥} . (2.4)
/3 \16m 2 /

wie

16T/ 8

It is thus seen that the imaginary part of the amplitude has an order
of growth 1/3 and the real part tends to zerc rapidly. It should be noticed
that the Mellin transform method is not applicable for finding the high-energy
behaviour of this eamplitude or,as we shall see in the next section, the be-
haviour of the individual ladder graphs. It is simply because the Mellin
transform of these amplitudes does not allow the contour to be collapsed on

the left.

IIT. THE LADDER GRAPHS

We shall consider the amplitude, &5 given in Fig.2, for the ladder

greph with n + 1 rungs for 8 < 0 and K2 < 0.

Each of the rungs of the ladder is a superpropagator £(p2) given
by Eq.(2.3) or by the representation

c+ico -] ’
2(3%) = Ao j 4z L2 fdu"’ T (3.1)
2mi i (16“2)1-1 P(Z)T(Z) (pa + U2)2
0<e<l

where p2 = pg + ;2
12)

nentum denominators and doing the loop integration, one obtains for s < 0 ,

t <0 and K2 <0 ,

Using Feynman parametrization as shown in Fig.2 for all the mo-

=l




e tio ¢ +it)
n ‘

n+l B gg I(-z,)[K°|% T
A.n(sst) = ["2"‘:"‘];1'} f e J. -[_]' ; z.“;: [ [ J rae
(16n™)™ Tz, IT(z ) g

c . ~iw ¢ =i i=0
n

0
0<c0---cn<l ® n
J Udui (u?)zjﬂl'&(ug---ui;s,t)
0 3=0 S (3.2)

where 12)

., 2 2
:(uo- . °un;5,t) =
bl 1

4] n. Il Il
st 2) [ oo [ [Toga [as,ar 0 e 8 evp -1) P
=1 i=0 J=1

)] ¢ i=0 J
n n
® -H—ai |s] + a{a,B,y) + 12 cla,8,7) Z (BJ + YJ) +
i=0 . J=1
n > =2{n+1)
+ C{a,B,Y) Zui Mg .

i=0
(3.3)
c{a,B8,Y) is a homogeneous function of order n in a,B and Y
n ‘ : :
= €(0) = l ' (Bj + Yj),d(a,B,Y) is & linear homogeneous

ai=0 J=1

function of all the relativistic invariants appropriate to the amplitude with

and C(a,s,y)

coefficients which are homogeneous functions of order n+l in a,8 and ¥

and polynomiels of order n in oy . For o, = o .

L. 8 'YA
a(a,8,y)| = a(o) = c(0) ZfJ——J—Y ¢
Y ai=0 < Bj + Yj l l

In Eq.(3.3), for |s| +©° in any direction,the main contribution
to the integral comes from the region near o, = o . Since both ¢C{(a,B,Y)
and d(a,B,y) are slowly varying in this region we can obtain a high-energy

approx.ima.tion E. (ugl . auiis ,'t) of E(ugn . -ui;s ,t) 'by' Setting ai =0 in

-l




c{a,B,y) and d(c,B,Y}. Substituting this approximation of E(ﬁg...ﬁi;s,t)
in Eq.(3.2), we obtain.a high-energy approximation A;(s,t) of the amplitude
An(s,t) which is valid for sll erguments.of s . For space-like s, A;(s,t)
can be evaluated and the result can be continued to the values of the energy

in the physical region.

From Eq.(3.3) we obtain for space-~like s

- 2
=1 (uo.- -un;s’t) =

d © n
= j ‘o I TfI ai dai exp[—ai pi] TTT-dBJ de exp[-ue[BJ + YJ]] X
o o i=0 J=1
n - *
x ¢%(0) exp[— T—T'ai Is| ¢™(0) - ato) c'l(o)} . _
i=0 ' (3.4)

Substituting S'(ug---ui;s,t) in Eq.{3.2), one can interchange the
o-integrals with both the u?- and the.z-integrals 13)2 Performing the u?—
integrals followed by the z~integrals,we obtain

oo ® n _ 2 n_ -
Alls,t) = |K21n+1 f v J I-T.da GOl EEE_EQ [2 1 TMT dg, 4y exp[dug(B + )] x
n'"? . ‘ i 720 1‘(21 J J J J

0 0 i=0 J=1

x (o) exp{- [ 1oy 1s1 @) - a0 C'l(o)} :

i=0 (3.5)

‘The g-integrals can be performed successively using the relationsla)

oo

[ i) G fotzzigions] -

o m-1
1 .+l O ;
=G, 2m+1[A/B[-2----2,0,-1----1] for m=1,2...
n

and 4 ' (3 6
. t
10
Cop (aafo) =

expl~qa]

G-




One then obtains

Lo o

Vo 2Rl -2 2 4
atene) = (L] J i | 8 oty 5o exe 4208, +v,) - a(0)™(0)] x
J:

« @2 0 [[LE™ s
o en3|[ 2] (o)

_2...-2,0,_1..._1]
‘—'—v————‘

ntl (3.7)

In order to perform the B and Y integrals we express the Meijer
function as an inverse Mellin transform and so.obtain

, 2\ 2(at1) (SHI0 ntl [y 2yzin+l)
An(s,t) = E%{ {lE%JJ ' J dz T(-2) [%%g%i%lJ [lE—éJ Is]z wiz)
et 167
e<~1 -(=-3'~‘)
where
-] w Il
o) = [ oo [ ] ] a8y avy o2 0) exp[412(8, + v,) - (0107 (o)
b 0 J:l , . .
o ¢ . ' n
= [{ J a8 ay (8 +v)2? exp[-ua(s +y) - -Ex;l_%-]:l
00
0]
2 %
= [(u )z I'{-z) 2Fl[l,—z;3/2;- ;;EJ} for Re z < 0 (3.9)
Hence
' 2,42 c+ico o\ z
O | k-1 T(~2-z) {lstlc®}*
Ah(s,t) = T L%ﬁ;" J‘ dz T{-z) T(5%2) [ 62 ]
e=ico
e<-1 o
2y 22 2132 .
1651}% (1“0 Ii-z)T(-2g) [ ea/pin l_t_L}
x [{pl&rej Lo I'(2+z) of1 (b 233/2; ,m? '
' (3.10)

In the forward direction

2,y2(n+l1) ' 2,10+l
' k| 2n+2 0 ("1 2yn R, P
Ay{8,t=0) = [-L’Tu-—} S 3n+3“16n2J |81 ) l:a_':,'_ﬁ-f&_,.ﬂrl -l}

n+l n+l

(3.11)
.."{...




Conbinuing o & * O nnd & » 0, the leading esympiotic behaviouwr of

A;(s,t=0) can be found 11) to be

, (8+9n)
1 (K‘E]E(u&l) e - eren) o)

T 1
2 o (3n+3)2

1

x ¢ exp|=3(n+1) 63:n+l exp[i%%sgi%lﬂ QXP[‘i“ (zng%QEE? =

1
v (=)t exp[—s(n+1) 53[n+15 exp[—iﬁ i%&iél]] éxp[iﬂ (2n+3)(8+9n)}

3(n+l) 6(n+l1)
(3.12)
2 2yn+l
where - 5'EE{K 2} .
ue\len
Thus each of the ladder grasphs has a growth " exp[gn sl/3n' in the

forvard direction. It should be noted that,unlikethel¢3theory {see Appx.I).
the contour in Egq.(3.10) cannot be collapsed on the left to pick up the lead-
ing asymptotic behaviour. This is reflected in the fact that each of the
ladder graphs does unot have. a polynomial bound. In order to obtain such a

bound we first perform the summation over the major coupling constant to get

>0 Al Gen)

A'(s,t) =
n=0
c+ico
_ 1 < 5, L=z (-2-2) [isHKEﬂz §
©ooni T r{2+z) 1672
Gl
a<~1
% 21 20% (Ale2])2 . Tal
et (A lSl) T Dez)l(-2-2) va/o. _ 1t
T [ 1612 [ bmo) o Tla+) 2F1[l.'-z'3/2' ) uug] (3.13)
' 3.13
provided
[viz)] <1 (3.14)

on the contour of integration. Here




21,2112 21\ 2 N Eomy o
vz) = [uléza‘] '[Aiz l} - ?2££z§ b [1mesnrs - ii%} : (3.15)
For every Re z, as Im z,+ to0 | vy(z) goes to zero exponentially and
therefore one can salways choose a contour parallel to the imaginary axis such
that Vv(z) is bounded.. That is to say, one can always find restrictions on
the coupling constants A and K and the mass P so that condition (3.1h4)
is satisfied. For example, if for forward séattering the contour is placed

2)1_6/(U2)1-€ < some

between =2 and =1 , we cbtaln a condition like _AE(K
constant, where 1> ¢€ >0 , This can easily be satiﬁfied by choosing small
coupling constants and/or large mass W . 'Evidently the contour should not
be placed too far to the left so that ressonable c¢onstraints can be placed on

these constants in order to achieve condition (3.1h4).

It should be noted that, as in the case of the ladder graph with n
rungs, the contour can be collapsed only on the right. Now, however, the
pole structure of the integrand is completely altered anq,in particular, the
unbounded set of poles at z = =1,0,1... no longer sappears. The only possiiple

poles are located at the solutions of the equation
v(z) =1 . (3.16}

Along any ray which is not parallel either to the real or the imaginary
axis, v{z) ~ exp(-(Re z) &n z] . Therefore, for a ray directed in the right
nalf plane, v{z) decreases rapidly, end along & ray in the left half plane it
increases very fast. Hence along these rays Eq.(3.16) has no asymptotic
solutions. The same can be shown for the reays which are parallel to the
imaginary axis.

The contour in Eg.(3.13) can now be collapsed on the right as shown
in Fig.3 so that the new contour T encloses all the poles that were to the

right of the contour in Eg.(3.13). These poles lie within a cirele of finite

redius except for possible ones on the real axis which may lie outside it.

One can now meke the continuation of A'(s,t) to s > 0 and >0

to obtain

2 242
' o1 fAk I{-z)I(-2~z) [sKk 1 :
Als,t) = Lmi [hﬂ ] J dz T(2+z) [16W2} 1 - eiﬂz v'(2) +

1-!

Q-




’ o T(=2)T(=2-2) {8k o 2ﬂi}z 1
+ | dz s
T{2+z 2 -imz
. 167

where

2 2z 2 . -
v'(z) = [“ <) [ﬁf} Heg)P2en) r (ezsz/ess/ii®), ¢ < 0

(3.17)

and the contours [I' and ™' are obtained by continuously distorting the
contour T so as not to cross any poles. In the case that the contour gets
pinched by certain sets of poles, one should add the additional confribution

to Eq.(3.17).

We now consider the solutions of the equation
ifz ,
1=e Wz} . (3.18)

As before, one can agein show that along any ray through the origin,
except for the real and imaginary axls, there are no asymptotiec soclutions.
Along the imaginary axis,except for 6 = tn/2 , e;ez V(z) either decreases
or increases exponentially., TFor & = #n/2 it decreases exponentially along
one of the directions and like a power along the opposite direction. There- -
fore, again along the imaginary axis, there are no'aéymptotic solutions. On
the real axis for 0 # 0 , the equations may have a'sblution only for z = nv/6,
for otherwise the right<hand side of the equation has either an imaginary
part or is zero. For 8 = 7w , however, the solutions may be only at the
integers.: For z =n = 0,L,2... '

n
2Fl(l,-n;3/2;t/hu2) = Tthzé?%géiégl ) («t/bu®) 21 forts0 .
R=0 '

Therefore, at these values, since ['(-z} and T'(-2-z) have poles,
the equation again has no solutions. TFor z = =3,-L ... and |t/hﬁ2i <1,
VW(z) 1is equal to zero and,therefore, for & = *T  on the real axis there
could be & solution only for the values z = -2 and z = -1 and only for

appropriate values of the coupling constant, mass u and t .

What we have therefore shown is that for 6 = 7 , Eq.(3.18) has no

asymptotic solutions. For -m < 8 < 7 ,if there are any asymptotic solutions

of the equation then they all lie on the real axis. This means that in dis-

torting contour T to T' and T'' there is no possibility of pinching the

contour asymptotically. Therefore, the pinch contribution that may have to
1

be added to Eq.(3.17) is polynomially bounded. Also the contours I' , ' and

I'' will coincide asymptotically. Since for 6 = #m there are no asymptotic

_lo_
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solutions of Fq.(3.,18), the contours I' and r'' in Eq.(3.1T) can be cut
off as in Fig.hs From this it automatically follows thet the smplitude A(s,t)
is polynomially bounded. It appears from Eq.(3.17) that thie is so in any

direction in the s plane,

To determine the exact Regge type behaviour one has obviously to solve
a transcendental equation for =z in terms of the parameters A,k,l and t .
This,of course, is very difficult to do analytically and one necessarily has
to resort to numerical methods. From the behaviour of the l'-functions one
can easily determine where the asymptotic formulae one has used to analyse the
transcendental equations become valid. This is for Re z 215 implying that
the bound would be well below this value. Whether it is interesting to attempt
to find the exact bound for this model theory is questionable.

Finally we would like to point out that & similar analysis yielding
8 polynomial bound can be carried out for rational non-polynomial theories

like Lint = % A¢2 (1/4+k0)) if the questions of ambiguity are ignored.

Iv. CONCLUSIOR

We have shown explicitly that for the exponential interaction with
interaction Lagrangian Liﬁt = %-k¢2[eKe-l] the summation over a particular
class of ladder graphs yields an amplitude which is polynomially bounded in
the complex & plane, even though the ladders in every order of perturbation
theory grow like exp[on sl/3n] as s *9, This bound cannot be explicitly
calculated because of extreme technical difficulties of solving anslytically
the transcendental equation. Our result clearly substantiates the hope that
the amplitudes in non-polynomial theories after summation over the majgr coupling

constant will be polynomially bounded.
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APPENDIX I

For the(l/3l)h¢3 theory, the amplitude An(s,t) corresponding to
the ladder graph with n+l rungs is given by

1
A (s,6) = 02)™ P(ane2) J

o ﬂm Ude or G[Za {m SARHE

n

x C2n(a,3,y) IﬁT o, |s| + dalo,B,y) +

i=0
et n
+ u2 cla,B,Y) Z (B‘j + YJ) +Za
J=1 i=0

~2(n+1)

(AT.1)

where C(a,B,y) and d{a,B,Y) sare defined in the text.

Repeating the same argument as before, one can get an approximation
. .
An(s,t) of the amplitude An(s,t) for large s . TFor s < 0 this can be

written as

An(s,t) % A;l(s,t) =

= (Aa)n"'lJ ‘e JT]V d.f:jl,i -I—l-dB de ¢ (0) exp[—d((}) ol (0 -u Z (Bj + Yj)}
1]

0 1=0 J=1 J=1
' n n
om0 10 [ Toy 573 s -
i=0 i=0 '
ctico w ' 7 n Z
2\yn+l 1 D
A5y Py J az T(-z) J"'j ‘T_[ doty T_I dBJ dYJ [s] %(0) { al] x
c~ioco 0 o i=0 J=1 i=0
c<0
n Il
x exp|-C" ( d(O)-uzzaK"’Z(B +Y .
K=0 m=1

(aI.2)

-12-




If ¢ is restricted hetween -1 and 0 , the a,B and ¥ inte-

grations can be done explicitly giving

2 c+ioco
' A 2 2\~1l=z
An(s,t = e dz lsl T{~z)T{z+1)(u°) X
c-ica
=1<e<0
5 n
A 2
x —EI‘(-Z)I‘(Z+1) 21'1(1,-3;3/2;41;l/hu o
u (A1.3)
The summation over the ladders can be carried out to give
A'(s,t) = E A (s,t)
n=0
ctieo
22 5 ls|® P(=z)T(z+1) W5y 172
= o z
27l A2 5
c-ie 1 - —E-P(-z)r(z+l) 2Fl(l,—z;3/2;—|t|/hu )
~1<e<0 H (AL b}
provided there is a ¢ between -1 and O such that
lw(z)]| <1 (A1.5)
for ¢ on the contour. Here
A2 2 :
wlz) = —E-F(—z)r(z+l) 2F1(l,-z;3/2;-|t|/hu ) . (AI.6)
M ‘ :
For forward scattering it can be shown that the maximum of |w(z)|
on the contour of integration occurs on the real axis. Thus condition (AT.5)
becomes
2 ‘ .
l 2" Z <1 . (AI.T)
1° sinme A

Therefore, in order to obtain the biggest possible range for l2/u2
satisfying this inequality we choose ¢ = - %- . For any value -t , [m(z)[
falls off rapidly as y = *w and thus the inequality (AI.5) can still be ’

: 2
maintained with possibly a more restricted range of A /ua .




In contrast to the interactions considered in the text, the con-
tour in this case must de collapsed to the left for large |s| . Thus after
the continuation to s > 0 we obtain

2 z =-iTgz 2, =]lwz
A'(s,t8) = .2_% j dz ; e P(-2)T(z+1) (u7) (AI.8)
Y 1 - % T(wz)T(z+1) 2Fl(1,-z;3/2-,t/hu2)
U

vhere ¥y 1is given in Fig.5.

The leading contribution to the integral comes from the right-most

pole under Y vwhich occurs at

2z =<1 + &§-+ lE t o+ e for smell t .
H bu

This reproduces the well-known result of the ¢3 theory 10).

| .




APPENDIX II

a) The representation of the superpropagator [EBq.(3.1)]
ctico L :
2.2 2,z~1
268 = gy | e —Rllel g2 DO (s72.2)
i (1677)" " I'(z)T(z) ; (p° + %)
0<e<l

converges well.
. . 2, .
We first consider the u -~integral. By a-parsmetrizing the momentum

dencminator
o0

—'—é‘—l—-.'a-—a = J do o expl:-n((p-a + pe);! (AIT.2)
(p” + )"

and taking the u2 integral through,one obtains

o ao o
2 - 2 - 2
J do o e OF J dua(ue)z Lo Jda T(z) al‘z e . for Rez >0 .
0 o
(AII.3)
Now, exchanging the z-integral with a-integral we geti
oo ctioo
2 21~z o
-op~ 1 I(-z) l-z ({167 ,
J do e vy J dz 'Ir(;r a. ———Kz s (ATT.L)
0 c—1loo
O<e<l
which by changing varisbles 1~z =  can be written as-
o ' Et+ieo .
2 2L
—p2 1 I(z -=1) ¢ (16m
J an e = I R i : (ATT.5)
. ‘ K : .
0 E-iwo
0<E<1
2Re [, - 2

For IIm t[ + & , the integrand of the I~integral behaves like 1Im C[

The integral therefore converges for Re g < %- and f mnust therefore be re-~

stricted between 0 and l-.

2
E+ia0 .
©o1 P(r - 1) T {16m°}° _ ;1 [a16w2 ] _
e 3 j & FE LT [ =) - Gog ey 21 (AI1.6)
E-io0 ‘
0<E<%

~15-




converges and
o0

2 2
Z(PQ) _ J da o 0P GOl [clew

20 2

2 1} (AII.T)
K

and therefore the above representation could have been used to arrive at Eq.

(3.5} for space-like s

b) The left-hand side of the formula (3.6) does not converge as it stands

and therefore has to be defined as-

o0
01 mo _
f da GEO(OLB|2,1) Gy 2m_l(cml--z-- 2,0,=1ve+=1) =
0 m-1
- 74 c 01 m0 ' -
= lim [ o o Gyo(aB|2,1) G 7y (aA[-2:-22,0,-1""-1)
U*O u L]
o E+ico ( , .
= 11 do.. It - 1) % g% ouo DD DL en
é_l;lal J‘_dmofreTri I & Fr g @ B Gy g (@A]-2000-2,0,-1+001)
0 E~ioo '
| O<k<k )
o1 [P - 1) ¢ o+ .m0 :
= lim Z= J at Ty B I an o G0, (0A]-Ber 2,010 011)
g+0 .
E~iod 0
<i
0<t<x (AT1.8)
The o~-integral converges for 1 ~ 0 < [ to the Mellin transform of Ggoam_l(aA)
as a function of 0 + L + 1 since Ggoam;l(aA) goes to zero exponentially as
O *o0 and like a-2 as a—+0 . Therefore, for g 2> %- the double in-
tegral is defined and equals
| E+loo i ]m 1
A (g =1) .z [T{-2+z+a)] -z~
Shi J dz ﬂ%.——_CTB ﬂl"c-c)‘l ' + s+ 1) A | (AXT.9)
E-ico
1-0,0<E< 3

which converges to

-0
A +1 0
B GII(I)1 2m+l(A/BI_29-2+U vee =240 ,0,~1+0 "','lw,-l) .

The 1limit of this expression exists and equals

1 m+l O : B
EGIS ,2m+1(A/B"'2""2.:°=*1' -1} . _ (ATI.10)
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APPENDIX TII

a) The representetion of the superpropagetor [Eq.(3.1)]
c+ico o« -
2.z 2,z-1
2 -
167 = g | e —feRlel a2 L) (ATT.1)
i (167°)"" T(z)T(z) (" +u")
0<e<l

converges well,

We first consider the uz-integra.l. By oc-parametrizing the momentum

denominator
[~

-—Erl;—§"§‘= J do o exp[wu(ﬁe + pzz] | (AII.2)
{(p~ +u")

and taking the u2 integral through,one obtains

] o =

2 - 2 - 2
I do o e P J duz(ua)z 1 mowe . J da T{z) ot ™ . for Rez >0 .
0 0
(AI1.3)
Now, exchanging the z-integral with G-integral we get
oo ct+ico
2 2y1-2 .
-ap° 1 I'(-z) 1-z {167
[ da e oy J dz NV —--Kz R (ATI.N)
C~ia
O<e<l
which by changing varisbles 1-z = z;' can be written as-
oo E+iwo .
2 62 G
-ap® 1 T(g «1) r [16n
J do e 5T J dz _(L_Tr ) © 2 (AII.5)
0 E-iw ' '
O<E<lL
2Re [ - 2

For fIm i;l + o , the integrand of the f-integral behaves like lIm Cl

The integral therefore converges for BRe § < L and £ must therefore be re-

2
stricted between 0 and —;— .
e ( ) ¢ [16m°}° 6n°
ot 1 (g - 1) . (1™ _ .01 [além ) :
" Bai J ® Ty [Ke'-} = G2 { 2 l 2 1] (AI1.6)
E-ica
O<E<E
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converges and
o

o 2
£(p°) = J d e O Ggé [“lg"
o - K

2 1] (AIT.7)

and therefore the above representation could have been used to arrive at Eg.

(3.5) for space-like s

) The left-hand side of the formula (3.6) does not converge as it stands

and therefore has to be defined as’

o0

01 w0 _
J do GEO(aBIE,l) GO 2m_l(aA|_2- -2,0,=1++=1) =
Y m=1

o

lim [ do & o Ol(aBIE 1) G { AI'Q"‘-—E,O,-J."'-J.)

020 ¢ o 2m 1 |
0 Et+iva :
- do_ (g = 1) & gt Guo DD Ol on
lim Jd“&rzwl J az TT§_""ET'“ B” Gy o l(aA[ 2 2,0,=Le++<1)
a+0 . .
Evioo
0<E<3 -
Et+ieo -
_ 1 rir -1) .z o+g mO 5. . -
= lim 2= f it4 fTé_H_ET B do 0”7 Gy o (A[=2000<2,0,-10 " 1)
o+0 .
E—lw' 0
0<g<z (AII.8)
The &-integral converges for 1 -~ 0 < { to the Mellin transform of Goozm-l(aA)
as a function of o + 7 + 1 since GOO2m l(uA) goes to zero exponentislly as
o +o0 and like 0_2 as o4+ 0 . Therefore, for ¢ > %- the double in-
tegral is defined and equals
. E¥ice ']m 1
2 [(g =1) ¢ [T(-1+¢+ )] —-r=1
S J az TT%"“7ET oo | o+ s +1)A | (AIT.9)
E~-ieo
1-0,0<E< 5
which converges to
+1 0
Gm 2m+l(A/Bl-2,-2+cr cre w240,0,-140 ce+ =140,-1) .
The limit of this expression exists and equals
e D (a/B[-2e--2,0,-100001) . _ (ATT.10)

0 2mt+l
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FIGURE CAPTIONS

Fig.1
The superpropagator ZI(s).
Fig.2
The ladder amplitude with n rungs showing the Feynman parameters
corresponding to each of the- propagators.
Fig.3
The contour T . All the poles of the integrand lie only in the
shaded area, and asymptotically only along the real axis.
Fig.h
Lin ]
The contours T and I' . All the poles are again in the shaded
region.
Fig.5

The contour ¥ .
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