IC/71/145

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

A RENORMALIZABLE GAUGE MODEL

OF LEPTON INTERACTIONS

Abdus Salam
'and

J. Btrathdee

@

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS

EDUCATIONAL,

SCIENTIFIC

AND CULTURAL
ORGANIZATION 1971 MIRAMARE-TRIESTE




-l




IC/T1/145

International Atomic. Energy Agency
and

United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

A RENORMALIZABLE GAUGE MODEL .OF . LEPTON INTERACTIONS *

Abdus Salam

International Centre for Theoretical Physics, Trieste, Italy,
and

Imperial College, London, England,
and
J. Strathdee

International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE - TRIESTE

November 1971

* To be submitted for publication.




ABSTRACT

It is known that the spontaneous violation of a gauge symmetry of the
second kind results in the appearance not of Goldstone bosons but, rather, of
massive gauge particles. The path-integral quantization of such theories is dis-
cussed here 1in general terms. The primary consideration is that gquantities
of physical significance, such ss matrix elements of the scattering operator
or the energy momentum tensor, should be independent of the gauge in which
the quantization rules are formulated. In particular, if it is possible to
find one gauge in which the theory is unitary and another in which it is re-
normalizable then the gauge-independent quantities must enjoy both these
qualities. These ideas are applied to a simple model with massive Yang-Mills
fields and to a model which unifies the weak and electromagnetic interactions
of electron-type leptons. Both these mddels appear to be unitary and re-
normalizable. The lepton theory is a relatively economical one. It in-
volves five independent parameters: the electron charge and mass, the mass
of the charged intermediate vector boson, and the masses of a neutral scslar

and a neutral vector boson.
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- T, INTRODUCTION

One of the major achievements of the last two decades in particle
physics has been the discovery of the internal (ihcluding chiral) symmetries
of hadrens and leptons. Most symmetries are only spproximate however and,
no matter how much one mey disguise it, the concept of broken symmetry is‘un-
aesthetic. Fortunately, the aesthetic balance is to some extent restored by
the notion that symmetry breaking may be spontaneous l). In this view, the
universal Lagrangian is supposed to be fully symmetric while the apparent
-lack of symmetry in the solutions of the equations of motion is ascribed to
degeneracf in the physical ground state or, equivalently, to the existence of
certain fields in the theory whose ground state expectation values do not

vanish when calculated self-consistently.

It is well known that the straightforward implementation of this appeal-
ing ides leads toc the appearance of massless, scalar, Goldstone excitations 2).
Such unwented particles Fill not arise, however, if the underlying lagrangian
symmetry is a gauge symmetry of the second kind. it has been shown by Higgs3)
and Kibble that the spontaneous symmetry viclation is manifested not in the
appearance of massless particles but rather in the acquiring of finite mass

by the gauge fields.

Massive vector particles are clearly more acceptable than massless
scalars in any model which claims to be realistic. Another reason for favour-
ing the models with gauge symmetries of the second kind is that, in many cases,
they can be shown to be renormalizable in the conventional sense 5). This is
in spite of the presence of massive vector particles. Perhaps, in view of
the existence of finite, ﬁon-polynomial lagrangian theories, renormalizability
in the conventional sense is not a criterion which should be decisive in
selecting or rejecting Lﬁgrangians. However, conventionally renormalizable
Lagrangians still score on one point. The perturbation expansion in each
order of the (major) coupling constant is Froissart-bounded. This does not-
happen with non-polyncmial Lagrangians although one may possibly'achieve it
for physical S-matrix elements after a summation over the major coupling

constant.

6
In this paper, following the recent stimulating work of t'Hooft )

we examine this problem of renormalizability in the case of a gauge theory of
lepton interactionsT)’B)
gauge fields. Three of these (with charges +1, -1 and 0) acquire mass through
the spontanecus breakdown of U(2) to U(1). They are supposed to mediate the

. The underlying symmetry U(2) is associated with four
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weak interactions. The remaining (massless) field is associated with the
unbroken symmetry U(1) and is identified with the electromagnetic field. The
spontaneous symmetry breskdown serves also to give mass to the charged

leptons 9). This model contains, in addition to the gauge fields and the
lepton fields, a doublet of scalar flelds whose interactions are set in a

form which favours the emergence of s symmetry-bresking solution. The doublet
comprigses a charged field and a complex neutral field, and the symmetiry break-
ing finds expression in the non-vanishing vacuum expectation value of the
neutral component. It turns out that only one massive scalar particle is

assoclated with the doublet of fields. The other components, the Goldstone

bosons, are gauge effects which can be transformed awsy.

The decisive new factor which permits us to discuss renormalizability
in this model is the.existence of s clear and unambiguous technique for guant-
izing gauge theories. Now, the view has been often expressed in the past
that gauge theories should be renormalizable and that the wesk interactions
in particular should be governed by a gauge principle. However, attempts to
realize this idea always faltered over the problem of giving mass to the gauge
particles - a clearly essential festure of any realistic theory. It was con-
Jectured 5) that mass generation by the Higgs-Kibble mechanism would not in-
terfere with renormalizability but the quantization programme could not be
formulated with precision. The missing element has now become available in
the work of Faddeev and Popov lO)' It is now possible to quantize in a wide
variety of gauges and, what is more, to state rules for transforming Green's
functions from one gauge to another. In effect, we have an equivalence

theoren.

It will turn out, in the examples to be discussed, that different gauges
present various asdvantages in that some property may be apparent in one gauge
but not in another. In particular the (formal) unitarity of the physical S-
matrix is evident in what we shall call the canonical gauge while its re-
normelizability is made clear in another, the Landau gauge. If we fully
accept the gauge independence of the S-matrix, however, it must be that
appearances are deceptive. The S-matrix of this theory must be both unitary

and renormalizable.

The paper is planned as follows. In Sec.Il we review the Faddeev-Popov
quantization technique and present a formal derivation - by means of Feynman

path~integrals -~ of the basic equivalence theorem for gauge theories. Here




we discuss briefly the distinetion 5etween geuge symmetries of the first

and second kind in order to indicate that the spontaneous breskdown of the
former does not interfere with the operation of the basic theorem. An il-
lustration of the method is given in Sec.III where a massive Yang-Mills theory
is treated. This example will serve, we hope, to make very clear the dis-
tinction between first- and second-kind symmetries since, in spite of the
spontaneous breskdown which generates mass, there remains a conserved isospin
in the theory. It is shown also in Sec.III that the Faddeev-Popov technigue
coincides with the traditional method of cancnical quantization in a suitably
chosen gauge. One curious feature of the model is the sppearance of a non-
polynomial term in the Hamiltonian. The proposed gauge theory of lepton in-
teractions is discussed in some detail in Sec.IV {while the detailed expres-
sion for the Lagrangian is given in Appendix I). It will be emphasised that
a correct choice of independent parameters must be made in order that finite
categories of graphs should be gauge independent. Sec.V is devoted to con-
c¢luding remarks and speculations coﬁcerning the lepton model and possibilities
for making it less arbitrary by means of self-consistent techniques for com-
puting some of the coupling parameters. Appendix IT is devoted to the de~-
rivation of Ward-Taekahashi identities.



IT. THE FADDEEV-POPOV TECHNIQUE

A general way to quantize theories with & gauge symmetry has emerged
only in recent years with the work of Faddeev and Popovlo. The old methods -
for example the Gupta=-Bleuler method - are valid for the abelian symmetry of
electrodynamics provided a linear gauge condition is adopted. They faill,
however, to cope with non-linear gauge conditions (such as Nambu's, Aﬁ =
constant) or with any of the non~-abelian gauge symnetries. In this section
vwe shall recapitulate the new method and discuss some of its more important
features including particularly the insight which it gives into questions of

gauge dependence in quantized amplitudes.

To pose the general problem, suppose we are asked to quantize a system
of fields ¢ whose classical equations of motion are governed by the action
functional

’5i(¢) = [ ax L(9) . (2.1)

If the classical Euler-Lagrange eguations are not underdetermined, i.e., if a
unique solution corresponds to the initial data, then the general solution for

the quantized asmplitudes can be represented by the Feynman path-integral

(T F(8)) = | (a0) F(o) explE A (8)] (2.2)
h X

where the functional F(¢} mey, for example, take the form of a simple
product,

F($) = ¢(xl) ¢(x2) s ¢(xn) ‘ {2.3)

in which case (2.2) gives the Green's functions. The S-matrix, on the other

hand, is obtained by substituting
F(¢) = : exp [ dx dy ¢in(x) 2”2 p"Hx—y) o(y) : (2.1)

where D{x-y) denotes the renormalized free propagator.

The general solution (2.2) is not appropriate for theories with a gauge
symmetry of the second kind. Suppose we have a (pseudo) group of transform-

ations

Q

Qlx) : ¢+ ¢ (2.5)

which leave the action, ,831 y invarisant. In such cases the Euler-Lagrsnge

./
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equations are underdetermined. In order to obtain a unique classical

solution from given initial data it is necessary to impose & gauge condition,
i.e. a supplementary set of equations (whose number coincides with the number
of group parameters )

h{¢) =0 . - (2.6)

Such conditions can always be obtained, along with the original (and deficient)
BEuler-Lagrange equations, by varying a suitably modified action functional.

It has not been usual to follow this course in classical work because it
complicates the equations a good deal and offers no compensating advantage.
However, for the quantized case it is essential. This is because the quant-
ization programme demands - for its internal consistency - that the complete
set of equations of motion be derivable from an action principle. This is
true both of the standard canonical quantization procedure and of fhe Feynman
path-integral procedure. Fortunately, a general method for determining the

supplementary terms in the action has been given by Faddeev and Popov.
The procedure is as follows. To the originsl, invariant part of the

sction add a supplementary, non-invariant piece Aﬁl to define the total

._/5 = Ay ,Xh . (2.7)

The supplementary action, which serves to fix the gauge, must satisfy two

action

conditions:
a) itmust break all the second-kind gauge symmetries;

b) it must obey the normalization condition

1 =J (a8) expl}-—l Xh(q;“)] , (2.8)

which we shall call the Faddeev-Popov (F-P) constraint. The path-integral
(2.8) is supposed to extend over those elements Q(x) of the pseudogroup
which vanish asymptotically. The measure (dQ) = T;fdfz(x) is supposed to

be a group invariant. Finally, the F-P constraint must be satisfied
identically in ¢ .

To construct a supplementary action which satisfies the requirements

a) and b) is straightforward. If we write 4. as the sum of two pieces,

h

S0 = Ay +v o) (2.9)
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where dAh is freely chosen and non-invariant - so as to meet the requirement
a) - &nd Wh(¢) is invariant, then we can satisfy the requirement b) by re-

writing it in the form
exp[- %—Wh(¢)]= J (af) e@[;—d‘l“h(cbg)} (2.10)

which now serves as the definition of Wh . The group invariance of this

integral assures the invariance of Wh .

A pseudeodynamical interpretation can be given to W,_ by observing

that the path~integral (2.10) represents s "transition amp?itude", viz. the
fi-vacuum transition amplitude. That is, if we regard f(x) as a quantized
field whose classical equations of motion are governed by the "action”

dah(¢ﬂ) » Which includes the effects of perturbing external fields ¢ , then
the right-hand side of (2.10) is precisely the Feynman representation of the
vacuum amplitude,. If we represent this amplitude by graphs with virtual
fl-lines then the funectional (-ifﬁ)Wh(¢) is represented by the subset of
connected graphs, It is sometimes convenient, therefore, to think of (x)
as a "fictitious" field whose Green's functions represent the propagation of
fictitious particles. For the computation of physieal ¢-amplitudes, however,
we need to include only the Q-vacuum amplitudes. In performing suchk com-
putations it is necessary to take account of one rather subtle point. That
is, since the connected part of the {i-vacuum amplitude represents the function-
al (—i/ﬁ)Wh(¢); whereas what one needs for the total action is (+ifﬁ)Wh(¢) s
one must multiply the amplitude corresponding to asny given graph - containing
both i~ and ¢~lines - by (-)N, vhere N denotes the number of fl-connected

pieces in it.

The significance of the requirement a) is clear: it serves to render
the Euler-Lagrange equations well determined. Requirement b) is less
transparent, Its true significance is revealed only when we try to trans-
form a quantized amplitude (a Green's function, say) from one gauge to another.
The transformation rule between two gauges - characterized by the supplement-

ary actions Aﬁh and ,£h ,» respectively - is obtained as follows.
1 2
Consider the path-integral

f (a9)(an) F(¢) exp[;—[,ﬁim + 8 0+ & (¢9)ﬂ : (2.11)
1 2




If we perform the integral over £(x) keeping ¢(x) fixed,then, according
to the F-P constraint (2.8), we are left with the expression

(

[cae) o) exp[,}l—[ Ao +4, (¢)]] - <T@, (2.12)
1

1

which is Just the quantized amplitude in the first gauge. Alternatively,

we could have integrated first over ¢{x) keeping 9(x) fixed. In this
case we can first make a change of variable in the ¢-integrstion, viz.

P> ' = ¢Q . If the measure (d4¢) is gauge invariant - which we shall
always require -~ then, since ‘€EE(¢) is also invariant, the integral (2.11)
tekes the form

[ o e ete em[g[ LNORP MORP N (¢“))]
1

- [ (@) <o et exp[% ' (¢“)]>h
1 2 '
(2.13)
(after removing the primes and replacing 2% with ). On comparing
the expressions (2.12) and (2.13) we find the basic transformation rule,

<caren, = | @ <) emfy 4, N>, (2.14)
1 1

and, similarly, its converse

{T F(¢)>h = J (aR) <7 F(¢n) exp[% /gh (¢Q)]> N (2.141)
2 2 1

Thus, one sees that in general the gauge dependence of Green's functions is
quite complicated. However, a great simplification occurs - and this is

the real justification of the F-P constraint - when the rules (2.14) and (2.1h4'")
are applied to functionals F(¢) which are gauge invariant in the classical

sense. The classical invariance
Q .
F(¢™°) = F(¢) (2.15)
implies the quantum gsuge indepepnd »

<TF(9)>, = <7 F(¢) 7y, (2.16)
1 2

=T~




as can be seen by taking the {-integration in (2.14) inside the T-~bracket and
using the F-P constraint. Since the functional (2.14) which defines the
physical S-matrix is invariant in the sense (2.15), it follows that the S-matrix

is gauge independent. Thus we have the fundamental egquivalence theorem of

gauge theories:

Those quantized amplitudes which go over in the classical correspond-

ence limit to gauge-invariant functionals are themselves independent of the

gauge in which quantization is carried out.

Of course we have not "proved" this theorem since the arguments given
above are only formal. There remains the important task of showing that
these manipulations with ill-defined (because ultraviolet divergent) path-
integrals can be justified through regularization and the incorporation of
counterterms. Such justification will no doubt prove very arduous. However,
we believe that the great formal simplicity of the arguments used here must
signify their fundamental correciness.

The discovery that the "gauge-compensating term" Wh must be included
in the action was made by Feynmanll). His approach differs from that of
Faddeev and Popov in being based on the requirement that the S-matrix should
be unitary while the latter authors require that it should be gauge independ-
ent. It is possible to show, however, that the method of Faddeev and Popov
elso defines a unitary S-matrix and so is, at least to that extent, equivalent
to Feynman's. To demonstrate this one need oniy find a gauge in which the
F-P quantization prescription reduces to the standard canonical quantization.
An example of this will be discussed in the next section where, in the so-
called “canonical gauge",the compensating term is precisely cancelled when
the path-integral is put into canonical form. That is, in the canonical

gauge one can write

J (a9) F(¢) exp'ig (/fi+ Aca.n * Wcan}

I (dp ar) F(¢) exp{% J dx {n¢ - H}]

where H = H(¢,7) denotes the classical hamiltonian density: it does not

<T F(¢) > can

(2.17)

depend on A end contains no remnant of the fictitious particle structure.
How, since the S-matrix is gauge independent when computed by the F-P method,
it must coincide with the canonical S-matrix and therefore be, at least

formally, unitary.
8-
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The canonical action functional is distinguished by its lack of N~
dependence. In general the total action contains non-classical terms, in
W. , which reflect the fictitious particle structure. An expansion in powers

h

of Planck's constant, ,
oo

L
W (6) = Z'ﬁ W(6) . (2.18)

I=0

singles out the parts Wi which are represented by fictitious particle
vacuum graphs with L loops. The gauges to be used in the following sec-
tions are rather special in that only one-loop graphs contribute, i.e.

Wh VY4 . For these gauges Wh can he given in closed form: it is related
to & functional determinant. This simplicity is & feature of Landau-type
gauges where the classical gauge condition h{¢) = 0 is incorporated in the

action by means of Lagrange multipliers. Explicitly,

exp[%- Ahw)] ] (ac) exp[;ﬁi-j ax Ch(tb)]

§(n(¢)) .

In this way the quantized fields are constrained to satisfy the condition

h(¢) = 0 . In Fermi-type gauges, vhere
A = I ax 2(n(¢))?

it is possible to show that all values L 2 1 are present in (2.18). One
can also invent gauges where all values L 2 0 contribute so that even the
classical'part of the action is modified. Finally, one can sometimes find
12)

a gauge in which Wh vanishes identically

'In deriving the transformation rule (2.14) an essential requirement
was the invariance of the path-integral over ¢ with respect to those gauge
transformations Q : ¢ » ¢n which enter the normalization condition (2.8).
Not only the measure (d$) but also the domain itself must be invariant.
Now, if a symmetry is spontaneously broken one expects this to be reflected
in & lack of domain invariance. This is certainly the case with non-linear
realizations of chiral symmetry where both the action functional and the
measure are invariant. One can see that the spontaneous violation of chiral

symmetry is associsted with a conflict between the chiral transformation law,

9=




k ki 2 s o
§m = f (m)e”, and the asymptotic condition 7 0 , which characterizes
the path-integral domain for a vacuum amplitude. Since fkR(O) # 0 , there

can be no asymptotic symmetry 13).

In the following sections we shall be treating models in which the gauge
symmetry is not asymptotic. In these models there will appear complex scalar
fields which are not gauge invariant, ¢Q # ¢, yet which do not vanish asymp-
totically but rather approach non-vanishing constant values (their vacuum ex-
pectation values). In such models the domain is not asymptotically invariant
and the transformations ¢ -+ ¢9 with constant £ are certainly not sym-
metries of the theory. The gauge symmetries of the second kind are symmetries
only insofar as they approach the identity asymptotically - and so do not
affect the asymptotic states. They do not include the first-kind gauge

transformations as a subgroup.

It is fortunate that the integral (2.18), which defines the gauge-com-
pensating functional Wh as the connected part of the fictitious particle
vacuum amplitude, involves only such fields § as vanish asymptotically.
(More precisely, the independent fields which parametrize the group matrix §
vanish asymptotically so that € itself approaches the identity matrix.)
Under these transformations the domain of the path-integrsl over ¢ is indeed
invariant in spite of the non-vanishing asymptotic limits which characterize
it. The gauge symmetry of the second kind remains a symmetry with dynamicsal
consequences but 1t must be logically distinguished from the symmetry of the
first kind - which governs the classification of physical states -~ with which

it may or may not be associated.

10~




III. A MASSIVE YANG-MILLS THEORY

. The quantization technique of Faddeev and Popov was applied by them
originally to the example of a pure, massless Yang-Mills field. We give now
its application to a simple case where the operation of the Higgs-Kibble
1k)

mechanism gives mass to the Yang-Mills field This will serve to illus-
trate the main features of the method in a simpler context than the lepton

theory to which SBec.IV is devoted.

Consider the system of a Yang~Mills field in interaction with a doublet
of scalar fields which is characterized by the Lagrangian

' 2 2. 2
1 2 -a nle = 2M
L =- N (Fl;v) + vu K vu K - g— {M] [Ka'l(a - 322] : (3.1)
vhere
k k k kim & m
Fuv au Av - av ﬁn.u - g.e AB Av

k, k b
V, Ky =3 K +igh(T/2) " K

—-a -8 . k=b  k a
K -aug -1gAuK(T/2)b .

<]
{

| (3.2)
The indices a, b, ... take the values 1, 2 (and K = Kaf) while k, L, ...
take the values 1, 2, 3. The Lagrangian (3.1) is invariant under the Yang-
Mills pseﬁdogroup whose infinitesimal transformations take the form

GA# - Ekf,m Ag i ;_3 Qk ,
W M g M
oKk, D

sk =10 (1 /2),° K

6% = -0t B r2), ®
(3.3}

The form of the last term in (3.1) favours a solution in which the gauge

symmetry appears to be broken. That is, in the tree approximation we expect

() =E2‘£

(k) =0 . (3.4)

Hence, if the transformations (3.3) are extended to include asymptotic trens-
formations, § = constant, then this symmetry is clearly violated by (3.4).

-]]=




We must therefore regard these transformations as having no asymptotic

significance, i.e., as having no effect on physical states. We must require
Q(x) to vanish asymptotically. However, this does not mean that there is

no asymptotic SU{2) symmetry. In fact there is. To see this, introduce a

new set of real variables O and Bk to represent the scalar fields,

K, == (i B - %) .

V2 (3.5)
In terms of these variables the Lagrangian (3.1) takes the rather complicated
form:

2
1 2 M-, k2 k, 1 2
i--h(pﬁv),»a(Au)J,MA BuB+2(aB)

2 m2 £ k k
(3,0)° = 5-0° + A(Ua B - B30 - (Bx3B))

+
VI

. 2 2
+ %E'U(Aﬁ)a + %— (02 + Bz)(A,::)2 - %ﬁ—-o(oa + BE)
3oM° ' (3.6)

This Laérangian is invariant under the trensformations

6Ak - EkR,m AR Qm _ ;_a gk
u H

151
h~

o

]
|
o=
td
o)

k _M 1 iy
§B = z 0+ > o + 5 £ B

(3.7)

which are obtained from (3.3). However, (3.6) is clearly invariant also

under the SU{2) transformations

k kim AR wm

A =¢
H U
do=0
GBk - EkJZ.m Bl wm
: (3.8)
-12-
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with constant ¢ . These transformations belong to a gauge group of the
first kind which we shall call the "true" I-spin group. It is quite distinct
from the Yang-Mills pseudogroup. It is the true I-spin group which yields
conserved quantities and according to which the asymptotic states must be

classified.

The vacuum condition (3.4) does no violence to the true symmetry accord-
ing to which

= - i 3'-- i X
6K, = & (wy - duy) Ky + 3 (o) +dwy) B,

ro e

SK, =

, =2 b+ dw) (K =K - dwg K,

n [

(3.9)

Corresponding to the twe symmetries outlined here, there exist two
distinet currents. Only one of these is conserved and so yields the usual '
Ward-Takahashi identities. The other current is partially conserved and '
yields a distinct femily of Ward-Takahashi identities which reflect the under-
lying gauge éymmetry of the second kind -~ the one which has no influence on
the ciassification of physical states. These currents and their respective

families of identities will be discussed in Appendix II.

Consider now the problem of quantizing (3.6). The first step in the
quantization procedure is the choice of gauge. Here we shall consider two
covariant gauges which between them illustrate the main properties of the model.

These gauges are:

a) The canonical gauge

The supplementary terms in the action take the form

exp[%- ﬁcan] = J (ac) exp[%J dx Cl(“Bk + ‘niwcan]

i

= §(B) [—w :| .
s can (3.10)

This supplementary action incorporates the classical gauge condition,
B =0 .

The field Ck(x) in (3.10) plays the role of Lagrange multiplier and results
in the appearance of the §-functional 6{B) in the path-integrals. The

-13=-



compensating functional Wcan is very easy to evaluate in this case. Accord-

ing to the prescription (2.10),

exp[-d—ii-wcan] = J (aQ) 6’(39) . (3.11)

Since we shall need the values of wcan only in the subspace B =0 we can
evaluate (3.11) by including only infinitesimal transformations $£ in the

integration, i.e. for B=0 |,

oo 4] - o o1+ 99

M. & g 1y oKL
Det[g + 2}G(X - x')8 l

exp[— 36(0) J dx R.n[il- + %ﬂ X constant .

If we choose the constant to make wcan vanish when ¢ = 0 then the result is

E e H 5—-— N
Woon 3i08 (0) f dx fn [1 * o7 o] (3.12)

This structure can be understood as due to the "propagation" of a fictitious
particle round simpie closed loops with a propagator proportional to the
Dirac delta function. At each vertex on the loop one 0-line is attached.
The fact that only single-loop graphs contribute to Wcan is reflected in
the factor # which stands in front of the integral (3.12).

We have celled this gauge canonical because it lends itself to a canon-
ical quantization of the model. The action density (3.6) can be replaced by

the canonical form,

éf = Ek 9 Ak + T
0 a

1 a g -

0

2
1,k2 . 1 K k K2 M5 k2. k., .k
-'{2 (Ez) 1 [aa Ry -8y By g(Aa X Ab)-] T2 (Au) *E, 3, A

2
k k 1 2 1 2 m 2
- M Au au B O+ 5T+ 5 (aac) + 5O

-E-Ak[oa B - B30 - (B Bk]-ME- A2 -
2 A1 9, 3.0 (xau) c(u)

ny

-1l



2 2 e 2
_£ 2 2 k.2 2 2 m 2 2.2
8 {o +B)(AU) +ﬁ—'0((f +B)+§—2;2~(0' +B)}
(3.13)

where Ag and Bk mast be eliminated since they have no canonical conjugates.
Such eliminations are performed, in the langusge of path-integrals, by
integration over the undesirable variables. The Green's functions are re-

presented in this gauge by the path~integral

T F(a,0)) = f (aa aE_ a0 ar dB) F(A,0) &8(B) -

. exp %[ dx[c;fl - 3ih8{0) R,n{l +'§-ﬁa-):’
(3.1k4)

since, if the canonical momenta E and T are eliminated by performing the
necessary (gaussian) integrations,the resulting integral over A,, ¢ and B
takes the form prescribed in Sec.II,. On the other hand, to obtain the purely
canonical representation we should integrate over AO and B . The in-
tegral over B is trivial due to the presence of &(B) . The integral over

AO is gaussian and proceeds as follows:

i i B 512 52
J (dAO)Aexp ¥ [ dx[:z.(M +5 o) Aj+ AO Ba E&]

-1 .
 [pettn + B orstx - x26"| " expll [ax|- e+ £ (aama)E]J
2
(3_E)
- - g &_ ] _é_J 1l a a°
exp|- 38(0) [dx n[l+2MU ey dx 5 (M+§U)2
(3.15)

where we have shown only that part of cfi which depends on AO . It is
very gratifying to find that the fictitious particle contribution to (3.1L)
is precisely cancelled by the result of the Ao-integration. We are left
with the canonical path-integral,

{r F(Am))cm = J (dAa dE_ do an) F{A,0) exp i—[ dx [Ea A.a + TG - H]
(3.16)
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where the hamiltonian density is given by

2
-1 2 1 kK _ .k __kem gm2 M, k2 ([ g }?
H=3 (E];) T (A - R, - geT AR v 5 () [l * o "]

2
2 2 (3 E)
1l 2 1 2 m 2 g 1 & a
+> g +2(3g)  +5-0 [1+ c] +
2 2 a 2 LM 2M2 [1 + EM 0}2

(3.17)}

It thus appears that the system described by the Lagrangian (3.6) contains two
fundamental states, a vector isotriplet with mass M and a scalar isosinglet
with mass m . These particles have positive metric and the theory should

therefore yield a unitary S-matrix, in the perturbation sense at least.

This formulation of the theory is not renormalizable, however, since

the vector propagator tekes the form

k k
k % _ dk i _ V) -ikx
T Au(x) Av(°)> A J ot W [ N ¥ 2 ] e (3.18} .

in zeroth order. That the most singular parts of the Feynman integrals should
cancel from physical S-matrix elements appears very unlikely. To see that

this does in fact happen we must use another gauge.

b) The Landau gauge

The Landau supplementary action takes the form

exp% JLan} =J (ac) exp[-hi- J ax oF BUA]: +ji—wLan]

. i
=6(3NAH) exp[ﬁ wLa;]

(3.19)
which incorporates the gauge condition
P Ak =0
o
The compensating functional W is evaluated in the same way as before (on

Lan
the subspace auAu = 0),

exp{}% wLan] = I (an) & BuAi')

-16-




il

[ (@) 52,7, 2+ )

-1
% constant

lDet ) ng §(x - x')
HH

since we need to keep only infinitesimal @ . With & suitable choice of

constant this gives

.y 1 |
W, = -1 Ir fn [32 auvu] . (3.20)

The structure of this functional is perhaps made clearer by the integral re-

presentation,

ex [_

vwhich can be interpreted graphically. The exponent in the integrand of (3.21)

] i k X k¢m ,2.m
wLm(A)} = f (6@ ac) exp|s I ax 3, C (aun - g AN ) [(3.21)

= Loy

defines the fictitious particle action. This action yields for the "fields"
C and 2 the chronological pairings

(T 2 (x) QR'(O)> =0

T dx) 0)) =B L 6(x)6** =4 pix)6™
9

{r *x) F0)) =0

(3.22)
where D(x) denotes the usual zero-mass causal function. The only allowed
vertices Join one C-, one - and one A-line. I% can be seen that there

is only one connected graph of order gn . It consists of a single
directed loop of the massless fictitious particle with one A-line attached

at each vertex. It can also be seen that the higher powers of I which were
discarded from BAg cannot contribute because of ithe peculiar structure of

the pairings (3.22).
The chronological pairings of the fields Aﬂ s, B and ¢ are given by

. k k

k .2 in TR
T Au Av>b = ;Em———a-[-nuv + ]

-M ka

{r B* %) =ii§
k

17~




i

{T o o? 2 - .

(3.23)
These propagators,'taken with the vertices determined by (3.6), give a re-
normalizable perturbation series, as can be shown by the usual pover-counting
method, The theory appears, however, to be nan-unitary. This is due to
the massless scalar ghost which appears in the vector propagsator. The off-
shell S-matrix elements and gauge-dependent quantities in general do indeed
contain these ghosts and the B-particle (Goldstone boson) As well in this
gauge. But since neither of these features appeared in the canonical gauge
it must be that they are pure gauge effects. The ghosts and Goldstone
bosons must cancel from gauge-independent quantities such as physical S~
matrix elements, Conversely, the canonical gauge problem of unrenormal-
izability with its implication of the absence of Froissart-boundedness must
likewise be a gauge effect since it does not appear in the Landau gauge}S) The
physical S-matrix must be both Froissart-bounded and free of ghosts and
Goldstone particles. In order to have these properties in a perturbation
expansion it is of course necessary always to include gauge-independent sets

of graphs, i.e. all graphs of fixed order gn .
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IV. A LEPTON MODEL

One of the main purposes of this paper is to present in some detail a
gauge model which unifies the wesk and electromagnetic interactions of electron-
type leptons 9). The underlying symmetry according to which the fields in
this model are classified - but which is spontaneocusly violated - is the gauge
group U(2). The left-handed electron and neutrino are treated as & doublet
while the right-handed electron remains a singlet. In addition to the four
gauge fields - triplet and singiet - the model contains a doublet of scalar
fields,one component of which will have a non-vanishing expectation value in

the physical vacuum.

To fix the notation consider a multiplet of fields ¢ which belong to

& representation of U(2). Under an infinitesimal transformation of the group

we have
sul(x) = ig5(x) T(x) + 12%(x) 1%(x) (4.1)
where the infinitesimal parameters Qk(x) and Qo(x) are real, The matrices
* and IO represent the algebrs of U(2),
[5,1%) = 1 58 @ |
[Ik,IO] =0 .

The covariant derivative of Y{x) is given by

g
—L x0 [0y (4.2)

X
Y = 3 i Xk I + i
Wy rigX TV +i=X

where the gauge fields Xﬁ and XS transform according to
o,

sx®=-230°
H g H (4.3)

It

kim & 1 -
€ XU 7 2 Buﬂk

[}
!

One combination of the geuge fields is to be identified with the electro-
magnetic field and a corresponding combination of the coupling constants, g
and & with the electric charge, e . These combinations are determined
by the basic identification of the charge operator Q . We adopt the de-
finition
Q=13+g—0 : | (4.4)

~19-




An examination of (4.2) shows immedistely that the combination

(X

1.3 .1 0 [1 1]

=X 4 T = =+~ A (4,5)
27 T2

g u g “u &2 e |

couples to the charge operator. We therefore identify Au with the electro-

magnetic field. The orthogonal combination

1
1.3 1.0 (1 1 ]i :
e X e =X = =+ =" U (4.6)
27 2
81 H & H g & H

defines the other neutral gauge field. 'The remaining gauge fields are taken
in the combinations
2+ (xﬁ - ixz) =W and == (X5 + ixg) =W (L.7)
/2 d H /2 H |3} H
which carry positive and negative charge, respectively. In terms of the new

gauge fields, formulsa (L4.2) for the covariant derivative reads

H V2
&, 3 10
P AT e
2
&+ <)
0

+i-—-—*~—1—IU g213-32£—lb

2 _ 211 u 12

g + &,

(L.8)

+
wvhere I = Il t i12 . The electric charge must therefore be given by

e = Feal gglﬂ : | (4.9)
g *+ SIJ

The left-handed electron and neutrino fields, e and \&’,comprise
the doublet

L = @b (4.10)

while the right-handed electron e_ is a singlet. In order that these

R

particles should be correctly charged, we must assign the following values
0

to I :

-20-
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I8 =% and I e, = -2 ¢ . : (4,11)

The doublet of scalar fields Ta = (T+,TO) is given charges +1 and

. 0 .
0 by the assignment I =1 . These assignments are summarized in Table T.

8)

The Lagrangian of the proposed model ™ for lepton interactions tsakes -

the gauge-invariant form,

- -a &
(xk ) | x ) + V T VUT - K(eRzaT + & eRTa)

3

‘ 2

N - . 2= D
+0% 1y V o2 o+ i vV e - A [ Bp -J
WU e "RT WUR (4.12)

where T =T t , 28 = ma*YO . Eﬁ = eR+YO and the field strengths sre de~

a
fined by

Xk -3 Xk =3 Xk - gskE.m x% ™

w - Sptv T N (RN
0 0 0

X° =9 X -39 .

w = Gty T O . (4.13)

These field strengths can be expressed in terms of the physical components

by means of the following formulee :

) 1 + -
— (W, + ¥
XLJ;U ¥l ( HV HV)

2 ——}-(W+ --W“)
UV J5 UV uv

3 & Auv T Upv
Ly = (2 2}:?

S"’Sl

o
)

o 8hyv-8& Uy

>4
i

Y] [82 + gi}z
(h.1k)
+
where W;v ’ Auv and qu are given by
+ + + iggl + 2 +
W= W - 3 W b S (AW -AW‘) --—-E———-—(U t Luw)
uv TRV v M (52 + 32), THY [é + 32] u v
1 1

=21~




. igg, - o+ -
Auv = auAv - VA.u +-(75—**25T1 (wh W, - W, Wu)
g *g

, 2
= - A8 -
qu aqu Bqu + [82 : 32]% (Wh wv W, W) ,
1 (4.15)
In (4.12) we can substitute
1 1 2 1 - 1 2 1 2
“ % xk Rt ) =2 wﬁv Vv = F Bp)T - T V)

to eliminate the old field strengths from the Lagrangian. The gauge fields
appear elsewhere in the Lagrangian only through the various covariant deriva-

tives which we list:

- 1
= i1.2, 27 £
Vu \JL I-Bu + 5 [8 + 81] UIJ] VL + i s WU e
[ igg e -g? ]
1 i & . & o
V e = |0 =—m—" A ~ 5T o Uyl e * i WV
L 2 2y1 2 2YL up L L
L vy e A
. o -
T88) 1 %8

Voe =8 aoe—L o p +i_ 1 __yie
u R u (ge . 2 Ao [éa . 82]5 ul °r
- 1 1

igg . & -8

+

VUT=3+—§"—'—lé—IA+% 5 32-.1_U T++i—E-WuT
G

<
+3
H

_‘:Q.?

miw

2 " (4.16)

1
[32+gﬂ2 UU-J sy Ew ot

The last term in the Lagrangian (4.12) favours the emergence of a sym-

‘"metry-violating solution. The neutral field TO will develop a non-vanishing

expectation value in the physical vacuum. In the classical approximation,

<) = —J% . (L.17)
2 .

In the same approximation various other fields acquire a mass by the same

mechanism. To reveal these masses it is useful to replace the complex field

22~
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T0 by the real components ¢ and ¥ ,

(x) = 2 {p +olx) + 1 x(x)] : (4.18)

2

After masking all these substitutions one arrives at a rather complicated

: + +
Lagrangian (Appendix I) which involves the fields w; . Au . Uu Wy T, 0 L, X%

vL » € and ep - This Lagrangian is invariasnt under the

group of U{2) gauge transformations:

and the leptons

. g + gUu -
8, = 1 W, o3 ¥4 1?“ g 8- 43 0"
g +g)}® &
- 1 & 3, 28 .0
A = W Q) - 3 |—=a° + f
u 2, 23 s g
8 + gl g + gl 2 1
S ¥ S - I 3 _ o0
<SUu 5 5 (wuﬂ wun) 5 > l311(9 2Q7)
g + gl 2 £ + gl 2
GTi=ii(n3+290)T‘ti-i-ﬁi(ciix)iiﬂio
2 2 2
S0 =% (am* -nT>+1(n3_2n°)x
6x =@ + 0"ty - 2@ - 2% + o)
i ,.3 0 1 o+
6, = = (Q° - 20°)v. + =q" e
L 2 L \/E L
i ;a3 0 { o
Se. =~ (7 +20") e, +—0Q v
L 2 L /5 L

0
& = -« 2107 e
R R (%.19)

where ﬂ# = (1//5)(91 #‘iﬂz)

We consider now the question of fixing the gauge in order to proceed
with quantizing the theory. It is necessary to impose four gauge conditions

and we shall deal with two alternatives:

- 3=




a) & "canonical gauge

a - = = .
As0 . x=0 , T =0, (4.20)

b) the Landau gauge

3A =0 3U =0 I =0 (h.21)
VT > uw T S VA TR )

To treat a truly canonical gauge it would be necessary to impose a non-
covariant condition on the electromagnetic field, e.g., BaAa =0 or AO = 0,
However, since ocur object in using the canonical gauge is only to show that
ghosts do not appear in gauge-independent quantities and since everyone accepts

this in electromagnetic theory, we shall forego that refinement.

The cancnical gauge-compensating terms are given by the integral

i
exp[— i wﬁa%}

il

f (a3 A6 (™) s ()

_ 2{8 3, 2g 0} L -t A - } .
_f (dﬂ)G[B {g 0 + Py ) - ig {wun - W0 }

. 6[(0 +0) (23 - 290)]6[(0 + 0)Q+]6[(p + c)n']

on the subspace ¥ = O, g BUAU = 0 , The result is
W = -3i%8(0) j dx fn {1 . 9lx) ] ) (4.22)
can P

This factor is exactly the same as the one met with in the Yang-Mills example
of Sec.IIT .and it will be cancelled in the same way when the path-integral
is put iﬁto canonical form. Thus, %o obtain the canonical form it will be
necessary to integrate over the dependent variables W; ’ WB and U0 which

appear quedratically in the action density (4.12) due to the term

W VT {2 LT k Uu} To
2 4 g + gi 2 2
- (B 2R e o)

The integrals are therefore gaussian and can be evaluated explicitly as in
Sec.III. The resulting expression for the hemiltonian density is very com-

piicated. We shall not reproduce it here since it has no practical utility:
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computations are always much simpler in the covariant lagréangian framework

(where, of course, the supplementary term (4.22) must be included).

In the canonical gauge the particle spectrum is clear. Since the

+ -
fields X , T and T have disappeared,we are left with the bosons cor-

responding to A , W’t , U and 0 in addition to the léptons vL . eL and
e, - The bare propagators are given by '
k k
1 i BV
— e Y +
by {T Au A\J> k2 [ﬂuv ke] s
k k
1 + - i v
e W T r——— | +
k k
1l i Y
F TR0 T ["nuu"' u2]
ko =My My
F o) s
k - m,
Ligpy 5y b — 15
4 L L ;i 2
— i
j% {Tece > =,ﬂ _—
€ (L.23)

vwhere the masses are expressed in terms of the parameters which appear in

(4.12):

2
my = V20
m = “Q‘K
. ] JE

(h.2h)
The parameters g, &> A, p and K are unsuitable for computational

purposes. This is because they appear through the masses (4.24) in the free

Lagrangian. The amplitude corresponding to even a single graph will there-

25




fore contain arbitrarily high powers of these parameters - an effect which
makes it difficult to organize & perturbation series. In particular, this
effect obscures the underlying gauge symmetry and one might think that only
infinitely large categories of graphs could be gauge independent. It is of
crucial importance to be able to.distinguish such gasuge-independent categories
since only for these will the unrenormalizabilities such as lack of Froissart-
boundedness be avoided. Fortunately, it is possible to pick out finite sets

which are gauge independent by a correct parametrization.

The true expansion parameter should appear only in the interaction terms
(with positive powers) and not in the free Lagrangian. This can be arranged
if we express our original parameters g, &y A, p and K in terms of the
masses MW’ MU’ mo, W, and the electric charge, e, given by (4.9). The true
expansion parameter will then be the electric charge and the gauge-independent
categories will then consist of sets of graphs of fixed order en . The
correct parametrization of the Lagrangian (4.12) is therefore obtained by
making the substitutions,

(4.25)

which are obtained by solving (4.2L4) and (4.9)}. One can verify that the

interaction Lagrangian consists of terms of order e and e2 only (Appendix 1).

There is,of course, a phenomenological constraint on these parameters in

that the Fermi constant GF is given in this model by

-6~




T "y (.26)
S = - . .2
= 8 5 FR D

Further constraints involving K and A will emerge when more date on high-

energy lepton interactions become available.

Now consider the Landau gauge where the theory is expected to be re-
normelizable but ghost infected. The gauge conditions (4.21) lead to the

compensating functional W defined by

ool & 4]

Lan

J (dn)a(a A )6(3 U )6(3 w )6(3 w )

0 08
J (an)a(auxi )83 X )

k 2.0
J (d.Q)(S(auVuﬂ 16(3°Q7)
o] 34 8]

1
exp l:— Tr 4n [32 BUVUH

(4.27)

where W (Xk) denotes the same functional (3.20) which was discussed in
Sec;III. Into this functional one must substitute for Xk the expre531ons

2 2yi

b N phogh |
LE g %+% héMﬁ (1.28)

The fictitious particle contributions in this gauge consist of simple disjoint

loops to which the vectors attach.

the
The bare propagators in.lLandau gauge are the same as those in the

canonical gauge (L4.23) except for the U and W propagators which assume

the transverse form

27—



1 + - - i - uv
1 i r kaU\
7 Ty, = N Mﬁ Ty T T2
= | J
(L.29)
and which therefore contain scalar ghosts. These ghosts will be compensated
in gauge-independent amplitudes by the Goldsticne boson propagators,
= <T T+ T—> == ’
A k2
T xy =3
k
(L.30)

These cancellations of ghosts against Goldstone bosons will take place
only in gauge-independent amplitudes such as physical S-matrix elements provided
gauge~independent sets of graphs are computed. This means, in the parsmetriz-

ation (4.25), that all graphs of given order e’ must be taken together.

-28-



V. CONCLUSIONS

To what extent can the lepton model of Sec.IV be considered & realistie

one? We wish to conclude by listing some general remarks and speculations

concerning this question.

A) The theory as presented here is based on a supposed U(2) gauge sym-
metry of which the doublets (vu,u) and (ve,e) are independent representations.
No vestige of any U-e symmetry has been taken into account. It has in the
past been proposed 16) to include such a symmetry in a more general scheme,
based on U(3), where the four-component neutrino is grouped with the charged
leptons, e and u+ » to make up a triplet. In that scheme the left-
handed component of the neutrino field is identified with ve while the right-
handed component is identified with vu . In fact, the theory admits two
independent lepton triplets:

v +

L MR
S and 27 R
+ -

My, °R

and, correspondingly, two nonets of gauge fields, ZuL and ZuR’ to meke up &
U(3) x U(3) gauge-invariant system. The Lagrangian of Sec.IV is thus in-

corporated in the more general model of Ref.l6.

Out of the two lepton triplets it is possible to construct six in-
dependent neutral currents (with zero lepton number).of which only two have
been utilized in Sec.IV. This plague of neutral currents is & notoriocus
feature of weak interaction symmetry schemes. Although they might function
in the sphere of purely leptonic interactions without contradicting our meagre
supply of information concerning such processes, they must be suppressed in
the semi-leptonic and hadronic processes. A convincing way to do this has
yet to be discovered. For this reason we have confined our considerations
in this paper to those purely leptonic intermctions which are governed by the
smaller U(2) symmetry. Of the three neutral currents which can be made out
of the electron-type leptons, only two are coupled to gauge fields. One of
these gauge fields can be identified with the electromagnetic field A , while
the other one, U , must be supposed to acquire a large mass through the

spontaneous breakdown mechanism.
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The muon-type leptons can be brought into the U(2) scheme by treating

+ ¥
W, &s & singlet with ©® =2 and the pair (uR,vR) as a doublet with I° = 1.
The lepton current to which. Uﬁ couples 1s then given by

t . 2 2
1 (2. 27 ,— _, - 1 & 3% —
n [g + gl] (elYUY5e + u:..YuYS]J - 2\)1YuY5\)) + T [_gé_:“;é_}- (e'Yue - UYUU) .
1

It is amusing to ﬁotels) that the special choice g2 = 3g2 (which implies

1
3M5 = hMﬁ according to (L.24)) gives rise to the pure axial vector coupling

(e//g)(éiyuy e + Uiy Y

5 YsH = 2Viv Yov)

17) for e and u+ . (This does not

with the same sign of "axial charge'
mean that Uu conserves parity because its interactions with the charged

+
bosons Wu is pure vector.)

At the present time there is no compelling reason to prefer any particuiar
value for the ratio gl/g and so we have left it free in the dilscussion of
Sec.IV. It may be noted, however, that if &, >> g then MU >> MW and the
constraint (4.26) takes the form

G 2
_F=§u--é- l+ 4 s s
2 e,

S dhol

which indicates the lower bound on > ez/h/ﬁ GF ~ (37 Gev)2 . The choice

favoured by Leelg) is

g=e » & = 00 |, MU = 80, GF/J_ = 32/8M§ .

B) It was emphasised in Sec.IV that the selection of graphs in any per-
turbation calculation must be controlled so as to assure both ghost cancel-
lation and electromagnetic gauge independence. It was suggested that such
control can best be exercised by working to a definite order in the electro-
magnetic coupling e while treating the bare masses (MW’ MU’ ms and me)
as independent parameters. A1l the bare coupling constants (g, g1 ¥ A
and p) should be expressed in terms of these independent parameters. For
the treatment of higher orders it may prove useful to look upon this as a
self-consistency requirement of which the parametrizations (L.25} represent

the zeroth-order solution.
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C) An interesting limiting version of the theory is achieved by taking
My > o . This removes the O-particle from physics and causes the Lagrangian
to teke a non-polyncmial forml9). The action density (L4.12) depends on m
(or, equivalently, on A) through the term -A2(§aTa - 02/2)2

of teking LR inside the path-integrals is given by

o
and the effect

lim expl:- %J dx lz(faTa - p2/2)2:! = G(EaTa - 02/2)
m - o0
o

which embodies & constraint. In the parametrization of Sec.IV one can ex-

press the field ¢ in terms of the Goldstone fields,
| 2 2 + o)z
0=—p+[p --)(-2T'1""]z

Elimination of © therefore results generally in a non-polynomial Lagrangian
for the Goldstone fields. In the canonical gauge X = T+ =T =0 , the
Goldstone fields are suppressed along with VU and one is left with a massive
Yang-Mills triplet interacting with leptons and the electromesgnetic field.

In the Landau gauge one obtains the same theory in the non-polynomial formula-

tion given by Boulwarezo).

For the model of Sec.III the constraint which results in the limit

mU + 0@ tskes the form.

An exponential parametrization of the constrained fields is given by

M .k k _ oM ig k k| _
St 1B = exp[2M¢’f] s(¢)

where the components ¢k(x) are independent variables. The Lagrangian (3.6)

thereby becomes, in this limit,

1 2 M, k2 X 3
N g-n(pﬁv) + 5= ()7 + M AT L () 30" +

M-

+ 5 8, (9) 308 aucp“‘ - 165(0) 2n(detg)
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where the coefficients L($) and . g(¢) are defined in terms of the SU(2)
matrix S(¢) by

%‘81 g™t 3, 5= rk'Lk£(¢) auqs”'
HORSER ORI RN
m

Thus one arrives at & localizable non-polynomial form of the theory with the
minor coupling constant g/2M. Frém this point of view we make contact with
non-polynomial lagranglan theories previcusly considered by the authorsEI) .
Such theories possess an inbuilt cut-off givén by the inverse of the minor
coupling constant. This cut—-off will in the present case regularize only
some (¢-containing) processes. Other (A-containing) processes will retain

the conventional infinities associated with renormalizable theories,

D) The model presented in this paper has the ususl infinities of a
renormalizable lagrangian theory. If one were to include gravitational
couplings so as to make the Lagrangisn generally covariant then all these
infinities would be regularizedaz); A conjJecture ‘is that, owing to the
gauge symmetry, only the logarithmic divergences would survive in the form
Ingc » While the quadratic divergences, which might be expected to

Newton

yield 1/G , would be absent.

Rewton

E) Can the form of the Lagrangian (4.12) be justified on general
grounds?  The various'gauge field couplings are, of course,fixed by requiring
the kinetic terms to be gauge invariant. The scalar doublet was introduced ’
with a quartic self-coupling in order to catalyze the process of spontaneous
symmetry breakdown which gives mass to the gauge fields. The coupling of
this doublet to the leptons was needed in order that the charged leptons
should acquire mass by the same mechanism. Having started the process, can
one set up a programme for self~consistently computing the various couplings
(g, &> K» A) and masses (MW’ MU’ mo) in terms of only the dimensionless
electromagnetic parameter e and a dimensional parsmeter m_ (say)? That
is, having set up equations for the physical values, can one set the bare
values to zero? There would appear to be some scope for such an enterprise,
particularly if all the infinities are regularized by means of a gravitational

coupling.  (On the other hand, one must first verify that the model 1s sensible
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at least to the extent that.the presence.of the massive.intermediate bosons
with couplings .of electromagnetic.strength.does no violence to the very sccurate

predictions of lepton electrodynamics. )

F) 1In order to have a complete renormalizable theory of weak intersact-
ions it is essentiml that a spontanecusly broken gauge theory of hadrons should
also be considered together with the lepton theory of Sec.IV.. It is not dif-
ficult to invent such models. Unhappily though, one must introduce a large 7
collection of scalar fields (analogous to the doublet Ta) to secure that all
symmetry bresking is spontanecus. (For conventional renormalizability there
is no escaping the requirement that all symmetry breaking must be spontaneous,
One cannot introduce explicit symmetry bresking without destroying the gauge
symmetry that underlies the renormalizaebility.) In addition, the wealth of
avallable data on weak processes involving hadrons puts many stringent con-

ditions on any model which claims to be realistic.

G) The validity of the programme pursued in this paper depends funda-
mentally on the equivalence theorem of Sec.II. There are two aspects of this
theorem which we have not gone into but which must be clarified before it can
be applied with full confidence. First +there is the regularization problem.
The manipulations of Sec.II are appliied to unregularized path-integrals and

. 50 are not strictly meaningful. They could be given a meaning if the action
were replaced by a regularized functional containing appropriate counterterms.
What remains to be proved is that the appropriate (i.e. gauge-invariant)

regularization scheme can be invented .

The second problem involves the presence of zero-mass particles, Gold-
stone bosons and ghosts, which could interfere in a serious way with the
applicability of the equivalence theorem. Green's functions will not, because
of infra-red effects, have a clearly defined pole structure. Since the pole
structure in the external lines is an essential element in the defining of

the S-matrix, there could be a difficulty hereeh).

It is encoureging that Lee's analysisT) shows that both these dif-
ficulties can be overcome in the abelian case. However, a new and disturbing
feature ariges in the non-abelian models. This is the fact that, in most
gauges, the gauge field does not couple to the partially conserved current

fas it does in the abelian case). The gauge field source generally contains
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an extra term whose form depends.on.the. type of.gauge used. (see Appendix II).
Because of this,one certainly .cannot use a naive argument to prove, on the
basis of the partial conservation.law, that_the Goldstone particles cancel

the ghosts in physical amplitudes. If the equivalence.theorem is true then
such cancellations must follow a more subtle pattern. (It should be re-
marked that in none of the exsmples. considered does the Yang~Mills field couple
to a conserved quantity. Thus, in Sec.III, although there is a conserved
current in the canonical gauge - where the question of ghosts and Goldstone

particles does not arise — it differs from the vector field source.)
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NOTE ADDED

We are indebted to Professor J. Prentki for showing .us. a recent paper
by S. Weinberg which deals with the model of Sec.IV. Professors B. Zumino
and W. Bardeeﬁlasyhave made the important point thet, in a'15-containing
theory, anomalous terms of the Adler type will inevitably appear. They have
expressed the fear that the associated counterterms mey render such theories
unrenormalizable even in the Landau gauge. This difficulty would be in
addition to the ghost question23). Clearly it is important to set up a
detailed regularization scheme and to analyse carefully the renormalization

programme.
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APPENDIX I

THE LEPTON LAGRANGIAN

When the substitutions outlined in Sec.lV are made, the Lagrangian

(L.12) assumes the form

= 2
L I0+e.,fl+e 5 (AI.1)
where
I PP + 2
io- 2(auwv—aku)(auw -aw)+ ww W
—%—(BU -BU) +MU 2
HV
n2
1 2 1 2 ___c_I_2 1
-§ (B, -3 AT+ 5 (80)" - 50" + 5 (8 x)?
3 T 5 T + 9 (3{ -m ;- iﬂ(l + iy )w
9] T e e’ e 2 5
' + - -k
-1 TW - - U
1Mw(3u ) auTwu) My uaux
(AI.2)

; %

f—-—M—sFUWW + [MUMUMW]é 0’U2 WU(WT +WUT)
+2[Mlzj l_dUMé . [w; {(x+iof§u T+} + W {(x-io)'é’u T'} +%Uu{c‘5’u x}}

+ |A + 1] MW(WT +WT)-31iT 3 T +
1} 3
Vg - )
| M, rer - -
+ Au+_——_—ﬂiuu 1Wv3uw-1(awwv anku)
My
+1ww -aA+ (3 u -3 U}
2 3 u
[ G -
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In these expressions the convention of summing over repeated indices i1s used in
the forms

A22AA =10 AA =AA

- A = A A -~ AA
M Tt NVRTERY ofo ~ A4
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The Dirac matrices satisfy the anticommutation relations '{Yﬁ,Yu} = 2nuv )
so that YO is hermitian while Yl ’ Y2 s Y3 and YS Y0Y1Y2Y3 are anti-
wYUw e w and wlqusw are real. In (AT.3)

% - i(a g -

The bare propagators are determined by (AI.2) together with a gauge

hermitian. The covariants

we use the abbreviation faug

condition., In the Landau gauge they take the form:
. ( X k)
+ - dic A v .
e i Ryl g
(T u,(x) U (o)) = J =" kgl Mf_,] L—nw e '
) k k )
T A (x) A,(0) =Jdk R
< px A ) : (EN)h k2 nuv k2
(T alx) 0(0)) = f & Qi‘ﬁ 5 X
. A (27) m
(1 7°(x) T(0)) = J e
(em) " x
C R -ikx
T x(x) x(0)) = j ek
¢ (o) x°
- - dk i -ikx

(T 4,02 T (0 = | pan el

1+ iy : .

— - 5 dk ik -ikx

(T ¥,(x) B,0)) > f T K

(AI.5)

The contributions of the supplementary sction W are obtained by

Lan
adJoining to the Lagrangian (AI.1) the effective term

5 c® v ¥
u u

I

sup

0 0 + - - +
3aC 9B +3C 3B +3C 8B =~
%y w u uo %
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+ g .0 +, +, -
W{(BoC -BJTC - W
[u( u U ) (B
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)

The bilinear terms in this expression define the bare propagators,

{r B%x) c®0) = <t Bx) c(0)) =

The other combinations, {T B B} and <T € C), vanish.

(AI.6)
dk i «ikx
—T1 e . (AI.T)
J(211) k2

Tt must be remembered

that each fictitious particle locp carries the factor -1.
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APPENDIX II
WARD-TAKAHASHI TIDENTITIES

It is & general ruie that the presence of a continuous symmetry in the
action functional is manifested by a set of identities among the Green's func-
tions of the quantized theory. If the symmetry is & gauge group of the first
kind (constant parameters) then these identities relate the n+l-point func-
tion involving the conserved current ju and n fields to a combination of
n-point functions involving only the fields. If the symmetry is a gauge
group of the second kind {spacetime-dependent parameters) then the current
acts as the source of the gauge fleld so giving rise to identities between
n+l- and n-point functions involving only fields. This latter statement

must, in some cases, be qualified as will be seen in the following.

Ward-Takahashi identities of the first kind can be derived very easily
in the path-integral formalism. To illustrate the procedure consider a
system of fields ¢ whose Lagrangian is invariant with respect to the trans-

formations
k  k
¢ = w to (AII.1)

where the tk are traceless generator matrices which characterize the re-
presentation and the parameters wk are infinitesimsl constants. Then the
Noether current Jﬁ satisfies the classical identity
k 65

= tk

aju

u 0] (A11.2)

where .5 denotes the classical action functional, This identity leads im-~
mediately to the Ward-Takahashi identities in the quantized théory

n

i
5, <T 3506 F(9)) J (a9) 3 35(x) 7o) &

f(cw) rio) [- BT o)

18
f (d9) —E— 6¢( ; % (x) ob

- <Tmf)F;r tk¢(x)>

(AII.3)




after an integration by parts. Here F{(¢) denotes any functional of the
fields. If, for example, F(¢) is a simple product (2.3) then (AII.3) co-
incides with the usual Ward-Takahashi identities for Green's functions.
Mternatively, inserting the functional (2.Lk), which satisfies 6&F/8¢ = 0 ,
one deduces from (AII.3) that matrix elements of Bujﬁ vanish between physical

states,

The same technique can be used to derive identities in theories where
the symmetry is violated asymptotically. Yor example, if a chiral sym-
metry is realized non-linearly then the linear homogeneous form tk¢ is re=
" placed by the more general expression tk(¢) . If tk(O) fails to veanish
then the asymptotic symmetry is violated even if the action functional and the
measure are invariant. Although the Noether current is conserved it will
contain a term which is linear in ¢ . One can show that this term is a
linear combination of massless {Goldstone) fields. The presence of such a
term makes it impossible to integrate the Noether density over a spacelike
surface to obtain & conserved chsarge. (Since the symmetry is viclated
asymptotically there can be no conserved charge.) It has therefore become
customary in such cases to subtract the offending linear term from the Noether
current so as to define a new current which is only "partially" conserved but

vwhich is at least integrable. Def'ine the new current

&= jk - linear terms (AII.b)
VIR

and, similarly, the source currents J for the fields

J = % - linear terms . (AIT.5)

The classical identity (ATII.2) - with tk¢ replaced by tk(¢) - novw takes

the form

2, Jk + 7 t50) = 53 [ () - tk(O)] (AII.6)

which contains no linear terms. The corresponding Ward-Tekahashi identities

are given by

2 T Jt(x} F($)) + (T 3(x) F($)) °(0)

k k
<T ¢(x [t (¢) - t (0)]> (a1 T)

I Iy



which results from a partial integration in the path-integral representationes?
Insertion of, for example, the functional (2.4) into (AII.7) leads to the well-
known result that the matrix elements of the Goldstone boson source, J tk(O),
coineide with those of the operatorf—auJi .

The derivation of Ward-Takehashi identities given here is, of course,
only formal. A correct derivation would have to employ a regularized action
functional with counterterms and would bring out the anomalous terms which we

have ignored.

For application to theories with gauge symmetries of the second kind a
modification is needed. Since the total action discussed in Sec.II is not
local cone cannot apply the Noether theorem directly. Moreover, since the
action is gauge dependent so also are the currents. In the canonical gauges,

for example, they disappear altogether. The action functional (2.7),(2.9),
/g = J;E + ,A,h + Wh {AII.8)

generally contains, in addition to the invariant local piece ASE, the non-

invariant, gauge-determining piece &L and the invariant, non-local, gsuge-

h
compensating piece W . The gauge-determining piece must be non-invariant

under transformationshof the second kind ~ requirement a) of Sec.II - but it
could all the same be invarient under first-kind transformations. If it is
not then there is nothing more to be done: in such a gauge there will be no
current which is even partially conserved. (This situation is exemplified
by the canonical gauge.) Let us assume that U4i is not only invariant
under first-kind transformations but also local sc that it may be incorporated

with '%zi to make up the lagrangian part of the action,
L. = A +d - (ATT.9)
~d L h

where GET vanishes for gauge transformations of the first kind. The cor-

responding Noether identity takes the form

§8=
Nk _ _ °Pfx
au Ju - % t7 ()
__ 88 .k S

+5(¢) +GTh ) .

8¢ (AII.10)

Since Wh is invarient, however,
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ok bk,

it must always be possible to express the last term in (AII.10) as & total

divergence,
oW
h  k _ _k
55 ¢ (¢) = 3u“h . (AII.11)

It is therefore natural to define the total current
¥k _ N,k k
= + .
3=y , (AIT.12)
which satisfies the seame identity as those discussed previously,
k 88 &
9 = - . ATI.1
wdu 56 * (¢) ( 3)
Thus, in theories with a gauge symmetry of the second kind, it is necessary
to include along with the Noether current a non-local term (the fictitious
particle contribution) in order to obtain a conserved current. Of course,
if tk(O) # 0 it will be necessary to separate the Goldstone term and deal

with a partially conserved current as before.

There remains the problem, mentioned above, of relating the conserved
current ju to the source of the gauge field. To do this it is necessary
to elaborate the notation by distinguishing the gauge field Au from the
other fields ¢' . The gauge field has the characteristic transformation

behaviour,
' saf = Xy gt e (a xf . (AII.1})
& H u

H
An infinitesimel transformation of the action gives

§.5 84 spk 4 88 5o

[}
&

gak W 8¢
H
[ 168 4
- 188 5 ok, 88 kX
..Idx -851;1‘3“9 + 5 0 b (6)
- u
U |8 gk u
u

(AII.15)
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after integrating by parts and using the identity (AII.13). On the other
hand, 64 = &di since both ’&f and .Wh are invariant. But th has been
asgumed to be invariant with respect to transformations of the first kind

(aunk = 0) 8o that one can write
6a¢h s - J dx aunk aﬁ . (AII.16)

Since Qk(x) is arbitrary, the equality of (AIT.15) and (ATI.16) implies the

identity .
1 8.8 k k
=3 ===3 + . AIT.1
g X 2 (‘ju au) ( 7)
U

Cn

The gauge field source Aﬁﬁ is defined (cf.(AII.S)) by

AJk = QzL._ linesr terms (AII.18)
LTS
U

and we are led to make the identification

i'A'Jk = jk + aF - linear terms . (AII.19)
g U H H

Our derivetion has fixed only the longitudinal part of this identity. We can
regard {AII.19) as a definition insofar as the transverse part is concerned
since the transverse part of the Noether current can be modified at will by
adding divergence terms to the lagrangian density. It therefore turns out
that the gauge particle source coincides with the conserved current JU (or
the partially conserved Ju defined by (AII.4)) apart from the non-linear
terms (if any) in &, - It is possible to find gauges in which the latter

term is absent (i.e. linear ah) but in general it must be taken into account.

This completes the general discussion of Ward-Takahashi identities.
The formulae derived here can now be applied to the cases discussed in the

beody of the paper. Consider first the massive Yang-Mills theory of Sec.III.

The Landaun gauge sction takes the form
. k., .k
& = f ax [;f-+ c auAu] s (4) (AII.20)

where J is given by (3.6) end wLan by (3.20). The field ck is & Lagrange

rmultiplier to which we assign the transformation rule

bk




SC=CxQ . (ATI.21)

The other fields transform according to the rules (3.7). (Only 6Bk fails
to vanish asymptotically for constant £ .) The source currents for A

and B are given by

A : g
I, g A, Fvu gBV(A\) Au)+2 (cauB Baucr BxauB)
2 W
2 2 Lan
+ Mgo A.u + %—-(U + B“) AM + GAH
B 2 2 2 2m2 2 2
T =-go(oa +BxA)+& pa” -& p - £ 3p(¢" + B°)
(TR T 7] L W 2M 8M2
(AI1.22)
The contribution rau due to the gauge-determining Lagrange multiplier term
is given by
. i
= -=VZC AII.23)
u g uoo (

The pertially conserved current which corresponds to the Yang-Mills symmetry
is given by substituting from (AII.19) into (AII.4}. The result is

1 GWLan
Ju = - Av x (FW + ”qu) - Bv(AU X Au) + E__GAU

+= (03 B-B3O0O-~Bx3B)+MA +E-(02+132)A
v u " U u

-

(ATI.2U)

where nvu denotes the.minkowskian metric tensor. This current satisfies the

identity

MBk _  _kméd m 184 1 kim 84 .m
BuJﬁ + z A “ThA -3 g;ﬁ-o -z€ o B+

M
&=
-

B (AII.25)

84
i

from which the Ward-Takahashi identities follow:
9 <TJkF>+-M—<TBJkF>=
H H g
B Gy [ m 1SE L dmSE lGFBk}>
’ (AIT.26)

where F denotes any functional of the fields AU' B and T .
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A distincet family of Ward-Takashashi identities corresponds to the con-
servation of the "true" isospin which is associated with the asymptotic sym-

metry (3.8). The current is given by

1 6wLan
= - - ® - -
I, A, x (F, + "ou C) ~ 3 (A, x &)+ ey Bx2dB
Lo (AII.27)
and the Ward-Tekahashi identities take the usual form,
k _H kim ) OF m  OF _m
o, (i) =T (re {—sﬁ‘ ny+ g } > . (ATI.28)
M

The same procedure could be applied to the model of Sec.IV whose action

is given in detail in Appendix I. The resulting identities would, of course,
be very complicated. '
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U(2) quantum number assignments. The neutral gauge fields, Au and Uu, are
mixtures of I =1 and I =0 fields, x> and XO .
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