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ABSTRACT

It is known that the spontaneous violation of a gauge symmetry of the

second kind results in the appearance not of Goldstone bosons but, rather, of

massive gauge particles. The path-integral quantization of such theories is dis-

cussed here in general terms. The primary consideration is that quantities

of physical significance, such as matrix elements of the scattering operator

or the energy momentum tensor, should be independent of the gauge in which

the quantization rules are formulated. In particular, if it is possible to

find one gauge in which the theory is unitary and another in which it is re-

normalizable then the gauge-independent quantities must enjoy "both these

qualities. These ideas are applied to a simple model with massive Yang-Mills

fields and to a model which unifies the weak and electromagnetic interactions

of electron-type leptons. Both these models appear to be unitary and re-

normalizable. The lepton theory is a relatively economical one. It in-

volves five independent parameters: the electron charge and mass, the mass

of the charged intermediate vector boson, and the masses of a neutral scalar

and a neutral vector boson.
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I. INTRODUCTION

One of the major achievements of the last two decades in particle

physics has been the discovery of the internal (including chiral) symmetries

of hadrons and leptons. Most symmetries are only approximate however and,

no matter how much one may disguise it, the concept of "broken symmetry is un-

aesthetic. Fortunately, the aesthetic balance is to some extent restored by

the notion that symmetry breaking may be spontaneous . In this view, the

universal Lagrangian is supposed to be fully symmetric while the apparent

lack of symmetry in the solutions of the equations of motion is ascribed to

degeneracy in the physical ground state or, equivalently, to the existence of

certain fields in the theory whose ground state expectation values do not

vanish when calculated self-consistently.

It is well known that the straightforward implementation of this appeal-
2)

ing idea leads to the appearance of massless, scalar, Goldstone excitations

Such unwanted particles will not arise, however, if the underlying lagrangian

symmetry is a gauge symmetry of the second kind. It has been shown by Higgs
h)and Kibble that the spontaneous symmetry violation is manifested not in the

appearance of massless particles but rather in the acquiring of finite mass

by the gauge fields.

Massive vector particles are clearly more acceptable than massless

scalars in any model which claims to be realistic. Another reason- for favour-

ing the models with gauge symmetries of the second kind is that, in many cases,

they can be shown to be renormalizable in the conventional sense . This is

in spite of the presence of massive vector particles. Perhaps, in view of

the existence of finite, non-polynomial lagrangian theories, renormalizability

in the conventional sense is not a criterion which should be decisive in

selecting or rejecting Lagrangians. However, conventionally renormalizable

Lagrangians still score on one point. The perturbation expansion in each

order of the (major) coupling constant is Froissart-bounded. This does not

happen with non-polynomial Lagrangians although one may possibly achieve it

for physical S-matrix elements after a summation over the major coupling

constant.

In this paper, following the recent stimulating work of t'Hooft

we examine this problem of renormalizability in the case of a gauge theory of

lepton interactions * , The underlying symmetry U(2) is associated with four

gauge fields. Three of these (with charges +1, -1 and 0) acquire mass through

the spontaneous breakdown of U(2) to U(l). They are supposed to mediate the
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weak interactions. The remaining .(massless) field is associated with the

unbroken symmetry U(l) and is identified with, the electromagnetic field. The

spontaneous symmetry breakdown serves also to give mass to the charged
9)

leptons . This model contains, in addition to the gauge fields and the

lepton fields, a doublet of scalar fields whose interactions are set in a

form which favours the emergence of a symmetry-breaking solution. The doublet

comprises a charged field and a complex neutral field, and the symmetry break-

ing finds expression in the non-vanishing vacuum expectation value of the

neutral component. It turns out that only one massive scalar particle is

associated with the doublet of fields. The other components, the Goldstone

bosons, are gauge effects which can be transformed away.

The decisive new factor which permits us to discuss renormalizability

in this model is the existence of a clear and unambiguous technique for quant-

izing gauge theories. Now, the view has been often expressed in the past

that gauge theories should be renormalizable and that the weak interactions

in particular should be governed by a gauge principle. However, attempts to

realize this idea always faltered over the problem of giving mass to the gauge

particles - a clearly essential feature of any realistic theory. It was con-

jectured that mass generation by the Higgs-Kibble mechanism would not in-

terfere with renormalizability but the quantization programme could not be

formulated with precision. -The missing element has now become available in

the work of Faddeev and Popov . It is now possible to quantize in a wide

variety of gauges and, what is more, to state rules for transforming Green's

functions from one gauge to another. In effect, we have an equivalence

theorem.

It will turn out, in the examples to be discussed, that different gauges

present various advantages in that some property may be apparent in one gauge

but not in another. In particular the (formal) unitarity of the physical S-

matrix is evident in what we shall call the canonical gauge while its re-

normalizability is made clear in another, the Landau gauge. If we fully

accept the gauge independence of the S-matrix, however, it must be that

appearances are deceptive. The S-matrix of this theory must be both unitary

and renormalizable.

The paper is planned as follows. In Sec.II we review the Faddeev-Popov

quantization technique and present a formal derivation - by means of Feynman

path-integrals - of the basic equivalence theorem for gauge theories. Here
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we discuss briefly the distinction between gauge symmetries of the first

and second kind in order to indicate that the spontaneous "breakdown of the

former does not interfere with the operation of the "basic theorem. An il-

lustration of the method is given in Sec.Ill where a massive Yang-Mills theory

is treated. This example will serve, we hope, to make very clear the dis-

tinction between first- and second-kind symmetries since, in spite of the

spontaneous breakdown which generates mass, there remains a conserved isospin

in the theory. It is shown also in Sec.Ill that the Faddeev-Popov technique

coincides vith the traditional method of canonical quantization in a suitably

chosen gauge. One curious feature of the model is the appearance of a non-

polynomial term in the Hamiltonian. The proposed gauge theory of lepton in-

teractions is discussed in some detail in Sec.IV (while the detailed expres-

sion for the Lagrangian is given in Appendix I). It will be emphasised that

a correct choice of independent parameters must be made in order that finite

categories of graphs should be gauge independent. Sec.V is devoted to con-

cluding remarks and speculations concerning the lepton model and possibilities

for making it less arbitrary by means of self-consistent techniques for com-

puting some of the coupling parameters. Appendix II is devoted to the de-

rivation of Ward-Takahashi identities.
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II. THE FADDEEV-POPOV TECHNIQUE

A general way to quantize theories with a gauge symmetry has emerged

only in recent years with the work of Faddeev and Popov . The old methods -

for example the Gupta-Bleuler method - are valid for the abelian symmetry of

electrodynamics provided a linear gauge condition is adopted. They fail,

however, to cope with non-linear gauge conditions (such as Nambu's, A =

constant) or with any of the non-abelian gauge symmetries. In this section

we shall recapitulate the new method and discuss some of its more important

features including particularly the insight which it gives into questions of

gauge dependence in quantized amplitudes.

To pose the general problem, suppose we are asked to quantize a system

of fields * whose classical equations of motion are governed by the action

functional
o f

(2.1)

If the classical Euler-Lagrange equations are not underdetermined, i.e., if a

unique solution corresponds to the initial data, then the general solution for

the quantized amplitudes can "be represented by the Feynman path-integral

< T F(<fr)> = J , (2.2)

where the functional F(<J>) may, for example, take the form of a simple

product,

(xn) (2.3)

in which case (2.2) gives the Green's functions. The S-matrix, on the other

hand, is obtained by substituting

Ft*) = : exp j dx dy 4»in(x) Z~
r D~ (x-y) <f>(y) : (2.1+)

where D(x-y) denotes the renonnalized free propagator.

The general solution (2.2) is not appropriate for theories with a gauge

symmetry of the second kind. Suppose we have a (pseudo) group of transform-

ations

fi(x) : <f> •*• <j>fi (2.5)

which leave the action, Ji^ (invariant. In such cases the Euler-Lagrange
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equations are underdetermined. In order to obtain a unique classical

solution from given initial data it is necessary to impose a gauge condition,

i.e. a supplementary set of equations (whose number coincides with the number

of group parameters fi)

= 0 . (2.6)

Such conditions can always be obtained, along with the original (and deficient)

Euler-Lagrange equations, by varying a suitably modified action functional.

It has not been usual to follow this course in classical work because it

complicates the equations a good deal and offers no compensating advantage.

However, for the quantized case it is essential. This is because the quant-

ization programme demands - for its internal consistency - that the complete

set of equations of motion be derivable from an action principle. This is

true both of the standard canonical quantization procedure and of the Feynman

path-integral procedure. Fortunately, a general method for determining the

supplementary terms in the action has been given by Faddeev and Popov.

The procedure is as follows. To the original, invariant part of the

action add a supplementary, non-invariant piece >0 to define the total

action

= Aj + so . (2.7)

The supplementary action, which serves to fix the gauge, must satisfy two

conditions:

a) it must break all the second-kind gauge symmetries;

b) it must obey the normalization condition

i - f (an) exp[^ 2 (<}ftl , (2.8)
J I? h J

which we shall call the Faddeev-Popov (F-P) constraint. The path-integral

(2.8) is supposed to extend over those elements fi(x) of the pseudogroup

which vanish asymptotically. The measure (dfi) = TT dli(x) is supposed to

be a group invariant. Finally, the F-P constraint must be satisfied

identically in <j> .

To construct a supplementary action which satisfies the requirements

a) and Ts) is straightforward. If we write A> as the sum of two pieces,

(2.9)
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where «4r is freely chosen and non-invariant - so as to meet the requirement

a) - and W (<(>) is invariant, then we can satisfy the requirement "b) by re-

writing it in the form

| ^^AJ (2.10)

which now serves as the definition of W . The group invariance of this

integral assures the invariance of W.

n

A pseudodynamical interpretation can "be given to W by observing

that the path-integral (2.10) represents a "transition amplitude", viz, the

fl-vacuum transition amplitude. That is, if we regard ft(x) as a quantized

field whose classical equations of motion are governed by the "action"

I A , ^ ) » which includes the effects of perturbing external fields (J) , then

the right-hand side of (2.10) is precisely the Feynman representation of the

vacuum amplitude. If we represent this amplitude by graphs with virtual

fi-lines then the functional (-i/fi)W (<J>) is represented by the subset of

connected graphs. It is sometimes convenient, therefore, to think of ft(x)

as a "fictitious" field whose Green's functions represent the propagation of

fictitious particles. For the computation of physical ^-amplitudes, however,

we need to include only the ft-vacuum amplitudes. In performing such com-

putations it is necessary to take account of one rather subtle point. That

is, since the connected part of the ft-vacuum amplitude represents the function-

al (-i/n)W (<j>), whereas what one needs for the total action is (+i/fi)W, (<j>) ,

n n

one must multiply the amplitude corresponding to any given graph - containing

both ft- and <J>-lines - by (-) , where N denotes the number of fi-connected

pieces in it.

The significance of the requirement a) is clear: it serves to render

the Euler-Lagrange equations well determined. Requirement b) is less

transparent. Its true significance is revealed only when we try to trans-

form a quantized amplitude (a Green's function, say) from one gauge to another.

The transformation rule between two gauges - characterized by the supplement-

ary actions sQ, and X , respectively - is obtained as follows.
hl h2

Consider the path-integral

exp (2.11)
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If we perform the integral over fi(x) keeping ^(x) fixed,then, according

to the F-P constraint (2.8), ve are left with the expression

F(4>) exp = < T F(<f>)> (2.12)

which is Just the quantized amplitude in the first gauge. Alternatively,

we could have integrated first over <}>(x) keeping fi(x) fixed. In this

case we can first make a change of variable in the (̂ -integration, viz,

<(> -*•<(>' » ij> . if the measure (d<|>) is gauge invariant - which we shall

always require - then, since

takes the form

is also invariant, the integral (2.11)

I exp k[

= J (etfl) <T Ft*") expjjr ^ {
(2.13)

(after removing the primes and replacing fi with On comparing

the expressions (2.12) and (2.13) we find the basic transformation rule,

<T
hl

Cctfl) < T expr (2.1U)

and, similarly, i t s converse

<T F(^)>. = (d«) <T F(<f>n) exp ^ (2.1U1)

Thus, one sees that in general the gauge dependence of Green's functions is

quite complicated. However, a great simplification occurs - and this is

the real justification of the F-P constraint - when the rules (2.lU) and (2.1U1)

are applied to functionals F((|>) which are gauge invariant in the classical

sense. The classical invariance

(2.15)

(2.16)

implies the quantum gauge independence >

< T = <T
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as can be seen by taking the H-integration in (2.1^) inside the T-bracket and

using the F-P constraint. Since the functional (2.lli) which defines the

physical S-matrix is invariant in the sense (2.15), it follows that the S-matrix

is gauge independent. Thus we have the fundamental equivalence theorem of

gauge theories:

Those quantized amplitudes which go over in the classical correspond-

ence limit to gauge-invariant functionals are themselves independent of the

gauge in which quantization is carried out.

Of course we have not "proved" this theorem since the arguments given

above are only formal. There remains the important task of showing that

these manipulations with ill-defined (because ultraviolet divergent) path-

integrals can be justified through regularization and the incorporation of

counterterms. Such justification will no doubt prove very arduous. However,

we believe that the great formal simplicity of the arguments used here must

signify their fundamental correctness.

The discovery that the "gauge-compensating term" W must be included

in the action was made by Feynman . His approach differs from that of

Faddeev and Popov in being based on the requirement that the S-matrix should

be unitary while the latter authors require that it should be gauge independ-

ent. It is possible to show, however, that the method of Faddeev and Popov

also defines a unitary S-matrix and so is, at least to that extent, equivalent

to Feynman1s. To demonstrate this one need only find a gauge in which the

F-P quantization prescription reduces to the standard canonical quantization.

An example of this will be discussed in the next section where, in the so-

called "canonical gauge",the compensating term is precisely cancelled when

the path-integral is put into canonical form. That is, in the canonical

gauge one can write

<T F(<fr)> = I (d(f>) F(<k) expT ' c a n J T T

= | (d<J> di-r) F(<f>) exp

(2.1?)

where H = H(<f>,7r) denotes the classical hamiltonian density: it does not

depend on -il and contains no remnant of the fictitious particle structure.

Now, since the S-matrix is gauge independent when computed by the F-P method,

it must coincide with the canonical S-matrix and therefore be, at least

formally, unitary.
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The canonical action functional is distinguished "by its lack of -n-

dependence. In general the total action contains non-classical terms, in

W. , which reflect the fictitious particle structure. An expansion in powers

of Planck's constant,
00

]TVJ (2.18)
L=0

singles out the parts WT which are represented "by fictitious particle

vacuum graphs with L loops. The gauges to "be used in the following sec-

tions are rather special in that only one-loop graphs contribute, i.e.

W. ^ if . For these gauges W. can be given in closed form: it is related

to a functional determinant. This simplicity is a feature of Landau-type

gauges where the classical gauge condition h(<J>) = 0 is incorporated in the

action "by means of Lagrange multipliers. Explicitly,

expfe <\(<t>)j = j (dC) expfc f dx Ch(4>)l

In this way the quantized fields are constrained to satisfy the condition

0 . In Fermi-type gauges, where

dx

it is possible to show that all values L S: 1 are present in (2.18). One

can also invent gauges where all values L ̂  0 contribute so that even the

classical part of the action is modified. Finally, one can sometimes find
12)

a gauge in which W vanishes identically

In deriving the transformation rule (2.lh) an essential requirement

was the invariance of the path-integral over <|> with respect to those gauge

transformations fl : $ -*• <}> which enter the normalization condition (2.8).

Not only the measure (d^) "but also the domain itself must be invariant.

Now, if a symmetry is spontaneously broken one expects this to "be reflected

in a lack of domain invariance. This is certainly the case with non-linear

realizations of chiral symmetry where both the action functional and the

measure are invariant. One can see that the spontaneous violation of chiral

symmetry is associated with a conflict between the chiral transformation law,

-9-



k kit Z k
Sir = f {Tr)e , and the asymptotic condition if •*• 0 , vhich characterizes

i vac
13)

kit
the path-integral domain for a vacuum amplitude. Since f (0) ^ 0 , there

can be no asymptotic symmetry

In the following sections we shall be treating models in which the gauge

symmetry is not asymptotic. In these models there will appear complex scalar

fields which are not gauge invariant, (j> ± § , yet which do not vanish asymp-

totically but rather approach non-vanishing constant values (their vacuum ex-

pectation values). In such models the domain is not asymptotically invariant

and the transformations 4> •* <j> with constant ft are certainly not sym-

metries of the theory. The gauge symmetries of the second kind are symmetries

only insofar as they approach the identity asymptotically - and so do not

affect the asymptotic states. They do not include the first-kind gauge

transformations as a subgroup.

It is fortunate that the integral (2.18), which defines the gauge-com-

pensating functional W as the connected part of the fictitious particle

vacuum amplitude, involves only such fields ft as vanish asymptotically.

(More precisely, the independent fields which parametrize the group matrix U

vanish asymptotically so that ft itself approaches the identity matrix.)

Under these transformations the domain of the path-integral over <}> is indeed

invariant in spite of the non-vanishing asymptotic limits which characterize

it. The gauge symmetry of the second kind remains a symmetry with dynamical

consequences but it must be logically distinguished from the symmetry of the

first kind - which governs the classification of physical states - with which

it may or may not be associated.
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III. A MASSIVE YANG-MILLS THEORY

The quantization technique of Faddeev and Popov was applied "by them

originally to the example of a pure, massless Yang-Mills field. We give now

its application to a simple case where the operation of the Higgs-Ki"b"ble

lU)
mechanism gives mass to the Yang-Mills field . This will serve to illus-

trate the main features of the method in a simpler context than the lepton

theory to which Sec.XV is devoted.

Consider the system of a Yang-Mills field in interaction with a doublet

of scalar fields which is characterized by the Lagrangian

g
where

^ - 3 Ak - 3 A
k - g e " 1 A* Am

yv y ^ v y 6 uv

*« Ka " \ Ka * *« # * * / « . * «b*« Ka \

The indices a, b, . . . take the values 1, 2 (and Ka = K ) while k, I , . . .

take the values 1, 2, 3. The Lagrangian (3.1) i s invariant under the Yang-

Mills pseudogroup whose infinitesimal transformations take the form

. .k JsXm. J, om 1 . o k
6 A = e A ii - — a \l

V V 6 V

6Ka = -iflk Kb(Tk/2). a .
b (3.3)

The form of the last term in (3.1) favours a solution in which the gauge

symmetry appears to be broken. That is, in the tree approximation we expect

M ° • (3.1.)

Hence, if the transformations (3.3) are extended to include asymptotic trans

formations, £2 « constant, then this symmetry is clearly violated by (3.H).
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We must therefore regard these transformations as having no asymptotic

significance, i.e., as having no effect on physical states. We must require

fi(x) to vanish asymptotically. However, this does not mean that there is

no asymptotic SU(2) symmetry. In fact there is. To see this, introduce a

new set of real variables a and B to represent the scalar fields,

K + ( a + 1 B )
1 g fi

K = - i ( i B1 - B2) .
2 S2 (3.5)

In terms of these variables the Lagrangian (3.1) takes the rather complicated

form:

+ <tf2 + < k 1 k 2

E.

(3.6)

This Lagrangian is invariant under the transformations

. k MM 1 _m 1 . ok

y v g u

So = _ I B
k n

M nk + 1 fik + 1 Urn
g 2 2

(3.7)

which are obtained from (3.3). However, (3.6) is clearly invariant also

under the SU{2) transformations

k kJLm l m
<5A = e A a)

u y

So = 0

__k _ kJlm I moB = e B it)

(3.8)

- 1 2 -
vr. *•• i- ;•!•*.•• ..•it.



with constant u . These transformations "belong to a gauge group of the

first kind which we shall call the "true" I-spin group. It is quite distinct

from the Yang-Mills pseudogroup. It is the true I-spin group which yields

conserved quantities and according to which the asymptotic states must be

classified.

The vacuum condition (3»k) does no violence to the true symmetry accord-

Ing to which

6K± = | (Wl - iujg) Kg + ~ (Wl + iw2) K
2 ,

6K = f- (u>, + 1<I)J(K, - K1) - iw K .
2 2 1 2 1 3 2 { 3 < 9 )

Corresponding to the two symmetries outlined here, there exist two

distinct currents. Only one of these is conserved and so yields the usual

Ward-Takahashi identities. The other current is partially conserved and

yields a distinct family of Ward-Takahashi identities which reflect the under-

lying gauge symmetry of the second kind - the one which has no influence on

the classification of physical states. These currents and their respective

families of identities will he discussed in Appendix II.

Consider now the problem of quantizing (3.6). The first step in the

quantization procedure is the choice of gauge. Here we shall consider two

cpvariant gauges which between them illustrate the main properties of the model.

These gauges are:

a) The canonical gauge

The supplementary terms in the action take the form

(3.10)

This supplementary action incorporates the classical gauge condition,

Bk = 0 .

The field (T(x) in (3.10) plays the role of Lagrange multiplier and results

in the appearance of the 6-functional 6(B) in the path-integrals. The
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compensating functional W is very easy to evaluate in this case. Accord-
can

ing to the prescription (2.10),

["JiWexp[Jican

Since we shal l need the values of W only in the subspace B = 0 we can
CclH

evaluate (3.11) by including only infinitesimal transformations 12 in the

integration, i.e. for B = 0 ,

^ 4-lM *. °\x( M X

Detj- + - 6(x - x')<S
g j

= exp - 36(0) dx In - + d * constant .

If we choose the constant to make W vanish when <T - 0 then the result is
can

Wcan f1 + |? a]
This structure can be understood as due to the "propagation" of a fictitious

particle round simple closed loops with a propagator proportional to the

Dirac delta function. At each vertex on the loop one a-line is attached.

The fact that only single-loop graphs contribute to W is reflected in
can

the factor -K which stands in front of the integral (3.12).

We have called this gauge canonical because it lends itself to a canon-

ical quantization of the model. The action density (3.6) can be replaced by

the canonical form,

X = E* 3. Ak + TT 3. a -
1 a 0 a 0

2 u a a 0
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B2)
32M

(3.13)

k k
where A^ and B must "be eliminated since they have no canonical conjugates,

Such eliminations are performed, in the language of path-integrals, by

integration over the undesirable variables. The Green's functions are re-

presented in this gauge by the path-integral

<T F(A,a)>
can

(dA dE da dw dB) F(A,a) 6(B)
y a

exp f
(3.

since, if the canonical momenta E and TT are eliminated by performing the

necessary (gaussian) integrations,the resulting integral over AM, <r and B

takes the form prescribed in Sec.II. On the other hand, to obtain the purely

canonical representation ve should integrate over A

tegral over B is trivial due to the presence of

AQ is gaussian and proceeds as follows :

6{B)

and B . The in-

The integral over

j (dA0) exp i j dx[| (M •

Det(M

of

o)6(x -x'}6
-l

exp

exp

2̂ 1

a)'

(3-15)

where we have shown only that part of of, which depends on A_ . It is

very gratifying to find that the fictitious particle contribution to (3.lU)

is precisely cancelled by the result of the AQ-integration. We are left

with the canonical path-integral,

F(A,O)>
can

(dA dE da dir) F(A,a) exp~ fdx A + TO
a a

- HJ
(3.16)
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2 (

1

. k

(

f l

r

3£

+

) f
• h

2M

(2

2M

2

where the hamiltonian density is given "by

+ —

(3.17)

It thus appears that the system described by the Lagrangian (3.6) contains two

fundamental states, a vector isotriplet with mass M and a scalar isosinglet

with mass m . These particles have positive metric and the theory should

therefore yield a unitary S-matrix, in the perturbation sense at least.

This formulation of the theory is not renormalizable, however, since

the vector propagator takes the form

-n +'^V] e-ikx (3.18)
^V 2 J

f
k2- M2 1 ^V M2

in zeroth order. That the most singular parts of the Feynman integrals should

cancel from physical S-matrix elements appears very unlikely. To see that

this does in fact happen we must use another gauge.

b) The Landau gauge

The Landau supplementary action takes the form

-\ ( d c> | J *•

which incorporates the gauge condition

3 Ak = 0
V P

The compensating functional Wj. is evaluated in the same way as before (on

the subspace ^ A. = 0 ) ,
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(dft) 6(d Vy fl

Det 3 V U 6(x - x1)
-1.

x constant

since we need to keep only infinitesimal li . With a suitable choice of

constant this gives

WT = -itf Tr An
Lan (3.20)

The structure of this functional is perhaps made clearer by the integral re-

presentation,

e X*[- I WLan<A)] exp 4 | dx (3.21)

which can be interpreted graphically. The exponent in the integrand of (3-21)

defines the fictitious particle action. This action yields for the "fields"

C and fl the chronological pairings

<TI2k(x)

<T fyx)

1 3

= 0
(3.22)

where D(x) denotes the usual zero-mass causal function. The only allowed

vertices join one C- , one fi- and one A-line. It can be seen that there

is only one connected graph of order g . It consists of a single

directed loop of the massless fictitious particle with one A-line attached

at each vertex. It can also be seen that the higher powers of U which were

discarded from 9A cannot contribute because of the peculiar structure of

the pairings (3.22).

The chronological pairings of the fields A , B and a are given by

ill?. * huv
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k - m

(3.23)

These propagators, taken with the vertices determined by (3.6), give a re-

normalizable perturbation series, as can be shown by the usual power-counting

method. The theory appears, however, to be non-unitary. This is due to

the massless scalar ghost which appears in the vector propagator. The off-

shell S-matrix elements and gauge-dependent quantities in general do indeed

contain these ghosts and the B-particle (Goldstone boson) as well in this

gauge. But since neither of these features appeared in the canonical gauge

it must be that they are pure gauge effects. The ghosts and Goldstone

bosons must cancel from gauge-independent quantities such as physical S-

matrix elements. Conversely, the canonical gauge problem of unrenormal-

izability with its implication of the absence of Froissart-boundedness must

likewise be a gauge effect since it does not appear in the Landau gauge. ' The

physical S-matrix must be both Froissart-bounded and free of ghosts and

Goldstone particles. In order to have these properties in a perturbation

expansion it is of course necessary always to include gauge-independent sets

of graphs, i.e. all graphs of fixed order g
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IV. A LEPTON MODEL

One of the main purposes of this paper is to present in some detail a

gauge model which unifies the weak and electromagnetic interactions of electron-

type leptons "'. The underlying symmetry according to which the fields in

this model are classified - but which is spontaneously violated - is the gauge

group U(2). The left-handed electron and neutrino are treated as a doublet

while the right-handed electron remains a singlet. In addition to the four

gauge fields - triplet and singlet - the model contains a doublet of scalar

fields,one component of which will have a non-vanishing expectation value in

the physical vacuum.

To fix the notation consider a multiplet of fields ty which belong to

a representation of U(2). Under an infinitesimal transformation of the group

we have

where the infinitesimal parameters fi (x) and Q (x) are real. The matrices

I and I represent the algebra of U(2),

The covariant derivative of ip{x) is given by

V = V + i g
Jk 0where the gauge fields XT and X^ transform according to

6 x
v 61 U (U.3)

One combination of the gauge fields is to be identified with the electro-

magnetic field and a corresponding combination of the coupling constants, g

and g , with the electric charge, e . These combinations are determined

by the basic identification of the charge operator Q . We adopt the de-

finition

3 ^

-19-



An examination of {h.2) shows immediately that the combination

1

couples to the charge operator. We therefore identify A vith the electro-

magnetic field. The orthogonal combination

(h.S)

defines the other neutral gauge field.

in the combinations

The remaining gauge fields are taken

which carry positive and negative charge, respectively. In terms of the new

gauge fields, formula (U.2) for the covariant derivative reads

V (W

+ i h*
+ i

g + ST a

(U.8)
+ 1 2

where I = I ± il . The electric charge must therefore be given by

(U.9)

The left-handed electron and neutrino fields. eT and V , comprise

the doublet

A =
a

(fc.io)

while the right-handed electron e is a singlet. In order that these
xi

particles should be correctly charged, ve must assign the following values

to 1° :•

-20-
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I ° l f t - - V and I ° e R = - 2 e R . (U.ll)

The doublet of scalar fields T = (T ,T ) is given charges +1 and
0 a

0 "by the assignment I - 1 . These assignments are summarized in Table I.
81

The Lagrangian of the proposed model for lepton interactions takes .

the gauge-invariant form,

* -

(U.12)

where T = T , I -I yn , "e = e_ yn and the f ie ld strengths are de-
ft a 0 K ii w

fined by

These field strengths can be expressed in terms of the physical components

by means of the following formulae :

fw+

y3
 g l V + g u

\iv f 2 21i

g

f 2 A 2 U
l g + g l J

where W*,, , A,,, and U rtl are given by

+ + + W l + 4. J _•- +
W~ = 3 U~ — a W~ + f fi W~ - A t P ^ + R (XT MT~ — IT

- 2 1 -



V S M \ "

igg-,

V

In (U.12) we can substitute

,2 1 ,0 .2} - IT ( V
1 „+ TT- 1 ,. v2 1

F (Ayv>
1

" IT

to eliminate the old field strengths from the Lagrangian. The gauge fields

appear elsewhere in the Lagrangian only through the various covariant deriva-

tives which we list:

igg.
2 2

2

hL* f/^j'^IT^pj

V
2 2

T

W"

The last term in the Lagrangian (U.12) favours the emergence of a sym-

metry-violating solution. The neutral field T will develop a non-vanishing

expectation value in the physical vacuum. In the classical approximation,

In the same approximation various other fields acquire a mass by the same

mechanism. To reveal these masses it is useful to replace the complex field

-22-



T lay the real components a and X J

T°(x) = — fp + ff(x) + i xU)| (U.18)

After making all these substitutions one arrives at a rather complicated
± ±

Lagrangian (Appendix I) vhich involves the fields W , A , U , T , a ,

and the leptons v , e_ and e^ . This Lagrangian is invariant under the

group of U{2) gauge transformations:

, + + 3 g A + gUu + T
6w- = ±i w- a3 T i 1 ̂  ^ jr. i

9 fl~
g y

r 2 ̂  2 u i w g

g + s

IE (TJ- O + U + Q~\ •*•• a f f i 3

± | (fi3 + 20°JT* ± ~ n*(a ± ix) ± I fi+f

6a = I

6X = I + nV) - \ + a)

6v. = I (fi3 - 2fi°)v + -1- Ji+ eTL 2 L ^ L

6eT = - I (I23 + 2ft°) e + — «" v
L 2 /?

6e R=-2i«°e R
CU.19)

where IT 1 =F ifl2) .

We consider now the question of fixing the gauge in order to proceed

with quantizing the theory. It is necessary to impose four gauge conditions

and we shall deal with two alternatives:
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a) a "canonical" gauge

V y * ° » X s ° • T* = 0 , (U.20)

b) the Landau gauge

To treat a truly canonical gauge it would "be necessary to impose a non-

covariant condition on the electromagnetic field, e.g., 9 A = 0 or A = 0.
G> EL U

However, since our object in using the canonical gauge is only to show that

ghosts do not appear in gauge-independent quantities and since everyone accepts

this in electromagnetic theory, we shall forego that refinement.
The canonical gauge-compensating terms are given by the integral

" I Wcan]

J L Ig g-i J Bl H U y J J

• 6f(p + a ; (fi3 - 2n

o n t h e s u b s p a c e X = T = f = 3 A = 0 . T h e r e s u l t i s

W = -3ifi6(0) I dx £n | l + SLiil 1 . (U.22)
can j I P J

This factor is exactly the same as the one met with in the Yang-Mills example

of Sec.Ill-and it will "be cancelled in the same way when the path-integral

is put into canonical form. Thus, to obtain the canonical form it will be

necessary to integrate over the dependent variables Wn , W~ and U which

appear quadratically in the action density (1*.12) due to the term

2 2
2 s. + s

V T V T = • • • + a - W W + U f T
V V a 1 2 u u ,, U J 0

The integrals are therefore gaussian and can be evaluated explicitly as in

Sec.III. The resulting expression for the hamiltonian density is very com-

plicated. We shall not reproduce it here since it has no practical utility:

-2U-



computations are always much simpler in the covariant lagrangian framework

(where, of course, the supplementary term (U.22) must be included).

In the canonical gauge the particle spectrum is clear. Since the

fields x t T and T~ have disappeared,we are left with the bosons cor-

responding to A , \T , U and a in addition to the leptons v , e^ and

e_ . The bare propagators are given by

i <T a a> - -s-i
2 2
- m a

1 - iYc

where the masses are expressed in terms of the parameters which appear in

(U.12):

f 2 2 ^[g + g^J
— —

n =
e jz

(U.2U)

The parameters g, g^ X, p and < are unsuitable for computational

purposes. This is because they appear through the masses (U.2U) in the free

Lagrangian. The amplitude corresponding to even a single graph will there-
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fore contain arbitrarily high powers of these parameters - an effect which

makes it difficult to organize a perturbation series. In particular, this

effect obscures the underlying gauge symmetry and one might think that only

infinitely large categories of graphs could be gauge independent. It is of

crucial importance to be able to distinguish such gauge-independent categories

since only for these will the unrenormalizabilities such as lack of Froissart-

boundedness be avoided. Fortunately, it is possible to pick out finite sets

which are gauge independent by a correct parametrization.

The true expansion parameter should appear only in the interaction terms

(with positive powers) and not in the free Lagrangian. This can be arranged

if we express our original parameters g, g^, X, p and < in terms of the

masses M^, IL , m , m and the electric charge, e, given by (h.9). The true

expansion parameter will then be the electric charge and the gauge-independent

categories will then consist of sets of graphs of fixed order e . The

correct parametrization of the Lagrangian (1+.12) is therefore obtained by

making the substitutions,

g = e

%

W* JU>

(U.25)

which are obtained by solving (k.2k) and (h.9). One can verify that the

interaction Lagrangian consists of terms of order e and e only (Appendix I)

There is, of course, a phenomenological constraint on these parameters in

that the Fermi constant G_, is given in this model by

-26-



2 2

^ 8
(ll-26)

Further constraints involving K and X will emerge when more data on high-

energy lepton interactions 1)6001116 available.

Now consider the Landau gauge where the theory is expected to be re-

nonnalizable but ghost infected. The gauge conditions (^.21) lead to the

compensating functional W defined by

- * vl=

where WT {y^) denotes the same functional (3-20) which was discussed in
Lan v

Sec.III. Into this functional one must substitute for X the expressions

4 •
u.

(U.28)

The fictitious particle contributions in this gauge consist of simple disjoint

loops to which the vectors attach.
the . ..

The bare propagators inALandau gauge are the same as those m the

canonical gauge (U.23) except for the U and \r propagators which assume

the transverse form
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y v

k <T uu V

k 2 -

k
k -

-v
(U.29)

and which therefore contain scalar ghosts. These ghosts will be compensated

in gauge-independent amplitudes by the Goldstone boson propagators,

i <TX X> = i-

(U.30)

These cancellations of ghosts against Goldstone bosons will take place

only in gauge-independent amplitudes such as physical S-matrix elements provided

gauge-independent sets of graphs are computed. This means, in the parametriz-

nation (̂ .25), that all graphs of given order e must be taken together.
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V. CONCLUSIONS

To what extent can the lepton model of Sec.IV be considered a realistic

one? We wish to conclude by listing some general remarks and speculations

concerning this question.

A) The theory as presented here is based on a supposed U{2) gauge sym-

metry of which the doublets (v ,u) and (V ,e) are independent representations.

No vestige of any y-e symmetry has been taken into account. It has in the

past been proposed 16) to include such a symmetry in a more general scheme,

based on U(3)» where the four-component neutrino is grouped with the charged

leptons, e and y , to make up a triplet. In that scheme the left-

handed component of the neutrino field is identified with v while the right-

handed component is identified with V

independent lepton triplets:

In fact, the theory admits two

"L
+

and R v,R

"R

and, correspondingly, two nonets of gauge fields, Z and Z i to make up a

U{3) x U(3) gauge-invariant system. The Lagrangian of Sec.IV is thus in-

corporated in the more general model of Ref.l6.

Out of the two lepton triplets it is possible to construct six in-

dependent neutral currents (with zero lepton number) >of which only two have

been utilized in Sec.IV. This plague of neutral currents is a notorious

feature of weak interaction symmetry schemes. Although they might function

in the sphere of purely leptonic interactions without contradicting our meagre

supply of Information concerning such processes, they must be suppressed in

the semi-leptonic and hadronic processes. A convincing way to do this has

yet to be discovered. For this reason we have confined our considerations

in this paper to those purely leptonic interactions which are governed by the

smaller U(2) symmetry. Of the three neutral currents which can be made out

of the electron-type leptons, only two are coupled to gauge fields. One of

these gauge fields can be identified with the electromagnetic field A , while

the other one, U , must be supposed to acquire a large mass through the

spontaneous breakdown mechanism.
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The rauon-type leptons can be brought into the U(2) scheme by treating

U T as a singlet with 1 = 2 and the pair

The lepton current to which. U couples is then given by

2 3 2) £ ̂

as a doublet with I = 1.

Le " S

- yyi)

16)
that the special choice 2 2

g = 3g (which implies
It Is amusing to note that the special choice g = 3g

according to (1+.2U)) gives rise to the pure axial vector coupling

(e//3)(iiy y e + yiy y y - 2viy y v)

with the same sign of "axial charge
17)
" for and y (This does not

mean that U conserves parity because its interactions with the charged

bosons W~ is pure vector.)

At the present time there is no compelling reason to prefer any particular

value for the ratio g /g and so we have left it free in the discussion of

Sec.IV. It may be noted, however, that if g » g then M.. » It, and the

constraint (U.26) takes the form

which indicates the lower bound on
18)favoured by Lee ' is

2 2
G ^ (37 GeV) The choice

B) It was emphasised in Sec.TV that the selection of graphs in any per-

turbation calculation must be controlled so as to assure both ghost cancel-

lation and electromagnetic gauge independence. It was suggested that such

control can best be exercised by working to a definite order in the electro-

magnetic coupling e while treating the bare masses M.., m and m )

as independent parameters. All the bare coupling constants (g, g., K, X

and p) should be expressed in terms of these independent parameters. For

the treatment of higher orders it may prove useful to look upon this as a

self-consistency requirement of which the parametrizations (1+.25) represent

the zeroth-order solution.
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C) An interesting limiting version of the theory is achieved by taking

m a "* 00 . This removes the a-particle from physics and causes the Lagrangian

to take a non-polynomial form . The action density (1+.12) depends on m

(or, equivalently, on X) through the term -A (TaT - p /2) and the effect

of taking m ••• eo inside the path-integrals is given by

lim expi~-|- [ dx A2(T*T - p2/2)2] = 6<TaT - p2/2)
0"

which embodies a constraint. In the parametrization of Sec.IV one can ex-

press the field a in terms of the Goldstone fields,

2 2 + -Is
a = -p + Ip _ x - 2 T T 1

Elimination of 0" therefore results generally in a non-polynomial Lagrangian

for the Goldstone fields. In the canonical gauge X = T = T~ = 0 , the

Goldstone fields are suppressed along with 0 and one is left with a massive

Yang-Mills triplet interacting with leptons and the electromagnetic field.

In the Landau gauge one obtains the same theory in the non-polynomial formula-
20)

tion given by Boulware

For the model of Sec.Ill the constraint which results in the limit

m **• »o takes the form

2M = _
2
g

An exponential parametrization of the constrained fields is given by

+ a + 1 B V
g g

vhere the components <J> (x) are independent variables. The Lagrangian (3.6)

thereby becomes, in this limit,

+ — ( Ay ) + M
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where the coefficients L(4>) and. . g(<|>) are defined in terms of the SU(2)

matrix S(<J>) by

Thus one arrives at a localizable non-polynomial form of the theory with the

minor coupling constant g/2M. From this point of view we make contact with
21)non-polynomial lagrangian theories previously considered by the authors .

Such theories possess an inbuilt cut-off given by the inverse of the minor

coupling constant. This cut-off will in the present case regularize only

some (<f>-containing) processes. Other (A-containing) processes will retain

the conventional infinities associated with renormalizable theories.

D) The model presented in this paper has the usual infinities of a

renormalizable lagrangian theory. If one were to include gravitational

couplings so as to make the Lagrangian generally covariant then all these
22)infinities would be regularized . A conjecture is that, owing to the

gauge symmetry, only the logarithmic divergences would survive in the form

Slewto ' while the quadratic divergences, which might be expected to

yield 1/G.T , , would be absent.Newton

E) Can the form of the Lagrangian (U.12) be justified on general

grounds? The various gauge field couplings are,of course,fixed by requiring

the kinetic terms to be gauge invariant. The scalar doublet was introduced

with a quartic self-coupling in order to catalyze the process of spontaneous

symmetry breakdown which gives mass to the gauge fields. The coupling of

this doublet to the leptons was needed in order that the charged leptons

should acquire mass by the same mechanism. Having started the process, can

one set up a programme for self-consistently computing the various couplings

(g, g , tc, A) and masses (WU, NU. m ) in terms of only the dimensionless

electromagnetic parameter e and a dimensional parameter m (say)? That

is, having set up equations for the physical values, can one set the bare

values to zero? There would appear to be some scope for such an enterprise,

particularly if all the infinities are regularized by means of a gravitational

coupling. (On the other hand, one must first verify that the model is sensible
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at least to the extent that. the presence, of the massive.. intermediate bosons

with couplings of electromagnetic .strength.-does no violence to the very accurate

predictions of lepton electrodynamics.)

F) In order to have a complete. renormalizable theory of weak interact-

ions it is essential that a spontaneously broken gauge theory of hadrons should

also be considered together vith the lepton theory of Sec.IV. It is not dif-

ficult to invent such models. Unhappily though, one must introduce a large

collection of scalar fields (analogous to the doublet T ) to secure that all

symmetry breaking is spontaneous. (For conventional renormalizability there

is no escaping the requirement that all symmetry breaking must be spontaneous.

One cannot introduce explicit symmetry breaking without destroying the gauge

symmetry that underlies the renormalizability.) In addition, the wealth of

available data on weak processes involving hadrons puts many stringent con-

ditions on any model which claims to be realistic.

G) The validity of the programme pursued in this paper depends funda-

mentally on the equivalence theorem of Sec.II. There are two aspects of this

theorem which we have not gone into but which must be clarified before it can

be applied with full confidence. First there is the regularization problem.

The manipulations of Sec.II are .applied to unregularized path-integrals and

. so are not strictly meaningful. They could be given a meaning if the action

were replaced by a regularized functional containing appropriate counterterms.

What remains to be proved is that the appropriate (i.e. gauge-invariant)
23)

regularization scheme can be invented

The second problem involves the presence of zero-mass particles, Gold-

stone bosons and ghosts, which could interfere in a serious way with the

applicability of the equivalence theorem. Green's functions will not, because

of infra-red effects, have a clearly defined pole structure. Since the pole

structure in the external lines is an essential element in the defining of
2k)the S-matrix, there could be a difficulty here .

7)

It is encouraging that Lee's analysis shows that both these dif-

ficulties can be overcome in the abelian. case. However, a new and disturbing

feature arises in the non-abelian models. This is the fact that, in most

gauges, the gauge field does not couple to the partially conserved current

Gas it does in the abelian case). The gauge field source generally contains
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an extra term whose- form, depends .on_ths..type of - gauge used (see Appendix II).

Because of this,one certainly cannot use a naive argument to prove, on the

basis of the partial conservation lav,, that.the Goldstone particles cancel

the ghosts in physical amplitudes. If the equivalence theorem is true then

such cancellations must follow a more subtle pattern. (it should be re-

marked that in none of the examples considered does the Yang-Mills field couple

to a conserved quantity. Thus, in Sec.Ill, although there is a conserved

current in the canonical gauge - where the question of ghosts and Goldstone

particles does not arise - it differs from the vector field source.)
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NOTE ADDED

We are indebted to Professor J. Prentk.1 for showing us a recent paper

by S. Weinberg which deals with the model of Sec.IV. Professors B. Zumino

and W. Bardeen25'have made the important point that, in a "fc;" 0 0^^^^

theory, anomalous terms of the Adler type will inevitably appear. They have

expressed the fear that the associated counterterms may render such theories

unrenormalizable even in the Landau gauge. This difficulty would be in

addition to the ghost question . Clearly it is important to set up a

detailed regularization scheme and to analyse carefully the renormalization

programme•
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APPENDIX I

THE LEPTON LAGRANGIAN

when the substitutions outlined in Sec.IV are made, the Lagrangian
(1+.12) assumes the form

(AI.l)

where

\ (3 W+

2 y v 3 W+)(3 W" - 3 V") + M?, W+ \ f
v y y v v y W y y

f ( 3 U
k y v 3 U ) 2 +.;r-v y 2 Uy

m

2

a W+w" +
y y

(AI.2)

T">

A +

A +

u y T + + WyT">
i T 3 T

W+<aT w -
v y v

W+w" - W+ 3 w " )
v y v v v y

+ i W W
y v 3 A - 3 A +

y v v y
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+ A

*

a(a2

W
H

(AI.3)

X,= W W~{cr + X + 2T T~) +

u.l T V - < w V - wVw'w")

V [h u.

k\ Ho - ix)T+w^ + (a + ix)T~l/J -

2 2 + — 2
(o + X + 2T T )

CAI.U)

In these expressions the convention of summing over repeated indices is used in

the forms

" A2A2 - A3A3 '
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The Dirac matrices satisfy the antic ommut at ion relations (Y ,Y } = 2ri ,

so that YQ is hermitian while Y 1 » Y2 » and are anti-

hermitian. The covariants Tjrf ij> , i/ry tp and ijJiY Yr^ are real. In (AI.3)

we use the abbreviation f3 g = (3 fjg - f(9 g) .

The bare propagators are determined by (AI.2) together vith a gauge

condition. In the Landau gauge they take the form:

<T W+(x) W" dk

dk

-v
k

k k

-nyv

-ikx

-ikx

7T)" k'

k k

W , 2
-ikx

o(x) a(0)> dk i-fi -ikx

(2TrT k2 - m2

<TT+(x)T-(0)> =

X(0)>
dk ' i-n" -ikx

T— e

<T -I
(2ir) - m

1 + i
dk ifi -ikx

(277)' X
(AI.5)

The contributions of the supplementary action W are obtained by

adjoining to the Lagrangian (AI.l) the effective term

= 3 C1" V Bk

y n
3sup y

= 3 C° 3 B° + 3 C+ 3 B" + 3 C" 3 B+ -
v y y u y y
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- ie u. (B~3 C+ - B+9 C")

(AI.6)

The bilinear terms in this expression define the'bare propagators,

<T B°(x) C°( <T B+(x) (ALT)
(2ir)" k&

The other combinations, <T B B ) and (T C C ) , vanish. It must be remembered

that each fictitious particle loop carries the factor -1.
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APPENDIX II

WARD-TAKAHASHI IDENTITIES

It is a general rule that the presence of a continuous symmetry in the

action functional is manifested by a set of identities among the Green's func-

tions of the quantized theory. If the symmetry is a gauge group of the first

kind (consjtant parameters) then these identities relate the n+1-point func-

tion involving the conserved current J and n fields to a combination of

n-point functions involving only the fields. If the symmetry is a gauge

group of the second kind (spacetime-dependent parameters) then the current

acts as the source of the gauge field so giving rise to identities between

n+1- and n-point functions involving only fields. This latter statement

must, in some cases, "be qualified as will be seen in the following.

Ward-Takahashi identities of the first kind can "be derived very easily

in the path-integral formalism. To illustrate the procedure consider a

system of fields $ whose Lagrangian is invariant with respect to the trans-

formations

64 = u>k tk <j> (AII.l)

k
where the t are traceless generator matrices which characterize the re-

presentation and the parameters w are infinitesimal constants. Then the
kNoether current J satisfies the classical identity

where /i> denotes the classical action functional. This identity leads im

mediately to the Ward-Takahashi identities in the quantized theory

<T jk(x)

= I -K
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after an integration by parts. Here F(<}>) denotes any functional of the

fields. If, for example, F(<j>) is a simple product (2.3) then (All.3) co-

incides with the usual Ward-Takahashi identities for Green's functions.

Alternatively, inserting the functional (2.U), which satisfies 6F/6<J> = 0 ,

one deduces from (All.3) that matrix elements of 9 j vanish between physical

states.

The same technique can be used to derive identities in theories where

the symmetry is violated asymptotically. For example, if a chiral sym-

metry is realized non-linearly then the linear homogeneous form t <J) is re-

placed by the more general expression t (<J>) . If t (0) fails to vanish

then the asymptotic symmetry is violated even if the action functional and the

measure are invariant. Although the Noether current is conserved it will

contain a term which is linear in <f> . One can show that this term is a

linear combination of massless (Goldstone) fields. The presence of such a

term makes it impossible to integrate the Noether density over a spacelike

surface to obtain a conserved charge. (Since the symmetry is violated

asymptotically there can be no conserved charge.) It has therefore become

customary in such cases to subtract the offending linear term from the Noether

current so as to define a new current which is only "partially" conserved but

which is at least integrable. Define the new current

jk ~ j k - linear terms (AII.1+)
U V

and, similarly, the source currents J for the fields

J = — - linear terms . (All.5)

The classical identity (All.2) - with tktf> replaced by tk(<J>) - now takes

the form

8 J* + J tk(0) = - |f (tk(<J>) - tk(0)| (AII.6)

which contains no linear terms. The corresponding Ward-Takahashi identities

are given by

+ <T J(x) F(4>)> tk(0)

(All.7)
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26which results from a partial integration in the path-integral representation

Insertion of, for example, the functional (2.1+) into (All.7) leads to the well

knovn result that the matrix elements of the Goldstone boson source, J t (0) ,

coincide with those of the operator,-3 J

The derivation of Ward-Takahashi identities given here is, of course,

only formal. A correct derivation would have to employ a regularized action

functional with counterterms and would bring out the anomalous terms which we

have ignored.

For application to theories with gauge symmetries of the second kind a

modification is needed. Since the total action discussed in Sec.II is not

local one cannot apply the Noether theorem directly. Moreover, since the

action is gauge dependent so also are the currents. In the canonical gauges,

for example, they disappear altogether. The action functional (2.7)»(2.9)>

= X + tAz + W, (All. 8)
3. n n

generally contains, in addition to the invariant local piece /if , the non-

invariant, gauge-determining piece iA-, and the invariant, non-local, gauge-

compensating piece W . The gauge-determining piece must be non-invariant

under transformations of the second kind - requirement a) of Sec.II - but it

could all the same be invariant under first-kind transformations. If it is

not then there is nothing more to be done: in such a gauge there will be no

current which is even partially conserved. (This situation is exemplified

by the canonical gauge.) Let us assume that c4r is not only invariant

under first-kind transformations but also local so that it may be incorporated

with sQ-f to make up the lagrangian part of the action,

= A. + dr. (AH.9)
In

where 6 i vanishes for gauge transformations of the first kind. The cor-

responding Noether identity takes the form

V>

= TT tk<4»> + T ^ t(<|>) .
6<f (All. 10)

Since W is invariant, however,

-U2-
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^

it must always "be possible to express the last term in (All.10) as a total

divergence,

6 W h

It is therefore natural to define the total current

k N.k k

which satisfies the same identity as those discussed previously,

(All.11)

(All.12)

(All.13)

Thus, in theories with a gauge symmetry of the second kind, it is necessary

to include along with the Noether current a non-local term (the fictitious

particle contribution) in order to obtain a conserved current. Of course,

if t (0) ̂  0 it will be necessary to separate the Goldstone term and deal

with a partially conserved current as before.

There remains the problem, mentioned above, of relating the conserved

current j to the source of the gauge field. To do this it is necessary

to elaborate the notation by distinguishing the gauge field A from the

other fields

behaviour,

The gauge field has the characteristic transformation

^ + (A x fi)k . (All.

An infinitesimal transformation of the action gives

-U

-
g

j
6X

k
V W

dx
6Ak
u

& ntK(*)

I dx
g 6A*

(All.15)
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after integrating "by parts and using the identity (All.13). On the other

hand. <W = &"T since both ,cL and W. are invariant. But «4r has "been
h X. n h

assumed to "be invariant with respect to transformations of the first kind

(3 12 = 0 ) so that one can -write

I dx y j k ak . (All.16)

Since ft (x) is arbitrary, the equality of (All.15) and (AII.16) implies the

identity

The gauge field source J is defined (cf.(AII.5)) by

Ajk = Z&- - linear terms (AII.18)

and we are led to make the identification

i A j k = ik + a
k - linear terms . (All.19)

g V V V

Our derivation has fixed only the longitudinal part of this identity. We can

regard (All.19) as a definition insofar as the transverse part is concerned

since the transverse part of the Noether current can be modified at will by

adding divergence terms to the lagrangian density. It therefore turns out

that the gauge particle source coincides with the conserved current J (or

the partially conserved J defined by (AII.U)) apart from the non-linear

terms (if any) in a . It is possible to find gauges in which the latter

term is absent (i.e. linear a ) but in general it must be taken into account.

This completes the general discussion of Ward-Takahashi identities.

The formulae derived here can now be applied to the cases discussed in the

body of the paper. Consider first the massive Yang-Mills theory of Sec.III.

The Landau gauge action takes the form

J dx [ i + Ck9 Ak] + WT (A) (All.20)

-f kwhere <A i3 given by (3.6) and WT by (3.20). The f ie ld C i s a Lagrange
Lan

multiplier to which we assign the transformation rule



6C = C x fi . (All.21)

The other fields transform according to the rules (3-T)- (Only 6B fails

to vanish asymptotically for constant Q .) The source currents for A

and B are given "by

Aj = - g A x F - g 3 (A x A ) + ̂  ( o H - B3 a - B x 3 B)
p B A > vu • v v p 2 u u p

2 6W
• H * Av • f- (a

2 • B2) Ay • -

• B X Ap) + £ B A= ^

(All.22)

The contribution a due to the gauge-determining Lagrange multiplier term

is given by

a = - - V C (All.23)
V g u

The partially conserved current which corresponds to the Yang-Mills symmetry

is given by substituting from (All.19) into (AII.*O. The result is

1 IT *P P

+ ̂  (a3 B - B3 O - B x 3 B) + M3 A + f" ̂  + B ) A
(AII.2U)

where n denotes the minkowskian metric tensor. This current satisfies the

identity

_k M B.JC _ k&m 6& m 1_ 6/o 1_ kHm 6̂ 6 j n 1_ 6/6 k

Ay

from which the Ward-Takahashi i d e n t i t i e s follow:

3 <T J* F ) + - <T B J* F> =

f kJlm 5F_ m + 1. 6F_ a + i ek&m 6F_ Bm _ 1_ 6F_ Bk I y

I &A 6B 6B ^ ( A l l . 2 6 )

•y

where F denotes any functional of the fields A , B and a .



A distinct family of Ward-Tak.ah.ashi identities corresponds to the con-

servation of the "true" isospin which is associated with the asymptotic sym-

metry (3»8). The current is given "by

6W
I = : _ A X ( F + n C ) - 3 ( A X A } + - ^ - B x 3 B
y v vy vy v v \i g 6A y

u (All.27)

and the Ward-Takahashi identities take the usual form,

3y <T

The same procedure could be applied to the model of Sec.IV whose action

is given in detail in Appendix I. The resulting identities would, of course,

be very complicated.
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U(2) quantum number assignments. The neutral gauge fieldsj A and U , are
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mixtures of 1 = 1 and 1 = 0 fields, X and X
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