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I. INTRODUCTION

Up to the end of the fifties, the chief problem in theoretical particle

physics was a search for a finite (infinity-free) local, unitary and analytic

field theory. As a result of the work done during the last 7-8 years this

problem appears near to a solution. Entire function Lagrangians of the

variety

int = g exP(K*) (1)

and Lagrangians of the type

= g(#A) exp(K<j>) (2)

appear to give finite, local field theories where the so-called minor coupling

constant K (with dimensions of inverse mass)- appears to play the role of an

inbuilt cut-off. From this point of view the task of experiment and theory

in weak, electromagnetic and strong interactions is not only to specify

the major coupling constants g, but also to specify the inbuilt cut-offs <"'

which may exhibit wide variations for different interactions. I wish briefly

to review these developments in a non-rigorous fashion, emphasising in

particular the following points:

l) Theories of types (l) and (2) are no strangers to physics. In

strong interaction physics, the following theories are wholly or partially

non-polynorai al:

A. Chiral Lagrangians:

£ = Tr 3 S3 S+ , S = exp(iXT.Tr) . (3)

The minor constant X ~ m
7T

B. Conformal Lagrangians containing dilatons.

C. Massive Yang-Mills Lagrangians for 1 and 1 particles in the

Boulware f orm.
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D. Intermediate boson-mediated weak interactions where also the

induced scalar and pseudoscalar interactions are intrinsically

non-polynomial with theninor constant / G ',

y r

E. And finally the Einstein Lagrangian for gravity (intrinsically

non-polynomial with the minor (and major) constant (both) equal

/ —22 -1
to K ŝ  Vo^G^. ^ 1 0 m ) as well as all gravity-modified

matter Lagrangians. If there is no inbuilt cut-off in any given

19
theory lying lower than 1/K % 10 BeV, the ultimate cut,-off of

gravity will always apply.

2) The precise theorem which shows how the cut-off 1/K acts is the

following:

Theorem

Theories of type (l) and (2) possess an inbuilt cut-off w ^TT/K. Any

matrix element computed to a given order g and exactly to all orders in <

is finite. In particular, if in (2) we take K —> 0 the "old" infinities of

the renormali zable theory gipyAty reappear. "When K /= 0, these are regularized

according to the following code:

HIT
The old log co is regularized to log — ;

K

1 kw
the old linear infinities co to — ;

K

the old quadratic infinites oo to —
1 K)

and the old quintic infinity oo to —r

3) Finally, I wish to emphasise a feature of these finite theories

which may be of great significance for strong interaction physics. This is the

dependence of form factors on space-like momenta. In the very simplest of

n

approximations (order g , all orders in K ) we obtain for large t (t < 0):

G(t) * g2 exp - |/tja , (a < i
2



If strong interaction Lagrangians are chiral or conformal with a

universal dilaton coupling (or"both), such "behaviour of G(t) may provide the

readiest understanding of the mysterious empirical circumstance that transverse

momenta p j of secondaries in inclusive reactions appear to be bounded.
i. l

II. EXPONENTIAL LAGRANGIA.N THEORIES AS "GOOD1' FIELD THEORIES

A detailed review of the technical aspects of non-polynomial theories

was presented at the 1971 Miami Conference (IC/71/3) as also the credits to

those who have worked in this field. I shall here simply summarize some

of the recent major results.

l) The fundamental assumption which goes into the working out of

non-polynomial theories is the euclidicity ansatz.

We always start perturbation theory computations in the Symanzik

region of external momenta (this is the region where scalar products of all

momenta are essentially space-like). There are no production thresholds and

one can formally make a Wick-rotation to euclidean space-time. After the

computations have been performed, one continues analytically to the physical

subspace of momenta. It is a real miracle that the continued theory should

exhibit unitarity and analyticity in the perturbation-theoretic sense. That

this is indeed the case has recently been claimed by Taylor, Lehmann and

Pohlmeyer.
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2) All S-matrix computations are carried out to a given order in the

major constant g but to all orders in the minor constant K.

3) In computing S-matrix elements one needs to evaluate Fourier

transforms of products of singular distributions like

or (log x 2 ) n z (k)

This is when no derivatives are involved in the interactions. In derivative-

containing theories, we also come across products like

n,
or b (5)

The conventional field-theoretic infinities have their origin in the

difficulties associated with defining these products and their Fourier

transforms. Apparently the biggest disaster in the science of infinities

has been the use of momentum space methods at too early a stage of the

computations. Momentum space methods obscure the underlying distribution

theory in x-space and tend to confuse the real physical origin of the

infinities (polynomiality of Hie Lagrangians produced by taking the limit

< •+ 0 in (2)) with (in this context spurious) mathematical ambiguities of

ill-defined products of distributions like (5). Although no general theory

of products of distributions exists at present, a consistent use of methods

developed by Gel'fand and Shilov,together with appropriate analytic

continuations, permits us to separate the two types of problems, as we shall see

in the example below.

h) Consider the model electrodynamic interaction et = etytyA exp(tc<J))

where \\) is the electron field, A is the (scalar) photon and I is a scalar

field which I shall call "gravity", a nomenclature which I shall justify later.



We wish to exhibit the realistic regularization of the otherwise

infinite electron self-mass through gravity. Writing the most singular

parts of the relevant propagators in the form (I have dropped some factors

of k-n)

= - ( i > 3 + m) —^ + less singular terms
x

<AA> =

<*+> =

and noting that < e K ^ X ^ e^
0') = exp(-K2/x2), the contribution to the

electron self-mass from the sum of the chain of graphs

Y

i-

F{x) = a (i
x

n

Using a Sommerfeld-Watson transform this equals

dz
(-X)

. 2xri I H z + l ) sin-rrz
x

z+1
i y. 9 + m

1

X

1

2
*

where the contour lies round the positive real z-axis. This contour may be

rotated to lie parallel to the imaginary axis to give

«*>=2vr i y.3
T(z t 1) s in TTZ Iz + 2

Rez<0

+ m
z+2

- 5 -



The advantage of doing tHis is that now we can use the unambiguous

expression for the Fourier transform of the (classical) function (-1/x )

2 2 2
valid in the range 0 < Re z < 2, given by the expression -1/(UTT) (-p /(UTT)

(F(2-z))/(F(z)) (see for example Gel"fand and Shilov,"Generalized Functions"

Vol.1). Thus

( s i n * z ) r

r(-z)

F(p) can be expressed as a sum of well-known Mei.jer G-functions. To see its

2
behaviour as a pover series in K , we rotate the contour back to the real axis.

The double pole in z-space at z = 0 gives regularized contributions to self-

mass F(p) I , _ of the form a m log(K m ). The next terra is a K m log ( K V )
jp-ra=U

The conventional Weisskopf logarithmic infinity of 6m/m is instantly recovered

by taking the limit K -*• 0. For K f 0, the old infinity is regularized in

2 2
the manner stated in the Theorem in Sec. I (<5m/m a a log K m ) .

I am sure you will agree that the infinity suppression mechanism of

exponential theories is so transparent, so elegant and so easily exhibited that

the calculation like the one above (with W s supplied) should form part of

the first year courses in quantum field theory.

5) How unambiguous is the above procedure? To decide this, we must

first distinguish between entire function non-polynomial Lagrangians like

exp K<J> which are localizable and micro-causal in the sense of Jaffe and

rational non-polynomials like l/(l+K<t>) which are non-locali sable and not

causal. Lehmann and Pohlmeyer have considered possible ambiguities in local

theories and have shown that all possible distribution-theoretic ambiguities

in superpropagators like
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<(T:exp «Kx) - 1:

can be removed from the theory by imposing on it one single ansatz which

at the present stage of our understanding of these theories must be added to

the list of assumptions made. What Lehmann and Pohlmeyer show is that in

local theories one can define a "minimally singular" superpropagator. To

this one may add the so-called ambiguity terms in a well-specified manner.

However, the ambiguous terms are sharply distinguished from the minimal

solution by their high-energy behaviour. The minimal superpropagator falls

to zero along a specified direction in the complex energy-plane; the

ambiguous terms never fall in any direction. In the example I worked out

(to compute om/m) I exhibited the Lehmann-Pohlmeyer minimal superpropagator.

Why the minimally singular solutions of these non-polynomial theories should

represent physics we do not know. We shalljhowever, for the present accept

this ansatz, stressing once again that such an ansatz can be formulated for

finite local non-polynomial theories only. It cannot be formulated for

local polynomial theories nor,of course,for non-local theories. (In a recent

Trieste preprint(lC/7l/7^,Bollini and Giambiagi have argued that for local

theories the euclidicity hypothesis already guarantees freedom from ambiguities

and automatically leads to the minimal solution of Lehmann-Pohlmeyer GO that
minimality ansatz is not a new ansatz but part of the euclidicity hypothesis.)

6) For local Lagrangians, one expects Borchers' theorem to apply.

This should permit us to make such field transformations which preserve the

locality of "the Lagrangian. Under these, on-mass-shell S-matrix elements

should remain unchanged.

7) According to a recently proved (Communications in Mathematical

Physics, 1969) and extremely important theorem of Epstein, Glaser and Martin,

the on-shell S-matrix elements in a local theory must be Froissart bounded.

This means that, at any rate after summing the perturbation theory over the

-7-



major constant,Froissart boundedness must manifest itself. Since,in practice,

such summations are difficult to carry out exactly, let us examine the mass-

shell "behaviour of individual or groups of graphs in non-polynomial theories.

As I stated earlier, the situation is beautiful for (space-like)

momentum-transfer variables. A (form factor-like) graph, for example the

one shown in Fig.2: t"

Fig.2

exhibits a dependence

F(t) & exp (- |K tj ' ') for large t.

(This is the asymptotic expression for the relevant Meijer G-function.) This

means that a multiperipheral graph of the type

2
(consisting of a string of bubble graphs - each behaving like exp(-|K t|

will automatically give rise to boundedness among the transverse momenta of

the secondaries emitted.

Consider now the situation for time-like energies. The Meijer's

G-function referred to above now sums to

-8-



M(s) * i exp| SK
2| ( l / 3 )

The factor i signals that essentially the entire contribution comes from the

many-body phase-space of the intermediate particles. Clearly this is un-

acceptable behaviour for a physical matrix element. It also contradicts

the exact theorem of Martin, Glaser and Epstein. One needs a summation over

the major constant; for example, a chain graph like

will sum to

1 - M(s)

and exhibit Proissart boundedness.

This summation, however, is naive. It will introduce its own un-

physical singularities through the poles in the denominator. A superior

procedure is to adopt the Redmond-Bogolubov method of summation of chain

graphs. This method relies on noticing that the unitarity relation states

Im T" (S) = - p{s)

where p(s) is the many-body phase-space term.

As stated before, for the superpropagator in Fig.3, the phase-space

factor behaves like expiK2s|^1'3>. Thus

-9-



* - exp[[K2s|(l/3)]

or more exactly

T mt \ T 1 exp|k2sr'J I 2 ,1/3

Im T(s) = Im > v ^ tJ ^—r~p" ^ exp ~ l< sl
|l + c exp|K sj— |

which is consistent (though not identical) with the naive chain summation

which gave

One can nov use a (no-subtraction) dispersion formula to write

s1 - a [^ 1 - M(s')

Applying this method to the 2-point propagator A(s) (and this applies

also to theories with derivative couplings like (9cp) (e -l)J it is clear

that, the propagator will behave like

H

i.e., the Lehmann-Kallen theorem for propagatorstolds, as it should in a local

theory. The subtraction constants of the theory, if any are needed, are all

finite and the propagator on the light cone "behaves like a free-field

l
2 j \

propagator l/x . (As is well known, this is a key point when one considers

whether a theory scales or not.)

The summation of chain graphs for the exponential Lagrangian

is particularly easy. The general case for other non-polynomial

Lagrangians is no more difficult and has "been worked out with .

Delbourgo and Strathdee. A different type of summation over fishnet

diagrams has been mentioned by Sakita and Virasoro who, following Nielson,

consider fishnets like

-10-



and show that the fishnet exhibits Veneziano-Regge behaviour,

2
provided each line factor 1/p in the fishnet is replaced by

2 22 2a superpropagator factor ^ exp - (K p )

I wish to stress that I consider the BogoluToov-Redmond .ar Sakita-

Virasoro methods of summation of chain graphs as having only a suggestive and

heuristic value and no more. The problem of implementing the Martin-Glaser-

Epstein "bound is the main unsolved problem of local non-polynomial theories

and deserves further study.
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TABLE I

Distinction between causal, local (e.g. exp tcj6) and non-local theories (e.g. l/(l + K^)

appear to possess all desirable features of good field theories.

Local theories

H
ro

Causal, local, exp K<f>

l) Superpropagators are entire
2 2

functions of (JC /x )
_K2 2

/'T expK<Kx} expK(j)(O)/ = e

2) Theory analytic, unitary and

positive definite

3) Borchers* theorem valid; changes of

variables which preserve locality

leave on-shell matrix elements unchanged

1+) Martin-Glaser-Epstein theorem guarantees

on-shell Froissart boundedness

5) Lehmann-Fohlmeyer ansutz guarantees

freedom from ambiguities

Non-local (l + K$

Superpropagators are represented by di\

-1 [ V^\ V

rerge

h2}
2

X

;nt series

Unitary but positive-definiteness not clear

?

7
*

cont.



H

TABLE I (continued)

Causal, local, exp «j> Non-local ( l + K4>)- 1

6) Secoti1 • aer (or linear chain) form factor

for large t < 0

|0(t))* exp - |
oscillations)

G(t)
K2t)3



8) Symanzik (private communication) and Fivel (Maryland preprint)

have remarked that in an N-point graph any two points are joined thrown one

and no more than one superpropagator (the total number of superpropagators for an

N-point graph being equal to (u(N-l};/2). This means that a typical graph

in non-polynomial theories strongly resembles cluster graphs in statistical

mechanics. Thus, in contrast to graphs in polynomial theories,their topological

properties are much simpler. Exploiting this analogy, Fivel has made some

exciting conjectures about the convergence of the entire perturbation series,

defining correlation lengths for K-point graphs. I believe these analogies

vill prove of value in connection with giving a Lagrangian basis to the current

models of hadrons as "Feynman liquids".

9) I have been discussing almost entirely theories with no

derivatives in the coupling. Most of the physical theories of interest -

chiral, Boulware— modified massive Yang-Mills and gravity theory - contain

not one but two derivatives in the interaction. In addition, these theories

pose the extra problem of arranging the calculation in such a manner that

various typos of gauge invariances are respected. We (isham, Strathdee and

Salam) have made a small beginning towards this - in particular towards

arranging perturbation calculations in gravity-modified electrodynamics such

that the electromagnetic invariance is manifest. In carrying through this

programme [lC/71/13. (Phys. Letters 3£B, 585 (1971 ))& IC/71/lM we found we need

to develop a calculus of derivatives (extending the Gel'fand-Shilov analytic

continuation method) to products like

1 z • '

3 V 2
x

1
2

(see also the related work of Patani and Lazarides IC/71/ 38 and Bollini and

Giambiagi IC/71/72), This mathematical development,however, is still in

its infancy. We have, for example, not yet shown that our computation of <$m/m

in gravity-modified electrodynamics is gravitational gauge invariant (generally

covariant) though we have exhibited its electromagnetic gauge invariance.
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l) Gravity-modified lepton

electrodynamics Lya ii< y 0, , - ie A ) t + m #
5. U LI

,ua / , ab \
iS = exp (<£j! Y a b)

•where y , are k x U symmetric matrices

and (J) = (J* are the ID fields describing

gravitons

Inbuilt cut-off

at --— where

j^ 10 m

— = 3/UTT log < 2 m 2 + 0(a,K2a)
m

1

2) Intermediate boson

mediated weak (leptonic)

interaction

A U(2) Yang-Mills theory of three weak fields

W , W , X together with the electromagnetic

field A proposed by Abdus Salam and J.C. Ward

(Phys. Letters 13., 168 (1961+)), the llobel

Symposium, Gothenburg (1968) and,independently,

by S. Weinberg (Phys. Rev. Letters 1£, 126U

(1967)) and considered by T.D. Lee (1971).

(lU > M + >/ 37.8 BeV) has been shown to be
x w—

renormalizable by G. t'Hooft (Amsterdam Conf.)

provided the theory contains one additional

scalar field

Use either t'Hooft's formulation or our

original version. Use the Boulvare-

formulation to recast the theory. The

pure spin-1 interactions are renonnalizable

but logarithmic self-mass and self-charge

infinities still survive.. The induced

scalar and pseudoscalar interactions are

finite, however, with cut-off at

3) Strong chiral

interactions

(Giirsey) exponential foi™ (manifestly local)

i- = Tr 3 S 3 S+

where

S = exp(iXT-Tr)

Also chiral pions interacting with

baryons, etc.

Cut-off UTT/X m kirm •
Tr > bounded



TABLE II (continued)

k) Strong confonnal

diliton1 interactions

Dilatons couple universally to trace of strong

stress tensor

Cut-off

rm I

hi
"bounded

H

i

5) Yar.g-4[ills theories of
+

1 and 1 particles

Use Boulware form, writing

Wy =A y +(i/g)S 3y S
t

(S = exp iCg/nJ T-B)

A-field interactions renormalizatile

(with 5m, 6g still logarithmically

infinite).

B-field interactions are finite with

cut-offs at

UTT

g



III. INBUILT CUT-OFFS IK SOME CURRENTLY ACCEPTED FIELD THEORIES

Table II summarizes what I said earlier about the non-polynomiolities

in some of the Lagrangians currently in use (or which should be in use) to

describe electromagnetic weakand strong phenomena.

What I wish you to notice is the patch-work pattern of cut-offs*

some (in hadron physics) at relatively low energies like Uifm^, klTm /g; others

(in lepton physics) at high energies like G~ ' ,and then the ultimate cut-off
r

-1/2 19
G^ <y 10 BeV. Let us discuss the theories one by one.

A. Gravity-modified lepton electromagnetism

In Table II, I have written in the conventional vierbein gravity

LlEL

Lagrangian. The connection between the vierbein L and Einstein's metric tensor

g is given by the relation L L = g . I have used a manifestly local

(exponential) parametrization to connect the vierbein and the physical graviton
ab

field <j> (the analogy for the chiral case is with the fields S and £ which

are connected by the relation S = exp(A.i r_ • j\) with £. given by Tr 9 S 3 S ).

The exponential parametrization of L in the form [exp(K<J>)]^ automatically

guarantees the important physical requirement on det L - that it must not

change sign, and that the signature of the metric tensor + does not,e.g.,

change to + + — when the field evolves in time.

In Trieste we have carried through the calculation of electron self-

mass using vierbein gravity (IC/70/131 (Phys. Rev. EG, 1805 (1971)) and

IC/7l/ll+). We needed during1 the course of this calculation super propagators

like

det L(x) det L(0)

-17-



with all their (tensor) indices. Such superpropagators have recently been

worked out for exponential gravity "by J. Ashraore and R. Delbourgo (imperial

College preprint). The numerical result of working with full vierbein

gravity differs from the model calculation in the earlier part of this

lecture by terms of order V (the term of order tx. log < m is the same).

19
Assuming that Maxwell's theory holds up to 10 BeV - till gravity modifies

it - we thus obtain the result

<Sm
me;r;, ~ 57 log (K m )

(Mote R = 2K m is the electron's Schwarzschild radius (in units of l/m).)

2 — kk -2 2 2 - 1
Substituting K %, 10 m we note that log K m £ 105 ~ ct the

gravity modification of the self-mass is large with (Sir./m •&• 1/5 in the

lowest order of our calculation. Remembering that the effective parameter

2 2
in gravity-modified electrodynamics is (a log K m ) & 105/137, it is fully

conceivable that, with higher orders included,,one may after all realize the

Lorentz conjecture that <5m/m = 1, that indeed all self-mass of the electron

7)
is gravity-modified electromagnetic (or weak) in nature. One may be

tempted then to reverse the argument and, setting 6m/m - 1, compute self-

consistently in a field-theory bootstrap the value of a log (G^n ) - possibly

obtaining thereby the correct numerical result relating these basic constants

2
of nature « log G^n ( a? l).

2
But perhaps one should not be carried away by this relation Oi, loir, GT,m

i\

Perhaps one should systematically investigate what the possible local non-

polynomial modifications to electrodynamics could be. Viewed this way, one can

see that electromagnetic gauge invariance places strong restrictions on all

possible modification of Maxwell's theory. Gauge invarLance demands that any

modification of the total electromagnetic Lagrangian should preserve the

combination (h.s ~ iA ) intact. If it is a local scalar modification, then it

-18-



must clearly have the form

where f(K(}>) is an entire function. However} we can now make the Borchers'

transformation

and thereby remove the dependence of <*- on <p. This shows that a scalar

modification would produce no regulanzation of infinities for (massless) electrons.

What is the next simplest modification? Clearly the simplest idea

is to try a tensor modification like

We have preserved in this way the sacred gauge-invariant combination

The emergence of the tensor modification from the requirement of

electromagnetic gauge invariance together with the seductiveness of the

relation a log G J I ( ~. l) make one feel one is on the right track in assuming

it is gravity alone that modifies Maxwell's equations. But in the energy

scale this is such a bold extrapolation that perhaps one should feel content

at this stage simply to suggest to those performing accurate experiments in

lov-frequency lepton electrodynamics to express their cut-offs (where they

expect electrodynamics to break down) not in the non-local form l/(l + t< )

(as Pipkin did during-this conference) but in the local form through Meijer

G-functions, i.e. through form factors of the type ~ exp -\t\t\ {tf. < 1/2).

-19-



B, Weak interactions

Consider leptonic *Z . . As Table II shows, the Ward-Salam-Weinberg

theory still contains a fev logarithmic infinities. A gravity modification of

this theory should regularize these remaining logarithmic infinities. This

is the problem we are currently working on. We are very much hoping that some

of the finite numbers we obtain refer to measurable magnitudes and not just

to self-masses and self-charges.

C. Hadron physics

For hadrons physics two things are clear:

1) Empirically all hadronic matrix elements, whether in strong, weak

or electromagnetic interactions, appear to possess cut-offs at energies of

the order of a few BeV. Thus Einstein's ultimate cut-off is supplanted

by a cut-off at a lower energy.

2) Even though the chiral and conformal cut-offs at around a BeV

or so will regularize some of the infinities, we still need something as

universal as gravity to make all matrix elements finite. To provide this

universal regularizing non-polynomiality we (isham, Strathdee and Salam)

and,independently, Wess and Zumino - and more recently Arnowitt, Nath and

Friedmann - have considered the possibility of taking over the Einstein

equation into hadron physics and using it to describe a universal coupling

of a 2 strongly interacting F-meson with all hadronic matter. (We replace

—1 —1/2
the newtonian constant GM by G^ *• (BeV) ; Gw serves as the universal

ii v a

cut-off for hadron physics.) The interconversion of Einstein's g-field into the
,F-field;
pis described by a covariant mixing term, the entire theory being constructed in

analogy with the p-f mixing theory. Since this two-tensor theory of gravity

is described in detail in my Miami lecture, I shall not speak any more about

it.

-20-



To conclude, I should like to recall the famous mathematician E. Hille's

introduction to the first edition of his book on Semi-Groups, which goes something

like this: "Friends assure me that not everything L see around me

is a Send-Group. I simply do not believe them." I could say the same about

non-polynomial Lagrangians. I "believe in a few years all Lagrangian theories

which will be considered vill be of the local non-polynomial variety and

through the interplay of the minor coupling constants, and especially of

the dependence of self-masses and self-charges on logarithms of these

constants (a feature of non-polynomial theories), we shall achieve an

understanding of the outrageous magnitudes in particle physics (ranging

2 J. -hh -2 2
from G ATT * IS t0 G * 10 m and of relations like «log G.J1 & 1.

NTT N e ° a

-21-



FOOTNOTES

l) The ^oulware. split exhibits the Yang-Mills triplet W ,for example,

in the form W = A + (i/g) S 8 S where W = W • T and S = exp(igT-B),
M M y y ~y —•

Thus the conventional Lagrangian

I = Tr (V^ Wyv .+ m

where

Wv "

can be written in the (partially) non-polynomial form

+ m2(2A S d Sf + 3 S 3 S+)
y y \i v

The pure A part of the Lagrangian is polynomial and

renonaalizable. The "induced" scalar part containing the B-field

exhibited within curly brackets is non-polynomial and finite with

the minor constant g/m .

2) If weak intermediate bosons are of Yang-Mills variety, footnote (l)

applies. A simpler case is that it a.neutral intermediate boson W

with

înt = VV * Yy(l + V* \ •

Make the conventional Stiickelberg s p l i t of W (W = A +(l/m )S B).

One can rewrite

B) -

3) Note that for n = 1, the last product presents us with the problem

of defining products like

-22-
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h) If we consider a linear chain of superpropagators with k initial and

I final particles

A

it is possible to write down an integral equation for the complete

matrix element. Quite generally,

F n(s)

M-l

where

-s
n-2

and F . is the contact (Born) term for the scattering, which equals

Graphically the integral equation represents

For the case of the Lagrangian g(e - 1)

and

which solves to

n

F M(a) = g <
k+A

1 -
Dn(a)

F(n
n

-1
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Using the Sommerfeld-Watson transformation method one sums the series

in the square bracket. It is here that the usual Meijer's G-function

makes its appearance. For large s we obtain

f
1 - c exp j

5) A legitimate question which one may ask is this; if the propagator

satisfies the Lehmann-Kallen bound in these theories and behaves

like a free propagator for large s, how can one reconcile this

statement with the finiteness of matrix elements in such theories?

To answer this, one must stress that it is a fallacy to bring to

the non-polynomial theories the ideas and techniques we have inherited

from polynomial Lagrangian theories. The technique of insertion

of self-energy graphs in free lines, exploited so successfully by

Dyson,in polynomial theories, simply does not hold here. Every

graph in a non-polynomial theory is a jumble of elementary super-

propagators like those in Fig.l or 3, (just one superpropagator joining

every two points). No (self-energy) insertions can be isolated in

these graphs. Further, all calculations are made in the Symanzik

region where momenta are space-like and even the infinitely long

linear chains of the type considered above(admittedly a bad

approximation) behave like exp - |K.t] . It is these convergence

factors which provide the inbuilt finiteness of the S-matrix elements.
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6) for example,the Drell et al. graphs in deep

inelastic domain

Vhen modified (in a non-polynomial chiral theory) to

look ;

7)

vill lead in a natural manner to a cut-off in ( pm I» needed by Drell et al.

to exhibit the scaling behaviour of deep inelastic matrix elements.

We have no explanation of the muon mass.

8) This passage seems to have been deleted in the Preface to the

second edition in the ICTP Library.
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