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I. INTRODUCTION

Up to the end of the fifties, the chief probliem in theoretical particle
ﬁhysics was & search for a finite (infinity-free) local, unitary and analytic
field theory. As a result of the work done during the last 7-8 years this
problem appears near to a solution. Entire function Lagrangians of the

variety

L . = g explxs) (1)

int

and Lagrangians of the type

L. = (W) explxs) (2)

int

appear to give finite, local field thecries where the so-called minor coupling

constant Kk (with dimensions of inverse mass) appears to play the role of an
inbuilt cut-off. From this point of view the task of experiment and theory
in weak, electromagnetic and strong interactions is not only to specify
the major coupling constants g, but also to specify the inbuilt cut-~offg x7i
which may exhibit wide variations for different interactions. I wish briefly
to review these developments in a non-rigorcus fashion, emphasising in
particular the following points:

1) Theories of types (1) and (2) are no strangers to physics. In
strong interaction physics, the following theories are wholly or partially

non-polynomial:
A. Chiral Lagrangisns:

t ‘ :
;ﬁ = Tr ausaus , 8 = explidT.m) . (3)

The minor constant A = m%l.

B. Conformal Lagrangians containing dilatons.

1

- +
C. Massive Yang-Mills Lagrangians for 1 and 1 particles in the

1)

Boulwere form.

1=



D. Intermediste boson-mediated weak interactions where also the
induced scalar and pseudoscalar Interactions are intrinsically

)

non-polynomial 2 with theminor constant /GF.

E. And finally the Einstein Lagrangian for gravity (intrinsically

non-polynomial with the minor (and major) constant {both) equal

to K =2 BHGN R 10_22 mgl) as well as all gravity-modified
matter Lagrangians. If there is no inbuilt cut-off in any given

theory lying lower than 1/k = 1019 BeV, the ultimate cui-off of

gravity will always apply.

2} The precise theorem which shows how the cut-off 1/K acts is the
following:

Theorem

Theories of type (1) and (2) possess an inbuilt cut-off = Wn/K. Any

matrix element computed to a given order gn and exactly to all orders in K

is finite. 1In particular, if in (2) we take ¥ —> 0 the "old" infinities of
the renormalizable theory gﬁﬁAw reappear. When « % 0, these are regularized

according to the following code:

T
The old log « is regularized to log EE' )

the old linear infinities m} to EE:;
‘oa g 2 )@
the 0ld quadratic infinites oo to — ,

b
and the old quintic infinity oot to [}‘-Li}

3) Finally, I wish to emphasise a feature of these finite theories
wihich may be of great significance for strong interaction physics. This is the
dependence of form factors on space-like momenta. In the very simplest of

approximations (order g2, all orders in k) we obtain for large t {t < 0):

2 2,10 1
G(t) =~ g~ exp - |Kt] , (a < 5—)

-




If strong interaction Lagrangians are chiral or conformal with a
universal dilaton coupling {orth), such behaviour of G(t) may provide the
readiest understanding of the mysterious empirical circumstance that transverse

momenta lpTl of secondaries in inclusive reactions appear to be bounded.

iT. EXPONENTIAL LAGRANGIAN THEORIES AS "GOOD" FIELD THEORIES

A detailed review of the technical aspects of non-peolynomial theories
was presented at the 1971 Miami Conference (IC/71/3) as also the credits to
those who have worked in this field. I shall here simply summarize sonmc

of the recent major results.

1} The fundamental assumption which goes into the working out of

non-polynomial theories is the euclidicity ansatz.

We always start perturbation theory computations in the Symanzik
region of external momenta (this is the region where scalar products of all
moments sre essentially space-like). There are no production thresholds and
one can formally make a Wick-rotation to euclidean space~time.  After the
computations have been performed, one continues analytically to the physical
subspace of momenta. It is a real miracle that the continued theory sicuid
exhibit unitarity and analyticity in the perturbation-theoretic sense. That
this is indeed the case has recently been claimed by Taylor, Lehmann and

Pohlmeyer.
.




2) All S-matrix computations are carried out to a given order in the

major constant g but to all orders in the minor constant K.

3) In computing S-matrix elements one needs to evaluate Fourier

transforms of products of singular distributionslike

This is when no derivatives are involved in the interactions. In derivative-

containing theories, we alsoc come across products like 3)
n n n n
14t 1 |72 2 1]t 1 |7
x X X X

The conventional field-theoretic infinities have their origin in the
difficulties associated with defining these products and their Fourier
transforms. Apparently the biggest disaster in the science of infinities
has been the use of momentum space methods at too early a stage of the
computations. Momentum space methods obscure the underlying distribution
theory in x-space and tend +to confuse the real physical origin of the
infinities (polynomiality of the Lagrangians produced by taking the limit

Kk > 0 in (2)) with (in this context spurious) mathematical ambiguities of
ill-defined products of distributions 1like (5). Although no general theory
of products of distributions exists at present, a consistent use of methods
developed by Gel'fand and Shilov, together with appropriate analytic
continustions, permits us to separate the two types of problems, as we shall see

in the example below.

4) Consider the model electrodynamic interaction o = ePPA exp(kd)
where § is the electron fieid, A is the (scalar) photon and ¢ is a scalar

fieid which I shall call "gravity", anomenclature which I shell justify later.
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We wish to exhibit the realistic regularization of the otherwise
infinite electron self-mass through gravity. Writing the most singular

parts of the relevant propagators in the form (I have dropped some factors

of luw)
<UJ1T’.> = -(i vy-3 +m) 1—2 + less singular terms
X
- 1
<AMA7 = -
X
1
{99 = - =
X

and noting that <ek¢(x) e£¢(0)> = exp(—xz/xe), the contribution to the

electron self-~mass from the sum of the chain of graphs

-Y
< R + AURAEN + Zo +
S N/
¢ A
_\_ ‘I’—\l +_ Ra—
1 1 K2 " 1
F(X) = o Z ‘I'I'E' (1 Y Jd + m) - ""‘2"' -y - —é'
h=0 X 1 x X
Using a Sommerfeld-Watson transform this edquals
oo [ g P ® S A PV 1
2m T(z + 1) sinmz |~ 2 s 2 ’

where the contour lies round the positive real z-axis. This contour may be

rotated to lie parallel to the imaginary axis to give

Ti 'z + 1) sin =z

2.z . 2
F(x)r-'é-g-:' f dz ()7 (-1)° (l 219 + m] (— L ]z+ .
+ 2
Re z<0 x



The advantage of doiﬁg this ie that now we can use the unambiguous
expression for the Fourier transform of the {classical) function (—l/xe)Z
valid in the range 0 < Re z < 2, given by the expression -l/(hw)2 (—pe/(hﬂ)2)
(r(2-2))/(I'(z)} (see for example Gel'fand and Shilov, “Generalized Functions’

Vol.I). Thus

?( ) = e J dZ(KQ)Z (<32
o (2wi)(uﬂ)2 (sin nz)7(z+1)
Rez Q

N {_ 7 +_m} [_ 221° 1w _

(u“)QJ I'{z + ?)

e

F(p) can be expressed as a sum of well-known Meijer G-functions. To see its

. . . 2 .
behaviour as a power series in K , we rotate the contour back to the real axis.
The double pole in z~space at 2z = 0 gives regularized contributions to self-

22 . 2 2 22,
g °f the form a m log(«"m®). The next term is o K'm  log {«™m™).

The conventional Weisskopf logarithmic infinity of Sm/m is instantly recovered

mass 'ﬁ(p) ‘)p’—m=

by taking the limit k + 0. TFor K # 0, the old infinity is regularized in

the manner stated in the Theorem in Sec.I (dm/m = o log K2m2)

I am sure you will agree that the infinity suppression mechanism of
exponential theories is so transparent, so elegant and so easily exhibited that
the calculation 1iké the one above {with br's supplied) should form part of

the first year courses in quantum field theory.

5) How unambiguous is the above procedure? To decide this, we must
first distinguish bvetween entire functicn non—polynbmial Lagrangians like
exp K¢ wnich are localizable and micro-causal in the sense of Jaffe and
rational non-polynomials like 1/{1+k¢} which are non-localizable and not
causal, Lehmann and Pohlmeyer have considered possible ambiguities in local
theories and have shown that all possible distribution-theoretic ambiguities

in superpropagators like




{Tiexp kdp(x) - 1+ :exp «¢(0) ~ 1:>0

can be removed from the theory by imposing on it cne single ansatz which

at the present stage of our understanding of these theories must be added to
the list of assumptions made. What Lehmann and Pohlmeyer show is that in
local theoriesg one can define a "minimally singular" superpropagator. To
this one may add the so-called ambiguity terms in a well-specified manner.
However, the ambiguous terms are sharply distinguished from the minimal
solution by their high-energy behaviour., The minimal superpropagator falls
to zero along a specified direction in the complex energy-plane; | the
ambiguous terms never fall in any direction. In the example 1 worked out
(to compute Jm/m) I exhibited the Lehmann-Pohlmeyer minimal superpropagator.
Why the minimally singular solutions of these non-polynomial theories should
represent physics we do not know. We shall however, for the present accept
this angatz, stressing once again that such an ansatz can be formulated for
finite local non-polynomial theories only. It cannot be formulated for
local polynomisl theories nor, of course,for on-local theories. (In a recent
Trieste preprint{IC/71/79,Bollini and Giambiagi have argued that for local
theories the euclidicity hypothesis already guarantees freedom from ambiguities

and autcomatically leads to the minimal solution of Lehmenn-Pohlmeyer so that
minimality ansatz is not a new ansatz but part of the euclidicity hyvpothesis.)

6) For local Lagrangians, one expects Borchers' theorem to apply.
‘This should permit us to make such field transformations which preserve the

locality of the Lagrangian. Under these, on-mass-shell S-matrix elements

should remain unchanged.

7) According vo a recently proved (Communications in Mathematical
Physics, 1969) and extremely important theorem of Epstein, Glaser and Martin,
the ‘on-shell S-matrix elements in a local theory must be Froissart bounded.

This means that, at any rate after summing the perturbation theory over the




major constant, Froissart boundedness must manifest itself, Since,in praciice,
such summations are difficult to carry out exactly, let us examine the mass-

shell behaviour of individual or groups of graphs in non-polynomial theories.

As I stated earlier, the situation is beautiful for (space-like)
momentum-transfer variables. A {form factor-like) graph, for example the

one shown in Fig.2:

exhibits a dependence

(- [thl(l/B))

F(t) ~ exp for large *t.

(This is the asymptotic expression for the relevant Meijer G-function.) This

means that a multiperipheral graph of the type

(consisting of & string of bubble graphs - each behaving like exp(-]thl(l/B))

will automatically give rise to boundedness among the transverse momenta of

the secondaries emitted.

Consider now the situation for time-like energies. The Meijer's

G-function referred to above now sums to

8




Fig.3

M(s) ~ i exp|'sl<2|(l/3)
The factor i signais that essentially the entire contribution comes from the
many-body phase-space of the intermediate particles. Ciearly this is un-
acceptable behaviour for & physical matrix element. It also contradicts

the exact theorem of Martin, Glaser and Epstein. One needs a summation over

the major constant; for example, a chain graph like

will sum to

and exhibit Froissart boundedness.

This summation, however, is naive. It will introduce its own un-
physical singularities through the poles in the denominator. A superior
procedure is to adopt the Redmond~Bogolubov method of summation of chain

graphs. This method relies on noticing that the unitarity relation states
Im TH(s) = - pls)

where p(s) is the many-body phase-space term.

As stated before,for'the superpropagator in Fig.3, the phase-space

factor behaves like exlezsl(l/3). Thus

-9




or more exactly

11/3 o

1 explkgs /3

1-M(s}

Im T(s) = Im ~ exp - |k7s|

3

1+ ¢ explc®s|3|®

which is consistent (though not identical)} with the naive chain summation

which gave

Applying this method to the 2-point propagator A(s) (and this applies
also to theories with derivative couplings like (39)2 (eK¢ —1))it is elear

that the propagator will behave iike

. i.e. A(s) N-é R

. ~lx%s
ACs) = J as' e

s - s'
i.e., the Lehmann~Kdllen theorem for propagatorsloplds, as it should in a local
theory. The subtraction constants of the theory, if any are needed, are all
finite and the propagator on the iight cone behaves like a free-field

propagator 1/x2. L) (As is well xnown, this is a key point when one considers

) )

_wnethe a theory scales or not.

The summation of chain graphs for the exponential Lagrangian
is particularly easy. The general case for other non-polynomial
Lagrangians is no more difficult and has been worked out with
Delbourgo and Strathdee. A different type of summation over fishnet
diagrams has been mentioned by Sakita and Virasoro whe, following Nielson,

consider fishnets like

™

il W




N
f;}t.

and show that the fishnet exhibits Veneziano-Regge behaviour,

provided each line factor l/p2 in the fishnet is replaced by-

& superpropagator factor a exp - (K2p2)

I wish to stress that I consider the Bogolubov-Redmond or Sakita-
Virasoro methods of summation of chain graphs as having only a suggestive and
heuristic value and no more. The problem of implementing the Martin-Glaser-
Epstein bound is the main unsolved problem of local non-polyncmial theories

and deserves further study.

-] ] -




TABLE I
Local theories

Distinction betwesen causal, local (e.g. exp K¢) and non-local theories (e.g. 1/{1 + k¢).

appear to possess all desirabls features of good f£ield theories.
-1
Non-local (1 + k¢)

Causal, local, exp K¢

Superpropagators are represented by divergent series
_K2

2

|

1} Superpropazators are entire
2,2
functions of (K /x ) -1
<T(2+kd{x)) l,(l+£<¢(0)) > = Zn! [
X

- -‘<2/3-c2
T expkd(x) exprd(0)> = e

not clear

Unitary but positive-definiteness

Theory analytic, unitary and

pesitive definite

Borchers' theorem valid; changes of

3)
which preserve locality

variables
leave on-shell matrix elements unchanged

Martin-Glaser-Epstein theorem guarantees

on-shell Froissart boundedness

Lehmann-~-Pohlmeyer ans:Lz guarantecs

freedom from ambiguiiles
cont,

5)




-1~

TABLE I {continued)

Causal, local, exp kb

Non-local (1 + K¢)_1

6)

Secon? - der (or linear chain) form factor

for large t < O

IG(t)]z g2 exp -[K2t|

1/3 {neglecting
possible
oscillations)

1

Glt) g ——————
(1 + %t)3




8) Symanzik (private communication) and Fivel {Maryland preprint)
have remarked that in an N-point graph any two points are joined through one
and no more than one superpropagator (the total number of superpropagators for an
N-point graph being equal to(N(N—lE/2). This means that a typical graph
in non-polynomial thecries strongly resembles cluster graphs in statistical
mechanics. Thus, incontrast to graphs in polynomial theories,their topological
properties are much simpler. Exploiting this analogy, Fivel has made some
exciting conjectures about the convergence of the entire prturbation series,
defining correlation lengths for N-point graphs. 1 believe these analogies
will prove of value in connection with giving a Lagrangian basis to the current

models of hadrons as "Feynmsn liquids".

9) I have been discussing almost entirely theories with no
derivatives in the coupling. Most of the physical theories of interest -
chiral, Boulware—modified massive Yang-Mills and gravity théory - contain
not one but two derivatives in the interaction. In addition, these theories
pose the extra problem of arranging the calculation in such a manner that
various typs of gauge invariances are respected, We (Isham, Strathdee and
Salam) have made a small beginning towards this - in particular towards
arranging perturbation calculations in gravity-modified electrodynamics such
that the eleétromagnetic invariance is manifest. In carrying through this
programme {rc/71/13 {Pnys. Letters 35B, 585 (1971))& IC/71/14] we found we need
to develop a calculus of derivatives (extending the Gel'fand-Shilov analytic

continuation method) to products like

(see also the related work of Patani and Lazarides IC/71/38 and Bollini and
Giambiagi IC/71/72), This mathematical development, however, is still in
its infancy. We have, for example,not yet shown that our computation of §m/m

in gravity-modified electrodynamics is gravitational gauge invariant {(generally

covariant) though we have exhibited its electromagnetic gauge invariance.

-1h




1)

Gravity-medified lepton

electrodynanis

Lacrangian

].IS.T _ s » Tn
LTy Ya(au ie Au)ﬂf + m Y

det L
ab

+Ha
L

= exp (k¢ Yop)

where Y,y 2T L & symmetric matricss

ba

and ¢ab = ¢ are the 10 fields describing

gravitons

Inbuilt cub-of7
at :E- where
h|
1 ;”J_E'ITGN
~ lo-22 -1
e
2
gg- = 3/km log K2 m2 + O(a,k"a)

Intermediate boson
mediated weak (leptonic)

interaction

A U(2) Yang-Mills theory of three weak fields

+ -
W, W, XO together with the electromagnetic
fieid AO proposed by Abdus Salam and J.C. Ward

(Pnys. Letters 13, 168 (196L4}), the Nobel

Use either t'Hooft's fo:mulation or our

criginal version.

formulation to recast the theory.

pure spin-l interactions are rencrmalizable

Use the Bouwlware-

The

Symposium, Gothenburg (1968) and, independently, but logarithmic self-mass and self-charge

by S. Weinberg (Phys. Rev. Letters 19, 126L The induced
(1967)) and considered by T.D. Lee (1971).

(M%o > M_+ % 37.8 BeV) has been shown to be

infinities still survive.
scalar and pseudoscalar interactions are
finite, however, with cut-off at

renormalizable by G. t'Hooft {Amsterdam Conf?,) hﬂ/(v&%J.
provided the theory contains one additional

scalar field

G

Strong chiral (manifestly local)

(Gursey) exponential Cut-off hﬂ/A'z hﬂmﬂ; [pTI bounded
interactions s Tr au 3 au 5

where

S = exp(iit-m)

Also chiral pions interacting with

barycns, etc,




_9T"

TABLE II (continued)

L)

Strong conformal

dilzton interactions

Dilatons couple universally to trace of sirong

stress tensor

Lm

Cut-off =

[pr bougded

5)

Yargz-li1ls theories of

- +
1 and 1 particles

form, writing
.f.

W = A 4+ S
8§ y (i/g)s %i

Use Boulﬁare

(s = exp i{g/n) 1-B)

A-field interactions renormalizeble
{(with S8m, 8g still logarithmically
infinite),

B-field interactions are finite with

cut-offs at

b m

g




III. INBUILT CUT-OFFS IN SOME CURRENTLY ACCEPTED FIELD THEORIES

Table IT swmmarizes what I said earlier about the non-polynomalities

in some of the Lagrangiasns currently in use (or which should be in use) to

describe electromagnetic weakand strong phenomena.

What I wish You to notice is the patch-work pattern of cut-offsy

some {in hadrdn physics) at relatively low energies like hﬁmﬁq bim_/g; others

P
(in lepton physics) at high energies like G—l/z,and then the ultimate cut-off

¥
-1/2 1
GN / ~ 10 9 EBeV. Let us discuss the theories one by one.

A. Gravity-modified lepton electromaegnetism

' In Table II, I have written in the conventional vierbein gravity

Lagrangian., The connection between the vierbein Lu and Einstein's metric tensor

WV

. v
g is given by the relation LU& L: = gu .

I have used a manifestly local
(exponential) parametrization to connect the vierpein and the physical graviton

field ¢ab (the analogy for the chiral case is with the fields & and I which
+
S

y 5

in the form [exp(K¢)]ua antomatically

are connected by the relation 8 = exp(Ai T -m) with £ given by Tr Bu 5 o
The exponential parametrization of LM
guarantees the important physical requirement on det L“a - that it must not

change sign, and that the signature of the metriec tensor +--- does not,e.g.,

change to ++-- when the field evolves in time.

In Trieste we have carried through the calculation of electron self-
mass using vierbein gravity (IC/70/131 (Phys. Rev. D3, 1805 (1971)) and

IC/71/14).  We needed during the course of this calculation superpropagators

M8 (4) L°(0) >
det L(x) det L(0)

like

~-17-




with all their (tensor) indices. Such superpropagators have recently been
worked out for exponential gravity by J. Ashmore and R. Delbourgo (Imperisl
College preprint}. The numerical result of working with full vierbein
gravity differs from the model caleculation in the earlier part of this
lecture by terms of order & (the term of order x log K2m2 is the same).

19

Assuming that Maxwell's theory holds up to 10 BeV ~ £ill gravity modifies

it - we thus obtein the result

6me 30 2 o
_ 3
mew, ~ by +og {k'm7) .
(Note R = 21<2m2 is the electron's Schwarzschild radius {(in units of 1/m}.)
L) - -
Substituting K2 ~ 10 i me2 we note that log K2m2 %z 105 > o 1 the

gravity modification of the self-mass 1is large with én/m 2 1/5 in the

lowest order of our calculaticn. Remembering that the elffective parameter
in gravity-modified electrodynamics is (o log K2m2) & 105/137, it is fully
conceivable that, with higher orders included, one may after all realize the
Lorentz conjecture that dm/m = 1, that indeed all self-mass of the electron

T)

is gravity-modified electromagnetic (or weak) in nature. One may be
tempted then to reverse the argument and, setting 6m/m = 1, compute self-
consistently in a field-theory bootstrap the value of o log (GNmE) ~ possibly

obtaining thereby the correct numerical result relating these basic constants

of nature X log GNm2 (& 1).

But perhaps one shoﬁld not be carried away by this relation & log GNm2 ~ 1.
Perhaps one should systematically investigate what the possible local non-
polynomial modifications £o electrodynamics could be. Viewed this way, one can
see that electromagnetic geauge invariance places strong restrictions on all
possible modification of Maxwell's theory. Gauge invariance demands that any
modification of the total electromagnetic Lagrangian should preserve the

combination (BM - iA}Q intact. If it is a local scalar modification, then it

-18-
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must clearly have the form

Ly = Txd) Yy (3, - 1)y

where f{k¢) is an entire function. However, we can now make the Borchers'

transformation
> P £(kd)

and thereby remove the dependence of QQT on ¢. This shows that a scalar

modification would produce no regulanzation of infinities for (massless) electrons.

What is the next simplest modification? Clearly the simplest idea

is to try a tensor modification like
Ha — )
L™y XL(BU - A

We have preserved in this way the sacred gauge-invariant combination
(au - iAu).

The emergence of the tensor modification from the requirement of
electromagnetic gaﬁée invariance together with the seductiveness of the
relation o log GNm2 ( ~ 1) make one feel one is on the right track in assuming

. it is gravity alone that modifies Maxwell's eguations. But in the energy
scale this is such a bold extrapolation that perhaps one should feel content

at this stage simply to suggest to those performing accurate experiments in
iow—frequency lepton electrodynamics to express their cut-offs (where they
expect electrodynamics to break down) not in the non-local form i/(l + txg)
(as Pipkin did duringthis conference) but in the local form through Meijer

G-functions, i.e. through form factors of the type  eXp —Itk%“ X < 1/2).

-19-



B, . Weak interactions

Consider leptonic éfwe As Table II shows, the Ward-Balam-Weinberg

ok’
theory still contains a few logarithmic infinities. A gravity modification of
this theory should regularize these remaining logarithmic infinities. This

is the problem we are currently working on. We are very much hoping that some

of the finite numbers we obtain refer to measurable magnitudes and not Jjust

to gelf-measses and self-charges.,

c. Hadron physics

For hadrons physics +two things are clear:

1) Empirically all hadronic matrix elements,whether in strong, weak
or electromagnetic interactions,K appear to possess cut-offs at energies of
the order of a few BeV. Thus Einstein's ultimate cut-off is supplanted

by & cut-off at a lower energy.

2} Even though the chiral and confermal cut-offs at around a BeV
or so will regularize some of the infinities, we still need something as
universal as gravity to make all matrix elements finite. To provide this
universal regulerizing non-polynomiality we {(Isham, Strathdee and Salam)
and , independently, Wess and Zumino - and more recently Arnowitt, Nath and
Friedmann - have considered the possibility of taking over the Einstein
equation intec hadron physics and using it to describe a universal coupling
of a ot strongly interacting F-meson with all hadronic matter, (We replace
the newtonian constant Gy by GF z.(BeV)—l; GF'I/E

cut-off for hadron physics.) The interconversion of Einstein's g-field into the
F~fields )
N .

serves a8 the universal

ﬁs described by & covariant mixing term, the entiretheory being constructed in
analogy with the p-7)" mixing theory. ©Since this two-tensor theory of gravity
is described in detail in my Miami lecture, I shall not speak any more about

it,

20—




To conclude, I shouldlike to recall the famous mathematiclan E. Hille's
introduction to the first edition of his book on Semi-Groups, which goes something

like this: 8)

"Friends assure me that not everything L see around me

is a Semi-Group. I simply do not believe them." I could say the same about
non-polynomial Lagrangians. I believe in a few years all Lagrangian theories
which will be considered will be of the local non-polynomial variety and

through the interplay of the minor coupling constants, and especially of

the dependence of self-masses and self-charges on logarithms of ithese

constants (a feature of non-polynomial theories), we shall achieve an

understanding of the outrageous magnitudes in particle physics (ranging
Ly -2

2 - 2
\ |2 to i i ~ 1.
from GNW/h 15 GN % 10 m and of relations like log GNm 1

-21-




FOOTNOTES

1) The aoulﬁare; split exhibits the Yang-Mills triplet Wu,for example,
+ .
in the form W = A +(i/g)S 3 S whereW = W .7 and 8 = exp(igt-B).
m W, = A+ (/)8 9 TRRATERS Piie
Thus the conventional Lagrangian

Ji = Tr (W W + m2 WE)

W
VT u

where

»4
(Wﬁv = au W, - av wU + ig [WM,Wv]

can be written in the (partially) non-polynomial form

_ oo~ 2 2
;ﬁ = Tr [Auv Auv +m Au]

+ m2(2A s 93 S+ +3 89 S*)
v M u u

 The pure A part of the Lagrangian is polynomial and
renormalizable. The "induced" scalar part containing the B-field
exhibited within curly brackets is non-polynomial and finite with

the minor constant g/m .

2) - If weak intermediate %bosons are of Yang-Mills variety, footnote (1)
applies. A simpler case is thatof aneutral intermediate boson WO

with
int

o .27
L = e 1, (1% Yl W

Make the conventional Stlickelberg split of Wﬁ (Wﬁ = Au +(1/mw)au B).

One can rewrite

;fint =y GFmiﬂTYﬁ(l YY) A+ Blexp(i [Gp v5 B) - 1]y .

3) Note that for n, = 1, the last product presents us with the problem

of defining products like

- P -




| n
Sx) ® {%} t

L)

If we consider e linear chain of superpropagators with k initisl and

L final particles
L seoooooacK 4

it is possible to write down an integral equation for the complete

matrix element. Quite generally,

= "~ D {s)
F ,(s) = FO, + E: FO 0 Foals)
k2 k& kn T(n + 1}
n=j
where
n-2
Dn(S) = 12 F(e(;)n) —S2
L 16m
and ng is the contact (Born) term for the scattering which equals
k& e .
k+4

Graphically the integral equation represents

KSR = k><£ v DK L

K¢
For the case of the Lagrangian g&l{e @ - 1)

0 k+4&
Frg 8K
and
(o) = KA een Dn(s) e o)
k& & — K T(n + 1) ng'®
n

which solves to

F— 2
(s) k+4 g K

- " (s) ]-1
AU Yo L TTeEr |
n

F
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Using the Sommerfeld-Watson transformation method one sums the series
in the square bracket. It is here that the usual Meiljer's G~function

mekes its appearance. For large s we cobtain

k+& 1

kL

A legitimate question which one may ask is this; if the propagator
satisfies the Lehmann-Kallen bound in these theories and behaves

like a free propagator for large s, how can one reconcile this
statement with the finiteness of matrix elements in such theories?

To answer this, one must stress that it is a fallacy to bring to

the non-polynomial theories the ideas and techniques we have inherited
from polynomisl Lagrangian theories. The technique of insertion

of self-energy graphs in free lines, exploited so successfully by
Dyson,in polynomial theories, éimply does not hold here. Every

graph in a non-polynomial theory is a Jjumble of elementary super-
propegators like +those in Fig.l or 3, {Jjust one superpropagator joining
every two points). No (self-energy) ingertions can be isolated in
these graphs. Further, all caliculations are made in the Symanzik
region where momenta are space-like and even the infinitely long
linear chains of the type considered above(admittedly ' & bad
approximation) behave like exp - |K?t]l/3. It is these convergence

factors which provide the inbuilt finiteness of the S-matrix elements.

s ) I



For example,the Drell et al. graphs in deep e

6) 2
inelastic domein
.
$
. When modified (in & non-polynomial chiral theory) tox,
look ; {
P
will lead in a natural manner to a cut~off in[ PT\‘ needed by Drell et al.
to exhibit the scaling behaviour of deep inelastic matrix elements.
7) We have no explanation of the muon mass.
8) This passage seems to have been deleted in the Preface to the

second edition in the ICTP Library.
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