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APPENDIX II

We have four remarks to make to clarify kinking and cradling in Sec.III.D,

1) Take as an example the Lagrangian (see Sec.II,D)

X) :

then the insertion of a X"^^11^ corresponds to minus the unit operator when

proper account is taken of factors of i, -1, etc. In general we define

<T*x(x)x(y) expij-^V^1
-1) :

n=0

where 6, n is the n-th term arising from the expansion of the exponential,

whilst the kinked Green's functions are defined as

n»0 .

One can show by a lengthy but straightforward inductive proof that

n

r=0

n
K
(r) (A.II.l)

This expression is the main"cradling formula. It expresses the physical

graphs on the left-hand side in terms of the kinked graphs on the right-hand

side which are finite when nori-polynomial techniques are used and hence it

serves as the definition of the left-hand side. Note that cradled graphs re-

present essentially a perturbation expansion in terms of 5C t o+ a l ^ n contrast

to normal perturbation theory which is a series expansion in terms of
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2) The sum of all graphs up to order n is

J (n)

and can be expressed,using (A.II.l), as

n
Cn)

r=0

n + 1

r + 1
KCr) (A.II.2)

3) In using Eqs.(A.II.l) and (A.II.2) it should be remembered that because of the

normal ordering of the Lagrangian we have

»(1) _ «

and so, by (A.II.l),

k) As a particular application consider the! Green's function

From (A.II.2) and (A.II.3) we have

(A.It.3)

3)

(A.II.1+)

The last sentence on page 20 should read:

"... and then cradled into the supergraph shown in Fig.? plus four

times the supergraph shown in Fig.H, minus twice the free X-propagator

which corresponds to & e f f = : e ^ : Ox) •
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ABSTRACT

It is argued that the use of a visibly localisable para-

metrization of the gravitational interaction yields a number of

advantages. Firstly, the question of ambiguities can be completely

solved: according to a theorem of Lehmann and Pohlmeyer there exists

in such theories a unique "minimally singular" solution which it is

natural to adopt as the physical one. Secondly, it is possible to

show that this solution satisfies the usual requirements of

analyticity and unitarity in the sense of perturbation theory. These

points are reviewed in this paper, the main object of which is to

introduce a new technique for the treatment of those non—polynomial

Lagrangians in which the interaction terms are intimately associated

with the free part and contain derivatives. The gravity-modified

theories exemplify this type of Lagrangian: in such theories the

zero-graviton approximant to any process is "cradled" in a sequence

of graphs with arbitrarily large numbers of gravitons whose sum exists,

is finite and free of ambiguities. Since the problem of preserving

eleotromagneticfand gravitational) gauges iB also the problem of

derivatives occurring either in interaction Lagrangians or in the

propagators, our general treatment of derivatives is expected to

resolve such gauge difficulties. In particular,we show that the gravity-

modified photon renormalization constant as well as the gravity-modified

electromagnetic self-mass of the electron up to order OC log G., m (where

Ĝ . is the .Newtonian constant) are both gauge invariant.



I . INTRODUCTION • '

Field—theoretic infinities - first encountered in Lorentz's com-

putation of electron self-mass - have persisted in classical electro-

dynamics for seventy and in quantum electrodynamics for some thirty-

five years. These long years of frustration have left in the subject

a curious affection for the infinities and a passionate belief that

they are an inevitable part of nature; so much so that even the suggest-

ion of a hope that they may after all be circumvented - and finite values

for the renormalization constants computed - is considered

"irrational" 1 ^ .

As is well known, the infinities result from a lack of proper

definition of singular distributions which occur in field theory. One

of the major obstacles to progress in the subject has been the uncertain-

ty of whether these singularities have their origin in the circumstance

that a perturbation expansion is being made or whether i t is the form

of the Lagrangian - assumed to be polynomial in field variables - which

is at fault. An important suggestive advance in resolving this un-
2 )

certainty has been the work of Jaffe and Glimm J who, working with

exact and mathematically well-defined solutions of polynomial Lagrangian

field theories (in two and three space-time dimensions) have shown that

infinities persist even in exact solutions. If their conclusions may

be extrapolated to physical four-dimensional space-time, i t would seem

that the origin of the infinities is not so much in the bad mathematics

of the perturbation solution.' Rather, the fault lies with the bad physics

of the assumed polynomiality of the electromagnetic interaction.

Now non-polynomial Lagrangian theories have been studied since

1954 (in fact they date back to the Born-Infeld non-linear electrodynamics

of the 1930's) and i t is well known that a variety of these do indeed

possess perturbation solutions free of infinities. However, in modify-

ing electrodynamics to a non-polynomial version one has teen presented

with two dilemmas:

l ) There are a million non-polynomial ways of "completing"

the conventional polynomial version. Which represents physics?
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2 ) Since the methods developed for solving non-polynomial

theories are radically different from those for polynomial

theories - for example they involve analytic continuation

procedures in an essential manner - one would wish to "be sure

that the field theory solutions thus defined do satisfy the

conventional canons of good field theories, like appropriate

analyticity, unitarity, positive-definiteness and Proissart-

boundedness.

In respect of the first problem, i.e. that of discovering the

missing (non-polynomial) physics, which should complete conventional

electrodynamics, we revived in a series .of earlier papers the oonjecture

of Landau, Klein, Pauli, Deser, DeWitt and others ' which suggested

it may be the neglect (of the intrinsic non—polynomiality) of tensor

gravity - and the associated curvature of space-time produced by an

electron or a photon in the space surrounding it - whioh may be the

direct cause of the electron's and photon's self-mass and self-charge

infinities•

In respect of the second problem, an advance has just

recently been made by Lehmann and Pohlmeyer ^ and Taylor who have

shown rigorously that the analytic procedures developed in earlier

papers by Volkov, Filippov, Salam, Strathdee and others '~ ' do indeed

define good field theories, good in the perturbational sense, provided

the associated non-polynomial theory falls into the localizable class,

satisfying the principle of microcausality.

The advance of Lehmann and Pohlmeyer and Taylor is a

major one. Of peculiar relevance to our work is their insistence on

localizability, microcausality and their consequences. In our earlier

papers , foilowing Efimov and Pradkin , we had worked with non-

local izable non-polynomial theories. This had led to a number of

serious shortcomings which were noted in Ref .9. Although we were able

to show by actual computation that, when tensor gravity effects were

properly taken into account, the conventional logarithmically infinite

log 0 I for self-charge and Belf-mass do become realistic-expressions

ally regularized to Cxlog(>c2m2)| where 16m 2 is the Newtonian

-3-
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stant Gj. , there were still a number of problems the computation left

unresolved;

Mathematically;

1) The results were not (electromagnetic) gauge invariant.

2) In obtaining the results, use was made of a Borel summation

of a divergent series - a procedure open to ambiguities.

3) The results were obtained, using a particular choice of the

gravitational field variables - viz. the one which treated the

contravariant field g^v as the fundamental field with the co-

variant field g^v expressed in terms of it. Since field-

theoretic equivalence theorems would seemingly permit either

field being treated as basic, the role of such transformations

was not clear.

Physically;

It was not clear whether it was true tensor gravity which

was responsible for the finite computation of the renormalization

constants or whether it was some sicalar version of it.

It is the purpose of this paper to show that these shortcomings

of the earlier papers are circumvented, provided we work with a local-

iaable, visibly microcausal version of Einstein's gravity theory.

Notwithstanding this change, it turns out that our numerical results to

the order we computed are unaltered.

The plan of the paper is as follows. In Sec.II we discuss local-

izable theories in general and the localizable parametrization of

gravity theory in particular. (Since we shall be dealing in a later section

with spin-is particles, it is necessary, as is well known, to work with

the vierbein formalism of the spin-2 gravity field. We wish to emphas-

ise that for a quantum field theorist it is a mistake to get too in-

volved in the geometry associated with vierbeins or indeed even the

geometry of the metric tensor. All one needs to know is that the

vierbein field is related to the "square root" of the metric tensor

field. Hef .8 may be consulted for further details.) In Sec.Ill a

number of technical points relating to the mathematics of singular

-4-



distributions and their space-time derivatives are discussed

and we formulate a "law" of conservation of derivatives to give a precise

meaning to products of derivatives of singular distributions and to

eliminate tadpoles of the second kind from the theory. In the last sub-

section of Sec. I l l , a model Lagrangian is considered in order to show

the heart of the ideas involved in the detailed calculations of gravity-

modified photon self-energy and electron self-mass presented in Sees. IV and

V, The Appendix describes a very simple calculation which illustrates

the basic ideas behind the quantization of a non-polynomial Lagrangian

field theory.

I I . LOCALIZABLE GRAVITATIONAL FIELD THEORY

A* Localizable theories in general

Consider a non-derivative Lagrangian:

n=0

where the double dots denote normal ordering (i.e., we agree to "re-

normalize" D (x-x) -» lim (- l/x ) to the value zero for n > 0).
x-»0

According to Jaffe's classification, of(oi) defines a localizable

theory, with operators <£($) satisfying the microcausality relation

- 0" " , x 2 < 0 ( 2 - 2 )

provided the spectral function p{y ) associated with the two-point

function increases for large p [I no faster than exp Jjp jj with

iX < i . For a growth like exp | p f g we shall say that the theory

is .just localizable. When (X > 2 the theory is not localizable. To

compute o(p2) for the Heisenberg operator in a Lagrangian theory, one

conventionally uses Becond-order perturbation theory in the major coupling

constant. There is no reason to believe that perturbation theory
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gives the correct high-energy behaviour of />(p ) . These perturbation

estimates, however, typically give for a zero-mass field:

tMW = g : e -1 : looalizability, p * exp || p [j (2.3)

—K i> 2 V
= g : e ~ 1 ; just looalizabili ly p = exp j| p |[ ' (2.4)

= « • -A_ _,
' l+<4 ' ' "on-localizability p x e x D (I -r,2 [I f r> c\

- -— * u y ii . W o ;

In genera l , with ~$.{<j>) given by ( 2 . l ) , the theory i s l oca l i zab le i f

I v ( n ) | < An n0"11 with 0 < cr < i .

Let us l i s t the reasons for preferring, at this stage of the

development of the theory, the class of localizable Lagrangians.

l ) Elimination of Borel ambiguities

The superpropagators

f o r t h e l o c a l i g a b l e and n o n - 1 o c a l i z a b l e t h e o r i e s ( 2 . 3 ) and ( 2 . 5 ) a r e ,

r e s p e c t i v e l y : oo

n=-i

2
= cr

n= i

Notice that '7T.(X) is a" entire function in the (1C
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complex plane, while 3M T ^S a divergent series.
10) "•Jj« o}

Efimov, Fradkin • ' and we ourselves in our, earlier papers worked

with rational normally ordered Lagrangians of the non-localizable

variety and were.faced with the problem of defining the sums of diverg-

ent series like (2.7). We adopted the Borel summation procedure;

this, however, necessarily introduces a souroe of ambiguity. By work-

ing always with localizable theories we avoid this ambiguity completely,

An n-point superpropagator in a theory with the localizable Lagrangian

(2.3) is expressed in the form

( g ) n e x P ( K 2 T D(x. - x )] t ( 2 # 8 )

again an entire function in the D(x. - x.) plane. .

2) Distribution-theoretic ambiguities

Both localizable and non-localizable theories suffer from one

further set of ambiguities. These are the distribution-theoretic

ambiguities met with in the definition of the time-ordered produot of

field-operators. Specifically

<T : <Ax) : .: *n(0) :> (2.9)

equals ni(D(x))n with ambiguities up to terms of the type

•ft

\ 2 r 2 (2.10)

(There is no ambiguity in the Wightman product (: $ (x) : : (f> (0) ;) ;

i t is the lack of precise definition.of the time-ordered product at

xu • 0 which introduces this ambiguity in all field theories.)

Now Lehmann and Pohlmeyer ^ ' show that these particular ambiguities

can be turned into a positive virtue so far as certain localizable non-

polynomial field theories are concerned, marking them out as superior

not only to non-localizable theories but also to the conventional poly-

nomial ones. This is beoause one can sharply distinguish between terms
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like (2.6) and (2.7) and the ambiguous terms (2.10) in a distribution-

theoretic sense* Their first remark is that localizability implies a

restriction on "b 's in (2.10) such that the function b z is

entire of order m < i . Seoondly, in Fourier space one can verify that

?T(p) , for example, in (2.6) falls to zero along some direction in the

complex p -plane for large |[ p |j . There is,however, no direction

along whioh the ambiguity terms (2.10) can fall. This is guaranteed by the

fact that (2*10) must be of order less than' g- for the locali sable case. However,

no such distinction can be made between L in (2,7) and the cor-

responding ambiguous terms. Lehmann and Pohlmeyer thus define a class

of minimally singular superpropagators whioh are ambiguity free for

localizable theories. This class coincides with the class previously

considered by Volkov, Filippov and other authors. Using this, Lehmann

and Pohlraeyer show that the theory thus obtained possesses conventional

analyticity and unitarity properties to a.11 orders in the major coupling

constant, g . The same result has been independently established by

Taylor * Their proofs can be extended to establish positive-

definiteness also.

3) Froisaart boundedness

Glaser, Martin and Epstein f in a fundamental paper, have

shown rigorously that mass-shell S-matrix elements for two-particle

scattering in localizable theories must possess Froissart boundedness

at high energies. There is no such result known for non—localizable

theories, (This aspect of the superiority of localizable theories

may, however, be illusory* This is because the Volkov-Lehmann minimal-

ly singular perturbation expansion in the major constant does not

exhibit this behaviour if any single term in this expansion is con-

sidered. Presumably one must sum chains of supergraphs - as one does

for polynomial Lagrangian theories if one wishes to exhibit Eegge or

eikonal high-energy behaviour - a behaviour not characteristic of

individual graphs. It is conceivable that the same treatment may

yield Froissart-bounded high-energy behaviour for both localizable and

non-localizable theories.)

-8-



4) Equivalence transformations of field, variables

For the purposes of this paper, the most important basis of the

superiority of localizable over non-1ocalizable theories lies (together

with the elimination of Borel and other distribution—theoretic ambiguities)

in the circumstance that for these theories we can make field transform-

ations at will. Eirice localizable theories are microcausal, and micro-

causality is the basis of Borchers' theory of equivalence classes, we

shall take over Borchers1 results and assert that those field transform-

ations which transform one localizable theory into another do respect the

equivalence theorems regarding the equality of mass-shell S-matrix elements.

In the rest of thie paper -we shall freely make such field trans-

formations and, as we shall see, this will assist us greatly in the

discussion of electromagnetic gauge invariance.

To summarize, localizable theories are superior to non-1ocalizable

theories for five reasons;

a) There are no problems of Borel ambiguities for the former.

b) The remaining distribution-theoretic ambiguities can be eliminated

using the Lehmann-Pohlmeyer minimality ansatg which holds only for non-

polynomial, localizable theories.

c) The Glaser-Epstein-Martin theorem assures Proissart-boundedness of

localizable theories.

d) "We can make field transformations at -will and expect that on—shell

S—matrix elements will remain unaltered.

e ) The Lehmann-Pohlmeyer and Taylor proof of appropriate unitarity and

analyticity is available for localizable theories.

. One may close this section with two remarks!

1) Localizability implies only microcausality of the theory. Whether i t

corresponds to the macrocausal behaviour of field theories is an unresolved

problem.

2) As was emphasised in Ref. 12, Section D, a rational Lagrangian-like

is non-localizable only when nonnaly ordered, i . e . , when 2(0 ) =

^ is renormalized to the finite value zero. If D(0) is re-l j m

normalized to a finite value, all rational Lagrangians can be shown to fall

into the juBt-localizable class. In this paper we shall always normal order.

This may well be the real source of the paradoxes which arise when one is

considering problems of equivalence of Lagrangians under field transformations

- 9 -



B, Localizable parametrigation of gravity
a)

In our earlier paper J we assigned that the fundamental gravi-

tational field was the contravariant field g^v(x) . In the limit of

an asymptotically flat space-time this field splits up in-general into the

stun of i t s Minkowskian expectation value

+1
- 1

- 1
- 1

and a functional of the physical interpolating field. At this stage it

is possible to use a wide variety of parametrizations. One such is the

"rational" parametrization

;(x) = nV :) (2.12)

where ^ ^ ( x ) is the physical graviton field which possesses in and out

states. The covariant field g^(x) is then given as the ratio of two

polynomials in <f> ^ v of degree 3 and 4, respectively:

gYY'

e«n
Ota' 66" YY' <56'
I g g 6 (2.13)

An alternative (and by the mathematicians the more favoured) is an ex-

ponential parametrisation * ̂

= [exp (2.H)

where are the basic interpolating fields. The covariant tensor

g (x) is simple and is given by

(2.15)

-10-



Similarly the vierbein gravity field l/a can be parametrized as

[exp (2.16)

More generally}instead of the exponential parametrization, one may

consider any other entire function parametrization in (2.14)» Since in

gravity theory one always assumes that det g $ 0 , i t is clear from

(2.12) that if g^(x) is entire, so is g^fx) .

Throughout this paper we shall, for the sake of simplicity, use

a Euclidean rather than Minkowskian metric,transforming hack to the

correct metric at the appropriate stage. This should cause no confusion,

Notice that the Minkowskian form of Eq. (2.14) would he

r
[exp

(2.17)

where

. V2

n

The exponential can be expanded to give the matrix formula

1/2 V2 ife ll2 1 o */2 1/2

i.e.

1 2

In par t icular one finds

(••det g) = exp K tr(n<J>)

= exp <(y )

for the determinant of the Minkowskian tensor .

(2.18)

- 1 1 -



We shall call the rational parametrizatiore (2.12) and (2.13) non-

local, while (2.14) will be referred to as the local parametrization of

gravity. To justify this nomenclature, consider the non-derivative parts

of gravity-matter interaction and assume that the gravity-gravity inter-

action can be neglected. One can easily show that the superpropagators

of cotensors <g^(x., ) , ĝ n (x^) * • *) in the rational parametrisation

(2.13) give rise to non-localizable high-energy behaviour, while the

exponential parametrization (2.15) leads to a behaviour characteristic

of localizable theories„

When derivative couplings of g^ are additionally considered

(including the non-polynomial graviton-graviton couplings characteristic

of Einstein's theory) this conclusion may alter, though the presumption

is that (2.14) is s t i l l a localizable theory. This is because an inter-

action term like (b <p X ^ ^ ) exp(lcc6 ) can be majorized - so far as

the high-energy behaviour of the superpropagators in momentum space is

concerned - by a (localizable) term like $> CLxp (<<j>)

where each derivative bn, is replaced by a field function <f> . Such

a majorization procedure i s , however, likely to be misleading when

applied to the non-localisable version of the theory (2.12). The reason

is that with derivative couplings there is the possibility of enormous

numbers of cancellations which may reduce the seemingly non-localizable

behaviour of (2.12) and (2.13) to a less singular localizable one. The

majorization which replaces (^u^) b v <b i s likely to conceal this.

To summarize, in a full derivative-containing gravity theory, v,e

believe that the parametrization (2.14) does give us a localizable theory.
T.fhat we cannot assert is that the seemingly non-localizable theory, repre-

sented by the parametrizatiorE (2.12 ) and' (2.13), may not after all alco

be localizable. In this paper we shall take no chances and will work

with the parametrization (2,14), leaving open the question as to whether

or not the rational and exponential parametrizations of gravity after

quantization represent the same theories in the sense of field-theoretic

equivalence theorems. I t is important to stress that the parametrization

(2.14) is only one of a class of parametrizations which may be classified

as localizable. The common characteristic of the elements of this class

is that they are represented by entire functions of the variables o

Borchers' theorem should permit us to make field transformations betwoen

members of this class.

-12-



I I I . GRAVITY-MODIFIED ELECTRODYNAMICS

A. The Lagrargian

The gravity-modified Lagrangian for quantum electrodynamics may

be writ ten in the form shown below in Bq.(3 .3)* . (We use the notation

and equation numbering of Ref . 9 . Equations from the l a t t e r reference

wi l l carry a s t a r to dis t inguish them from the equation numberings of

t h i s paper . ) As stated in the introduction, the spinor oharacter of

the electron f ie ld necess i ta tes the introduction of a vierbein version

of gravity, the vierbein spin-2 f ie ld L (z) being simply related to

the metric field g^(x) by the relation

yv, ^ Tya, , Tyb, , xgH (x) = Lp (x) LH (x) 6&b .

In terms of the f ie ld L , the electrodynamic Lagrangian reads 9 ) .

to ta l gravity

where

U(det L)

= 9
ab

F = 3 A - 9 A
yv y v v y

= A - A
v;y y;v

det L = det L

" *

g F VX

w (4et L)
e ^

(3 .3) *

(3.4)*

The parameter w denotes the weight of the electron field.. It can be

changed at -will bj making field transformations an& îf Borohers1

-13-



theorem holds, it should not appear in the physical S-matrix.

Writing

ya

exp ] - (3.1)

we recover

^ = (exp K (2.14)

The vierbein connection, B , , is the product of L's and their

derivatives, its full eicpression being given in (2.9)*. It is worth

remarking that the factor det L in (3.3)* (so crucial in Ref .9 for

infinity-suppressing) acquires a very simple form in exponential para-

metrization. In fact

(3.2)det L = exp - Tr

I2

B. Scalar gravity

In this section we wish to show that a scalar gravity theory is

unlikely to suppress infinities in electrodynamics.

The scalar gravity Lagrangian can be recovered from (3.3)* by

substituting

rVla I K I xy

L = e x p | - <)> | 6

g y V = exp I < * I 6̂

det L = exp 2K ij)

(3.3)

L. . , reduces to the formi
total

-14-



V U0 \}*l »» [- 2

Note the crucial circumstance that the photon-field and the scalar

graviton do not couple, a result well known in general relativity-

theory from the conformal invariance of scalar gravitons and photons.

Let us now make a further field transformation:

= exp I - J- (3.5)

This has the effect of decoupling the electron and the graviton also,

except from the mass term for the electron. In the limit m Q = 0 ,

even the electrons do not interact with scalar gravitons.

How if 6"m and Be were strict physical mass-shell quantities,

one would unhesitatingly have said, that scalar gravity plays no

regularizing role for electrodynamics of sero (bare) mass electrons.

One cannot make this negative assertion with confidence for

two reasons: First, in the exact theory SKI and £e are both ex-

pressed as integrals of (off-mass-she11) spectral functions. Although.

"both Qm and Z-, share with the strict mass-shell quantities the

property of ..electromagnetic gauffe-invariance (unlike Z ), there are

no results known at present which should imperatively guarantee that

the mass-shell S-matrix equivalence theorems apply also for the case

of these off-mass-she11 quantities. ' Second, it is fully possible that

the inclusion of non-zero mass term coupling ~^Q^ f1 [exp(-a"K^) - 1]

may alter the situation. Thus, even though we_ have so far failed to

demonstrate this, it is conceivable that a technique of summation over

the major coupling constant (m^ in this case) may be devised which

regularizes the theory, though the prognosis for this happening does

not appear too "bright.

-15-



C. The tensor gravity Lagrangian and electromagnetic gauge

invariance

Fortunately, true gravity is tensor and cannot be deooupled. We

shall attempt in this section to make field transformations which may

assist in the task of preserving gauge invariance. One of the major

difficulties we encountered in Eef. 9 was connected with the technical

fact that whereas the Heisenberg electromagnetic current from (3.3)

equals

and is conserved using the Heisenberg equations of motion, the conserved

quantity in the interaction representation does not, however, coincide

with this , being just GQYTU}?' Stated differently, i t is difficult to

make gauge-independent computations because of the awkward factor
Mr* \ — 2 W ™ 1

L ^ (oet L) e which multiplies the interaction term QQ^Y y^u.

in (3.3*). This factor can be removed by making a suitable choice of

the basic field variables. To this end, we choose to assign the weight

v = --£ to the electron and regard the combination Aa - A^l/ia as the

photon field. Notice that this does not decouple the tensor gravity

from the electron and, even more significantly, from the photon.

With, these choices write the Lagrangian (3.3)* in the form

*1+ V V X4 • (3-6)

where

\

(3 .7 )

-16-



(3 .8)

. Vu - u n^y d ^ - 3 ijjy ip) ; (3,9)

ab

^"Q is the conventional free Lagrangian for electrons and photons; ^ £

axe terms of order K. I t is important to remark thatX, andXi are explicitly

gauge -invar i an t , while i t i s only the sum (X-, + <sC ) which is expl ic i t -

ly so. In Bef .9 we considered only the Ju part of the Lagrangian,

ignoring ,£_ . The results could not be expected to "be gauge-

invariant .

First consider this Lagrangian for i t s infinity suppression ro le , ci,

and Xp are both Lagrangians of the general form

h e or (8%) A< e , f where /C and p are

] massless scalar particles,

12)As has been shown elsewhere , the exponential term is highly potent

in i t s infinity regularizing ro le . Heuristically one may see this as

follows. The two-point superpropagator <^Xn e*^ ,%n e } is off l s . p p p p g <̂ X ,% }

the form ( l /x ) n e~ ' . Approaching z^ ->• 0 from an appropriate

direction in the x-space (and using analytic continuation, methoda for

the approach from other directions) the singularity of the super-

propagator will be regularized to zero for a l l n . This wil l t how-

ever, not be the case for Lagrangians of the generio variety

or of the type

- ^ + = (3^)2 (: e*^ : - 1) . (3 .13)
mt v '
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The jL and <£., pieces of the electromagnetic Lagrangian belong to

this last category. Our major task in showing that gravity-modified

electrodynamics does indeed possess an inbuilt regularizing non-

polynomial ity lies in analysing the potentially unregulariaed singular-

ity produced, for example, by the -(^X) term in (: e K ?; - l)(^X)

and showing that such terms are harmless.

D. The| theory of kinetic energy kinks

It is a general feature of particle Lagrangians in gravity theory

that the kinetic energy terms of the free Lagrangians are mixed in'with

graviton-particle interactions. Examples are provided by the electron-

graviton and photon-graviton interaction terms <£„ and J-, , which,

together with 3L~ , formed one whole, before the split into CZQ and

ok. , .. was carried out. A generic example is the one dis-
interaction & * 2 ,

cussed in the last subsection. If <5L equals (3?C) : e' - : ,
x oxaJ

the split i Q = ( d X ) , °^-t = (: Q : - 1)( ̂ % ) represents the

situation presented by the i ? and the X.̂  terms. This non-polynomia

interaction Lagrangian would, acting by itself, give finite matrix

elements were i t not for the possible infinities which i ts "kinking"

part -(d"X) might produce. The "kinking" terms in d. are so

called because inside any OC-line the operation of (c>X) acts simply

as a unit operator. In momentum space,for example, the X propagator

l/p may be written in the form

2 = 2 ' P ' 2 = 2 ' P ' 2 ' P ' 2 " ^ 3 * H )

P P P P P P

corresponding to the successively kinked lines shown graphically in

Pig.l.



In what follows we shall use the word "kinking" to refer to the

act of inserting- such a unit operator (which corresponds physically to

the emission of zero gravitons) into a-free propagator.

To illustrate the manner in which kinking is used consider the

computation of the propagator <(j2% (x~)%(y) e"'*'/^ , where $..

is given by Eq.(3.13). This is shown graphically in Fig.2, up to the

second order in o(. . *
m t

•4—

O " "1

The first graph is the free ^ propagator, the second represents the

one-graviton modification due to £. , , the third the two-graviton

modification, and so on. Our basic contention is that the first graph

should be regarded as part of the series formed by the rest by

inserting two kinks, at the space-time points x, and x? , and using

the graphical identity of Fig.3.

x y

The sum of all the graphs in Fig.2 may be written in terms of the one

supergraph, shown in Fig.41

r\
Xl X2
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in which the effective Lagrangian operating at x and x is

( SX/) e ^ which will produce f ini te answers. tfe shall refer to this

absorption of the free propagator into a superpropagator as "cradling".

Such a procedure i s always possible in any theory in which <3-, has
o in"fc

the generic form (v(y) - l )(S%) since there will always exist in

the theory graphs which (by suitable kinking) can be cradled as part

of a non-polynomial chain representing zero 6 particle exchange. The

effective interaction in such situations is therefore : v(g?) : and

not (: v(^) : - 1) .
Similarly, if we were considering terms up to third order in

{ / iX" +-\
2 in \?%XQ /Q » the-graphs ( i ) and ( i i ) shown in F ig .5

+ Z - ^ - • E
(iii)

could be kinked as shown in Pig.6 :

H 1 V

and than cradled into the single supergraph shown in Pig.7 which

-2O-



Fig.7

corresponds to i »» It is important to note that

"kinking" and "cradling" are possible only when free Lagrangians are

hewn out from a total Lagrangian which is finite (i.e., separated

out from e ' Q X ) )• This is of course always the case fox gravity

theory where u.n for matter fields is obtained from =£ ,, byu , matter
replacing Lr*a by

To consider a really complicated "kinking" situation take the

interaction Lagrangian

(3.15)

This is a prototype of gravity-modified electrodynamics with -y the (zero-mass)

electron field and A and (f> the (scalar) photon and graviton fields.

The photon self-energy graphs are shown in Fig.8;

-f-

t •f-
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Clearly the first graph (with no gravitons) identically equals the

kinked graph of Fig.9;

(with C^A) operating at the two kink-points) and, as auch, forms
part of the graviton-exchanged chain representing zero-graviton exchange.

With the inclusion of this graph, ot, , "behaves as if the effeotive

photon-graviton Lagrangian for this, particular situation is the

(manifestly regularized) Lagrangian ( ^ A) : e ' : rather than

C&A) (: eK^j - l ) . Practical applications of kinking-and cradling

will "be found in the photon and electron self-energy calculations in

Sec.IV.

E. Kinking, cradling and the calculus of derivatives

Analytically, the graphs of Pig.2 or, equivalently, of Pig.4

correspond to the expression

3D(x-x ) 2

dxi % ~TT- V x i • X2> ayu ' (3.16

where F u V i s given by

D(X) Z^W) - £ ^ <2n[^f y»W ' (3.17)

The zero-mass oausal propagator D(x) is given by (-4TT X )~

The problem is to define the. Fourier transform of (3 .17) . This
ould be done by the method of Lehmann and Pohlmeyer ' or by the
ollowing, less rigorous, method. Consider the integral
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" c . . (3.18)

where the contour C comes from positive infinity, encircles the

origin in the clockwise sense and returns to infinity. This integral

evidently reproduces the sum (3.17) if X= 1 . On the other hand, if

arg(-A)[ < If/2 then i t is possible to replace the contour C by

one running parallel to the imaginary axis with Re z < 0 . Disregard-

ing for the moment the problems caused by the derivatives in (3.18),

one could follow the Gel'fand-Shilov prescription for obtaining the

Fourier transform of D d̂ -djuD since i t is now possible to arrange

the contour such that 0 < Re (s+2) < 2 ; a necessary condition for

the convergence of the Fourier integral. It must be emphasised that

if the kinked graph of Pig.3 had not been included in the sum then the

contour would have been oonfined to the strip 0 < Re z < 1 and the

Gel'fand-Shilov requirement oould not have been met - signalling the

presence of an unregularized .infinity.

The derivative problem is dealt with in the following way.

Firstly, combine the factors D and {Lo"v D ' into the form

D(x) B B D ' = f / 1 4 . 7 \ a A * PT 1 r> zi
^"^ \ / t i l t I rr _1_ rr \ f t-r _1_ n _1_ 1

(3.19)

which in the case z, • 1 becomes

which is an identity.except in the neighbourhood of x = 0 where it

beoomes ambiguous. We shall adopt this formula as a definition for all
xn except in the neighbourhood of a = 0 where it needs to be

elaborated. It is clear that (3.20) cannot be a satisfactory definition

at z =* 0 since the left-hand side assumes the well-defined form,

^yyv D(x), while the right-hand side assumes the equally well-defined

form, h^o^ 3(x) + (i/4)5(x) , which is different.
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To meet this difficulty and also to render the formula useful

for computing the Fourier transform of integrals like

' J <lz f(z)[D(x)f a ^ D M ,
Re z < 0

where f(z) has a pole of order r)/l at z = 0 , we shall adopt

the definition

( 3 - 2

where 21 7/ r is an integer and 6 is a positive number. I t i s to

"be understood that the singularity at z = -e. l ies to the left of the

2-oontour and that the limit £ -» 0 i s therefore to be taken after

evaluating the Fourier transform and after translating the contour

to the right of z = 0 . In this way one obtains a definition which

is consistent at z = 0 where (3.20) failed. For other values of z

i t coincides with (3.20).

Another feature of (3.2l) may be noted. Contracting the indices

pL, V , one finds

[D(x)JZ 'd2 D(x) = 0 , for z f 0 .

This has the important consequence that a l l those tadpole-like graphs

in the theory which arise from a consonance of terms like D(x) 9 D{x) «

=» D(O)Z (J(x) and which cannot be removed by the normal-ordering pro-

cedures, automatically vanish. Thus, in effect B(0) =» 0

everywhere.

Using (3.21) and taking the Fourier transform of (3.18), one

obtains

*u>x> = - i S i r + o(*2) •
p

The higher-order terms will depend on the auxiliary parameter A .

3y taking an average of the limits X -* -e1K and X -* -e^71" one

obtains the minimally singular solution of Lehmann and Pohlmeyer.
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