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ABSTRACT

I t is argued that the use of a visibly localizable para-

metrization of the gravitational interaction yields a number of ad-

vantages. Firstly, the question of ambiguities can "be completely

solved: according to a theorem of Lehmann and Pohlmeyer there exists

in such theories a unique "minimally singular" solution which i t is

natural to adopt as the physical one. Secondly, it is possible to

show that this solution satisfies the usual requirements of analytic-

ity and unitarity in the sense of perturbation theory. Thirdly, i t

is possible to arrange the computations in a manifestly gauge in-

dependent manner. These points are briefly reviewed in this letter,

the main object of which is to introduce a new technique for the

treatment of those non-polynomial Lagrangians in which the inter-

action terms are intimately associated with the free part. The

gravity-modified theories exemplify this type of Lagrangian: in

such theories the zero-graviton approximant to any process is

"cradled" in a sequence of graphs with arbitrarily large numbers

of gravitons whose sum exists, is finite, free of ambiguities and

gauge independent to any required order.
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I . IBTHODTJCTION

In a recent paper, with essentially the same t i t le as this one,

the authors showed by actual computation that when tensor-gravity effects

are taken into account, the conventional logarithmically infinite ex-

pressions 0( log <?0 appearing in electron self-charge and self-mass get
2 2 o

realistically regularized to arlog(/c m ) where (16JTK ) is the

Newtonian constant Ĝ . . There were, however, a number of problems

the computation left dark:
Physically

It was not clear whether it was true tensor gravity which was

responsible for the finite computation of the renonnalistation constants

or whether i t could be some scalar version of i t .

Mathematically

1) The results were not gauge invariant.

2) The role of field-theoretic equivalence transformations was

not clear; the elimination of all infinities seems to necessitate

the assumption that g^ (x) must be treated as the fundamental

field and not the co-tensor S/j-Ji^)*

3) A divergent series was encountered in the calculation, and

for this the Borel sum was adopted. Such a prescription is

necessarily arbitrary and renders the result ambiguous.

Basically these shortcomings al l stemmed from the same unanswered

question: Since i t is analytic continuation techniques which sharply

distinguish non-polynomial Lagrangians like gravity from polynomial

Lagrangians, under what conditions do these techniques define good field

theories in the conventional sense?

An important advance has recently been made in answering this
3 )question by Lehmann and Pohlmeyer s ' , who have shown that non-polynomial

field theories with looalizable (mjorooausal) interaction certainly do

define good field theories in the conventional sense. This is because:



l) The superpropagators in localizable theories are entire

functions in the variable A(x) and no Borel ambiguities

ever arise for these as they do for non-localizable theories.*^

,2) For localizable theories, there exists a perturbation

solution in the major coupling constant which satisfies the

usual requirements of analyticity and unitarity to all orders.

(This haa been demonstrated by Lehmann and Pohlmeyer for a
2)

particular Lagrangian , though their considerations are

general. See also Volkov ' and Filippov .)

3) Other solutions can be obtained from this one by adding to

it in a specific manner entire functions (in momentum space)

with the same order of exponential growth but which are other-

wise arbitrary. Such modified solutions can be distinguished

from the original one - in the case of localizable theories

only - by their high-energy behaviour. The original solution

(which Lehmann and Pohlmeyer call "minimally singular") is the

only one which falls to zero in some direction in the complex

energy plane.

By the term "superpropagatortI1ishere meant the 2-point function < ^ T X . (000) J,. (0(y))/o computed

in the free field approximation - i .e . without the inclusion of any internal vertices. A theory is local-

izable and microcausal in Jaffe's sense if the Fourier transform of the imaginary part of the superpropagators
2 a 2

increases no faster than exp j|p || with a < \ for large p ; it is non-localizable and non-microcausal
if a > \ . One can show that in x-space the superpropagator can be expressed as an entire function of the

bare propagator, A(x-y) = ^T 0(x) c<y)^ , for localizable theories. An example of this is the Lehmann-

Pohlmeyer Lagrangian, i = 4(3 0). + g : e : , for which the superpropagator is given by the entire
2 2 ^

function g exp K A<x-y) . On the other hand, for non-localizable theories the superpropagator takes
j o 2 2 -*1

the form of a divergent series. For example, with the Lagrangian df = £(d 0) + g : ( l u ) ) : ,
2 -r- 2 2n **

the superpropagator is represented by the divergent series g 2* (2n)'.(K A)



4) For localizable, microcausal theories there exists the

fundamental theorem of Glaser, Epstein and Martin • ' ' which

asserts that such theories (presumably after a summation of the

perturbation expansion in the major coupling constant) give

mass-shell matrix elements whioh are Froissart hounded.

5) For localizable theories (and only for such theories) one

may make the ansatz that the physically relevant solution is

the minimally singular one in the sense of Lehmann and Pohlmeyer.

This ansatz would eliminate all ambiguities (to all orders in

the major coupling constant) in localizable theories. It is

our conjecture that the attainment of the Glaser-Martin-

Epstein upper bound is intimately connected with the choice of

that perturbation solution which is minimally singular.

Summarizing, localizable, microcausal non-polynomial theories

offer the prospect of ambiguity-free, analytic, unitary, Froissart-

bounded solutions and are good field theories in the conventional sense.

In the present paper we use these crucial results of Lehmann and

Pohlmeyer on localizable theories to sharpen the earlier computation

and in particular toi

1) arrange the calculation so that the electromagnetic gauge

invariance for S-matrix elements is manifest,

2) show that i t is indeed tensor gravity and not a soalar

variety of i t which is responsible for gauge-independent in-

finity suppression (this would be in accordance with the physical

expectation that infinity suppression must oome from light-cone

fluctuations which are peculiar to tensor (rather than scalar)

gravity in i ts metrioal aspeots **).

*)
We are indebted to Prof. V. Weisskopf for emphasising this point (private communicatioii).
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II. LOCALIZABLE GRAVITY

To apply Lehmann and Pohlmeyer's r e s u l t , we must work with a

manifestly localizafcle version of gravi ty theory . One way to

accomplish t h i s i s t o parametrize the vierbein gravi ty f i e ld if

through an e n t i r e function, an exponential for example. Thus, write *>

L = expf - <j> (2 .1 )

,a3 ,Ba
where <p - 9 are the "basic interpolating fields which at ±00

coincide with the outgoing and incoming graviton fields. Since, in

gravity theory, one assumes that det L / 0 , it is clear that, like

function in the 9-plane.

(2.l), the co-tensor L , the inverse of L , is also an entire

*) i a d
Strictly,one should refer this formula to a Euclidean basis by means of the matrix (ij j = diag(l,i, i, i).

Then it takes the matrix form

" " " Lex 2" *" J
where <t> denotes a symmetric matrix with elements (0 ) . The exponential can be expanded to give

the formula

i.e.,
K • ' * * 2

In particular one finds

- det L= exp - tr(T)0)

= e x p -

-5-



The parametrization (2 . l ) replaces the conventional para-

metrization which we used in Ref.l:

(2.2)

where the co-tensor L was a ratio of two polynomials in 0 .

Now to the extent that one may neglect graviton-graviton

(derivative-containing) self-interaotions, one can easily cheok that

superpropagators *> < T : 1^(1) : , : Li,t>(2) ! » : L (3) : f • • • >

for parametrization (2.1) are entire functions in the (multiple)

A-plane and define a looalizable theory, while those arising from (2.2)

are divergent series and give a non-localizable theory.

Thus, either

1) The two parametrizations define two distinct quantum theories,

one local and the other non-local.

Or

2) The inclusion of graviton-graviton interactions will produce

vast cancellations for case (2,2), reducing the virulently

singular behaviour of superpropagators to that for para-

metrization (2.1), rendering "both versions localizable, (The

reverse seems less likely.) Till this can be demonstrated we

shall abandon (2.2) and work with a visibly localizable entire-

function parametrization of gravity like the one given by (2.1).

Now comes the crucial point. Since localizable theories are

microcausal, and microcausality is the basis of Borchers1 theory of equi-

valence classes, we shall assume that those field transformations which

transform one localizable theory into another do respect the field-

theoretic equivalence theorem which asserts equality of mass-shell S-

matrix elements. Such transformations will play an important role in

exhibiting manifest gauge-invariance. Further, we can dispense

completely with the distinction made in Ref,1 between the tensor ifa

and i t s co-tensor t , so far as infinity suppression is concerned.

*)
We shall always discard the tadpoles in defining superpropagators, that is we take the nonnal ly ordeied

ua
vierbein : L : . —6—



All matrix elements deduced from Lagrangians of the variety

g i X exp(x^) t are as finite aa those from Lagrangians *̂

g : x r exp(-/c0) : .

To summarize, the essent ia l message of t h i s paper i s that the

basic reason for the shortcomings of Ref.1 was the use of a non-

localizable parametrization of gravity theory. Once th i s i s cured,

the shortcomings disappear. I t i s important to emphasise once again

that i t i s far too early to condemn the parametrization (2.2) in

comparison with (2 .1 ) . I t i s perfeotly possible - through the large

number of cancellations associated with the derivative self-couplings

of gravity which ' have not been taken into account in t h i s paper -

that the two pararaetrizations, in the ondf give completely equivalent

S-matrices. However, (2,1) i s v is ib ly looalizablej (2.2) i s vis ibly

non-looalizable, and,in view of the advantages of working with a looal-

izable theory, we shall henceforth discard (2 ,2 ) .

I I I . THE GRAVITY-MODIFIED IAGRANGIAH"

The electron-photon part of the gravity-modified Lagrangian is

given by

{-detL)"2We "

(3.1)

*) 2 . 2 r 2 2
Heuristically, a two-point superpropagator behaves like g (r*. X"l/X ) exP(~ K / x ) • T h e ex~

2 1 2
ponential is potent enough to regularize (1/x ) to ziero provided we approach x -»0 along the
appropriate direction in x-space, filling in for other directions by analytic continuation. (For detailed

2)
discussion see Lehmann and Pohlmeyer .)
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where

i
-
4

(det L) ( 3 .2 )

det L = det L (3.3)

ab
The parameter w denotes the weight of the electron field and B

is a (for the present purposes irrelevant) field which involves the

derivative of L . It is defined in Ref.1. The weight w can be

changed at will by making field transformations and, if Borchers'

theorem holds, it should not appear in the physical S-matrix.

It is difficult to make gauge-independent computations because

of the awkward factor L (-det L)"" ̂ ~ which multiplies the inter-

action term QQ'P'Y 4*^^ in (3.1). This factor can be removed by

making a suitable ohoice of the basic field variables. To this end,

we choose to assign the weight w
9

A l/*a as the photon field.

-i and to regard the combination

If the equivalence theorem is valid

then suoh a choice should not affect the values of S-matrix elements.

With these choices write the Lagrangian ( 3 . l ) in the form
a f -f ~f -P

UQ + ot +. J, + J, + J, (3.4)
w X tL J if

where

(3.5)

- 8 -



The terms andi_ t X, and JL. .

one graviton is emitted or absorbed.

and 2 to the photon self-energy,

and zeroth and second order in

all give rise to vertices where at least

Consider the contributions of -C

The graphs of second order in

U. _ are shown in Pig.l. This

oolleotion of graphs is gauge independent.

(a) 00 ( d )

In Sec.IV we shall show that although the graphs of Pig.l are

logarithmically divergent, their infinities compensate in the sense that

they can all "be incorporated in one "supergraph" whose contribution is

finite. To prove this we shall need to introduce two complementary

techniques, the "kinking" and "cradling" of graphs.

Before closing this section, we indicate why it is tensor

gravity rather than a soalar version of it which is neoessary for in-

finity suppression. Firstly, scalar (Nordstrom) gravity is recovered

from the formalism of this paper "by setting

L = exp

Choosing the weight w - -3/8 causes the Lagrangian (3.1) to reduce
3

to the form

-
4

p

where the soalar graviton, <p , has decoupled from the photon and couples

to the electron only through the mass term. Clearly scalar gravitons

can have no regularizing role for masaless eleotrons. However, even

for massive electrons there is no regulaization. The graphs of Pig.l,

for example, fail to arrange themselves into a single finite supergraph

in the manner to "be discussed in the following section.

*•) The same remark applies to non-polynomial strong interactions which could modify the photon pro-

pagator and thus regularize Figs. l(b), (c) and (d). However, the infinity in Fig.l(a) would remain.

-9-



I V . "KINKED" GRAPHS AND THE "CRADLING" TECHNIQUE

' —f ~f ~P
As a prototype for j [ - J ^ + ei2 ((3#6) and (3*7)) consider a model

Lagrangiani

«^j =. -• e :#2A. (4.1)

«*, = : (e - 1) (d^) i \**"£)

where J/J , A and 0 represent scalar raassless electrons, photons and
gravitons. Characteristically cZl is a renormalizable polynomial
Lagrangian while of' is non-polynomial which, operating by itself, would
give finite matrix elements but for any possible infinities which i ts
"kinking" part -(3^) might produce.*) The "kinking" terms in £' are
so called because inside any (^ ) line the operation of (9^) acts simply
like a unit operator. In momentum space, for example, the (scalar)
electron-line factor l/p equals

- L - i _ 2 . JL _ L . 2 . _ L . 2 . J _ -
2 ~ 2 * P * 2 = 2 * P > 2 P 2 ~ " *

P P P P P P

corresponding to successively kinked lines shown graphically in Pig.2.

In what follows, we shall use "kinking" to represent zero graviton emission

or absorption in graphs given by the operation of the polynomial Lagrangian

l, This will then permit us to "cradle" these in corresponding graphs

obtained by operation of Cil,

As an example, consider the computation of the propagator
i^2 v »t

) ^(y) e / , graphically shown in Pig.3 up to second order in<Zp.

We are here using the result that all matrix elements in a theory with J. ~ i x e : are finite,

but for £ ~ s xr (e^* ' 1) » • finiteness holds only when r = 0,1. For second-order superpropagators
int

the resuU is trivial to prove, as is also a heuristic proof for higher ordea. Dr. J. G. Taylor (private

communication) has kindly informed us of having completed a rigorous proof.

- 1 0 -



x y y x, x^ y x x, Xj, <j

(i) CiiV (i-ii)

Fig, 3

Fig.3(i i ) represents the one-graviton modification, Fig.3(i i i ) "the two-

graviton modification, and so on. I t ia easy to see that if we kink 3(i)

(see Fig.4),

Fig.4

i t would represent zero-graviton exchange and i t could be "oradled" in a

supergraph (Fig.5)

where the effective Lagrangian operating at x, and Xg is the finite

Lagrangian (9^)2 eK^ , In the next section we shall show the precise

manner of how this "cradling" is crucial to the regularization of the

series of graphs in Fig.3. Here we. simply remark that if one was con-

sidering terms up to third order in otg in ^'T^^/e >̂ , the graphs

(i) and (ii) shown in Fig. 6

r •*

U) (ii) (iii)

oould "be kinked as shown in Fig.7

-11-



f — -

-• »-

Fig.

and then oradled into the single supergraph shown in Fig.8 whioh

corresponds to e f f ff f . It is important to note that "kinking"

and "cradling" are possible only when free Lagrangians are hewn out from

a total Lagrangian which is finite)"J[(9^)2 separated out from e (8(fr) ).

This is of course always the case for gravity theory where £Q for matter

fields is obtained from -^ m a t t e r *y replacing-^ by

To apply this graphical discussion for the realistic oase of

photon self-energy, let us go back to Fig.l. One can verify that the set

of graphs shown in Fig.l are all part of one supergraph

with n , n , n (the numbers of grayitons exchanged in Fig.9). Taking the

values 0,1,2,...,this supergraph includes graph (a) of Fig.l in the kinked

form shown in Fig.10.

.10
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It is important to stress once again that it is always the one graph((a)

of Fig.l) which in its multi-kinked form will find its appropriate cradle

among sequences like that of Fig«9»

V. KINKING, CRADLING ABD THE CALCULUS OF DERIVATIVES

Analytically, the "graphs of Fig.3 or, equivalently, of Fig.5

correspond to the expression

dx

where F . ^ i s given by

2

j 2

i *. sr~ v v v *yv (5.1)

D(x) V D ( X ) = I h «^*T V D ( X ) (5.2)
2 2 ~1

The zero-mass causal propagator D(x) is given "by (-4TT i ) *

The problem is Iro define the Fourier transform of (5*2). This

done by the method of Lehmann and Po

less rigorous, method. Consider the integral

2)
could "be done by the method of Lehmann and Pohlmeyer ' or by the following,

F Jx.k) =• ~ T j dzr(-z)(-X)Z {K2D(x))Z 8 atfD(x) (5.3)

c

where the contour C comes from positive infinity, encircles the origin in

the clockwise sense and returns to infinity. This integral evidently

reproduces the sum (5,2) if X = 1. On the other hand, if iarg(-A)| < n/2

then it is possible to replace the contour C "by one running parallel to the

imaginary axis with Re z < 0. Disregarding for the moment the problems

caused "by the derivatives in (5.3) one could follow the Gel'fand-Shilov '

prescription for obtaining the Fourier transform of D B^d^ D since it is

now possible to arrange the contour puch that 0 < Re (z+2) < 2: a necessary,

condition for the convergence of the Fourier integral. It must be emphasised

that if the kinked graph of Fig,4 had not been included in the sum then the

contour would have been confined to the strip 0 < Re z <1 and the Gel'fand-

Shilov requirement could not have been met - signalling the presence of an

unregularized infinity.

-13-



The derivative problem is dealt with in the following way.

Firstly, combine the factors DZ and ^M^J/D into the form

which is an identity except'in the neighbourhood of x = 0 where it

becomes ambiguous. We shall adopt this formula as a definition for all

%„ except in the neighbourhood of z = 0 where it needs to be elaborated.

It is clear that (5«4) cannot be a satisfactory definition at a = 0 since

the left-hand side assumes the well defined form, Q ^ B f i ) , while the

right-hand side assumes the equally well defined form, d^dvJi(x) + (i/4)6(x),

which is different.

To meet-this difficulty and also to render the formula useful for

computing the Fourier transform of integrals like

dz f(z)[D(x]f a a D(x) ,

Rez< 0

where f(z) has a pole of order r >,1 at z = 0, we shall adopt the

definition

a a - - t? ( J a [D(XJ (5*5)
- • - . ^

where N ^ r is ,an integer and c i s a positive number. I t i s to be

understood that the singularity at z = -£ l i e s to the left of the z—

oontour and that the limit 6 -* 0 i s therefore to be taken after evaluating

the Fourier transform and after t ransla t ing the contour to the right of

z = 0, In th i s way one obtains a definition which i s consistent at z = 0

where (5.4) fa i led . For other values of z i t coincides with (5*4)«

Another feature of (5*5) may ^ e noted. Contracting the indices

^i/jOne finds

[D(xf 3 D(x) = 0 , for z / 0

This has the important consequence that all those tadpole-like graphs in

the theory which arise from a consonance of terms like D(x)z 9 D(x) =

m D(0) 6(X) and which cannot be removed by the normal-ordering procedures,

automatically vanish. Thus, in effect D(0) = 0 everywhere.

-14-



Using (5*5) and taking the Fourier transform of (5.3), one obtains

V
p

The high_er-order terms will depend on the auxiliary parameter X, By

taking an average of the l imits A-> -"e1"" and A -> -o~17r one obtains the

minimally singular solution of Lehmann and Pohlmeyer.

VI. CONCLUDING KEMASKS

Sees.IV and V were t he d u l l p r e p a r a t i o n s for a proof of t h e

fol lowing theorem:

Given a convent iona l renorraa l izable Lagrangian polynomial in

fields 0 , , ^ , i , M together with interaction terms of the type

( a ^ ) 2 (eK* - 1), (9^2)2 (eK* - 1), , . , , the graphs made up from

the purely polynomial part of the Lagrangian can be cradled

(after suitable kinking) by those from the non-polynomial part,

the two forming a complementary whole, with infinities

realistically regularized,

A detailed proof will be given elsewhere, as also the detailed

gauge-covariant calculation for electron and photon self-energy graphs

which has been carried out in the manner desoribed in this paper.

The proof rests on noting that:

1) "Kinking" and "cradling" procedures convert effective

Lagrangians from the potentially infinity-producing form

(eK^ - 1) (dip)2 to the finite form eK<^ (dip)2*

2) The more superpropagators there are in a graph with

of the ty

finite.**

of the type eK^ (dtp) , the greater are i t s chances of being

Note that X in (3.5) is of the form (de*0) tf 0 and its inclusion causes no difficulties - neither
4

for gauge invariance, nor for finiteness.

-15-



3) In Seo.V we computed the modified Feynman-Eyson propagator

for the ijj field {ipi^e1 *) . I t is easy to see that this super-

propagator "behaves like -1 (rather than l / i ). Even if the only

modification in graphs made from the polynomial part, <*L , of the

tagrangian were to consist of such insertions, a renormalizable

theory based on •£, would have all i t s surviving infinities

regularized.

As stated "before, these general considerations need verifying by

actual computations. A number of such computations have "been carried

out and will "be published elsewhere. The gauge-invariant results for

<fe/m and <$m/m are the same as obtained in Ref.l up to terms of orders

tflog (vc2m2).

The following problems remain;

1) Inclusion of gravity-gravity interactions and, in particular,

the verification of gravitational gauge-invariance. (A part of

this investigation would be concerned with superpropagators of

Feynman's auxiliary particles.)

2) Developments in the calculus of derivatives* presented in

Sec.Vj justification of formulae like (5.5) from more basic

distribution theory.

3) The problem of renormalization of D(°) a * * Q l / i to the

value zero (generalized normal ordering).

4) Further ohecks of the validity of the scheme presented here

by actual higher-order computations.

-16-
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FIGURE CAPTIONS

o

Fig.l Contributions to the photon self-energy of order a,,.

The graph (a) is due to <X, only while those of (b),

(c) and (d) are the second-order contributions of X,.

In each of them the number, n, of gravitons involved

ranges over the values 1,2,3,... •

Fig.2 The kinking of a free propagator.

Fig.3 Graphs which contribute to the graviton-modified electron

propagator.

Fig,4 The free electron propagator kinked so as to represent

the zero-graviton modification.

Fig.5 The second-order supergraph for the electron propagator

which incorporates all the graphs of Fig,3. "

Fig,6 . The graphs which contribute to the gravity-modified

electron propagator including terms up to third order in

Fig.7 The graphs of F i g . 6 ( i ) and F i g . 6 ( i i ) represented with

k inks .

F ig .8 The t h i r d - o r d e r supergraph for the e lec t ron propagator

which incorpora tes a l l the graphs of F i g . 6 ,

Fig .9 The supergraph which incorpora tes a l l the con t r ibu t ions to

photon se l f -energy shown in F i g . l .

Fig.10 The graph of F i g . l ( a ) represented with s i x k inks .
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