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Page 6, line 6: After "superpropagators" and before the asterisk, add:

"of the non-polynomial co-tensors'.

Page 7, line 14t After "non-looalizable" add a second footnote **)

The footnote is: *9 This is on account of the -
' co-tensors L“a being rational
rather than entire functionas of

the physical field ¢H% .






ABSTRACT

It is argued that the use of a visibly localizable para-
metrization of the gravitational interaction yields a number of ad-
vantages. Firstly, the question of ambiguities can be completely
solved: according to a theorem of Lehmann and Pohlmeyer there exists
_in such theories a unigue "minimally singular” solution which it is
natural to adopt as the physical cne, Secondly, it ims possible to
show that this solution satisfies the usual requirements of analytic-
ity and unitarity in the sense of perturbation theory. Thirdly, it
is possible to arrange the computations in a manifestly gauge in-
dependent manner. These points are briefly reviewed in this letter,
the main object of which is to introduce a new technigue for the
treatment of those non-polynomial Lagrangians in which the inter-
action terms are intimately associated with the free part. The
gravity-modified theories exemplify this type of Lagrangian: in
such theories the zero-graviton approximant to any process is
veradled" in a sequence of graphs with arbitrarily large numbers
of gravitons whose sum exists, is finite, free of ambiguities\and

gauge independent to any required order,
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I, INTRODUCTION

In a recent paper, with essentially the same title as this cne,l)
the authors showed by actual computation that when tensor-gravity effects
are taken into account, ithe conventional logarithmically infinite ex-
pressions O log od appearing in electron self-charge and self-mass get
realistically regularized to crlog(nzmz) wheTe (16#&2) ig the
Newtonian constant GN « There were, however, a number of problems
the computation left dark:

Physically

_ It was not olear whether it was true tensor gravity which was
responsible for ‘the finite computation of the renormalization congtants

or whether it could be asome soalar.varsion of it.

Mathematically

1) The results were not gauge invariant.

2) The role of field-theorstic equivalence transformations was
not clear; the elimination of all infinities seems to necessitate
the assumption that g“\tx) must be treated as the fundamental
field and not the co-tensor g,.{x).

3) A divergent series was encountered in the calculation, and
for this the Borel sum was adopted. Such a prescription is

necegparily arbitrary and renders the result ambiguous.

Basically these shortoomings all stemmed from the same unanswered
question: Since it is analytic continuation +techniques which sharply
distinguish non-polynomial Lagrangians like gravity from polynomial
lagrangians, under what conditions do these techniques define good field
theories in the conventional sense? '

An important advance has récently been made in answering this
question by Lehmann and Pohlmeyer 2)
field theories with localizable (microcausal) interaction certainly do
define good field theories in the gonventional sense. This is because:

s who have shown that non-polynomial




1) The superpropagators in localizable theories are entire
functions in the variable A(x) and no Borel ambiguities

ever arise for these as they do for non-localizable theories,*’

.2) For localizable theories, there exists a perturbation
solution in the major coupling constant which satisfies the
usual requirements of analyticity and unitarity to all orders.
(This has been demonstrated by Lehmann and Pohlmeyer for a
prarticular Lagrangian 2 y though their considerations are

general. See also Volkov 3) and Filippov 4).)

3) Other solutions can be obtained from this one by adding to
it in a specifioc manner entire functions (in momentum space)

with the game order of exponential growth but which are other-
wige arbitrary. Such modified solutions can be distinguished
from the original one - in the case of localizable theories

only ~ by their high-energy behaviour., The original solution
(which Lehmann and Pohlmeyer call "minimally singular") is the
only one which falls to zero in some direction in the complex

energy plane.

*) By the term "superpropagator "is here meant the 2-point function <T Iim(tp(x)) f im(t.‘!)(y))> 0 computed
in the free field approximation - i.e. without the inclusion of any internal vertices. A theory is local-
izable and mictocausal in Jaffe's sense if the Fourier ransform of the imaginary part of the superpropaga.tors
increases no faster than exp | pZH % with a4 for large p2 ; it is non-localizable and non~microcausal
if a>}. One can show that in x-space the superpropagator can be expressed as an entire function of the
bare propagator, A(x-y) = {T o(x) oly); 0 for lecalizable theories. An example of this is the Lehmann-
Pohlmeyer Lagrangian, I =} 0)2 +g e? : , for which the superpropagator is given by the entire
function g2 exp K2A(x-y) . On fhe other hand, for non-localizable theories the superpropagator takes

the form of a divergent series. For example, with the Lagrangian oI = %(apo)z +ge {1+ K2a2)‘1 :,

2 : 2.2
the superpropagator is represented by the divergent series g Z (2n)i(x &) i
Pl



4) TFor localizéble,microcausal theories there exists the
fundamental theorem of Glaser, Epstein and Martin 5) which
asserts that such theories (presumably after a summation of the
perturbation expansion in the major coupling constant) give

masg—-ghell matrix elements which are Froiamsart bounded.

5) PFor localizable theories (and only for such theories)} one
may make the ansatz that the physically relevant solution is

the minimally singular one in the sense of Lehmann and Pohlmeyer.
This ansatz would eliminate all ambiguities (to all orders in

+the major coupling constant) in localizable theories., It is

our conjecture that the attainment of the Glaser-Martine

Epstein upper bound is intimately connected with the choice of

that perturbation solution which is minimally singular,

Summarizing, localizable, microcausal non-polynomial theories
offer the prospect of ambiguity-free, analytic, unitary, Froisgart-
bounded solutions and are good field theories in the conventional sense.

In the present paper we use these crucial results of Lehmann and
Pohlmeyer on localizable theories to sharpen the earlier computation
and in particular to:

1) arrange the caloulation so that the electromagnetic gauge

invariance for S-matrix elements is manifest,

2) show that it is indeed tensor gravity and not a scalar

variety of it which is responsible for gauge-independent in-
finity suppression (this would be in accordance with the physical
expectation that infinity suppression must come from light-cons
fluctuations which are peculiar to tensor (rather than scalar)

gravity in its metrical aspecis ),

¥
We are indebred to Prof, V. Weisskopf for emphasising this point (private communication).



II, LOCALIZABLE GRAVITY

To apply Lehmann and Pohlmeyer's result, we must work with a
manifestly localizable version of gravity theory. One way to
accomplish this is to parametirize the vierbein gravity field IM®
through an entire function, an exponential for example, Thus, write *)

LM - [exp(% ¢>]”a (2.1)

whore 6P = P* are the basic interpolating fields which at o0

goincide with the outgoing and incoming graviton fields. Since, in
gravity theory, one assumes that det L ﬁ 0, it is clear that, like
(2.1), the co-tensor L, o the inverse of % , is also an entire

function in the ¢-~plane.

) op : s
Strictly,one should refer this farmula to a Euclidean basis by means of the mauwix (ni) = diag(1,i,1,1).

Then it takes the matrix form
of
RN [mg kN n&]

where ¢ denotes a symmetric marix with elements (¢a5) . The exponential can be expanded to give

the formula

b4

K %
7 n‘—1+§n

2
ot i(3) ntonante .

2
x K
L_n+Eo+%(E) QNG+ e R
In particular one finds

~detl= exp-;- w(ne)

o3



The parametrization (2.1) replaces the conventional para-—
notrization which we used in Ref,l:

La Ma

LY =g B gHe (2.2)

k
2

where the co-tensor Eua was a ratio of two polynomials in ¢ .

Now to the extent that one may neglect graviton-graviton
(derivative—containing) self-interactions, one can easily check that

superpropagators ¥ (T : L, (1) :, : L (2): , Lpo(3) 2y voe

for parametrization (2.1) are entire functions in the (multiple)
A~-plane and define a localizable theory, while those arising from (2.2)
are divergent series and give a non-localizable theory.

Thus, aither

1) The two parametirizations define itwo distinct quantum theories,

one local and the other non-local.

2) The inclusion of graviton-graviton interactions will produce
vast cancellations for case (2.2), reducing the virulently
singular behaviour of superpropagators to that for para-
metrization {2.1), rendering both versions localizable., (The
reverse seems less likely.) Till this can be demonstrated we
shall abandon (2,2) and work with a visibly localizable entire-

function parametrization of gravity like the one given by (2.1).

Now comes the crucial point. Since localizable theories are
microcausal, and microcausality is the basis of Borchers' theory of equi~
valence claeses, we shall assume that those field tranasformations which
transform one localizable theory into another do respect the field-
theoretic equivalence theorem which asserts equality of mass-shell S-
matrix elements. Such transformations will play an important role in
exhibiting manifest gauge-invariance. Further, we can dispense
completely with the distinction made in Ref,1 between the tensor IN2

and its co-tensor %ua s 80 far as infinity suppression is concerned.

¥
We shall always discard the tadpoles in defining superpropagators, that is we take the normally ordered

vierbein Lpa: . .




All matrix elements deduced from Lagrangians of the variety

g + X exp(k¢) + are as finite as those from Lagrangians ¥
I
g : X exp(-k¢) : .

To pummarize, the essential message of thies paper is that the
bagic reason for the shortcomings of Ref.l was the use of a non—
localizable parametrization of gravity theory. Once thieg is cured,
the shortcomings disappear. It is imporftant to emphasise once again
that it is far too early to condemn the parametrization (2.2) in
comparison with (2.1). It is perfectly possible — through the large
number of cancellations associated with the derivative self-couplings
of gravity which have not been taken into acoount in this paper -
that the two paéémetrizations, in the engd, give completely equivalent
S-matrices. However, (2.,1) is visiblyniocalizable; (2.2) is visibly
non-looalizable, and,in view of the advantages of working with a local-
jzable theory, we shall henceforth discard (2.2).

II1. THE GRAVITY-MODIFIED LAGRANGIAN

The electron-photon part of the gravity-modified Lagrangian is
- gliven by

(-det L)'Z“QVI[Ei 1,2 (Elf'yaw,# - ;'b'.“'raw) - mofb"w] +

-2w, -1 ta —
+ {=det L) € 2 L w'yadz A,u
) ~11 mk UA
(-det L) 28 E FWFKA
(3.1)
*)

2 21 2,2
Heuristically, a two-point superpropagator behaves like g (r' X=1/x) exp{~x /x ). Theex~
2r 2
ponential is potent enough to regularize (1/x ) to zero provided we approach x -0 along the
appropriate direction in x-space, filling in for other directions by analytic continuation. (For detailed

2
discussion see Lehmann and Pohimeyer ).)




where

v =0 y- iZ Buab o Y+w, (detl) ¢ (3.2)

det I, = det .M . (3.3)

The parameter. LA denotes the weight of the eleciron field and B“ab

is a {for the present purposes irrelevant ) field which involves the
derivative of L . It is defined in Ref.l, The weight W, can be
changed at will by making field transformations and, if Borchers'
-theorem holds, it should not appear in the physical S-matrix.

It is difficult to make gauge-iniependent computations because
of the awkward factor I#* (-det L)"2"% ™1 yhich multiplies the inter-
action term eoz“p-'yad/Au in {3.1). This factor can be removed by
making a suitable choice of the basic field variables. To this end,
we choose to assign the weight w, = ~% and to regard the combination
A% a AIJ #* as the photon field. If the equivalence theorem is valid

then such a choice should not affect the values of S-matrix elements.

With these choices write the Lagrangian (3.,1) in the form
io+ I1+I2+ I3+ i4 (3.4)

where -
2 - .
- Fab . + . ﬁb(l’y' 8 mo)w bl

S
= <
i it
]

o |

eO :w'}fai.(/ Aa :

i,

i ke — AN ,
5 W@y g v -0 T 0 |
> (3.5)

HE VA
..].'. » .g._._g...— + n‘uK HVA' Ip F .
T4\ detl, J T uv kAT

g,

[+

R

. Lt pas, (1 ab :
g + L Ma(zBu Gab)}u
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The terms Stz ’ ][3 and ;f4 all give rise to vertices where at least
one graviton is emitied or absorbed., Consider the contributions of ;fi
and ;f to the photon self-energy. The graphs of second order in
Ly a.nd zoroth and second order in of, are shown in Fig.l. This
collection of graphs is gauge 1ndependent.

O o D D
(a) (v) (0) (d)

In Sec,IV we shall show that although the graphs of Fig.l are
logarithmically divergent, their infinities compensate in the sense that
they can all be incorporated in one "supergraph'" whoge contribution is
finite. To prove this we shall need to introduce two complementary

techniques, the "kinking" and "cradling" of graphs.

Before closing this section, we indicate why it is tensor
gravity rather than a scalar version of it which is necessary for in-
finity suppreseion. Firgily, scalar (Nordstrom) gravity is recovered
‘from the formalism of this paper by setting

Lua = exp(% QS) n’ua
Choosing the weight w_ = -3/8 cauges the Lagrangian (3.1) to reduce
to the form

L@v -0, 00 - mpe 20w
+e Ty ALY |
-ZF[JVFMV

where the scalar graviton, ¢, has decoupled from the photon and couples
1o the electron only through the mass term. Clearly ecélar gravitons
can have no regularizing role for massless electrons., However, even
for massive elecirons there is no regulaization. The graphs of Fig.l,
for example, fail to arrange themselves into a single finite supergraph

in the manner to be discussed in the following section.”

*) The same remark applies to non-polynomial strong interacticns which could modify the photon pro-

pagator and thus reguilarize Figs. 1{b), (c) and (d). However, the infinity in Fig.1(a) would remain.

—9—




IV, YKINKED" ORAPHS AND THE "CRADLING" TECENIQUE

As a prototype for I 'Il +ef2 ((3+6) and (3.7)) consider a model
Lagrangians

2

i

1

2

. eozsz: (4.1)

n

(-1 @) (4.2)

where ¥ , A ‘and ¢ represent scalar massless electrons, photons and
gravitons, Characteristically of1 is a renormalizable polynomial
Lagrangian while of'z is non-polynomial which, operating by itself, would -
give finite matrix elements but for any possible infinities which its
"kinking" part —(3;&)2 night produce.*) The "kinking" terms in of'2 are
so called because inside any (¥~) line the operation of (Bt,b)2 acts simply
like a unit operator, In momentum space, for example, the (scalar)
electron-line factor 1/p> equals |

B T T T T P T

2 )2 P 2 o2 K

corresponding to sucoceBsively kinked lines shown graphically in Pig.2.

]

"aa

Fig.2

In what follows, we shall use "kinking" to represent gero graviton emissgion
or absorption in graphs given by the operation of the polynomial Lagrangian
j.’i. This will then permit us to "eradle™ these in corresponding graphs
obtained by operation of Jfé-

As an gx?mpla, consider the computation of the propagator
{Tylx) wy) e 2% , graphically shown in Fig.3 up to second order in ié.
*)
but for I ~: xr (em - 1) s, finiteness holds only when r=0,1. For second-order superpropagators

int
the result is trivial to prove, as is also a heuristic proof for higher ordess. Dr. J.G. Taylor (private

]

. . r K )
We are here using the result that all mauix elements in a theory with ;{i pt T X e : are finite,

communi cation) has kindly informed us of having completed a rigorous proof.

-10-



— + 4 S -+ ;," “' + 1]
x Y x Xy Xz Y X X Kz 3
(1) Gy (id1)
Fig.3

Fig.}(ii) represents the one-graviton modification, Fig.3(iii) the two-
graviton modification,and so on. It is easy to ses that if we kink 3(i)
(see Fig'-4),

Fig.4

it would represent zero-graviton exchange and it could be "oradled" in a

supergraph = (Fig.5)

[

x Xl XL Yy
Fig.5

where the effective Lagrangian operating at X3 and x, ig the finite

Lagrangian (ng)2 o*? ,  In the next section we shall show the precise
manner of how this "cradling" is crucial to the regularization of the

series of graphs in Fig.3. Here we simply remark th?;h if one was con-
| ' . iy
gidering terms up to third order in o'fa in ( Tiyye >0 s the graphs

(1) and (ii) shown in Fig.6

v e~ o
- +Z -~ :" { + E. [ ™ ‘ "
(1) (ii) - (414)
Fi§5.6

could be kinked as shown in Fig.T7

“]l=~




Y
F

Fig.q

and then oradled into the single supergraph shown in Fig.8 which

AN .

Fig.8

corresponds to éf;ff = eK¢ (Bw)z. It is important to note that "kinking"
and "eradling" are possible only when free Lagrangians are hewn out from
s total Lagrangian which is finite,((9y)° separated out from o*% (2p)?).
This is of course always the case for gravity theory‘where ;fo for matteﬁ

fields is obtained from by replacing 48 by 1]”3.

matter

To apply this graphical discussion for the realistic case of
photon self-energy, let us go back to Fig.l. One can verify that the set
of graphs showﬁ.in Fig.l are all part of one supergraph

Fig.9

with ny, N,y 0y (the numbers of gravitons exchanged in Fig.9). Taking the
values 0,1,2,s¢+,tbis Bupergraph includes graph (a) of Fig.l in the kinked
form shown in Fig.lO.

Fig,10
M gz g et P G B Pl o e sl Ve Lk i an : i o e




It is important to siress once again that it is always the one graph((a)
of Fig,1) which in its multi=kinked form will find its appropriate cradle
among sequences like that of Fig,9.

V. KINKING, CRADLING AND THE CALCULUS OF DERIVATIVES

Analytically, the "graphs of Fig.3 or, egquivalently, of Fig.5
correspond to the expression

\

BD(x-xl) BD(x2 -Y)
f dx, dx, Y B %) oy, | (5.1)

where ﬁ#\,is given by

2 oD
_ k D(x) _ 1 2n .
F L = e 2,9, D(x) = E =« [bed 8,8,D(0 - (5.2)
0

The zero-mass causal propagator D(x) is given by (-4w2x2 -l.

The problem is ﬁb define the Fourier transform of (5.2). This
could be done by the method of Lehmann and Pohlmeyer 2) or by the following,

less rigorous, method, Conmider the intsgral

_ 1 v gy 2 z
Fpu(x.?\) '-- 5—; f dz I'(-z) (-A) {(x D(x)) auav D(x) ) (5.3)

€

where the contour C comes from positive infinity, encircles the origin in
the clockwise'sense and returns to infinity. This integral evidently
reprodﬁces the sum (5.2) if A =1, On the other hand, if larg(-h)'-ﬁ w/2
then it is possible to replace the contour ¢ by one running parallel to the
imaginary axis with Re z < O, Disregarding for the moment the problems
caused by the derivatives in (5.3) one could follow the Gel'fand=Shilov 6)
presceription for obtaining the Fourier transform of quua“ D since it is

now possible to arrange the contour guch that O < Re (2+2) < 21 a necessary.
condition for the convergence of the Fourier integral. I% must be emphasised
$hat if the kinked graph of Fig.4 had not been included in the sum then the
contour would have been confined to the strip O < Re z <1 and the Gel! fand—
Shilov requirement could not have been met ~ signalling the presence c¢f an

unregularized infinity.

-13-




The @erivative problem is dealt with in the following way.
Firstly, combine the factors DZ and 0,9 D into the form

z _ 2 _1 2 Z+l
D(x)" 8,3, D(X) = o (auau 3 T ) D | (5.4)

which is an identity except in the neighbourhood of X, = 0 where it
becomes ambiguous. We shall adopt this formula as a definition for all

' X, except in the neighbourhood of z = 0 where it needs to be elaborated,

It is clear that (5.4) cannot be a satisfactory definition at z = O since
the left-hand side assumes the well defined foﬁm, auavID(x), while the _
right-hand side assumes the equally well defined form, 8,9,D(x) + (1/4) s(x),

which im different.

To meet-this difficulty and alsc to render the formuls useful for

computing the Fourier transform of integrals like

dz f(z)[pxf 2,8,D(0
Rez< 0
where f(z) has a pole of order r »1 at z = O, we shall adopt the
defintion

N
. 2 1 z 2 +1
[Dex]f 9,9, D% = .:f(l) (2+1)(2+2) l:auav "1 " (z+e> ° J L) (5.5)

where XN »r 1is,an integer and € is a positive number. It is to be
understood that the singularity at z = «€ liez to the left of the z~
contour and that the limit € —>0 is therefore to be taken afier evaluating
the Fourier transform and after iranslating the contour to the right of

z = 0, In this way one obtains a definition which is consistent at 2 =.0
where (5.4) failed, TFor other values of z it coincides with (5.4),

Another feature of (5.5) may be noted. Contracting the indices
u,v,one finds

[D("-l!Z azD(x) = 0, fooz £ 0

This has the important consequence that all those tadpole-like graphs in
the theory which arise from & consonance of terms like D(x)” 82D(x) =

= D(O)Z §{(x) and which cannot be removed by the normal-ordering procedures,
automatically vanish. Thus, in effect D(0) = O everywhere.




Using (5.5) and taking the Fourier transform of (5.,3), one obtains

F (N = -i—"2—‘+ o) .

p
The higher-order terms will depend on the auxiliary parameter A, By
; .. ixT =]
taking an average of the limits A ~¢* " and A = =e -7 one obtains the

minimally singular solution of Lehmann and Pohlmeyer.

VI. CONCLUDING REMARKS

Secs IV and V were the dull preparations for a proof of the
following theorem:
Given a conventional renommalizable Lagrangian polynomial in
'fiqlds wl,qbz,..., together with interaction terms of the type
(Bwl)z (eK¢ - 1), (8¢b)2 (ex¢ = 1)y +o¢y the graphs made up from
ihe purely polynomial part of the Lagrangian can be cradled

(after suitable kinking) by those from the non-polynomial part,
the two forming a'domplementary whole, with infinities

realistically regularized,

A detailed proof will be given elsevwhere, as also the detailed
gauge=-covariant calculation for electron and photon self-energy graphs
which has been carried out in the manner described in this paper.,

The proof rests on noting that:

1) ™inking" and "eradling" procedures convert effective

Lagrangians from the potentially infinity-producing form

(e“® - 1) (89)2 to the finite form k9 (aw)z. |

2) The more superpropagators there are in a graph with ;f;ff

of the type ekd (a¢)2, the greater are its chances of Dbeing

finite,®

¥, wn e . s
) Note that .f4 in (3.5) is of the form (9 em) ¥ ¢ and its inclusion causes no difficulties - neither

for gauge invariance, nor for finiteness,




3) In Sec.V we computed the modified Feynman-Dyson propagator
vt
£y,

propagator behaves like ~1 (rather than 1/:2). Even if the only
’

for the y field (yye It is easy to see that this super-
modification in graphs made from the polynomial pari, ;fl’ of the
Lagrangian were to consist of such insertions, a renormalizable

4
theory based on ;f; would have all its surviving infinities
regularized.

As stated before, these general considerations need verifying by
actual computations. A number of such computations have been carried
out and will be published elsewhere. The gauge-invariant results for
Sé/m and dh/m are the same as obtained in Ref,1 up to terms of orders
o log (&21112 Yo
The following problems remain:
1) Inclusion of gravity-gravity interactions and, in particular,
the verification of gravitational gauge=-invariance. (A part of
this investigation would be concerned with superpropagators of

Feynman's auxiliary particles.)

2) Developments in the calculus of derivatives, presented in
Sec.V; Justification of formulae like (5.5) from more basic
digtribution theory. .
3) The problem of renormalization of D(0) = xgif) 1/:2

value zero (generalized normal ordering).

to the_

4) Further checks of the validity of the acheme presented here
by actual higher-order computations.

] 6=




2)

3)

4)

5)

6)
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FICURE CAPTIONS

Fig.l Contributions to the photon self-energy of order eg.
The graph (a) is due to ofl only while those of (b},
(c) and (d) are the second-order contributions of .i;.
In each of them the number, n, of gravitons involved

ranges over the values 1;2,34er¢ o

Fig.2 The kinking of a free propagator.

Fig.3 Graphs which contribute to the graviton-modified selectron
propagator,

Fig.4 The free electron propagator kinked so as to represent

the zero-graviton modification,

Fig.5 The second=-order supergraph for the electron propagator
whichk incorporates all the graphs of Fig.3.

Pig.6 . The graphs which contribute to the gravity-modified

electron propagator including terms up to third ordexr in

1.

Fig.T The graphs of Fig.6(i) and Fig,6(ii) represented with
kinks .
Fig.8 The third-order supergraph for the slectron propagator

which incorporates all the graphs of Fig.6.

Fig.9 The supergraph which incorporates all the contributions to
photon self-energy shown in Fig,l.

Fig,10 The graph of Fig.l{(a) represented with six kinks,

b
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