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INTRODUCTION

The theme of this session is computation of the traditionally in-
finite renormalization constants., These constants are usually ex-
pressed (in Kallén-lehmann formulation) as integrals of spectral
functiong and their moments., They therefore represent magnitudes as
moasurable or as unmeasurable as the corresponding form factors, For
theories possessing internal symmetry, we in fact know more about them,
For example, we believe that bare 'mnq. equals bare m,o ; bare gy

equals bare g, and bare m, (possibly) equals bare m,, (= 0).

In computing renormalization constants, one is dealing with pro-
duots of singular distribution functions. Basically the problem is
to extract good physics from the bad mathematics. This now seems

poseible because of two advances.

1) Advances in mathematics of generalized functions: I have
in mind the Gel'fand-Shilov and related work in defining Fourier

transforms of products of distributions like:

1\*1 1\%2 (AN 1172
(;g) ® (;z) and Bu (?) ® a, (;2'> for integer z's.

This uses gnalytic continuation methods (continuation in the vari-

ables = and z, from the region O < Re Z1 s Zy 9 2 + 2, < 1)

and represents a major and as yet unappreciated advance in the

mathematics of our subject.

2) Avances in field theory: The realization that:

a) all Lagrangisns of physical interest are intrinsically

non-polymomial in character (if all else fails, inclusion

of gravity makes them so);

b) the proofs (to be presented here to-day) that local-
izable non-polynomial Lagrangians are as respectable in a

strict field~-theoretic sense as the polynomial ones;

c) the realization that analytic regularization methods

mentioned above are absolutely tailor-made for such

Lagrangians, yielding for a variety of these finite and
(as Prof. Lehmann will tell us, with one further physical
ansatz) unambiguous values for the renormalization constants,
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The session will be divided into three parts.

Part I: Analytic regularization methods and their

applicability to non-polynomial Lagrangians.

Part II: Effects of including gquantized tensor gravity
with the elecirodynamics of leptons - i.,e.

the finite and gauge-invariant computation of

alactron's self-charee and self-mass in the

quantum theorist's version of curved space

and time., (The preservation of gauge invariance

"ig a new result,) .

Part IIIs The speculative suggestion that F~mesons couple to
the hadronic stress tensor in the same (non-
polynomial ) manner as Binstein's gravitons do to
leptons (i.e. the postulate of the two-tensor
theory of gravity), and the possibility of using
this non-polynomiality to regularize renormalization

congtants in strong-interaction physics.

I shall briefly mention in these opening remarks some of the newer
contributions, speculations, and the unanswered questions. (In a
lecture like this,one can be unashamedly speculative in order to em=

phasise lines of posgible further work. )

Before doing this, however, it may be useful to make a list of

some of the non-polynomial Lagrangians important in physics.

Non-polynomial Lagrangians of physical interest include the
following:

A) CHIRAL sU(2) x SU(2) LAGRANGIAN FOR STRONG - INTERACTIONS

A typical example is the M-meson Lagrangian in its different para-

metric versionst

+
- a

P
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where
(Weinberg-Schwinger co-ordinates)

or

wn
n

exp(i AGI . 7) (Giirsey co-ordinates) .

Here A, (lw or )\G), which we call the minor coupling constant, has
dimensions of inverse length; (empirically ) a m';rl).
open question for field theory in general is this: Are on-shell S-

An important

matrices for these two versions equalj particularly as the Cursey
(e;ponential) form on the face of it appears to define a localizable
chiral theory of 7" -mesons and the Weinberg (rational) form a non-

*
localizable one .EFNH

B) IFTERMEDIATE-BOSON MEDIATED WEAK LAGRANGIAN

A typical example is a neutral W-meson of mass m interacting
with quarks (Q) of mass M , with

- 2.2
i.t-fQ'yu(1+75)QWu and mf 2 G

in (the Fermi constant) .

F

The essential non-polynomiality of the theory is concealed in the
derivative coupling of the spin-zero daughier of the physical spin-
one particle which is described by the four-vector field W}-" . To
make this manifest, write W, = A, + }% aM B in the well-known
Stiickelberg form and transform the quark-field Q' = exp(if ¥s B/m)Q .

:I'he transformed iint‘ equals

i _ ' -, Zif‘ysB .

=1 1+ —_— -1

mt TR VA+7)Q A +MQ (exp[ - ] )Q .

The constant f/m w -JGF plays the role of the minor coupling constant
in the second term of this Lagrangian., The important point I wish to

stress is this: A derivative coupling (of the B~field in this case )

can look deceptively polynomial in form; by suitable field transform-

ationa its essential non-polynomiality (with the characteristic property

that, in Peynman's language, a whole host of lines emanate from a single

vertex) can be made manifest.

¥ TFootnotes are demoted [FN1] ,,,, and are given om pp.33-37.
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C) EINSTEIN'S TENSOR GRAVITY AND GRAVITY-MODIFIED MATTER FIELDS

The conventional Lagrangian for gravity is
- ; —AL P
L I 4 A'l" Popp f -det(e™ "
Einstein K g ryp v A uv Ap _ .e (")

where

A1
ruv-zg

Ap @

8ot 8,708,

Ve VvV Cup

If gM¥ is the fundamental field, the covariant quantity Euv is
intrinsically non-~polynomial and vice versa. The simplest example

for matter-field in curved space-time is the spin-zero field:

"a¢a¢

Lmatter 1/ _det g

Loatter 18 2lso non-polynomial. The quantity gM¥ (the metric tensor
of classical physics) is conventionally parametrized ( when space-time

at infinity is Minkowskian) in the form

Here l(2 y the coupling constant of the theory, equals STTGN (GN is
44 5 2 -1 18
the Newtonian constant) ( « 10 /me) y i.0. K %10 BeV, 4An

alternative (and by the mathematicians the more favoured ) parametrization

_ v
MY ab
g' -[exp(x 'yabh )] ,

where Yab are 4 x 4 pseudosymmetric matrices. (Note that for this

-"exponential" parametrization det gHV = exp(k h:) . When we come to

is given by

4

consider Bpln"j' partioles, Binstein's +tensor can be treated as the

fundamental field. Ingtead one must work.with vierbein gravity Lhe

whose relation to gV is given by g®¥ = 1@ L: e




PART I

There are three speakers in this part of the session.

Prof, J.G. Taylor,in his lecture,will survey the methods which
have been developed o compute S-matrix elements in non-polynomial
Lagrangian theories, to any desired order in the major and all orders
in the minor coupling constant. (To remind you, for Ling =
=gt exp(eg) ~ 1 : , we call g the major and w the minor constant.)
Ho will exhibit the inbuilt infinity-suppression mechanism for these theorics
and also give a beautiful new proof of the unitarity of this solution,
Prof., Lehmann, in his lecture, discusses the very important problem

of possible distribution~theoretic ambiguities in the definition of

time—~ordered products in localizable theories and their elimination.

Thie follows on the work by Lehmann and Pohlmeyer who have shown that
the procedures developed by Filippov, Volkov, Salam, Strathdee and
others, do guarantee analyticity and unitarity of localizable theories
to an arbitrary order in the major constant. The demonstration that
the analyticity and unitarity behaviour of localizable non;polynomial
theories is as good as that for the conventional polynomial cnes is to
me tremendous news. Efimov had already given one proof; a more rigorous
confirmation from Lehmann and Pohlmeyer (and for unitarity from Taylor)
is extremely welcome. Mathematically, at any rate, the theories we are
dealing with are as respectable = or as ordinary and normal, with no
special mystery about them - as one could desire. Prof. Lehmann will
be followed by Dr. N. Christ, who disousses the ambiguity problem from
a different point of view.

I shall give here a very brief survey of the ideas which will be

presented in more detail in later lectures.

A) GEL'FAND-SHEILOV METHOD AND INFINITY SUPPRESSION

i) The problems

Oiven a localizable Lagrangian like

L, = glexp(xd) - 1) . ' (1.1)

we wish typiocally to compute the superpropagator

59 = (T Ly(b,™ L4, 00) . (1.2)

-5




Formally,

s = ) fher o> (1.3)
n=1

We specialize to zero-mass particles where

(T 60 6,0) = DGO = 5 (1.4)

x&

with the Fourier transform (FT) proportional to l/p2 . In evaluating
a term like (T¢2(x) 952(0)) , the first problem is the meaning to be
ascribed to ¢2(x) + The conventional procedure uses (1l.4) to define
a normal product :¢? : from the relation ¢2(x) = 1#%(x): + D(O) .

Here D(0) is the infinite renommalization constant £t 1/x° .
x—0 o

One now shows that

(T : ¢2(x) s ¢2(0) o= %é 2 (1.47)
(x)

up to a distribution-theoretic ambiguity of the form b 64(x) (b—ambiguity).
This simplest of situations already poses the three problems which lie

at the heart of our discﬁssion:

a) Normal ordering: is there any physics concealed in D{0)

and being digcarded with it by the normal-ordering procedure?
b) (1/x2)2 is a product of singular distributions l/x2 G’l/x2 .
Is there a natural definition for its Fourier transform?

¢) The role of the "ambiguity constant" b .

Conventional renormalization theory treats problems b) and ¢) as

rarts of ons problem; in Fourier space, & faltung is used to write

4 ‘

1 . 1 o IPX d4x _ 1 d k
x2 x* 4 2.2
(27) (p-k}~ k

The integral on the right-—hand sgide exhibits_(a logarithmic) infinity.
A subtraction procedure is devised to separate this from the integral

and the constant b is adjusted to compensate this infinity.

e




This faltung method and infinity separation become prohibitively

. oomplicated when we consider objects like
n n
(T : ¢in(x) i ¢in(0) 3)

represented by a cocoon-like graph with n-~lines

—

with its (n-1) divergent subintegrations in momentum space., Thig was
one reason why non-renormalizable theories with polynomial Lagrangians
(eegey SE. $ =6 ¢5 or g ¢6 s eto,) were soon abandoned. Even a

in
subtraction procedure was hard to define.

ii) Gel'fand method

Non-polynomial Lagrangian theories, on the other hand, offer, through

1
the Gel'fand=Shilov procedures, 'a different approach, where we geparate

problems b) and c). (Basically this happens because a superpropagator

in such theories is a sum of a series of singular function
1 /-l
S(x) = E: 1 (:L§> . 'This sum is far less singular, when x — 0
x

from an appropriate direction, than each single texrm of the series,
(Roughly apeaking,'exp(-n?/xz) — O when x° is space-like and k% ig
negative. Analytic continuation then fillas in for other directions and

other ®2 .)

To be more precise, let us return to (1.4'). We wish to compute the
FT of (1/x2)2 ; more generally of DP(x) = (1/x2)n . Gel'fand and Shilov
remark that since the FT of (1/x2)® is a well-defined classical mathematics
objeoct whenever 0 < Rez <2 , and is proportional to (T'(2-z))/T(z) X
(1/132)2"z , the FT of (1/x2)n , with n 1lying outside this region, may
be defined by an appropriate analytic continuation of this function in
the variable 2z ., (Contrast the elegance of this definition with the
olumsinese.of the conventional faltung procedure with its multiple divergent

loop subintegrations. We make the word "appropriate more precise in a

minute. )

The Gel'fand-Shilov method was discussed in physics literature by 3)
Gﬁttinger?La early as 13§6 and,in an equivalent formulation, by Gustafson
even earlier, Bollini and Giambiagi were perhaps the first to use it

purposefully for rewriting conventional renormalization theory. Its

—7-




power and value, however, become apparent partioularly when we use it
together with non-polynomial Lagrangians, because here the somewhat

vague ooncept of "appropriate analytic continuation" in the variable
%z beocomes dove-tailed with the analyticity properties of the super-
propagator S5(x) in the variable (K? D(x}) .

To give the bare bones of the method, consider the superpropagator

for the Lagrangian L = (s g2 eKﬁz - 1) . This is an entire function

of W° D(x)
® n
2 1 2 :
S(x) = g Z o [K D(X)] . (1.5)
n=1 |
First write its Sommerfeld-Watson transform:

2 z
_E d 1
S = o f I‘(z+zl) tan7z [KaD(x)} ' (1.6)

| [ransition from (1.5) to (1.6) ,
The conditions under which ./ is justified are stayed in the papers

of Volkov, Salam, Strathdee, Lehmann and Pohlmeyer.5 There are b-
ambiguities in writing (1.6} which are discussed below. The contour
as usual encloses the positive real axis from Re.z<:l to infinity.
Second, rotate the contour to lie parallel ito the imaginary axis -

in this particular case along O ¢ Rez <1 , The Gel'fand-Shilov

condition for "classical" Fourier transforming is met, and we write

2-z
~ 2.z {1 I'(2-2) d=z
Stp) =f () (Pl> I'(z) I{z+1) tanwz : (1.7)

0<Rez<l

The integrand has a single pole at z = 1 ~(corresponding to the
-Kz/x2 term in S{x)) and double poles at =z = 2,3,4,... . These give
rise to characteristic terms proportional to (szz)r loghcepz) .

Mhig logarithmic dependence of the Green's function on the minor

coupling constant is a hallmark . of non-polynomial Lagrangian theories.

iii) Infinity suppression

To see that this logarithmic dependence represents infinity sup-
pression, congider a mixed theory with Lint = g'X3 exp(x?) « The
superpropagator equals'

-8~




n+3  2n
50 = g® )’ Bl

n=3

with the Sommerfeld-Watson transform

_Ei f 1'(2)2 Dz+3 (1.8)
27i manTm+;) :

Rez <3

Por the Gel'fand condition to be met, the contour must be shifted to the

left of Re z + 3 <2 . This is perfectly possible since the integrand

is not singular at 2z = -1 . The FT S(p) is easily evaluated and
contains terms proportional to 2/&? y g2 log{K?pz) ’ 2 2 2 log(p ),
etc. Clearly g /h? is the relic of the quadratic 1nf1nity in a polynomlal
theoryglvenbyf”ﬂe Lagrangian g)( K.Eto (g 'X,3) K¢; likewise

log(\( P ) is the relic of the logarithmic infinity. We recover these
infinities in the limit x>0 . To put it another waXL,(K)-l is the

inbuilt, realistic, regularizing cut—off in the non-polynomial theory

(e X exp(ic$)).

B) FINITE VERSUS RENORMALIZABLE TLAGRANGIANS

Now it is not always the case that every infinity can be regular-
ized, Consider the Lagrangian Loy = (emlb -1-k¢ -((K2¢2)/2!)) .
Here the superpropagator SII(x) has the same expression as in (1.6);
the contour of integration, however, lies along 2 <Re'z ¢3 . We cannot
interchange z-integration with  the T singe the
Gel'fand-Shilov condition Re z < 2 is not met. We must write
II(x) = S (x) - (K2D2)/2' befors doing so. While S (x) can be
Founer-transfomed by the methods above,the (- Dz)/2‘ term sticks out
like a sore tkumb (ST). One may regularize it using any available
method; there is no reason, however,for the effective cut-off to depend
on Kk . We shall call the Lagrangian L, finite and,in contrast,
LII renormalizable, since L needs a subtraction constant of the
conventional variety. At least one physical quantity cannot be com-

IT

puted within the theory so far as L;; is concerned. The ideal theory
would of course be the one where there are no  uncomputable, renormal-

ization constants whé.tever.
—9‘




C) AMBIGUITIES
6)

in the sense defined in the last subsection suffer from thege. Their
origin is distribution-theoretio; the distribution (T : ¢°(x) & : ¢7(0) :)
is ambiguous up to terms of the typeljzlbn(az)n—z &(x) « Alternatively,
one can see these b-ambiguities in the Sommerfeld-Watson formulation. In

Let us now turn to the ambiguity problem. 7 Bven the finite theories

passing from (1.5) to (1.6) and (1.7) we have written down an extrapolated
function merely from a knowledge of its value at integer poinis, To be
more accurate we should have written in, in {(1.6), the factor
[(1/(tanwz)) + b(z)} rather than just 1/tanmz .

As I said earlier, Lehmann and Pohlmeyer's crucial contribution is to
show that there exists a simple physical criterion - and this applies
t0 all orders in the major coupling constant - uging which one can
eliminate these distribution-theoretic ambiguities from localizable
theories. The basic idea is that for finite localizable theories the
b-dependent (and ambiguous) contributions in {1.7) can be distinguished
from those with b = 0 through their behaviour in p-space for large
(pzl . The b-dependent terms do not fall in any direction in the IPZI
plane, while the b-independent terms do and thus define a minimal-
singularity superpgspagator g(p) . The same criterion was also used
earlier by Filippov for the second-order superpropagator to eliminate
ambiguities and used by all workers in this field, Lehmann and Pohlmeyer
give a general formulation valid for all higher-order superpropagators.
They show further that this distinction between b~dependent and b-

independent terms cannot be made for polynomial theoriesy the non-polynomials

are far superior to polynomials in thisg regard,

D) NON-LOCALIZABIE LAGRANGIANS OF RATIONAL VARIETY

Le+t us now turn to the case of normally ordered non-localizable
theories, e.g. LIII =t gﬂ@ + KdD: - Here

Syy(®) = &° Z T(n+1) (k> D)™ . (1.9)

n=0

Contrast this with the superpropagator SI(x) . Congidered as a smeries
in K?D(x) , (1,9) in contrast to {1.5) has zero radius of con-

vergence., Efimov and Fradkin’suggested defining the superpropagator

=10




as a Borel sum of (1.9). Formally write

S = z fﬁ e ¥ (k% D) )" de (1.10)
n=0 0
- f e de . | (1.11)

0 1"( D(X)r

For the definition of the physical superpropagator, Efimov and Fradkin
adopted a prinoipal value definition of the integral (1.11) in

the {-plane, From this definition (or equivalently from (1.10)) one

can go on to use Gel'fand and Shilov methods for Fourier transforming,

precisely as in (1.7).

Quite clearly the Borel ansatz introduces here a new and additional

source of ambiguity, the Borel ambiguity,which just doeg not exigt for

localizable theories, One unfortunate aspect of this is that the
Lehmann~Pohlmeyer ansatz for dealing with bwambiguities is useless; both
the b-ambiguity terms as well as the principal value terms in the PT

of (1.11) fall equally fast in the 1p%l pla e for large [p%] .

4 meocond difficulty has been noted by S. Fels who shows that there is

no guarantee that the requisite field-theoretic positive-definiteness

of the principal value propagator (1.11) can be guaranteed.

Now Strathdee, Delbourgo and myself have proved & theorem which might
save the situation. Sparked by some remarks of Fels, what we have shown
is this, [The trouble for non-localizable theories lies in normal orderw
ing. If Jl;;; is not normally ordered ~ i.e., we leave D(0)'s in
Tormally as an undetermined parameter in the theory - then the high-energy
behavicur of the momentum-—space superpropagator is drastically altered,

To be precigse, we show that for non-localizable theories of the rational

variety (with Lagrangians of the type §:a” ~——— ) the non-normal-
i 14+ Ki¢

ordered series expansions for superpropagators converge, when oonsidered
as a series in D(x) . This radius of convergenoe is given by D(0) .

-]l




If D(0) » o4, the radius of convergence is infinitely large, no
principal value ansatz is needed to define (1.11) and the superpropagators
visibly satiafy positive d%§; iteness criteria. Tpia is ni;e; un-
fortunately, as Fried noted ,if we do set D(0) = :1ft | §1)==oo,

w0
nearly all matrix elements will vanish, Clearly D{(0) must be rTe-
normalized. If we have physical reasons for believing that D(0)
should be finite (for example, if a scalar field  "in the theory
possesses a non-2zZerc expectation value (¢) # 0, which can be expressed
as function of D(O) s then the superpropagators would possess finite

radii of convergence. In p-space this would mean that for non-normally-—

ordered rational theoriss, the two-point spectral function p(pz) would

behave like exq:v/h)l - il.e. we would have a just localizable situation,
The proof of our results is simple and ocan easily be constructed., A
ugeful remark for its construction is the following: given a Lagrangian
L(¢) -, one obtains the corresponding normally-ordered Lagrangian from

it by a simple operator identity,

2
DO) o
Jz-—)———-2> L(#)

: L(d) : =expl+
9

[FN3]
Cur conclusion is that normal ordering is a crime for non-localizable

theories, Rational Lagrangians are just localizable provided D(0) is

renormalized to a finite non-zero value; they become non~logalizable only

when they are normally orderedll%équivalently when D{(0) is renormalized

to ZBTO)r

We have not yet completed the investigation of whether the Lehmann

ansatz for isolating b-ambiguities applies to just-localizable theories,

nor can we say whether the inbuilt cut-off for ithese theories is still
(K)_l or if it is modified through the appearance of the new constant

D(0) . Clearly there ig a certain amount of physics concealed in D(0)

whenever we work with non~localizable theories,

E) PINITE NON-LOCALIZABIE THEORIES
Let ug now turn to enumerate the cases when non-polynomial theories

are finite as opposed to being just renormalizable (i.0.y8till needing

a finite number of constants unspecified and uncomputable within the

theory ). Unfortunately all work so far on this problem (papers by

-]l
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Efimov, Fradkin, Delbourge, Koller and Salam, J.G. Taylor and Keck)

has conoentrated on normally-ordered rational Lagrangians of the type
¢ |

g il To summarize the results of these papers:
(1 +xg")

a) S is finite if n-w<2 .

b) £ is renormalizable provided 2< n-w<4, ie, there
oxist a finite number of ST's which cannot be computed in
terme of g and X , but whose infinities can be absorbed
into a renormalizaiion of physical constants, Note the
surprising inequality n - w < 4 . One may naively have

expocted renormalizable theories to range over n -~ w < 4 .,

6) For mixed theories like

WA

L=:g :
(1+kd)

(1.12)

where the Dyson weight of the polynomial part of L (i.e. ﬁyﬁ)
is €4 (Dyson weight of a scalar field A is 1 , of spinor
field ¥ is 3/2), the theory is renormalizable for all w > O ,

d) We believe that if normal ordering is dropped (i.e., D(0) is
kept as an undetermined constant or alternatively D(0) is
re-expressed in terms of an uncomputable magnitude {¢) )
the Lagrangian (1.12) gives a finite theory, provided w > 2 .
For the borderline case w =2 , the only ST''s are those
which correspond to vacuum-to-vacuum graphs.

@) For exponential (localizable) Lagrangians the situation is more

favourable-towards.finitenesslB)

are finite. The result is trivial for superpropagators in

the second order, For higher-order supsrpropagators the

proof of this assertion presents no difficulties whenever n ¢ 2,

For n > 2 the result is deduced by differentiating (exp k¢ )

with respect to K.

f£) less easy to prove is the finiteness of the mixed case
: g‘xn eK¢ : for higher superpropagators. For n (¢ 2
the proof goes through easily. For 2<n< 4 we believe

-

W
. Lagrangians of the type : gq&n 8 3

these theories are finite, but a proof complete in details hasg not yet

been constructed. It would appear as if k¥ behaves like

a rational Lagrangian with an arbitrarily large weight w,

13-
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go far as its strong smoothing effect on infinities is

concerned.

F) CALCULUS OF DERIVATIVES AND GENERALIZED NORIAL ORDERING

We turn finally to the derivative—containing Lagrangiasns which
constitute the majority of the physically interesting cases, In my
Miami lecture of 1970, it was remarked that even though,looked at

naively, differentiating l/x2 peems to increase its singularity,

one's experience is that the inorease is not as lethal as multiplying

by a corresponding number of powers of (l/xa) .

Stated differently, a factor like a‘uavqi in a lagrangian is gentler,
8o far as its infinity-inducing properties are concerncd, than a factor
like ﬁpv¢3though,on the face of it,both seem 1o possess the same
Dyson weight (w = 3). This observation - deduced empirically from
practical calculations — has imporiant conmequences for finiteness

versus renormalizability of derivative-containing Lagrangians of the

chiral or the graviiational type. For these the free Lagrangian and
the interaction lagrangian are inexiricably mixed in. As a simple

example consider

- 0
Ltotal = ° + mztp2
(1+Kk9)

Assuming each derivative possesses a weight unity, the Dyson weight of

Ltotal ,
from Ltotal -~ and we must do this to start our perturbation calculations -

equals 2 ., However, when the free Lagrangian is split off

the weight of the resulting Lint appears to have Jjumped to 4 . What
is the true weighi? Is the theory finite or merely renormalizable?

. . 2
To put it another way if we write J;nt E‘ftotal - (aq) ¢ do the two

derivatives in the second term really produce new ST's?

To answer these questions, it seems essential that we make
an extension of the Gel'fand~Shilov calculus of generalized funoction

to include derivatives. This can be dohe as follows: .- The formula

”
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z. +2

A zZ z
1\ 1N?2 1 1N 2 1,13)
ay (?) B (x2> - z, + 2, au x2> (

is true for all x , when O { Re Z1y 259 2y * % <2 . PFor 1z, and

1 1

Z, outside this range, the two sides may differ at x = O up to terms
containing 6(x) , its derivatives and also factors containing (D(0))F .
. We believe this formula and its. generalizations offer the correct ex-

tension of Gel'fand-Shilov calculus when derivatives occur, - To eva.luate

'the left-hand side write it in the form on the right and make 'Ehe[ aﬁﬁro;-
FN:

2,21+22<2 . The

important point about (1.13 ) is that the number of derivatives on both

priate ocontinuations from the range O < Re Z)y2

sides is conserved, This ensures that the overall singularity from the
lines (1/:::2)2""zz is not enhanced more on one side of (1.13) by the
differentiations than on the other., In other words, derivatives and
singular functions are somehow différent;, distribution-theoretically
(I am not enough of a distribution-theorist  to formalize this) and
thip distinction must be maintained. To see the power and Traison

of this ansatz, consider the simplest gemeralization of (1.,13) given by
- i : .
1\ 1\2
a - e ——— =
u (x2 8% (x2>

- “1%2 (a R — )(—%)zwzz
(zl+zz)(zl+zz+1} [T 2(zl+zz-1) uv J\x

L)

| , (1.14)
<
0 < Rez, 2, 2, +7, L.
The terms on the right contain two derivatives just as on the left,
Now consider using (1.14) in a conventional photon self-energy cal-
culation (zoro-mass electrons with propagators S(x) = /g(l/xz)):
1 1
IIuv(x) = Tr "yul (?) 7y ;(xz)
2
=2(aa-6 82)<—1—5> .
u v uv X
_ (1.15)

(We have continued the relation (1.14) outside the region of definition.
This. of course always needs care.,) Now (1.15) correctly exhibits the

transverse character of photon self-energy. Using even the most obtuse

w1 e




and. old-fashioned of computing procedures, the FT of 'n;v(x) equals

4
2 . d'k
20, " 8, P) [ — 5
utv uv ' 2.2
- -k k
This shows no sign whatszoever of generating any photon self-masa. The
photon self-mass in conventional calculations is indecently manufactured

by forgetting the ansatz regarding conservation of derivatives and by

writing NLy(x) in the form:
2 N3
I,,x =299, (ﬁ) 16 8, (?) ] (1.16)

That is,in the second term on the right of (1.15), 32(1/::2 )2 ig Teplaced

by 8/(x2)3 in most standard treaftments, Since (l/x2)3 is more singular

. 2.2 ) . . .. {quadratically infinite)
than (l/x )", it is alleged that the theory is giving apphoton self-mass!

Admittedly this care with derivatives pays off most when deriva-—

tives oocur at those vertices where external lines impinge. But I am

labouring this point because I feel that the power of the analytic

methods of Gel!'fand and their extension to derivative couplings is un-

appreciated and that half of our difficulties in renormalization theory

are due to bad mathematics. If one accepts that no faltung theorems will

be used to compute FT's of product of distributions like (1/x°)™ @ (1/x°)%,

. [FN5
then none should be used for ()P(l/xz)z' @ 3,,(1/3:2)22- .

G) HIGH-ENERGY EEHAVIOUR OF LOCALIZABLE THEORIES ON THE MNASS SHELL

One more problem for non-polynomial Lagrangians on the pure field-
theory side is this. Glaser, Martin and Epstei&4j.in a fundamerital
paper have shown that all localizable theories should give Froissart-
bounded high—eneﬁgy dependence of S-matrix elements. The Volkov-
Lehmann expansion” ' in the major constant does not achieve this. In
this expansion any given oxrder behaves like exp({pzlu) X <%, I
believe thisg difficulty will be resolved when summations over the
major coupling constants are performed. We already know that for
tconventional polynomial theories this type of summation -~ performed
either directly by summing diagrams or by using Padé approximants or

carried through indirectly using the Bethe-Salpeter integral equation -

-16=




alters the high-energy behaviour of individual diagrams. Specifically
we know that even though individual diagrams behave like s¥ (& con-

stant ), for the sum of ladder diagrams one finds a drastic changej one

obtains the Regge behaviour Su(t) + Likewise I believe that a sum

of a chain of superpropagators is likely to satisfy Glaser, Martin,
Epstein results and to give Froissart~bounded high-energy dependence,
though no proof for this has been constructed., A corroborating
indication for this is perhaps provi%? by the work of Oleson, Nilsson,

5
Susskind, Sakita, Virasoroc and others, who consider fishnet diagrams
like the one showni

PP S

e -

i N
[ |
h
\
A -

They show that if the fishnets are made of basic propagators of the form
exp(K?pz) .rather than of the Feynman form l/pz, the whole fishnet exhibite
a Veneziano-Regge (Froissart-bounded) high-energy behaviour, Now
exp(szz) is just the type of behaviour we obtain from an individual
superpropagator (from non—localizable-theqriea). It would seem from this
that the Veneziano and the non-polynomial Lagrangian developments may

come together through graphs like the one shown where each basic rung of

the fishnet represents a superpropagé.‘bor:

N

The authors mentioned above show that (Kz)_l in their formula gives
the -slope of the Regge trajectory. This then is another possible
physical role of the minor coupling constant. (Refleot what this means

for 'gravity.)
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PART II

In this part of the session Dr, J, Strathdee will present work

published from Trieste on Einstein's gravity and its role in infinity

. . 1
suppression in lepton electrodynamics.6 In my remarks I shall emphasise

in particular three aspects of work we have done subsequent to the

published papers.

A,

1) We can now arrange the calculations so that gauge invariance

is preserved,

2) We can see more clearly why it is the tensor rather than -

goalar gravity which is responsible for infinity suppression,

This accords with one's physical intuition {emphasised to me
particularly by Prof, Weisskopf) in that infinity suppression
should come as a consequence of the light cone fluctuations

which are peculiar to tensor gravity and its (Schwarzschild=like)

metrical aspects.,

3) To exhibit this distinction between scalar and tensor

gravity, weo need a better comprehsension of the role of equivalence
theorems for field transformations, Since we have seen in Part I
that localizable Lagrangians are ordinary, decent, unassuming

types of Lagrangians, and since micro-causality holds for operators
in localizable theories, we can take over Borchers' results and
asgume that S-matrii equivalence theorems hold for localizable

theoriesn, This will necessitate using exponential parametrization

for gravity and not the usual rational parametrizationm.

4) As shown in Part I(E), exponential non~polynomiality is
oxtremely potent in smoothing infinities, This will mean our
problem in gravity-modified theories will not be making sure whether
infinities can be regularized or not; it will }ather be making sure

if gauge invariance can be preserved.

GAUGE-INVARIANT CALCULATIONS IN TENSOR GRAVITY

As Dr., Strathdee will show, the gravity-modified Lagrangian for

quantum electrodynamics may be written in the form

pao oo - WL g
oL . L #J'ya(v" 1eAu)gb + mww . g gd ulul Ll{
avi det L et L
g' l‘ty (2.1)
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L ig the vierbein gravity field which in exponential parametrization

will be written as exp(quchlo). Bha are 4 x 4 pseudosymmetric matrices
and H'° are the physical (quantized fields) describing tensor quanta. vy
is the covariant derivative; F equals BH A, - BV Au y while the Einstein

field g'“v equals a bilinear pi‘ovduct of vierbein fields L,ua Ll.Ja.. Note
that det I = exp [tr.(kh)] . The simplicity of this expression makes work
with exponential parametrization even simpler than with the rational para-
metrization we'used’in our previous papers so0 far as det I is concerned.

Scalar gravity Lagrangian can be recovered from (2,1) by substituting

s

" = expko) 4° where p** = (1'1—1 )
..1 -
y‘.
g" = expixoy o’
det L = exp(ikg) . (2 2)
Ltbtal redgoes to the forms:
= Lgravity + by Tu Faﬂ - ieoAp);pJ exp(-3k¢g) + m ¥y exp(-4kq) + Fw FF"’

(2.3a)
Note that, as physically expected, the photon field does not interact with
gcalar gravity. ‘

Let uas now make a fisld tranaformation

¥ = exp(-3/2ko)y . (20319)'

This will completely eliminate k¢ coupling from the Lagrangian from all
except the electron mass term. In the limit My = 0 scalar gravity
and (massless) electrons also get uncoupled.

Now if 5&1 and Se.were strict physicai magsg~shell quantities one
would unhesitatingly have said that,like all mass~shell S—matrix elements,
Sh ‘and Se as computed using (2.3a) cannot involve the constant K in the
limit that my = O. Therefore scalar gravity would have no regularizing

role for massless ez.lec:'l:::'ons.I:FNG'3 (For massive electrons the situation may be
better., We have, however, so far been unable to show that the mass term

in (2.3a) is potent enough to regularize all infinities.




Forfunately true gravity is tensor and even though the

transformation

vo= ety oy

(2.4)

{FNT] -
does remove the (det L) 1 factor from the kinetic energy and electric
current terms of the electron Lagrangian, there is no uncoupling of
gravity either from the electron or (more important) from the photon,

To make matters uniform, let us .also transform

A; = (det.L)-i A,

(2.5)
z
The resulting Lagrangian readst
L = L M ey Iy -1e3'(de£ U2+ m -;5'1.' O L .
total gravity Yatly u 0 88 Sy w
(2.6)
Bere
Fu” = (a’l Av-avAp + Au.au log afdet L - A!‘ 8, log ety . (2.7)

We ghall call (2.4) and (2,5) the gtandard transformations and (2,6) the
standard form of the Lagrangian, The advantage of the standard form is that
the free kinetic energy terms contained in (2,6) do not have powers of det L
multiplying them., |

Now in our earlier published papers we effectively considered
just those graphs for electron and photon"sglf-energies which are given

by a second=order iteration of

= i pa = {] ' 1/2
L= el w',;‘ WAL (derL)”C, (detl = exptrkh) . (2.8)
These look like NxAnfég;gbuuuVm' for electron self-enersy and -_-gé;;;.__
~n~n~n electron line
for photon self-energy. ~ — - - photon line ', It is clear

. graviton line
that to preserve gauge invariance it is essential . to include further

graphs arising from the photon-graviton terms,




. pt vt ot oWt
L, = @ s AT B Bl - (2.9)

In the published paper we did not compute these graphs (on account of the

hard work involved) and the result. was manifestly non-gauge invariant,

Now it is possible to secure gauge Ainvariance « and still
guarantee infinity suppression (with, as wehave verified, exactly the same
results as obtained befors so far as the (O(log K?mz) terms in the
computed expressions for Jw\ and de are concerned) by slightly
modifying our earlier procedure.

Carry through the electron field transformation (2,4) but not the
photon transformation (2.5). This gives:

= ‘13 ] - ] i Y
Ltotal Lgravity Ly LA Np ieA“) v moww

p' WV -1
+ g g F F , ., (detL)
Wy g (2.10)

To make the gauge-invariant infinity suppression mechanism transparent, we
shall make an approximation to (2,10), (We later estimate the effects of
this approximation.) Neglect K=dependent terms in L% ana g’“v and in
the covariant derivative V, (i.e., replace these factors by n** and qf“}
end 3, ). The gravity fields pil, 122, 133 gng nH
det L = exp(xh®?),

of course survive in

The resulting approximation to (2.10) reads:

—_ - aa -
+ o - i ¥ F E h ¥ 1 .
Ltotal LgraVity o Yu ( i eA p) vt py pv explkh ) my ¥¥ (2.11)

Essentially there are mow just four fields (h®®) in the theory which
couple not with the electron but (manifestly )geuge-invariantly with the
photon, Further,the electron-charge current L?'Y»!{"is congerved both when
the ly’ operators are interaction as well as Heisenberg operators, This
is crucially different from the case of (2,6), It is this circumstance
which will preserve gauge invariance at all steps while at the same time
‘guaranteeing infinity suppression by providing the reguisite non-poly-
nomiality through the modified photon terms in (2,11).
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The photon self-energy graphs given by {2.11) up to order o2

and to all orders in K are shown in Fig.,l while electron self=-energy
graphs are shown in Fig.2, (There are the irrelevant external-photon-

modifying graphs in Fig,l which we have not shown.)

- + - -
Fig,1
Photon self=-energy graphs.
1".-‘\_ /m-\
+ -, S ~ M +  ---

Fig,.?2

Electron self-energy graphs.
e electron line

----- photon line
graviton line

In a separate paper it will be shown that non-polynomial summaiion
technicues work beautifully for theese chains of graphs, The crucial step is
, to notice the sore thumb(ST )graph"'C"' identically equals the graph
——~X-*{:::)--"X - - where the crosses indicate the operation of the term

Fv F“’ Thus the ST diagrams ---{:::&--- and -~*ﬂv‘\“vv'

A
quite generally form parts of the chains indicated in Fig,l and Fig.Z2
The results are gauge invariant while numerically 6m/m (for example )

—20.
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1

exactly equals (in accordance with what equivalence theorems would agsert )
the previously obtained value 3/(47) alog x2m26u>to terms of order
a,‘akg,...). One can show that the effect of including the terms which
were neglected in the approximation leading to (2,11) (i.e., replécing LHe
by n”a, etc, ) alters only terms of these higher orders, ajczx?,...,
without affecting the leading contribution. The proof is simple but .

will not be given here, ' | |

B, TENSOR GRAVITY AND CURVED SPACE-TIME

As I gaid before, Weisskopf with hie penetrating physical intuition -
had earlier made the point {private communication) that {crudely speaking
it is the (det L)”l factor which modifiesthe photon Lagrangian which should
be mainly responsibdle for infinity suppression even more than the (det L)"1

[FN8] ppysically this should be so,

factor associated with the efectron.
since Weisskopf expected thaé infinity suppression in electrodynamics

would be connected with the fact that the frequency of a standing photon
wave in the curved space-time around an slectron possesses an upper limit
\kmax given by 1/(K2m). It is this cut-off in (virtual) photon frequencies
which in Weisskopf's view is really providing the inbuilt cut-off for

quantum eleotrodynamics which we have exploited.

In December last year, Prof, Leonard Schiff formalized for me the
Weisskopf argument. We hava just heard of Schiff's sudden dsath yesterday
from heart failure, This is dewvastating news for all who knew him,
admired him and valued his f?iendship. He was one of the clearest~thinking @nd
'moet penetrating men I ever met, I would like to recall the argument

he wrote out for me. *




A Schwarzschild ‘Universe round the electron is given by the metric

- g
{dr)
i - 2mG
r

2 2 2 af -
(ds) = (d) (1~Tnl) - T [(de)2 +sin” 6(de)” J s (G = 8xk )

With 8 = n/2 and u =% the path of a light ray is given by

du 4 y = 3my?
2
dp
For u = congtant and u = Uy = 3% we obtain a circular path which the
ray travels in time % = to = 2ifo . 6/3m ., Thus the proper
2m

1- %5

' 0
angular frequency of orbital revolution of a circularly orbiting photon

max
It thie kmax is substituted in the old Weisskopf formula

k 3

sm afmax 4k
n

m . ]

we Tecover our result for Sm.
fa3

. 1 . . _ . 1
is ! i.,e, the maximal frequency of Weisskopf k equals SEE .

C, RELATION BETWEEN THE FINE STRUCTURE CONSTANT AND THE NEWTONIAN
CONSTANT

One final remark about the formula

sm A 2 2 .
- ,‘,4walogum . (2.12)

This term is the first term in an expansion which according to Weisskopf's
paper of 1939 should go like

~ 2 2r
‘-El" ~ an(oclogKm) ’ rgn (2.13)

FN81 '
when higher orders in ¥ are included, " " The important point is that
the effective parameter in this expansion is (¢ log K.zmz). This number

‘has the suprising wvalue near to unity (oc log szafe; —‘ig? ).

In an earlier
paper we suggested that nature probably intended the formulas (2.12) and
(2.13) to be read backwards, that is to say, we might start with the

assumption that all (or nearly all electron gelf-mass is




electromagnetic in origin, so that Jh/m ®» 1., This may, in converse,
determine ulog(K?mz) and possibly help in understanding why this number

is empirically so0 close to unity,

The problem of infinities in electrodynamics arose with Lorentz's
classical electron theory some seventiy years ago. Waller investigated these
infinities using Dirac's one=-particle theory in 1930 and found that they
persisted even after quantization. . The modern formulation of the problem
dates back to the famous 1934 paper of Weisskopf., There may be other
solutions of the infinity problemy it has been suggested, for example, that
summations over the major constant & will regularize these or with a
non~unitarity-violating indefinite metric the infinities disappear. Thie
ﬁay indeed be =o. All we wish to point out is that there is in nature
this powerful realistic regularizing effect of tensor gravityy +that its
effect is not small ( % log K,2m2 o o(-l) and that the regularized answeré
are such that we visibly recover the old infinities when we take the limit
=0, The first calculations we published were finite but non-gauge

invariant, We also worked with one particular non-localizable para-

metrization of gravity (gf*v as the basic field, with Euy 8S the non=-
polynomial subsidiary quantity), We did not understand ambiguities;
neither the distribution-theoretic ones nor the Borel ambiguities, This

iz changed now. With Lehmann's ansatz and his work and with the locslizable
(exponential ) parametrization of gravity, we are working with a field theory
which is no longer mysterious - one mway call it orthodox. We are

permitted to make field transformation: at will.  As we have shown, this
allows us to .exhibit explicitly the gauge—-invariance of gravity-modifiéd
finite electrodynamics, We believe'at least one complete solution of

the very long=standing infinity problem now exists within the context of

g nearly orthodox theory. We humbly wish that it may be taken note of.

mm T s s st s s



PART III

A, The two-tensor theory of sravity

Since AK;} f,g,lOl8 BeV, the cut=off provided by Einstein's gravity

is unlikely to be of significance in strong interaction physics, We
need a universal non=-polynomial strong coupling (analogous to the
gravitational)which may provide an inbuilt cut=off eround a nucleon mass,
This part of the session will be devoted to an examination of the
hypothesis that Eingtein's gravity theory itself may be modified in such
a manner that leptons interact directly with Einstein's tensor g}*v,
while a new tensor T4V (representing a massive ot unitary singlet) 17)
couples strongly to the hadronic stress tensor with coupling strength Kf.
For the Lagrangian of the f-particle we adopt the Einstein form, A
covariant mixing term between f and g tenéors is postulated which

. L")
guarantees that one combination f(= f-g) of the two tensors represents

lf+l{‘

a massive 2@ particle (mass mf) while another combination 7§ - kg
. . k2 + k2
describes massless gravitons. g g

Dr. C.J. Isham,in his lecture,will introduce the subject, As I sald,
our primary  motivation in postulating this particular theory of strong
phenomena was to build into it a cut—off . round (Kf)-lnz m. & 1 BeV in order
to regularize strong physics infinities. Since,however, F=dominance of
the strong stress tensor could also be built into the theory,
it is of course pertinent to examine this particular hypothesis}FNlm
Drs, B. Renner, H, Jones and K, Raman will speak on this subject, As is
usual in strong interaction physics, their conclusions appear to be:
"nothing wrong with the hypothesisj; +things are ontimistic, but don't
forget there is nothing ever clear-cut in strons vhysics either", I
wish to make just one remark in connection with Dr, Jones' talk, Making
the hypothesis that the relevant F-meson in the two-tensor theory is =
yet undiscovered object, lying possibly on the Pomeron trajectory {(at a
mass near 1700-2000 MeV with the presently accepted value for Pomeron
slope ), we have tried to understand s—channel helicity conservation
(empirically associated with Pomeron exchanges) as a consequence of the

Pomeron trajectory possessing a siress itensor coupling at its 2% recurrence.

-Dm
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We succeeded in proving that a close connection between these
ideas does exist; however, the relevant expression for the hadronic
stress tensor must be the "minimal" one, (The minimal stress tensor

is esmentially the free-particle stress tensor.)

. ; . . . has
Now this fits nicely in with what CGell-Mann,told us in his sessiondf e -
conference., It appears that an ansatz is emerging from studies of short-

distance behaviour which states that physice follows the free-particle field

operators (as contradistinguished from free-particle S-matrix elements)
in the context of current algebras, Regge couplings or short=distance
behaviour, This CGell-Mann ansatz translated to our situation would lead
right‘awqyto the "minimal'" stress tensor as the relevant tensor appearing

in our Lagrangian and the one coupling with the F-meson.

B. BLACK HOLES IN THE F~GRAVITY FIELD

Even though the theory was invented for the task of suppressing
infinities, I would like to take F-gravity seriously in its own right
as modifying conventional gravity for short distances. Prof, S. Daser

will be speaking in the session on +this subject, As one of the
prominent men among that smhll,select {but popularly considered somewhat

crazy) band who move felioiﬁously between gravity theory and particle
physies, it is welcome to have his assurance that the two-tensor gravity
theory makes no childish blunders (1ike vielating the equivalence principle)
in describing conventional gravitational phenomena, It has, however,

pecularities of its own.,

1) If we consider two hadronic particles it is clear (on account
of f-g mixing) that in the linear approximation the static potential between

them will be given by
2 -m
V (e - e K e 4 +af L
hh 2 {t2 f r g T

The corresponding potential .between two leptons is

_mfr
£ + K

< 2 1
U l'e2+ xz 8 r tr
. f g




There are, of course,no surprises here, The surprise comes for the

hadron~lepton gravitational potentiallat digtances x10-13. Thig is

2 2 -m
. Kf+K fr 1
e [l ]

gh ' K?"'K r I

given by

g

Note that the 1/r gingularity has disappeared, Layers of leptonic and
hadronic matter do not attract (gravitationally) as strongly as had been

assumed when they approach closer than 10"13

cms, alternate layers would
produce partial shielding of conventional gravity.

2) One may expect that the non~static gravitational potential
between hadron and hadrons Vﬁh would contain a short-range repulsive

component on account of the spin~two fe-graviton exchanges in second and

higher orders. We have mads no computations of this repulsive gravity

so far and would appreciate help in finding out what the situation in
higher orders in F-meson-nucleon coupling is.

3) For interactiona of ordinary high-frequency gravitons with
large concentrations of matter, we may expect o see surface effects
famlllar in the analogous p=Y mnixing theory of hadronic elecirodynamics,
A hlgh -frequency g—grav:Lton would convert into an f=graviton, through the
mixing term, which on account of the short-range character of its force
would be absorbed predominantly at the surface of a(large)mass of matter,
rather than penetrate into the inner layers. Very crudely speaking,
gravitational effects may be expected to show M2 3 rather than an M-
dependence where M is the mass of the large object, This weakening of
gravity may have consequences in respect of the onset of gravitational
oollapse phenomena. (For the analogous P mixing, photons of energies
around 20 BeV empirically appear to exhibit s £}9 dependence in their

interactions with massive nuclei of charge Z),.

1) So far we have. spoken of conventional collapse. Consider

F—gravity now in its "metrical" aspects. For regions inside hadronic

matter where g-gravity may perhaps be neglected.&o a good approximatioﬂ,

we are dealing with space-time of strong curvature, Let us for a
‘moment take this aspect of F=gravity seriously. The conventional
(Schwarzschild) formulae which give collapse radii in Einsteinian gravity will
of course need to be revised for the f-g mixing situation ~ and I shall
indicate some poasible modifications belowJFNn] But, taking the formulae

as they stand,




we may estimate KT in the same manner as Eddington's famous estimate of
vg. Eddington assumed that the Universe is a Schwarzschild sphere
_(inside which we live and beyond which nothing from our side escapes).
The radius of the Universe R, , its mase m, and the gravitational
conatant E} (Gg = Bﬂkgz) would then be related byfthe formulat

R

G . (3.1)

M
u u g

To the extent that R, and M, are known,{ (and ng) come oul roughly

right (K2 vy 10744 m;2) from this formula, "2 Let us now ascume that

hadrons are (nearly) collapsed objects in the F-gravity field. A

typical hadron is the P-meson itself, Writing R x;%_' in (3.1) we would
obtain a relation like f
1 2 -2

. 2
~ m. K i.e., K
mf ~ f f 2 f 1~ lnf

which fgfggﬁghly of the right magnitude for the sirong coupling constant

of f—mesons}Fqu

What I am trying to say is that even if the black-hole physics
does not prove fruitful for the macro-univérse_ I expect it to
possess applications in the micro-uﬁiverse of hadronic matter.
Some of you may be familiar with the black-hole jargon of"event horigzons,"
"trapped surfaces'"anti-event horizens"{which in some cases can annihilate
event horizons and give what I have been calling nearly-collapsed black
holeé). One of the beautiful formulae whichhawve been recently discovered
states that the condition for a trapped surface:(and eventually a black
hole)heing formed Tor an object of mass M with angular momentum L and

charge @ is given'by

2
m2K2 5 IzJ2 . Q2
m K
For an elsctron, the right-hand side is 1074 the left-hand side is

10+44. There is no danger that the leptons could ever collapse. Bui

consider typical hadrons in F~gravity field. Here hoth sides are of the
order of unity. Replace, as a good particle physicist always will,
the charge Q2 by I-spin I(I+1) or by unitary-symmetry Casimir operators and

you can see how mass formulae we are familiar with:
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. 2_ 2
Nﬁx4 = J+ 1) + M I+ D

a.

may emerge from (F)-gravitj. There are untapped riches here and a promise

of a new language for the particle physicist,
CONCLUSIONS

1) The best thing which happened at this conference is the
assurance that localizable non-polymonial theories are perfectly Tespectable
field theorieg ~ in fact more or less orthodox, rather tame from an axiomatic
point of wview, Not only that; they are superior to polynomial theories
in that they permit (with Lehmann's ansatz) an unambiguoué and finite

computation of renormalization constants,

2) For far too longparticle physicists have neglected gravity.
Our excuse has been the asmallness of the coupling constant, We have now
iearnt that this neglect distorts space-~time and is one origin of the
,conventional infinities of quantum electrodynamics, The logarithmic
infinities, for examvple, are simply a reflection of our setting Kg =0
in ¥ log K;mz. Since localizable gravity is intrinsically non-ﬁoly-
nomial,one finds that the firast place where gravity comes in is through
the logarithm of the Newtonian constant rather than through effects of order
ekK?. Amazingly enough this number (log K:me) mearly equals u_l, a fact
wo have tried to understand by postulating that (almost) all electron self-

mase is possibly (gravity-modified) electredynamic in nature.

3) ¥With Femesons and with the postulation of the two-tensor theory

of gravity, nuclear physics would appear to be anocther name for strong
gravity (this is provided isotopic and unitary spin phenomena are added
from outside ), Considering that he spent the later years of his life
searching for a unification of the forces of nature, I am sure that if the
014 Man were‘alive he would feel happy with this rather direct and
amusing ﬁnification of concepts in the strongest and the weakest of forces.
I feel we have left gravity theory too long to cosmologists., I would hope
that at the next Rochester Conference, in addition to strong, weak and
electromagnetic seésions, we have,‘as we had to-day, a fourth mession

devoted to gravity and particle physics., I hope also that by then our Chairmen

.or some other experimental physicist will have established the quanium

nature of gravitational radiation assumed throughout this lecture. Thank you,
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FOOTNOTES

[1] On the basis of their miorocausality properties, Jaffe c¢lassifies
field theories as localizable or non-localizable. Examples aret

"~ A) Jaffe-localizable

L

int = B¢ ¢n exp(k¢) : (pure non-polynomial)

or

The dots : : denots normal ordering.

B) Jaffe-non-localigable

n -W
or

L =g: @A) (1+kh ™ :
o = €0 () R

Basically Jaffe's distinction rests on the high-—energy behaviour
of the two-point spectral function )p(pz) ; it falls faster than
exp J\pzl for the localizable case and slower for the non-~localizable.

Jaffe shows that localizable theories are microcausali the non-

locglizable ones are not. Also,by a rigorous theorem of Glaser, Epstein
and Martin, S-matrix elements (on the mass shell) should exhibit
Froissart high-energy boundedness for the localizable case, Far less

is known about the non~localizable Lagrangians, apart from Steinmann-
Taylor Tesults that, notwithetanding the possible breakdown of micro-
causality, the LS5Z construction of the S-matrix can still be carried

through - as also the proofs for CPT and spin-statistics theorems.

Efimov and, following him, we at Trieste in our work have used
seemingly non-localizable versions of chiral and gravitational theories
(Weinberg-Schwinger parametrization for the chiral caBe, and the
commonly used parametrization 3“” = qﬁv + Khﬂv for gravity). There

ie nothing in our
-33=




work which would not permit us to use the alternative exponential field-
parametrizations for both these cases,thus remaining formally in the
localizable clasg and guaranteeing for ourselves all the promised good
things - in particular Froissgart-boundedness of the on-shell S-matrix
elements, If equivalence theorems hold, presumably the seemingly non-
localizable versions of chiral theories or gravity are in fact local-

izable +through a host of canpqllations taking place.

4

[2] For gravity, for example, <@%y>, which is related to the cosmo-
logical constant, may be expressed as a function of D(0) . I am

indebted to Profs. Gell-Mann and Sexl for this remark.

[3] That normal ordering iz a crime for gauge theories has been
¥nown for a long time. - This is becauss, for naive normal ordering,chiral
and gauge transformations are hard to define and gauge properties

of the theory are destroyed.

[4] We shall call formulae (1.13) and (1.14) "generalized normal-
ordering formulae" for derivative—containing situations. We believe
that the use of these formulae eliminates those D(0)'s which arise .from
consonance of derivatives (i.e. from terms like D(x) bzb(x)). The
D(O)'s which arise from the non~derivative parts of the Lagrangian can
presumably be eliminated, using standard normal ordering so that the two
procedures together perhaps give a complete scheme for elimination of
all D(O)'s for localizable theories of the gauge veriety., This necds
further investigetion,




[5] 1t is worth stressing thalwe have no special insights - at least
none has been developed so far - for situations like

_i_[ 1 ]z1 & 0 1 zZ2
0x, 2 dx [ 2:’ ¥ A

(x~y) v -{x~u)

This is the same as for the Gel'fand-Shilw case whers conventional faltung
must be used to evaluate FT of

[ 1 2]2'1& [—1_2]22- | Y £u

(x-y) (x~u)

L6] There could be two reasons for doubting this assertion; first
could the inclusion of the mass term change this? Second
gince Om and Se. y in an exact theory, are expreas_ed as integrals of
gpeotral funotions, do the equivalence theorems really apply? My
personal feeling is that they do. We know,for example,that both Sm
and §e share with strict mass-shell quantities the property of gauge
invariance (unlike z2). quever, the only decent way of checking this
would be to compute. Unhappily(and notoriously)direct verifications of
equivalence theorems need summations of infinite sets of chain diagrams,
(Recall the effort needed to prove equivalence theorems using per‘turbatién '
expansions for the Dyson-Nelson Lag‘rangian‘s, ¢y 75 d ¢y and §° exp(i75¢)w')_
And the problem is comphcated still further by the necess:.ty for

preservmg gauge mvanance ‘at each stage of the calculation and also

coping successfully w:.th the normal-ordering problem {compare Footnote 4 ).

——————

-3/8
l.r‘ = (det L) 3/ lflt

[7] Note (2.4) is not the same transformation as (2.3b) where we took




.1 8] Mathematically, the factor (det L)"'1 for the electrons can be trans-—
formed away using (2.4) but this cannot be done for the vhoton., This,

of course, ig an over-simplification of the tensor gravity situation where
the non-polynomiality associated with L (manifest in exponential para=-
metrization) is by itself equally potent {even without the (det L) factor)
in suppressing infinities. It is important once again to emphasise that
irreaspective of what chains of diagrame are summed, one can show that the
final regularized magnitudes for dém/m and &e/e do not alter up to terms
of order ™ log K?mz. This is to say that non-polynomialities from
different terms do not give additive effects to the regularization of the

infinities in the basic ST diagrams awd”  ena and ----C::)----- .

-

[9] S. Perveen has verified that, in the fourth order in e, the infinity
regularization does proceed in the expected manner, that is to say (& Lowad)®
is regularized by gravity to (& log K?m2)2' [S. Perveen, J. of Physics A,
General Physics, 3, 625 (19TO)J

[10] It should be emphasised that there is no compelling logical necessity
for the interpolating Heisenberg field F te have a physical particle
associated with it nor for the ansatz that such a particle pole should

completely dominate the stress tensor,though it is nicer if this is so,

[11] My conjecture is that the f-g mixed equations when solved for static

solutions would yield instead of the characteristic Schwarsschild formule

gsomething more like )




—_

for a hadrohic source particle of mass M acting on a hadronic test particle,
This would give a gensralized Schwarzschild radius for an F~field
singularity more like: ' ‘

I 2
: ‘ R & -n-j-f- log (fomf)
Note the weak dependence of R on the mass of the source particle M.,

Even using this formula, Kg mg comes out to be of the right order of

magnitude with typical hadrons considered as nearly collapsed objects

with anti-event horizons reaching out to event-horizons. .

1

[12] I would gratefully like to acknowledge conversations on this subject
with Prof., S, Chandrashekar.
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