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INTRODUCTION

The theme of t h i s session i s computation of the t r a d i t i o n a l l y i n -

finite renormalization constants. These constants are usually ex-

pressed (in Kallen-Lehmann formulation) as integrals of spectral

functions and their moments. They therefore represent magnitudes as

measurable or as immeasurable as the corresponding form factors. For

theories possessing internal symmetry, we in fact know more about them.

For example, we believe that bare 'm^ equals bare m ô j bare g^

equals bare g« and bare mQ (possibly) equals bare mv (= 0).

In oomputing renormalization oonstants, one is dealing with pro-

ducts of singular distribution functions. Basically the problem is

to extract good physics from the bad mathematics. This now seems

possible because of two advances.

1) Advanoes in mathematics of generalized functions: I have

in mind the Gel'fand-Shilov and related work in defining Fourier

transforms of products of distributions like:

/ l \ Z l f\ \ Z 2 / l \ Z l / 1 \ Z 2

Vy H V?7 and a/u V?y s dv \*V for i

This uses analytic continuation methods (continuation in the vari-

ables . z. and z2 from the region 0 < Re z^ , z,, , z^ + z,, < i)

and represents a major and as yet unappreciated advance in the

mathematics of our subject.

2) Advances in field theory: The realization that:

a) all Lagrangians of physical interest are intrinsically

non-polynomial in character (if all else fails, inclusion

of gravity makes them so);

b) the proofs (to be presented here to-day) that local-

izable non-polynomial Lagrangians are as respectable in a

strict field-theoretic sense as the polynomial ones;

c) the realization that analytic regularization methods

mentioned above are absolutely tailor-made for such

Lagrangians, yielding for a variety of these finite and

(as Prof. Lehmann will te l l us, with one further physical

ansatz) unambiguous values for the renormalization constants.
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The session will "be divided into three parts.

Part I : Analytic regularization methods and their

applicability to non-polynomial Lagrangians.

Part l i t Effects of including quantized tensor gravity

with the electrodynamics of leptons - i . e .

the finite and gauge-invariant computation of

electron's self-charge and self-mass in the

quantum theorist's version of curved space

and time, (The preservation of gauge invariance

is a new result,) .

Part l i l t The speculative suggestion that F-mesons couple to

the hadronic stress tensor in the same (non-

polynomial) manner as Einstein's gravitons do to

leptons ( i . e . the postulate of the two-tensor

theory of gravity), and the possibility of using

this non-polynomiality to regularize renormalization

constants in strong-interaction physics.

I shall briefly mention in these opening remarks some of the newer

contributions, speculations, and the unanswered questions. (in a

lecture like this, one can be unashamedly speculative in order to em-

phasise lines of possible further work.)

Before doing this, however, i t may be useful to make a l i s t of

some of the non-polynomial Lagrangians important in physics.

Non-polynomial Lagrangians of physioal interest include the

following;

A) CHIRAL SU(2) x Stf(2) LAGRAIfGIAW FOR STRONG • INTERACTIONS

A typical example i s the "IT-meson Lagrangian in i t s different para-

metric versions:



where
w " ~ (Weinberg-Schwinger co-ordinates)

or

S = exp(i A T • w) (Gursey co-ordinates) .

Here A, (A or ^G)> which we call the minor coupling constant, has

dimensions of inverse length; (empirically.X s m~ ). An important

open question for field theory in general is this: Are on-shell S-

matrices for these two versions equal; particularly as the Gursey

(exponential) form on the face of i t appears to define a localizable

chiral theory of TT-mesons and the Weinberg (rational) form a non-
EFNl] *"

looa l i zah le one .

B) UrPEBMEDIATB-BOSON MEDIATED 1EAK LAGEAHGIM

A t y p i c a l example i s a n e u t r a l Tf-meson of mass m i n t e r a c t i n g

with quarks (Q) of mass M , with

J> — 2 2
<3-. = f Q y (1 + 7C) Q W and m f ^ GCT (the Fermi constant) .

int A' o " - M F

The essential non-polynomiality of the theory is concealed in the

derivative coupling of the spin-zero daughter of the physical spin-

one partiole which is described by the four-vector field ¥.* . To

make this manifest, write Wu - AM + — d.. B in the well-known

Stuckelberg form and transform the quark-field Q» = exp(if y,- B/m)Q

The transformed d.. equals

01 f*v *n

= f Q1 y (1 + y ) Q1 A +MQ1 (exp - 1 J Q1

f* . o n \ [ _ m j /

The constant f/m & /CL plays the role of the minor coupling constant

in the second term of this Lagrangian. The important point I wish to

stress is this: A derivative coupling (of the B-field in this case)

can look deceptively polynomial in form; by suitable field transform-

ations i ts essential non-polynomiality (with the characteristic property

that, in Peynman's language, a whole host of lines emanate from a single

vertex) can be made manifest.

Footnotes are denoted [FID.] ,,,, and are given on pp.33-37.
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C) EUTSFEIinS TENSOR GRAVITY AND GRAVITY-MODIFIED MATTER FIELDS

The conventional Lagrangian for g rav i ty i s

where

x = - ^ g X p ( 9 g + a g - a g
(XV 2 e # 5 vp 1/ /up p A

If ĝ *v is the fundamental field, the covariant quantity g^ is

intrinsically non-polynomial and vice versa. The simplest example

for matter-field in curved space-time is the spin-zero field:

Lmatter

^matter *'s a-Lso non-polynomial. The quantity g^*v (the metric tensor

of classioal physics) is conventionally parametrized (when space-time

at infinity is Kinkowskian) in the form

2
Here K , the coupling constant of the theory , equals 8lTGw (G,̂  i s

the Newtonian cons tan t ) ( # 10""*ym ) , i . e . K." nolO BeV. An

a l t e r n a t i v e (and by the mathematicians the more favoured) parametr iza t ion

i s given by

- [exp

where y , are 4 x 4 pseudosymmetric matrices. (Note that for this

"exponential" parametrization det g**y • exp(t ha) . When we come to

consider spin--§ partioles, Einstein's tensor can be treated as the

fundamental f ie ld . Instead one must work with vierbein gravity

whose relation to g^ i s given by gMV - L'*4 L .
Or •



P A R T I

There are three speakers in this part of the session.

Prof. J.O. Taylor,in his lecture,will survey the methods which

have been developed to compute S-matrix elements in non-polynomial

Lagrangian theories, to any desired order in the major and all orders

in the minor coupling constant. (To remind you, for L a

• g : exp(K^) - 1 s , we call g the major and K, the minor constant.)

He will exhibit the inbuilt infinity-suppression mechanism for these theories

and also give a beautiful new proof of the unitarity of this solution.

Prof. Lehmann, in his lecture, discusses the very important problem

of possible distribution-theoretic ambiguities in the definition of

time-ordered products in localizable theories and their elimination.

This follows on the work by Lehmann and Pohlmeyer who have shown that

the procedures developed by Filippov, Volkov, Salam, Strathdee and

others, do guarantee analyticity and unitarity of localizable theories

to an arbitrary order in the major constant. The demonstration that

the analyticity and unitarity behaviour of localizable non-polynomial

theories is as good as that for the conventional polynomial ones is to

me tremendous news. Efimov had already given one proof; a more rigorous

confirmation from Lehmann and Pohlmeyer (and for unitarity from Taylor)

is extremely welcome. Mathematically, at any rate, the theories we are

dealing with are as respectable - or as ordinary and normal, with no

special mystery about them - as one could desire. Prof. Lehmann will

be followed by Dr. N. Christ, who disousses the ambiguity problem from

a different point of view.

I shall give here a very brief survey of the"ideas which will be

presented in more detail in later lectures.

A) GEL'FAHD-SHILOV METHOD AM) INFINITY SUPPRESSION

i ) The problems

Given a loca l izable Lagrahgian l ike

1) , ' (1.1)

we wish typioally to compute the superpropagator

' (T W ^ LI(*i
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Formally,

V"1
 (K V n n

n! ^ in ' in (.1*3 J
n=l

We spec ia l i ze t o zero-mass p a r t i c l e s where

( T 0.n(x) 0.n(O)) = D ( x ) = ^ . ( l l 4

with the Four ie r transform (FT) propor t iona l t o l / p . In eva lua t ing

a term l ike ( ty (x) $ ( 0 ) ) , the f i r s t problem i s the meaning to be

ascribed to <f> (x ) » The conventional procedure uses ( 1 . 4 ) to define

a normal product :6 : from the r e l a t i o n h (x) - :^ ( x ) : + D(0) .

Here D(0) is the infinite renormalization constant it l/x2 .

One now shows that

(T: *2(x) : :*2{0) :> = ~\^ (1.4')
(x )

up to a distribution-theoretic ambiguity of the form b h.> (x) (b-ambiguity).

This simplest of situations already poses the three problems which lie

at the heart of our discussion:

a) Normal ordering; is there any physics concealed in D(0)

and being discarded with i t by the normal—ordering procedure?

b) (l/x ) is a product of singular distributions l/x @ l/x

Is there a natural definition for i ts Fourier transform?

o) The role of the "ambiguity constant" b

Conventional renormalization theory treats problems b) and c) as

parts of one problem; in Fourier space, a faltung is used to write

r 1 _, 1 ipx A 1 p
/ —5 Si —7 e d x = 7 // x 2 x* , 4

(25T) ^

9 p

(p-k) k2

The integral on the right-hand side exhibits (a logarithmio) infinity.

A subtraction procedure is devised to separate this from the integral

and the constant b is adjusted to compensate this infinity.



This faltung method and infinity separation become prohibitively

complicated when we consider objects like

(T : tfn (x) : ; 0" (0) :)

represented by a cocoon-like graph with n-lines

with i t s (n-l) divergent sub integration a in momentum space. This was

one reason why non-renormalizable theories with polynomial Lagrangians

^ 3 g r 0I> S ^ » eto.) were soon abandoned. Even a

subtraction procedure was hard to define.

i i ) Gel'fand method

Non-polynomial Lagrangian theories, on the other hand, offer, through

the Gel'fand-Shilov procedures, a different approach, where we separate

problems b) and o ) . (Basical ly th i s happens because a superpropagator

in such theories i s a sum of a ser ies of singular function

hi (~"~27 * This sum i s far l e e s singular, when x —* 0

from an appropriate d irect ion , than each s ingle term of the s e r i e s .

(Roughly speaking, exp(-K-/x ) -* 0 when x i s space-like and K. i s

negative. Analytio continuation then f i l l s in for other direct ions and

other K. . )

To be more precise , l e t us return to (1 .4 ' )• We wish to compute the

FT of ( l / x 2 ) 2 5 more generally of Dn(x) - ( l / x 2 ) n . Gel'fand and Shilov

remark that since the FT of ( l / x ) i s a well-defined c l a s s i c a l mathematics

objeot whenever 0 < Re z < 2 , and i s proportional to ( T ( 2 - z ) ) / r ( z ) X

( l / p ) ~ , the FT of ( l / x ) , with n ly ing outside th i s region, may

be defined by an appropriate analytic continuation of th i s function in

the variable z . (Contrast the elegance of th i s def in i t ion with the

clumsiness of the conventional faltung procedure with i t s multiple divergent

loop subintegrations. We make the word "appropriate" more precise in a

minute.)

The Gel'fand-Shilov method was discussed in physics l i terature by
2) 3)

Guttinger fe,s early as 1966 and,in an equivalent formulation, by Gustafson4)even earlier. Bollini and Giambiagx were perhaps the first to use it
purposefully for rewriting conventional renormalization theory. Its
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power and value, however, beoome apparent particularly when we use i t

together with non-polynomial Lagrangians, beoause here the somewhat

vague ooncept of "appropriate analytic continuation" in the variable

z beoomes dove-tailed with the analyticity properties of the super-
2

propagator S(x) in the variable (K. D(x)) .

To give the bare bones of the method, consider the superpropagator

for the Lagrangian L_ « (s g e : - l ) . This is an entire function

of K2 D(x) :

Z J n! L J
n=l

First write i t s SommerfeId-Watson transform:

2
s ( x> '

transition from (1-5) to (1.6) /

The conditions under which ~1 is justified are stated in the papers
5)of Volkov, Salam, Strathdee, Lehmann and Pohlmeyer. There are b-

ambiguities in writing (1.6) which are discussed below. The contour

as usual encloses the positive real axis from Re z < 1 to infinity.

Second, rotate the contour to lie parallel to the imaginary axis -

in this particular case along 0 < Re 2 < 1 . The Gel'fand-Shilov

condition for "classical" Fourier transforming is met, and we write

S ( P ) = /
dz

V T(z) T(z+1) tarnrz
0 < Re z < 1

The integrand has a s ingle pole a t z o 1 ' (corresponding to the

-K. / x term in S(x)) and double poles a t z = 2 , 3 , 4 » . « . • These give
rs ry _ O O

rise to characteristic terms proportional to (K P ) log(K P ) .

This logarithmic dependence of the Green's function on the minor

coupling constant is a hallmark of non-polynomial Lagrangian theories.

i i i ) Infinity suppression

To Bee that this logarithmic dependence represents infinity sup-

pression, consider a mixed theory with L. » g X exp(icî ) . The

superpropagator equals

-8 -



„ _n+3 , 2vn
S(x) = g2

n=3

with the Sommerfeld-Watson transform

A r
2Jri J
A r <«V DZ+3 (1.8)

J TR62< 3

For the Gel'fand condition to "be met, the oontour must be shifted to the

left of Re z + 3 < 2 . This is perfectly possible since the integrand

is not singular at z *» -1 . The FT S(p) is easily evaluated and

contains terms proportional to g/ic » g log(*c p ) » g K P log(p K. ),

etc . Clearly g /KT is the relic of the quadratic infinity in a polynomial

theory given by fte Lagrangian g X, a fo (gX ) e Ktr j likewise
op rt->0

1°S(K P ) is "the relic of the logarithmio infinity. We recover these

infinities in the limit K.-> 0 . To put i t another way, (K) is the

inbuilt, realistic, reflularizinff cut-off in the non-polynomial theory

B ) PHIITE VERSUS HENOEKALIZABLE LAGHMGIABTS

Now i t is not always the case that every infinity can be regalar-

ized. Consider the Lagrangian L-,. •» (eKf _ 1 -ic^ - ( ( K <f>#2l)) .

Here the superpropagator ST_(x) has the same expression as in (1.6))

the contour of integration,however, lies along 2 <Re z <3 . We cannot

interchange z-integration with the FT since the

Gel*fand—Shilov condition Re z < 2 is not met. He must write

STl(x) o S,(x) - {YrTr)/2\ before doing so. While Sj(x) can be

Fourier-transformed by the methods above,the (-Vt^ )/2l term sticks out

like a sore thumb (ST). One may regularize i t using any available

method; there is no reason, however,for the effective cut-off to depend

on ic . We Bhall call the Lagrangian LT finite and, in contrast,

LTI renormalizable, since L_-. needs a subtraction constant of the

conventional variety. At least on© physical quantity cannot be com-

puted within the theory so far as Lj, is concerned» The ideal theory

would of course be the one where there are no uncomputable, renormal-

ization constants whatever.



0) AMBIGUITIES

Let us now turn to the ambiguity problem. Even the f in i t e theories
in the sense defined in the l a s t subsection suffer from these. Their
origin i s d is t r ibut ion- theore t ic ; the dis t r ibut ion (T I #n(x) j i ^ n (0) : )
i s ambiguous up to terms of the type 2_, ^ (9 )"" £(x) • Alternatively,
one oan see these b-ambiguities in the Sommerfeld-Watson formulation. In
passing from (1.5) to (1.6) and (1.7) we have written down an extrapolated
function merely from a knowledge of i t s value at integer poin ts . To be
more aocurate ire should have written in , in (1 .6) , the faotor

I ( l / ( tamrz)) + b(z) j rather than just l/tanirz

As I said ear l ier , Lehmann and Pohlmeyer's crucial contribution i s to
show that there exists a simple physical cr i ter ion - and th is applies
to a l l orders in the major coupling constant - using which one can

eliminate these dis t r ibut ion-theoret ic ambiguities from localizable
theories . The basic idea i s that for f in i t e localizable theories the
b-dependent (and ambiguous) contributions in (1.7) can be distinguished
from those with b = 0 through the i r behaviour in p-space for large
| p 2 | • The b-dependent terms do not f a l l in any direction in the jp |
plane, while the b-independent terms do and thus define a minimal-
singulari ty superpropagator S(p) . The same cr i ter ion was also used
ea r l i e r by Pilippov for the second-order superpropagator to eliminate

ambiguities and used by a l l workers in th is f i e ld , Lehmann and Pohlmeyer
give a general formulation valid for a l l higher-order superpropagators.
They show further that th i s dis t inct ion between b-dependent and b-
independent terms cannot be made for polynomial theoriesj the non-polynomials
are far superior to polynomials in th is regard.

D) NON-LOG ALIZABLE LAGRAfl"GIA¥S OF EATIOITAL VARIETY

Let us now turn to the case of normally ordered non- loca l izable

t h e o r i e s , e . g . L ^ - i g/(l + <<f) t Here

oo

r(n+l)(K2D(x))n . (1.9)
n=0

Contrast this with the superpropagator S,(x) . Considered as a series

in fc^x) , (1.9) in contrast to (1.5) has zero radius of oon-

vergence, Efimov and Pradkin'suggested defining the superpropagator

-10-



as a Borel sum of (l*9)« Formally write

K) n d£ (1.10)

ET? d£ . (l.ll)- r 1
J

o 1 - K Dfx)

For the definition of the physical superpropagator, Efimov and Pradkin

adopted a principal value definition of the integral ( l . l l ) in

the ([-plane. Prom this definition (or equivalently from (1.10)) one

can go on to use Gel'fand and Shilov methods for Fourier transforming,

precisely as in (1.7).

Quite clearly the Borel ansatz introduces here a new and additional

source of ambiguity , the Borel ambiguity^which Just does not exist for

localizable theories. One unfortunate aspect of thiB is that the

Lehmann-Pohltneyer ansatz for dealing with b-ambiguities is useless; both

the b-ambiguity terms as well as the principal value terras in the FT

of ( l . l l ) fall equally fast in the Jp | plane for large jp \

A second difficulty has been noted by S. Fels who shows that there is

no guarantee that the requisite field-theoretio positive-definiteness

of the principal value propagator ( l . l l ) can be guaranteed.

Wow Strathdee, Delbourgo and myself have proved a theorem which might

save the situation. Sparked by some remarks of Fels, what we have shown

is this. The trouble for non-localizable theories lies in normal order-

ing. If <XTTT is not normally ordered - i . e . , we leave D(0)'s in

formally as an undetermined parameter in the theory - then the high-energy

behaviour of the momentum-space superpropagator is drastically altered.

To be precise, we show that for non-looalizable theories of the rational

variety (with Lagrangians of the type ) a. -s TT-T ) the non-nonnal-
i« l i + *c, (p

ordered series expansions for superpropagators converge, when oonsidered

as a series in J>(x) • This radius of convergence is given by D(0) ,

- 1 1 -



If D(0) » oO t the radius of convergence is infinitely large, no

principal value ansatz is needed to define ( l . l l ) and the superpropagators

visibly satisfy positive def mitenesB cri teria. Thia is nice? un-
10) /-1\

fortunately, as Pried noted ,if we do set D(0) » : XV I—*) =* QQ ,
x ^ O x̂ /

nearly all matrix elements will vanish. Clearly D(0) must be re-

normalized. If we have physical reasons for believing that D(0)

should be finite (for example, if a scalar field in the theorypossesses a non-zero expectation value ($y J* 0 , which can be expressed

as function of D(0) , then the superpropagators would possess finite

radii of convergence. In p-space this would mean that for non-normally-

ordered rational theories, the two-point spectral function >̂(p ) would

behave like exp yip | - i .e. , we would have a .just localizable situation.

The proof of our results is simple and can easily be constructed. A

useful remark for i t s construction is the following: given a Lagrangian

L(^) , one obtains the corresponding normally-ordered Lagrangian from

i t by a simple operator identity,

2

9 cp

[FN3J

Our conclusion is that normal ordering is a crime for non-localizable

theories. Rational Lagrangians are .just localiaable provided D(0) is

renormalized to a finite non-zero valuej they become non-1ooalizable only

when they are normally ordered ^(equivalent ly when D(0) is renormalized

to zero).

We have not yet completed the investigation of whether the Lehmann

ansatz for isolating b-ambiguities applies to just-localizable theories,

nor can we say whether the inbuilt cut-off for these theories is s t i l l

(K.)"" or if i t is modified through the appearance of the new constant

D(0) . Clearly there is a certain amount of physics concealed in D(0)

whenever we work with non-localizable theories.

E ) FINITE NON-LOCALIZABLS THEORIES

Let us now turn to enumerate the cases when non-polynomial theories

are finite as opposed to being just renormalizable ( i .e . , s t i l l needing

a finite .number of constants unspecified and uncomputable within the

theory). Unfortunately a l l work so far on this problem (papers by

-12-



Efimov, Fradkin, Deltourgo, Roller and Sal am, J.G. Taylor and Keok)
has conoentrated on normally-ordered rational Lagrangians of the type

<p
m i g : To summarize the results of these papers:

( W )

a) X is finite if n - w < 2 .

b) X is renormalizable provided 2 ^ n - w < 4 » i .e. , there

exist a finite number of ST's which cannot be computed in

terms of g and K , but whose infinities can be absorbed

into a renormalization of physical constants. Note the

surprising inequality n — w < 4 • Ctae may naively have

expected renormalizable theories to range over n - w -̂  4 •

o) For mixed theories like

(1+K0)

where the Dyson weight of the polynomial part of L ( i . e . "yyA)

is 4 A (Dyson weight of a scalar field A is 1 , of spin or

field If is 3/2)» the theory is renorraalizable for al l w > 0 ,

d) We believe that if normal ordering is dropped ( i .e . , D(O) is

kept as an undetermined constant or alternatively D(0) is

re-expressed in terms of an uncomputable magnitude ($) )

the Lagrangian (1.12) gives a finite theory, provided w > 2 .

For the borderline case w =• 2 , the only ST's are those

which correspond to vacuum-to-vacuum graphs.

e) For exponential (localizable ) Lagrangians the situation is more

favourable towards .f^initeness . Lagrangians of the type : giji e :

are f ini te . The result is tr ivial for superpropagators in

the second order. For higher-order superpropagators the

proof of this assertion presents no difficulties whenever n <s 2.

For n > 2 the result is deduced by differentiating (exp K̂  )

with respect to K .

f) Less easy to prove is the finiteness of the mixed case

: gX eK* j for higher superpropagators. For n < 2

the proof goes through easily. For 2 < n <£ 4 we believe

these theories are finite, but a proof complete in details has not yet

been constructed. It would appear as if e*? behaves like

a rational Lagrangian with an arbitrarily large weight w ,

-13-



I w >

so far as i ts strong smoothing effect on infinities is

concerned.

F) CALCULUS OF DERIVATIVES AND GEHBRALIZED ETOMAL OHDERHJG

We turn f i n a l l y to the de r iva t ive -con ta in ing Lagrangians which

c o n s t i t u t e the majori ty of the phys ica l ly i n t e r e s t i n g cases . In my

Miami l e c tu r e of 1970, i t was remarked that even though,looked at

naively, differentiating l/x2 seems to increase i ts singularity,

one's experience is that the inorease is not as lethal as multiplying

by a corresponding number of powers of (l/x ) .

Stated differently, a factor like d^d^rf in a Lagrangian is gentler,

so far as i ts infinity-indueing properties are concerned, than a factor

like Ojttvtf though,on the face of it , both seem to possess the same

Dyson weight (w » 3). This observation - deduced empirically from

practical calculations — has important consequences for finiteness

versus renormalizability of derivative-containing Lagrangians of the

chiral or the gravitational type. For these the free Lagrangian and

the interaction Lagrangian are inextricably mixed in. As a simple

example consider

(3tp)2 2 2
2

Assuming each derivative possesses a weight unity, the Dyson weight of

L. , -. equals 2 . However, when the free Lagrangian i s spli t off1*0 tax
from L. . , - and we must do this to s tar t our perturbation calculationstota l
the weight of the resulting L. . appears to have jumped to 4 . What

i s the true weight? Is the theory f in i te or merely renormaligable?

To put i t another wajr i f we write S^. - X t o t a l - $<f) 1 do the two

derivatives in the second term really produce new ST*s?

To answer these questions, i t seems essential that we make

an extension of the Gel'fand-Shilov calculus of generalized funotion

to include derivatives. This can be done as follows: The formula
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i s true for a l l x , when 0 < Re z , z2, z. + z2 < 2 . For z1 and

z2 outside this range, the two sides may differ at x « 0 up to terras

containing 6(x) t i t s derivatives and also factors containing .(D(0))

We believe this formula and i t s generalizations offer the correct ex-

tension of Gel'fand-Shilov calculus when derivatives occur . • To evaluate

the left—hand side write i t in the form on the right and make the appro—
[FN4]

prlate continuations from the range 0 < Re z, , 2^,21, + z« < 2 . The
important point about (1.13) is that the number of derivatives on both
sides i s conserved. This ensures that the overall singularity from the
lines ( l /x ) i+Zz i s not enhanced more on one side of (1.13) by the
differentiations than on the other, In other words, derivatives and
singular functions are somehow dif ferent ,d is t r ibut ion- theore t ica l ly
(I am not enough of a d i s t r ibu t ion- theor i s t to formalize t h i s ) and
this dist inction must be maintained. To see the power and'raison
of th i s ansatz, consider the simplest generalization of (1.13) given by

Z1Z2

(1.14)
0 < Rezj z2 , Zj + Zg < 1

The terms on the right contain two derivatives just as on the l e f t .
Now oonsider using (1.14) in a conventional photon self-energy ca l -
culation (zero-mass electrons with propagators S(x) - /M(I/X )) :

(a= 2 (d 3 - 6

(1.15)

(We have continued the relat ion (1.14) outside the region of def ini t ion.

This, of course always needs care . ) Now (1.15) oorrectly exhibits the

transverse character of photon self-energy. Using even the most obtuse
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and old-fashioned of computing procedures, the ET of ]T (x) equals

2(p p - 6 p ) / x—r
t P ^ ^ P ' J ( p . k ) 2 k 2

This shows no sign whatsoever of generating any photon self-mass. The

photon self-mass in conventional calculations is indecently manufactured

by forgetting the ansatz regarding conservation of derivatives and by

writing ^Ly(x) i n iiie form:

That is, in the second term on the right of (1.15)» 1> (l/x ) is replaced

by 8/(x ) in most standard treatments. Since (l/x )3 is more singular
. 2 \2 {quadratically infinite)

than (l/x ) , i t is alleged that the theory is giving ay\photon self-mas si

Admittedly this care with derivatives pays off most when deriva-

tives oocur at those vertices where external lines impinge. But I am

labouring this point because I feel that the power of the analytic

methods of Gel'fand and their extension to derivative couplings is un-

appreciated and that half of our difficulties in renormalization theory

are due to bad mathematics. If one accepts that no faltung theorems will

be used to compute FT's of product of distributions like (l/x )%t ® (l/x j2-^

then none should be used for dJl/x2)z> ® ^(l/x2)2*- .

G) HIGH-EMERGY BEHAVIOUR OF LOCALIZABLE THEORIES OK THE JTASS SHELL

One more problem for non-polynomial Lagrangians on the pure field-

theory side is th is . Glaser, Martin and Epstein^', in a fundamental

paper have shown that al l localizable theories should give Proissart-

bounded high-energy dependence of S-matrix elements. The Volkov-

Lehmann expansion in the major constant does not achieve this . In

this expansion any given order behaves like exp(| p j ) & < ^ . I

believe this difficulty will be resolved when summations over the

major coupling constants are performed. We already know that for

conventional polynomial theories this type of summation - performed

either directly by summing diagrams or by using Pade approximants or

carried through indirectly using the Bethe-Salpeter integral equation -
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alters the high-energy "behaviour of individual diagrams. Specifically

we know that even though individual diagrams behave like S (W con-

stant ), for the sum of ladder diagrams one finds a drastic change; one

6if t)
obtains the Regge behaviour S * ' . Likewise I believe that a sura

of a chain of superpropagators is likely to satisfy Glasor, Martin,

Epstein results and to give Proissart-bounded high-energy dependence,

though no proof for this has been constructed. A corroborating

indication for this is perhaps provided by the work of Oleson, Nilsson,

Susskind, Sakita, Virasoro and others,' who consider fishnet diagrams

like the one shown\

*Phey show that if the fishnets are made of basic propagators of the form

exp(K. p ) -rather than of the Feynman form l/p , the whole fishnet exhibits

a Veneziano-Regg© (Proissart-bounded) high-energy behaviour. Now

eip(K p ) is just the type of behaviour we obtain from an individual

superpropagator (from non-localizable theories). I t would seem from this

that the Veneziano and the non-polynomial Lagrangian developments may

oome together through graphs like the one shown where each basic rung of

the fishnet represents a superpropagator:

The authors mentioned above show that (K )~ in their formula gives

the - slope of the Regge trajectory. This then is another possible

physical role of the minor coupling constant. (Refleot what this means

for gravity.)
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P A R T II

In this part of the session Dr. J. Strathdee will present work

published from Trieste on Einstein's gravity and i ts role in infinity

suppression in lepton electrodynamics. In my remarks I shall emphasise

in particular three aspects of work we have done subsequent to the

published papers*

1) We can now arrange the calculations so that gauge invariance

is preserved,

2) We can see more clearly why it is the tensor rather than

eoalar gravity whioh is responsible for infinity suppression.

This accords with one's physical intuition (emphasised to me

particularly by Prof, Weisskopf) in that infinity suppression

should come as a consequence of the light cone fluctuations

which are peculiar to tensor gravity and i ts (Schwarzsohild-like)

metrical aspects.

3) To exhibit this distinction between scalar and tensor

gravity, we need a better comprehension of the role of equivalence

theorems for field transformations. Since we have seen in Part I

that looslizable Lagrangians are ordinary, decent, unassuming

types of Lagrangiana, and since micro-causality holds for operators

in localizable theories, we can take over Borchers' results and

assume that S-matrix equivalence theorems hold for localizable

theories. This will necessitate using exponential parametrization

for gravity and not the usual rational parametrization.

4) As shown in Part l(E), exponential non-polynomiality is

extremely potent in smoothing infinities, This will mean our

problem in gravity-modified theories will not be making sure whether

infinities can be regularized or not̂ j i t will rather be making sure

if gauge invariance can be preserved.

A, GAUGE-INVARIANT CALCULATIONS IN TENSOR GRAVITY

As Dr. Strathdee wi l l show, the gravity-modified Lagrangian for

quantum electrodynamics may be wr i t t en in the form

wa - / - Jf1
 v

w' P F
I. iiv (w - ieA )i£> + nnfrifr e & *;.•.,< ,,u

11 !La

\otal = Lgnivity + det L + d e t
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jjfJa i s the vierbein gravity field which in exponential parametrization

w i l l h e w r i t t e n a s e x p ( * c & h ) , B \ a r e 4 x 4 p s e u d o s y m m e t r i o m a t r i c e s
~ AC " A S

and h are the physical (quantized fields) describing tensor quanta. V^

is the covariant derivative; F equals 9 A - 3 A , while the Einstein
• ' p * I la It

I la It

field g**v equals a "bilinear product of vierbein fields L L. a. Note

that det L » exp [ t r .Uh) ] . The simplicity of this expression makes work

with exponential parametrization even simpler than with the rational para-

metrization we used in our previous papers so far as det L is concerned.

Scalar gravity Lagrangian can "be recovered from (2,1) by substituting

L"a = exp(K0) / a where n " a = ^ - 1 ^ V

uv uv
g - eXp(K0) T)

det L = exp(4K0)
(2.2)

L, . , reduces to the form:
total

" gravity + [ % < \ " ie
0
A

fJ> • ] "P*"816* + m
0 * ̂ ' ^ + V ^ '

(2.3a)

Note that, as physically expected, the photon field does not interact with

scalar gravity«

Let us now make a field transformation

1>' = exp(-3/2K0)*. . (2.3b)

This will completely eliminate tc^ coupling from the Lagrangian from all

except the electron mass term. In the limit mo =» 0 scalar gravity

and (massless) electrons also get uncoupled.

Now if OM and ofi- were strict physical mass-shell quantities one

would unhesitatingly have said that,like all mass-shell S-matrix elements,

om and oe as computed using (2,3a) cannot involve the constant \c_ in the

limit that mQ = 0, Therefore scalar gravity would have no regularizing

ro.le .for massless electronsJ*FN6^ (For massive electrons the situation may Toe

better. We have, however, so far been unable to'show that the mass term

in (2,3a) is potent enough to regularize all infinities.
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Fortunately true gravity is tensor and even though the

transformation

) $
(2.4)

does remove the {det L) factor from the kinetic energy and electric

current terms of the electron Lagrangian, there is no uncoupling of

gravity either from the electron or (more important) from the photon.

To make matters uniform, let us .alEO transform

-iA = (det L) A
"• " ' (2.5)

The resulting Lagrangian readst

L = L ( + L"a Ty t7 - i e > ( d « L ) 1 / V + mn?>' + / " ' g " " ' F1 F '
total gravity 'a |i jr 0 ** ° * \iv. p V

(2.6)

Here

We shall call (2.4) and (2.5) the standard transformations and (2.6) the

standard form of the Lagrangian. The advantage of the standard form is that

the free kinetic energy terms contained in (2,6) do not have powers of det L

multiplying them.

Now in our earlier published papers we effectively considered

just those graphs for electron and photon"self-energies which are given

by a second-order iteration of

Lj = -ieL*111 ?'^ p' A^ (det L ) 1 ^ (det L = exp tr.ith) . (2.8)

These look like /v-^^[^j^k~v--~' for electron self-energy and j
^<i~^ y^~**~s\ electron line

for photon self-energy. photon line , I t is olear
graviton line

that to preserve gauge invariance it is essential to include further

graphs arising from the photon-graviton terms#
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In the published paper we did no;t compute these graphs (on acoount of the

bard work involved) and the result, was manifestly non-gauge invariant.

Now it is possible to secure gauge invariance - and still

guarantee infinity suppression (with, as we have verified, exactly the same

results as obtained before so far as the (<X log K. m ) terms in the

computed expressions for 6n\ and <$e are concerned) by slightly

modifying our earlier procedure.

Carry through the electron field transformation (2,4) but not the

photon transformation (2,5). This givest

L , = L , + l/1* *?' y fV - ieA ) $' + rn
total gravity ' ' a p |T ^ Q

F u V (2.10)

To make the gauge-invariant infinity suppression mechanism transparent, we

shall make an approximation to (2,10), (We later estimate the effects of

this approximation.) Neglect K-dependent terms in 1/ and g^V and in

the covariant derivative ^ ( i . e . , replace these factors by t^ and ^

and d^ ). The gravity fields h , h , hJJ and h^ of course survive in

det L = exp(Khaa). The resulting approximation to (2.10) reads*

L = L + tfi* y (d - ieA ) ty* + F F exp(Kh ) + m tp'ip' . {o Ti \
total gravity C M M Uv Vv ° \c-**-*-)

Essentially there are now just four fields (haa) in the theory which

couple not with the electron but (manifestly )gauge-invariantly with the

photon. Further, the electron-charge current y'Yy.¥'i& conserved both when

the ifJ operators are interaction as well as Heisenberg operators. This

is crucially different from the case of (2.6). It is this circumstance

which will- preserve gauge invariance at all steps while at the same time

guaranteeing infinity suppression by providing the requisite non-poly-

nomiality through the modified photon terms in (2,11).
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The photon self-energy graphs given "by (2.11) up to order e^

and to all orders in K. are shown in Fig.l while electron self-energy

graphs are shown in Fig.2. (There are the irrelevant external-photon-

modifying graphs in Fig.l whioh we have not shown.)

Fig.l

Photon self-energy graphs.

electron line
photon line
graviton line

Fig. 2

Electron self-energy graphs,

In a separate paper i t will be shown that non-polynomial summation

techniques work "beautifully for these chains of graphs. The crucial step

to notice the sore thumb (ST)graph *-<£ /̂k- -- identically equals the graph

X-*{f\j- ---̂  *-where the crosses indicate the operation of the term

Thus the ST diagrams --

quite generally form parts of the chains indicated in Fig.l and Fig,2.

The results are gauge invariant while numerically 6m/m (for example)
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exactly equals (in accordance with what equivalence thoor erne would assert)

the previously obtained value 3/(4JT) a log K m (up to terms of order

a, aK >...)• O*19 oan show that the effeot of including the terms which

were negleated in the approximation leading to (2,ll) (i.e., replacing L

"by 1^ , etc.) alters only terms of these higher orders, a \ a K , ..*,

without affecting the leading contribution. The proof is simple hut .

will not "be given here.

B. TEITSOR GRAVITY AND CURVED SPACE-TIME

As I said before, Weisskopf with his penetrating physical intuition

had earlier nlade the point (private communication) that (crudely speaking

it is the (det L) factor which modifies the photon Lagrangian which should

be mainly responsi'ble for infinity suppression even more than the (det L)

factor associated with the electron. Physically this should be so,

since Weisskopf expected that infinity suppression in electrodynamics

would be connected with the fact that the frequency of a standing photon

wave in the curved space-time around an electron possesses an upper limit

k given by l/(* m). It is this cut-off in (virtual) photon frequencies
max
which in Weisskopfs view is really providing the inbuilt cut-off for

quantum electrodynamics which we have exploited.

In December last year, Prof. Leonard Schiff formalized for me the

Weisskopf argument. We have just heard of Schiff's sudden death yesterday

from heart failure. This is devastating news for all who knew him,

admired him and valued his friendship. He was one of the clearest-thinking "and

most penetrating men I ever met, I would like to recall the argument

he wrote out for me. '

-23-



A Schwarzschild 'Universe round the electron is given by the metric

, , 2 2 2m (dr) 2f- 2 2 2 ,
(ds) = (at) ( 1 ) - —— - r (d9) + sin 0(dp) , (G =

r 2mG L ' '

r

With 6 a If/2 and u » — the path of a l ight ray i s given by

—H + u = 3mu
2

For u = constant and u => uA = T— we obtain a c i rcular path which the

ray t ravels in time t = t n = —?JL.r° = 6V5THH . Thus the proper

/ i . 2m

angular frequency of orbital revolution of a circularly orbiting photon

is r— , i.e. the maximal frequency of Weisskopf k equals
If this k is substituted in the old Weisskopf formulamax

rk 3
6m / max d k

m /

we recover our result for &£.•
m

C, RELATION BETWEEN THE FINE STRUCTURE CONSTANT AND THE NEWTONIAN
CONSTANT

One f i n a l remark about t h e formula

6m 3- 2 2
— % ^ « logu m . (2.12)

This term is the first term in an expansion which according to Weisskopfs

paper of 1939 should go like

6m _. V - , 2 2 r
:log K m ) , i p (2.13)

[FR9]
when higher orders in N are included. The important point is that

the effective parameter in this expansion is (oi log K. m ), This number

has the suprising value near to unity (u log K. m s? rrr̂ - ), In an earlier

paper we suggested that nature probably intended the formulae (2.12) and

(2.13) "to Ts© read backwards, that is to say, we might start with the

assumption that all (or nearly all electron self-mass is
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electromagnetic in origin, so that Gm/m RJ 1, This may, in converse,

determine 6clog((C m ) and possibly help in understanding why this number

is empirically so close to unity.

The problem of infinities in electrodynamics arose with Lorenta's

classical electron theory some seventy years ago. Waller investigated these

infinities using Dirac's one-particle theory in 1930 and found that they

persisted even after quantization. The modern formulation of the problem

dates "back to the famous 1934 paper of Weisskopf. There may be other

solutions of the infinity problem; it has "been suggested, for example, that

summations over the major constant <x will regularize these or with a

non-unitarity-violating indefinite metric the infinities disappear. This

may indeed be so. All we wish to point out is that there is in nature

this powerful realistic regularizing effect of tensor gravity; that its

effect is not small ( 96 log K, m # o( ) and that the regularized answers

are such that we visibly recover the old infinities when we take the limit

K_-»0. The first calculations we published were finite but non-gauge

invariant, We also worked with one particular non-localizfable para-

metrization of gravity (g^1 as the basic field, with gn^ a s ^ e n o n~

polynomial subsidiary quantity). We did not understand ambiguities;

neither the distribution-theoretic ones nor the Borel ambiguities. This

is changed now. With Lehmann's ansatz and his work and with the localizable

(exponential) parametrization of gravity, we are working with a field theory

which is no longer mysterious - one may call it orthodox, We are

permitted to make field transformations at will. As we have shown, this

allows us to .exhibit explicitly the gauge-invariance of gravity-modified

finite electrodynamics. We believe at least one complete solution of

the very long-standing infinity problem now exists within the context of

a nearly orthodox theory. We humbly wish that it may be taken note of.
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P A R T III

A, The two-tensor theory of gravity

Since K~ %, 10 BeV; the cut-off provided "by Einstein's gravity

is unlikely to "be of significance in strong interaction physics. We

need a universal non-polynomial strong coupling (analogous to the

gravitational)which may provide an inbuilt cut-off around a nucleon mass.

This part of the session will he devoted to an examination of the

hypothesis that Einstein's gravity theory itself may be modified in such

a manner that leptons interact directly with Einstein's tensor g'WV,

while a new tensor f ^ (representing a massive 2 unitary singlet) .

couples strongly to the hadronic stress tensor with coupling strength Kf.

For the Lagrangian of the f-parfcicle we adopt the Einstein form* A

covariant mixing term between f and g tensors is postulated which

guarantees that one combination f(= f-g) of the two tensors represents

a massive 2 particle (mass m») while another combination £ = K ^
2 2

describes massless gravitons. Kg ""g

Dr. C.J, Ishara,in his lecture,will introduce the subject. As I said,

our primary motivation in postulating th is part icular theory of strong

phenomena was to build into i t a cut-off round (Kf) ^ mf & 1 BeV in order

to regularize strong physics in f in i t i e s . Since,however, F-dominance of

the strong stress tensor could also be built into the theoryj

i t i s of oourse pertinent to examine th is particular hypothesis. iC"

X>rs, B. Renner, H. Jones and K, Raman will speak on th is subject. As is

usual in strong interaction physics, their conclusions appear to "bes

"nothing wrong with the hypothesis; things are ontimistic, but don't

forget there i s nothing ever clear-cut in strong physics either". I

wish to make just one remark in connection with Dr. Jones' ta lk . Making

the hypothesis that the relevant F-meson in the two-tensor theory i s a

yet undiscovered object, lying possibly on the Pomeron trajectory (at a

mass near 17OQ-2OOO MeV with the presently accepted value for Pomeron

slope), we have tr ied to understand s-channel hel ic i ty conservation

(empirically associated with Pomeron exchanges) as a consequence of the

Pomeron trajectory possessing a stress tensor coupling at i t s 2+ recurrence.
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We sucoee&ed. in proving that a close connection between these

ideas does existj however, the relevant expression for the hadronic

stress tensor must "be the "minimal" one. (The minimal stress tensor

is essentially the free-particle stress tensor*)

has ,_

Now this fits nicely in with what Gell-Mann^told us in his -sessionof m

conference. It appears that an ansatz is emerging from studies of short-

distance behaviour which states that physics follows the free-particle field

operators (as contradistinguished from free-particle S-matrix elements)

in the context of current algebras, Regge couplings or short-distance

behaviour. This Gell-Mann ansatz translated to our situation would lead

right away to the "minimal" stress tensor as the relevant tensor appearing

in our Lagrangian and the one coupling with the F-meson.

B. BLACK HOLES IN THE P-GRAVITY FIELD

Even though the theory was invented for the task of suppressing

i n f i n i t i e s , I would l ike to take F-gravity seriously in i t s own right

as modifying conventional gravity for short distances. Prof. S, Deser

wil l be speaking in the session on t h i s subject. As one of the

prominent men among that small,select ("but popularly considered somewhat

crazy) band who move fe l ic i tous ly between gravity theory and par t ic le

physics, i t i s welcome to have his assurance that the two-tensor gravity

theory makes no childish blunders (l ike violat ing the equivalence pr inciple)

in describing conventional gravitat ional phenomena, I t has, however,

pecular i t ies of i t s own.

l ) I f we consider two hadronic par t ic les i t i s clear (on account

of f-g mixing) that in the l inear approximation the s t a t i c potential between

them will be given by

The corresponding potential "between two leptons is

2 r -m i
1 e f 2i

K 2 + K , -2 2
k* + K

f g

K 2 + K
g r f r
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There are,of course, no surprises here, The surprise comes for the

hadron-lepton gravitational potential at distances ~10 . This is

given "by

Note that the l /r singularity has disappeared. Layers of leptonic and

hadronic matter do not attract (gravitationally) as strongly as had been

assumed when they approach closer than 10 cms) alternate layers would

produce partial shielding of conventional gravity,

2) One may expect that the non-static gravitational potential

between hadron and hadrons V , would contain a short-range repulsive

component on account of the apin-two f-graviton' exchanges in second arid

higher orders.' We have made no computations of this repulsive /gravity

so far and'would appreciate help in finding out what the situation in

higher orders in F-meson-nucleon coupling i s .

3) For interactions of ordinary highrfrequency gravitons with

large concentrations of matter, we may expect to see surface effects

familiar in the analogous P"Y mixing theory of hadronic electrodynamics.

A high-frequency g-gravitorr would convert into an f-graviton, through the

mixing term, which on account of the short-range character of i t s force

would be absorbed predominantly at the surface of a(large)mass of matter,

rather than penetrate into the inner layers. Very crudely speaking,
2/3

gravitational effects may be expected to show M ' rather than an In-

dependence where M is the mass of the large object. This weakening of

gravity may have consequences in respect of the onset of gravitational

oollapse phenomena. (For the analogous J>"1( mixing, photons of energies

around 20 BeV empirically appear to exhibit a 7> dependence in their

interactions with massive nuclei of charge Z),

'4) So far we have spoken of conventional collapse. Consider

F-gravity now in i t s "metrical" aspects. For regions inside hadronic

matter where g-gravity may perhaps be neglected (to a good approximation),

we are dealing with space-time of strong curvature. Let us for a

moment take this aspect of F-gravity seriously. The conventional

(Schwarzschild) formulae which give collapse radii in Einsteinian gravity will

of course need to be revised for the-f-g.mixing situation - and I shall

indicate some possible modifications below. But, taking the formulae

as they stand,
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we may estimate K- in the same manner as Eddington's famous estimate of

yc . Eddington assumed that the Universe is a Schwarzachild sphere

(inside which we live and beyond which nothing from our side escapes).

The radius of the Universe Ru , i t s mass m.. and the gravitational

constant tL (G » 8ITK ) would then be related by. the formula:

R H M G . (3.1)
u u g

To t h e ex ten t t h a t R^ and M ^ a r e known,Gw (and &C ~) come out roughly
2 —44 **2 \ . [FN12]

r i g h t (K. {K 10 m ) from t h i s formula. Let us now assume t h a t
g ® •

hadrons are (nearly) collapsed objects in the F-gravity field. A

typical hadron is the F-meson itself. Writing R & — in (3.1) we would

obtain a relation like
1 2 „ _2

mf ^ f f / l i e - f » mf

whioh ias^?ouf:hly of the right magnitude for the strong coupling constant
[FNU]

of f-mesons.

ifhat I am trying to say is that even if the black-hole physics

does not prove fruitful for the macro-universe I expect i t to

possess applications in the micro-universe of hadronic matter.

Some of you may be familiar with the black-hole jargon of"event horizons,"

"trapped surfaces1,1 "anti-event rhorizons"(which in some cases can annihilate

event horizons and give what I have been calling nearly-collapsed black

holes). One of the beautiful formulae whichhave been recently discovered

states that, the condition for a trapped surface (and eventually a black

hole)being formed for an object of mass M with angular momentum L. and

charge Q is given by

2 2 ]} 2
m

m

Por an electron, the right-hand side is 10 , the left-hand side is

1 0 + ^ . There is no danger that the leptons could ever collapse. But

consider typical hadrons in F-gravity field. Here both sides are of the

order of unity. Replace, as a good particle physicist always will,

the charge Q by I-spin I(l+l) or by unitary-symmetry Gasimir operators and

you can see how mass formulae we are familiar with:
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M 4 K 4 = J ( J + 1) + K M 2 1 ( 1 + 1)

may emerge from (F)-gravity, There are untapped riches here and a promise

of a new language for the particle physicist.

CONCLUSIONS

1) The bes t t h i n g which happened a t t h i s conference i s the

assurance that localizable non-polymonial theories are perfectly respectable

field theories - in fact more or less orthodox, rather tame from an axiomatic

point of view, Hot only that; they are superior to polynomial theories

in that they permit (with Lehmann's ansatz) an unambiguous and finite

computation of renormalization constants.

2) For far too longjparticle physicists have neglected gravity.

Our excuse has "been the smallness of the coupling constant. We have now

learnt that this neglect distorts space-time and is one origin of the

,conventional infinities of quantum electrodynamics. The logarithmic

infinit ies, for example, are simply a reflection of our setting K = 0
2 2 ^

in o( log K m . Since localizable gravity is intrinsically non-poly-

nomial,one finds that the first place where gravity comes in is through

the logarithm of the Wewtonian constant rather than through effects of order

OtK. . Amazingly enough this number (log1 K m ) raearly equals </~ » a fact

we have tried to understand by postulating that (almost) all electron self-

mass is possibly (gravity-modified) electrodynamic in nature,

3) With F-mesons and with the postulation of the two-tensor theory

of gravity, nuclear physics would appear to be another name for strong

gravity (this is provided isotojpic and unitary spin phenomena are added

from outside). Considering that he spent the later years of his life

searching for a unification of the forces of nature, I am sure that if the

Old Man were alive he .would feel happy with this rather direct and

amusing unification of concepts in the strongest and the weakest of forces,

I feel we have left gravity theory too long to cosmologists, I would hope

that at the next Rochester Conference, in addition to strong," weak and

electromagnetic sessions, we have, as we had to-day, a fourth session

devoted to gravity and particle physics. I hope also that by then our Chairmen

.or some other experimental physicist will have established the quantum

nature of gravitational radiation assumed throughout this lecture. Thank you.
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FOOTNOTES

[l] On the basis of their miorooausality properties, Jaffa classifies

field theories as localisable or non-localizable. Examples aret

A) Jaffe-localizable

L_ = g : (j) exp(*c#) : (pure non-polynomial)

or

. t = g : (#A) exp(M) ; (mixed Lagrangian)

The dote : : denote normal ordering.

B) Jaffe-non-localizable

Lint = g :

or

L = g :
i n t (w > 0)

Basically Jaffe's distinction rests on the high-energy behaviour

of the two-point spectral function o(p ) ; i t falls faster than

exp yjp ( for the localizable case and slower for the non-localizable.

Jaffe shows that localizable theories are miorocauaal; the non-

localizable ones are not. Also,by a rigorous theorem of Glaser, Epstein

and Martin, S-matrix elements (on the mass shell) should exhibit

Froiseart high-energy boundedness for the localizable case. Par lsss

is known about the non-localizable Lagrangians, apart from Steinmann-

Taylor results that, notwithstanding the possible breakdown of micro-

causality, the LSZ construction of the S-matrix can s t i l l be carried

through - as also the proofs for CPT and spin-statistics theorems.

Efimov and, following him, we at Trieste in our work have used

seemingly non-localizable versions of chiral and gravitational theories

(Weinberg-Sohwinger parametrization for the chiral case, and the

commonly used parametrization a^ = n ^ + Kh'1 for gravity). There

is nothing in our
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work which would not permit us to use the alternative exponential field-

parametrizations for both these oases,thus remaining formally in the

localizable class and guaranteeing for ourselves all the promised good

things - in particular Froissart-boundedness of the on-shell S-matrix

elements. If equivalence theorems hold, presumably the seemingly non-

localizable versions of ohiral theories or gravity are in fact local-

izable through a host of cancellations talcing place.

[2] For gravity, for example, <"g^v^; which is related to the Cosmo

logical constant, may be expressed as a function of 2(0) . I am

indebted to Profs* Gell-Mann and Sexl for this remark.

13] That normal ordering is a crime for gauge theories has been

known for a long time. This is because, for naive normal ordering, chira]

and gauge transformations are hard to define and gauge properties

of the theory are destroyed.

[4] We shall call formulae (1.13) and (1.14) "generalized normal-

ordering formulae" for derivative—containing situations. ffe "believe

that the use of theeo formulae eliminates those D(0)'s which arise ..from

consonance of derivatives ( i . e . from terms like D(x) b D(x)). The

D(0)'s which arise from the non-derivative parts of the Lagrangian can

presumably be eliminated, using standard normal ordering so that the two

procedures toother perhaps give a complete scheme for elimination of

all D(O)'s for localizable theories of the gauge variety. This needs

further investigation.
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[5] It is worth stressing that we have no special insights - at least
none has been developed so far - for situations like

f 1 1 Z 1 - 3

This is the same as for the Gel'fand-Shilov case where conventional faltung
must be used to evaluate FT of

16] There could be two reasons for doubting this assertion; f i r s t

could the inclusion of the masa term change t h i s ? Second

since 6n> and S^ » in an exact theory, are expressed as integrals of

spectral functions, do the equivalence theorems real ly apply? My

personal feeling is that they do. We know,for example,that both o~m

and £e share with s t r i c t mass-shell quantities the property of gauge

invariance (unlike z - ) . However, the only decent way of checking this

would be to compute. Unhappily(and notoriously)direct verifications of

equivalence theorems need summations of infinite sets of chain diagrams.

(Recall the effort needed to prove equivalence theorems using perturbation

expansions for the Dyson-Nelson Lagrangians, $ yy^ b 6 \p and ^ ' expfi-y^

And the problem i s complicated s t i l l further "by the necessity for

preserving gauge invariance at each stage of the calculation and also

coping successfully with the normal-ordering problem (compare Footnote 4)*

[7] Note (2.4) i s not, the same transformation as (2.3b) where we took

if* - (det L ) ' 8
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[8] Mathematically, the factor (det L)~ for the electrons can "be trans-

formed away using (2.4) hut this cannot be done for the photon. This,

of course, is an over-simplification of the tensor gravity situation where

the non-polynomiality associated with L^. (manifest in exponential para-

met rizat ion) is by itself equally potent (even without the (det L) factor)

in suppressing infinities. I t is important once again to emphasise that

irrespective of what chains of diagrams are summed, one can show that the

final regularized magnitudes for 6~m/m and 6*e/e do not alter up to terms
2 2

of order (X log Km , This is to s.ay that non-polynomialities from

different terms do not give additive effects to the re-gularization of the

infinities in the "basic ST diagrams AV^^^^V—~ and —

[9] S, Perveen has verified that, in the fourth order in e, the infinity

regularization does proceed in the expected manner, that is to say (

is regularized "by gravity to (o(log K. m ) . [S, Perveen, J. of Physios A,

General Physics,^, 625 (1970).]

[10] It should "be emphasised that there is no compelling logical necessity

for the interpolating Heisenberg field P to have a physical particle

associated with it nor for the ansatz that such a particle pole should

completely dominate the stress tensor,though it is nicer if this is so.

[11] My conjecture is that the f-g mixed equations when solved for static

solutions would yield instead of the characteristic Schwarzschild formula

g n = . 2MG
i g

something more like

2
f
rr

e
/ a t

- 8irM
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for a hadronic source particle of mass M acting on a hadronic test particle.

This would give a generalized Schwarzschild radius for an F-field

singularity more like;

m .

Hote the weak dependence of R on the mass of the source par t ic le II
2 2Even using th i s formula, ic m oomes out to be of the right order of

magnitude with typical hadrons considered as nearly collapsed objects

with anti-event horizons reaching out to event-horizons.

[12] I would gratefully like to acknowledge conversations on this subject

with Prof. S, Chandrashekar.
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