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ABSTRACT

Computations of gravity-modified quantum electrodynamics are per-
formed usging non-polynomial lagrangian field theory techniques, The in-
verse of the gravitational constant appears as an effective cut-off mass and
in particular it is shown that, to order ez , the electron and photon self-
energies are finite. The cut~off can be interpreted as if the electron had
an intrinsic radius equal to its Schwartzschild radius. A central feature

is the construction of the tensor gravity superpropagator.




1. INTRODUCTION

It has been conjectured in the past that the universal and non-linear
coupling of gravitation to matter may provide a natural mechanism for the

2
1). In a recent letter ) we

damping of ultraviolet infinities in field theary °.
revived this conjecture and pointed out that the newly developed techniques
for computing with non-polynomial Liagrangians would lend themselves to
testing it, It is the purpose of this paper to show by actual computations

to second order in the electromagnetic coupling that the conjectured damping

indeed happens in gravity-modified electrodynamics. Our results are

where k (the square root of 167 times the newtonian constant G ) equals

-18 1

0.5 X 10 GeV These results are of interest firstly because in spite of

the extreme smallness of the gravitational constant, « , the values obtained
3)

for dm/m and ée/e are of a reasonable order of magnitude ‘and secondly

because the effective cut-off appears to come at a length which equals the

Schwarzschild radius of the electron*)Rc = 2m§'G (measured in units of mel).

4)

As pointed out recently ' it seems not unreasonable to hope that when
higher-order terms in the effective perturbation parameter, [af ﬁn(&m)z_[ s
are included one may find, for example, that nearly all of the electron's

mass could be explained as electromagnetic (dm/m =~ 1) .

This paper is in the nature of a report on how these results were
arrived at and is planned as follows., In Sec.Il we review Einstein's gravity
theory - particularly as applied to electrons - and state the Feynman rules
for graviton Lagrangians. The infinity suppression mechanism is presented
in Sec. [II,which is devoted to the construction of the graviton superpropagaior.

and in Sec, IV where the éuperpropagator is used in the explicit computation

*9 This observation has been made independently by Professor V.F. Weisskopf to whom we are deeply indebted

for stimulating and inspiring discussions.
-
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of the leading parts of the above-mentioned quantities édm/m and éde/e

In Sec. V we briefly discuss the question of gauge invariance and equivalence
therems, The details of the computations needed for Sec. IV are contained
in the Appendix. Apart from the numerical results, the item of greatest

interest in the paper may be the graviton superpropagator exhibited in Sec. JI1.

iI. THE GRAVITATIONAL LAGRANGIAN AND THE FREE
PROPAGATOR

Einstein's theory of gravity is based upon the requirement that the
equations of physics should be expressible in a form which is independent
of the system of space-time co-ordinates to which they are referred, That
is, these equations should be covariant under the group of general co-ordinate
transformations: they should be derived by varying an action integral which
is itself invariant under this group. To formulate the requirement one must
first assign the variables of the problem to realizations of the transformation
group. The following remarks are intended to sketch the main features of
this programme together with the steps necessary for treating quantum

gravity.

The basic field upon which the group of general co-ordinate transform-

ations are realized is the metric tensor g,y °F equivalently, the vierbein

systern L;ua . On the one hand,the metric tensor transforms according to
the usual prescription
- Ty ax” Bx‘a
€™ = B =T TS gg (2. 1)
gx dX

where a‘i“/ax" denotes the jacobian matrix of the transformation x" = %
The vierbein components, on the other hand, transform according to a

hybrid prescription

Lo — L, ®=""2 A L,x (2. 2)




where Aab denotes a ILiorentz matrix,

Ay Ay Mgty | (2.3)

with na = diag (+1,-1,~1,-1) . The metric tensor field can be expressed

b
in terms of the vierbein field by means of the formula

ab
g,uu = L,ua va n . (2. 4)

Conversely, the vierbein field can be expressed in a (locally) unique fashion
in terms of the metric if the sixteen components Lua are reduced to ten
independent ones by imposing the symmetry condition

Lyw = Loy - (2. 5)

(In a pseudoeuclidean notation where T)a is effectively replaced by the

b

Kronecker symbol éa , the symmetric matrix [ is given by a square

root of the symmetricbmatrix g.}

It is particularly imp‘ortaﬁt to realize that the symmetry condition
(2. 5) not only fixes [, in terms of g but in addition serves to determine
the Lorentz matrix A of (2.2) as a function of 9x/9x and I, itself. This
results from the (local) uniqueness of the polar decomposition of the matrix
F.ua = Bx"/a;p“ Lva into the prtlydu;t of a symmetric matrix L",ub and a
(pseudo) orthogonal matrix (A )a . Thp.s, corresponding to each co-
ordinate transformation X#_”—{M one has an associated Lorentz transform-
ation, A of the vierbein system,
b

b, -
A=A _CEx/ox. g)

The function indicated here is generally non-linear. One has constructed

~ in this way a non-linear realization of the group of general co-ordinate

5)

transformations




Any local field which belongs to a representation of the Lorentz group

can be made to carry a non-linear realization of the general group. Thus
- X |w
v — B = |detzE |V DWWy (2.6)

where A denotes the Lorentz transformation determined above and w
‘denotes a new parameter, the weight, which must be assigned. (For the
subgroup of Lorentz transformations on space-time we have A= 0x/9x
and |det 3x/9x |=1 sothat w becomes irrelevant,) Non-linear realizations
based on Lorentz four-vectors and their products can be made over into linear

répresentations of the conventional sort with the heip of the vierbein. Thus,

for example, if

¢a - ¢a - Aa ¢b
then the combination ¢“ = Lua T)ab q‘bb transforms according to
e ox"
¢u = 95”. o 9

The spinorial non-~linear realizations cannot be linearized in this way. In
order to treat the gravitational interactions of fermions it is essential to

construct the vierbein components,

The scheme adopted here for introducing gravity by means of a non-
linear realization technique (which is well known to differential geometers)
is not the usual one adopted in the physics literature. In the latfer it is
assumed that the vierbein field has sixteen independent components L a
which transform under the co-ordinate group according to

ox”

L - — 1L
Ha gght  va

and under an independent ''gauge group'' according to

_5..




L — A L
Ma a Hb
where Aab is not related to 8x/8x . In this view the field of say a Dirac
particle would comprise a true Dirac spinor under the gauge group and a set
of scalars under the co-ordinate group. This view is of course equivalent

to the one we adopt.

In order to obtain an invariant action integral one must construct the

lagrangian function so that it transforms as a scalar density,

d,x L) = 4,% L) .

3x
9%

det Ly . (2.7)

L) — LW =

When expressed in terms of fields which belong to non-linear realizations
L) clearly must take the form of a Lorentz scalar with w =-1. Such
a Lagrangian can be generated from any Lorentz invariant one by iniro-

ducing L,ua {or gm) and-its derivative in accordance with two simple rules:

i) adjust the total weight of each term in f to -1 by adjoining a factor
] det Lua \ W ldet g#v‘ -—w/2 which transforms as a Lorentz scalar

with weight w

5
ii) replace the ordinary derivative BMw = u wherever it occurs by the
covariant form

i b

M _ bc v
v, =Ll @Y -5 B, S ¢twL

2 Lyp, u ¥ (2. 8)

be ) 8 -
where 8 denotes the Liorentz spin matrix appropriate to ¢ and
, the non-linear riemannian connection, denotes the com-

Bu[ab]
bination

il
b
[
i
i



1,.v v 1.V v

== ] - 9 -= ] - ] -

Bulabl ~2Wa %ulyp " Ty O lya) Ty & Ly 7 by 8, L)
1 c L.C LAV

- a3 -

5 L”C( y Iy - 8, Ly L Ly (2. 9)
The matrix reciprocal to Lua is here denoted by LMEL . This notation is
consistent with the convention that greek indices are to be raised with g#\’

and lowered with- g,uv while latin indices are raised and lowered with the

minkowskian tensor nab = nab . Thus we have
(v _ LM
g g\)l - 6)L
Ha _ g8
L Lub = Gb
(2,10)
Pl P
va
Ha - ba
The connection Bu[al:;] is related to the rliemannian connection
A 1 Ap
I == + - 2. 11
w =328 (gwU €ov, 1~ By, JD) ( )
by the formula
' A v v .
= - \ 2,12
Bulabl Vi g Do = Dy Lob, u ( )

To the Lagrangian generated by means of the rules i) and ii} it is of

course necessary to add a purely gravitational term, viz,,

1 % 1 :
= 2 (- det g,uv) R = Kz (-det Lu ) R (2.13)

grav a

where R denotes the scalar curvature which can be expressed in terms of

either the metric tensor € ©T the vierbein components Lua

-~




It is well known that the ten equations of motion which are obtained
by varying €, °F the (symmetric) Lua are not all independent. They
satisfy four identities as a consequence of general covariance, In other
words, only six of the ten components of glJU caﬁ be determined by these
equations, In order to pick out a unique solution it is necessary to supple-
ment the equations of motion with a set of four "co-ordinate conditions"
(which are analogues of the gauge condition of electrodynamics). For

example, one could impose the Fock-de Donder conditions

i

8, ((-detg)" g‘”") =0 (2. 14)
on the metric tensor or, alternatively,
i

3, ((—detL}‘f L#a) = 0 (2.15)

on the vierbein components. These classical co-ordinate conditions have a

counterpart in the quantized theary which we shall now discuss,

In setting up the quéntized theory one can allow for the fact that the
vacuum expectation value of the metric tensor coincides with the flat space
form by writing

v v v
g‘u = n’u + K h“ (2.16)
and ireating n*’ as the graviton field, This represents only one of various
. . v ,
equivalent schemes. One could take instead of g“ any second-rank object
made out of the metric tensor, its square root L g ° O its inverse, g ,

v v
l . These different choices for the

multiplied into some power of Idet g
basic graviton field would yield different expressions for the Green's functions
but presumably identical results for the on-mass-shell S-matrix elements,

On the other hand, the perturbation developments of S-matrix elements may

converge more rapidly for some choices than for others.




To construct the perturbation series one must separate from L

grav
the terms which are quadraticin h . These constitute the free Liagrangian
L0 . Corresponding to the parametrization (2. 16) one finds for L0 the
expression

_1 Ap Ap Au PR pu PP HA PP
5{0_4{8“11 9, h 28 h" 9 h 8, h™" 8 h""+ 28 b8 h

(2.17)
where contractions relative to the Minkowski metric are tacitly implied,
Mt hOO _ h11 _ .22 33

h -h . The remainder, L -1, , is to

. g h grav 0

be treated as an interaction Liagrangian,

The free Lagrangian (2. 17) is degenerate (in the sense that it yields
an underdetermined set of field equations) owing to the general covariance
of the system. In order to define a bare graviton propagator it is necessary
to take account of this general covariance by imposing a set of co~ordinate

conditions. One way to achieve this is by means of a Lagrange multiplier

method due to Fradkin 6). To Lgrav one adds the non-covariant term
[ o
= = v - — — +
-I-BB+—-B8(( z‘“)--31313+—1~ ) 1 kh
2 ook TY U 2 HoOKTV ol (—det(n+xh))"’

(2. 18)

where -ﬁu denotes the non-local expression
Bu(x) = fd4y %#D(X:Ylh) B, )

with a local field B‘u(x) to be varied independently of n*v . The kernel

%uv is determined by requiring that the equation

a? B = 0 | (2. 19)




emerge as one of the equations of motion, Since this artificial field Bu

is free one can pick out the space of physical states by means of the condition
(+) _q
B, (x)l > =0 o (2. 20)

and be assured that the S-matrix is unitary in this space.

Having determined & one can proceed to decouple the artificial field

B(x) by means of a field transformation

B - B =3 B -1 n, o ((-g)igaﬁ) . (2. 21)
M H Mv TV ok M BB
Since this transformation is a non-local one, it yields a jacobian factor with
a non-local structure which must be taken account of in computing S-matrix
elements, Thus
5B, (%)
det [ —+— =exp |- Trdn & (%% |h) (2. 22)
6B, (x') v '
v
which can be evaluated by perturbation methods, The perturbation develop-
ment of this functional can be represented graphically by a set of diagrams
in which external graviton lines are coupled to closed disjoint loops of a
massless vectior particle, We shall not go into the rather complicated
details 7 here since in fact we shall have no occasion to include the fictitious

particle loops in the processes to be considered in Sec. IV. This discussion

was intended only to make plausible the effective gravitational action

.
.\f'dx [:"{grav*_lﬁ 2, (,(-g)g“")} 2 iTrdn %:l (2. 23)

2K

from which one can separate the bilinear %erms which define a non-degenerate

free graviton Lagrangian,

1 Ao, Ao _ 1 . A,  pp
afo_4(a“h 2, -5 0,08 0" (2. 24)

-10-




The bare graviton propagator which corresponds to this Liagrangian is
simply

AV
n

Hp o AP iy Al

n

nV#)

CTEMw 0Py =1 DR (225

where D denotes the zero-mass causal propagator (-47r2 xz)-1

Similar arguments can be applied when the graviton is interpolated by

. s ps v ;
the vierbein field L‘uaL rather than g'u . One must substitute

PRl L I (2. 26)

K
2
and collect the terms bilinear in h in order to define the bare graviton
propagator. Clearly these bilinear terms are the same as those obtained
above so that (2. 25) remains the bare graviton propagator, The interaction
Lagrangian,which involves terms of the third and higher orders, will be

different,

III. THE GRAVITON SUPERPROPAGATOR

The Lagrangian of gravity-modified electfodynamics is given by

= + 3.
i ‘igrav imatter (3.1)
where the purely gravitational part ‘Igrav is the usual Einstein one,
grav - __5__1.____ R(L)
K detL,
Lua va
= = (B B - B B ) + four-~divergence
2 dac T vchb vac = Hcb
kK detl, _ (3. 2)

where R , the scalar curvature, has been expressed as a function of the

vierbein components, The vierbein connection B,uab is given by (2.9) as

_11_




a function of L and its first derivatives, The matter part of (3, 1)} is given

by A
- i~ T L Ma -
s('matter-detL [2 (‘M’aw;‘u W;’u'Ya'/J)L moww
- MHa
+eonbvaAu¢L
1 _ua _va _xb _Ab
g L Lo L FquJ\:l’
(3. 3)
where
i
=8 -
You= %Y "7 Buap oap? .
| (3. 4)

P =% v &8y,

The general covariance of (3, 3) and (3. 4) is assured if both the electron and
photon fields are assigned the weight w = 0 (see Eq. (2,6)). In the above
expressions we are using the notational convention that repeated latin
indices are summed in the minkowskian sense: Aa Ba =1 Aa B =A"B s

ete,

In order to complete the system of e(juations it is necessary, as out-
lined in Sec. II, to add to {3. 1) a term which breaks the electromagnetic and

- gravitational gauge symmetries. Such a term is given by

Ha
N S Ve 2,2 L
O{gauge— 2dmL(L ALy) +k2 %, } . (3.5)

This choice of symmetry-breaking term leads to the following expressions
for the bare propagators of the photon and graviton, respectively:

<ol T(a 0 Ay on]o> = -7, DX

<o] T ¢” (onlo> ™’ naP 4 pHa Vb Y 3l iy

_12_
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where D(x) denotes the zero-mass causal propagator {-4#2(112 - iO)]_1

The graviton field tﬁ'ua is defined in terms of the vierbein components by
. (3. 7)

With these definitions it is possible to proceed in the usual way to
separate from L+ Ef’gaug the interaction part and to construct a perturb-
ation series. For our purposes,only one part of the interaciion need be
considered, viz.,

Ha

Loy =% Goil w'r VA, (3. 8)

which will be used in Sec.IV to obtain a contribution of order e(;z to the
electron and photon propagators. There will of course be other contri-
butions of this order due to gravitational couplings of the electron and
photon fields., These, which are presumably of higher order in the gravi-

2 o
tational constant & , we shall disregard. From (3. 8) one obtains for the

electron seli-energy part,

1Yol B v s( v, D, (3.9)

and, for the photon self-energy part,

1

1 T, = - e02 pHavb ) Tr{'ya S(x) 7, S(-x)} , (3.10)

where S(x) and D (x) denote the electron and photon bare propagators,
respectively, 'I‘he graviton superpropagator, f,b'ua’ vb (x} , which appears

in these expressions is defined by

#a
ua,vb
D <OIT (detL (x) detL > ]0> (3. 11)

6“2

where Lua(x) is given in terms of the bare graviton field, x) , by
(3.7). The propagator of gb'ua is given by (3. 6). The construction of the
superpropagator fromthe bare one is a complicated algebraic operation the

..13_




main steps of which are sketched in the remainder of this section.

It is convenient to refer the graviton field to a euclidean basis where

B

the minkowskian tensor nar is replaced by the Kronecker symbol ‘6aB .

At the end of the calculation one can transform back to the minkowskian

basgis,

The basic stef?in the simplification of (3. 11) is to introduce for

(det L) 1 the integral representation,
L.l Mimdn exp [-({m m_+n n)L%
detL ~ 4 | "4 %4 pimim Mg™ g

B I, (3.12)
where m and n are integrated over euclidean four+tspace. This re-

presentation is useful because the chronological pairing of exponentials takes

a simple form, viz.,

<0| T (exp[-aaBLQB(x)]’exp[-bxaLré(O)]> IO) =

aTaﬁé +6a66.By_ 5“3576) b75 K.4D ]

- - 1
expl a . baa] ezr;p[aa"3 1(5

: 2
K I
exp[-aaa- baa] exp [(aaBbaﬁ -1 aaabBB) % ]

(3.13)
which can be verified by expanding the exponentials in powers of

B

K.aaB q)a (x) and KbaB anB(O) , respectively, and applying (3. 68). Different-

iation of (3. 13) with respect to a,3 and b/uv yields the formula
A Vv 6
(Of T (LK (%) exp[-aaBLaB(x)],Lu (0) exp[-b,YaL.y (0)]) IO) =

2
- [ 16" MM 4 51V M L 5K £R 4

2 2
GKJL _ (bKl _ ri,-ﬁkhbpp) K4D> (5.uv . (auv _ %Guuapp) K4D> X

x ¢o|T (exp[—aaBLaB(X)],eXPPb,},BLw(O)J) lo> ,

%) In this section we are following the technique of R. Delbourgo and A. Hunt outlined in A superpropagator for
gravitons", Imperial College, London, preprint ICTP/69/18. We wish to thank Dr. Delbourgo for an illuminating
discussion of the method. : ‘

_14-.
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from which one obtains ~ by substituting a ,=m m,+n n_ and

af3 a B ap
b =m'm', + n'n', and then integratin ver all sixteen ts -
aﬁ o B o B g all g (o) 1Xte componen S an

expression for the superpropagator., It is convenient to define a pair of

scalar amplitudes Qf)(o) and ;D(l) by writing
g)!c)t, MV _ x?t uv ;0(0) Kualv + 5xv6}t,u_ axl v 2)(1)
(3. 14)

The amplitudes 25(0) and Q)(l) are now represented formally by sixteen-

dimensional integrals:

) 2
QS{O) =--1§fd4m dynd,m' d,n [:1 +-}£(m2+n2+m'2+n'2) 5—4—9 +
T

2r\2
1, 2 2,12 42 (k"D
+18(m +n)m +n )( 4) +

2
316 ((m m ) + {m- n')2'+ (n- m')2 + (n- n’)2> (K

5%
o
N
o
ko

.2 2.02
i 1 K D 1 2 2 12 2. [k“D
éb()=;§fd4n?d4“d4m'd4“'[4 “3elm tm)m ‘”‘"(4>

5 ((mm') + o)’ + w4 (o n')),:"f) }ep :

(3. 16)
where
F = -(mz + n2 + m'2 + n'z) + {(m- m')2 + (m- n')z + (n- m‘)z + (n- n’)z -
; 2 2 12 12 K2D
(3.17)

As they stand,the Riemann integrals (3. 15) and (3. 16) are divergent.

..15..




This divergence reflects the fact that one is attempting to sum divergent

series (the terms of which can be recovered by expanding the integrands

L3

2
of (3.15) and (3, 16) in powers of k D and performing the resulting Gauss-

8)

type integrations), In earlier references the method of Borel summation
was used to obtain amplitudes for which the divergent series correspond to
asymptotic representations. An equivalent method, which is more con-
venient in the present case, is {o obtain these amplitudes by means of

9)

analytic continuation” ' in a set of auxiliary parameters a, 8, v. To

this end consider the integral

. L . .
%(QHB:'Y)- afd4md4nd4m d4n

T
2 / 2 2 2
exp [-a(m2+n2+m' +n'2) + B‘_\(m- m') + (m- n')2+ (nem') + (n-n‘)z) K4D -
2. 2 2 2 2
- -;f(m +n)(m'“+n' ——-K4D ’
(3.18)
which converges for real and positive values of xzD provided
Re(B-%) <0, and Rea > 0 . (3. 19)

The amplitudes ;b(o) and 2)(1) are expressed in terms of Hla, B, v)
p

and its partial derivatives as follows: -
20 [, (12 12 10\,
) 4 49a 36 88 99y, | (@ £.7) boye1 &
a: - = \
o (3.-20)
(1) ,x D 10 138
033:721 J

where the limit a=B=7=1 is to be takén in a sense to be specified below,

_16_
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Many of the integrations in (3, 18) are straightforward. Thus, for
example, since the exponent in the integrand is a bilinear form in the eight
components (m‘a, n'a) , these integrations are gaussian, yielding

: 2 2
2 2
Dla, .7 ’"4 d4m d4n (exp[-cr(mz-l-n )9( (m2+n )K—4-D->

é 2_1\2
.[a2+a(7'ﬁ)(m2+ )——I—)-+ (‘Y 23)(m2+n) (Ki)) +

2 .2 -1
+Bz(m2n2-(m-n)?)(f—;?-) J

Here the integrand depends only on the two combinations

2 2 . .
E=m +n and u =4 5 5

and the integral takes the form

5 2 \|-2
Dier, B, ) = fds g% e [a +vE (%Dﬂ -
1 0 -1
2 9 2. \2|”
'fdu o’ [cz + 2aly- B)s( D) + (7(7-28) + B ) g (-"BD> J

0

b =

(3. 21)
It is useful to change the integration variables from §,u to 0,v defined by

2 2
1 -u

v

_8at (B EKD
B& xzD

- _8a
BE xzD

+C
0

where v -8
0. ==
B

0 (3. 22)

_17_




The parameter ¢_,which ultimately takes the value zero, must in the course

0
of the integrations be kept in the half-plane

o > 1
Re 0

The integral (3. 21} now takes the form ’_ -

2o
9 \-4 o ! 4D o - 0‘0_] 2k
1 ("D 1 do i 1 2 (1-v)*

%(0,3,1’)=—2' 3| 3 5 | A 53 -
B (1+0) (o~ o) o’ -v
| % 0 0

(3. 23)

Of particular interest for the computations of Sec. IV is the Mellin transform

of D {a, B,y) defined by the integral representation

1 ~ 2_.%
Dl B, 7 =5 f’dz I(-2z) Jla, B,v;2) (k D), (3. 24)
Co
where the contour C_ lies parallel to the imaginary axis with -1 <Rez <0,

o ~ Q
The amplitude. & is given by

@ 8.7 2) = Fg f dx*D)(x?p) %! Re, B. M)

0

G

1
‘-__ dv de‘ (1 V} 2 P(l_z) f d(x D)(K D) TeTs,

0 (1+0) (0'-0' )(c.r -v g

‘ 2
8 a
‘ expl;- 2 0'-/% :‘
: kKD 0.
z+3

z+4 (o= %
- (z{+4)) (g) (“?z’) fdv (1-v2) jdc >
@ (1+0) (or -v )

(3. 25)
-18-.




To evaluate the ¢ integral one can first replace it by a contour integral

z+3 z+3

MIP;G (c-ao) _ ; \Jﬁ o (GO-U)
N (1+o')2(0'2 Vz) 21 sinwz y (1+0')2(0‘2~v2)

0

where the contour C is shown in Fig, 1., Since the integrand falls off for

-1 . . . )
1Re z it is possibie to distort the contour so that it

large |o\| like [o
encircles only the singularities at -1 and xv, i,e. into the form c

shown in Fig,1 -~ provided Rez< 0. One finds

z+3 z+3

(-9, Pze) (©4-9)
r( 2) f do 2 e f 2 =
(1+o )(cr -V ) (1+o’) (0' -v )
(@ -v) z+3 (@ +v)'z+3
= - T(z+1) 5-1——0———2-—-—-31- L s
Vo(1+v) Vo)
2(ao+1)z+3 (z+3) (a0+1)z+2
N 5.2 3 ’
(1-v) 1-v

which can be substituted into (3. 25) to give

~ 1 ﬁ z 1 z+4

R 8732 = S v (5) (?) i(2,0,) (3. 26)
where
' { z+3 z+3

(o -V) (o _+v)
I(z,a‘o) = -fdv (l—vz)”‘ 0 5 " 0 3 +4(00+1)Z+3 _.__.Y.é._é. -
0 (1+v) (1-v) (1-v)
2 v
— 2(z+3) (o +1) %" ,
0 1_V2
(3. 27)

which can be evaluated with the help of a table of integrals, However, for

our purposes it will be sufficient to evaluate only the expression
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1(2) s%{I(z, +i0) + I(z, -10)}
L . z+3 - z+3
. N _
=I dv (1_‘,2,)’- ¥ 2-' cosnz + — 5 " 4V2‘2+ 2v(z-;3:1
s {1+v) (1-v) (1-v ) 1-v
3 3 11
= cosnz B(z, z+4) F(z, z+4; 2+ 5 1)

+ B(- 12-, z+4) F(- %, z+4 ; z+:{2-; -1)

3 3
Fo—s =
=5 1)

- 4B(- 5,2 F(5, 2;

+2(z+3) B(3.2) F(3,2; 2; -1)
g (3. 28)
This expression corresponds to a particular limiting procedure. Thus,
holding a@ and B fixed at positive real values, the limit 0‘0-—9:ti0 can be
interpreted as Y= B +i0 . Considered as a function of the complex variable
Y . the amplitude '56 has a branch point at v = 28 with the attached cut
running to the left. We are taking the average of the values on the upper
and lower sides of this cut in order to have a real ;mplitude. It may be
remarked that the difference of the upper and lower limits will vanish at
integer values of z and so must correspond to an entire function in moment-

10)

um space

In order to construct the Mellin amplitudes corresponding to ’QB(O)
and ;b(l) it is necessary to differentiate (3. 26) with respect to the para-

meter a,B and y which are then set equal to unity, Using the identity

dl(z, 0‘0)

_aT;F;“' = (2+3) I(z-1,0) (3. 29)

which can be deduced from the integral representation (3. 27), one finds
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9 ~ ~
5z D2 = -2(z+4) Do)
d v 2
Y] H(z) = z JB(2) - 2(z+3)" D(z~1)
_Ez_ ~
oy D(z) = (z+3) (z-1)
where
z+2
L(z)y = (%) I'{z+1) I'(z+4) I{z)

Finally one arrives at the formula,

“a:Vb _ 1 -
D ey fdzl"( Z)
Co

[nua vb %(0)( ) + 1( LV ab nuan\)b nua \)b) %(1)( ):1 (K. D)
(3. 30)

: ~(0 o . .
where the amplitudes SA( )(z) and 25(1)(2) are given,respectively, by

;,g (z) = %(z) - L § 2(192+53) H(z-1) oy z(z 1) (z+2)% & (2-2)
(3. 31)

(z) = -1 z(z+8) K (z-1) +oe 1 = (z- 1) (z+2)2 B (z-2)

with ;g(z) given by

~ 1 z+2 r r . _3- . 3 +4 +l—1.. .
Hiz) = (—) (z+1) I'(z+4) < cos7z B(z, z+4) F( . Z 2+ )

3 3
+ B(- 3, 2t4) F(- 3, zh4; 2475 -1) - 4B(- 5, 2) F(3» 25 5; -1) +

+2(z+3) B3, 2) F(3. 25 2; - )}
(3. 32)

Of particular importance for Sec, IV is the.behaviour near z = 0 where
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FOc147. 52402 |

F0 ()

0 ' (3. 33)
-0.5z+0(z")

il

1V. SECOND ORDER COMPUTATIONS OF SELF-CHARGE AND
SELF~MASS '

We now apply the method outlined above to the computation of eleciro-
magnetic corrections to the eleciron and photon masses in the presence of
a gravitational field, The graphs to be considered are of order ez and
are shown in Figs. 2(a) and 2(b). In these figures the electron propagator
is represented by the solid line, the photon propagator by the wavy line and
the multigraviton propagator by the dotted line. Corresponding to Fig. 1(a)
the configuration space amplitude for electron self-energy is given by

(using the approximation of Eq. (3. 24)):

. 1
LS E(x) - o2 7, 5(x) %, D g(x) [55(0) (%) nuanVB+% 25( )(x)[ T8 s M vBl'
2 Cyrico
= -29-;; dzI'(-z) [&')(0) (z) + 2%(1) (Z)] 7# S(x) ,YM (KzD(X))Z
c-100

(4. 1)

where %(0)(2) and ﬁ(l)(z) are given by Eq. (3. 31). Graphically, the
pole I'(-z) at z =0 corresponds to the no-graviton exchange contribution,

the pole at z =1 gives the one-graviton exchange contribution, and so on.

Since, as will be seen in the following, the dominant coniribution to

L comes from the neighbourhood of z = 0 , the important quantities are



5'6(0)(0) =1 ) 53(1)(0) =0 ]

d;'fs(o) 0 _ _, (1) + 118 fn 2431 d%m _52/n2-40 | (4. 2)
dz - 18 ’ dz 9 ?
= 1.5 =~ -0,5 J

where y{a) denotes the logarithmic derivative of the I' function.

Corresponding to Fig. 1{b), the configuration space amplitude for

photon self-energy is given by
2 C'\'"lm )
o dz T(-2) (as“”(z) +3 ;b(l)(2)> Tr(y, 509 %, SCR)E D

1 F -
i 'ﬂ"w(x) T oomi
C-io00 (4. 3)

where ¢ <0

The momentum space amplitudes Z,(p) and ?ryv(k) which correspond
to (4.1) and (4. 3) are given, according to the method of Ref. 9, by the

respective contour integrals

L) =5 j dz T(-2) (é‘s‘“’(zwzs'&‘”(z)) Z(p, 2) (4. 4)
Tu® =35 f dz T(-2) <§5‘°)(z) +%§)(1)(z)> T, 6. 2 (4. 5)

where Z(p,z) and Truv(k, z) are defined for sufficiently negative real
values of z by the convergent integrals

z
)

Lewn = [ ax e ey, 509 ¥, D, (<*D¥ . )

i

1 T\‘pv(k, z) =f dx (ﬁ:ik’x e2 'i"r('y# S(x) v, S(-x)) (nczD(x))Z . (4.17)
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The contour in '(4. 4) stands to the left of z = 0 where, as will be seen

below, Z(p,z) has 3 simple pole, The contour in (4. 5) stands to the left

of z=-1 where ‘ﬁ;u(k, z) has a simple pole.

Into the integrands of (4. 6) and (4. 7) one can substitute for the pro-

pagators as follows:

m Kl (m\[r:;é‘

S(x) ={iy @ +m)
“ou an® [
D (x)=¢g :
v MV szz

1
D(x)z - /. 1 }
( 4ﬂ'2x2

and express L and -ﬂ,—uu as integrals over the Feynman parameters a,f

(4. 8)

and ¥ . Alternatively, one could perform the integrals directly in con-

figuration space. The results are as follows, Writing

2
E(p,z) =g Alpo.2) +m B, 2)

2 2 2 (4.9)
| TT;w(k,Z) = (k nw - kukv) C(k ’Z)+nuv D(k , z)
one finds (the details are given in the Appendix)
2 a fKm 2z _pi
Ap ,2z) = - pp (—4;) I(2-2) I'(-z) 2F1(2-z, -z B;mz)
, e 9z _P—z- (4. 10)
=& /&0 - - B
B(p , 2) -11.(4“) I'(1-2) I'(- 2} 2F1(1 zZ, z,z,mz)
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2242 2 2\
2 ar 1(r(2-2)1"r4-z) . 5 kTG
Ck ,z) =~ 6 <Z7T> z‘rg_ 3F24 z, 2 z,—-z,‘i,2 z: 7
(2 Z) 4m //
2z+2 2 : 25
.2 3 - - :
Dk, 2) = -~ 37 e, (R 1 [Ii-2)]"I(2-2) - ﬁ_z,l_z,_l_z.&g_z; k
27 z+1 3 372 ) 2
(E_Z) \ 4m -,
(4, 11)

where o = e2/47r denotes the fine structure constant. These resuits must

be substituted into (4. 4) and (4. 5) to give the electron and photon self-energies.
2

Since L{p,z) and -ﬂ-uv(k, z) contain the factor (km) “ one can obtain series

developments in powers of (Jicrn):2 by shifting the contour to the right.

The leading singularity in the integrand of (4.4) is a dipole at z = 0
which occurs in both of the scalar amplitudes A and B-. The next
singularity occurg at z =1 ; adipole in A and a tripolein B . The re-
maining singularities at z = 2, 3,... are all tripoles, The contribution of

the leading dipole takes the form

2z
A ~{0) (1) I(2-2) _ P
I 4T Bz {(55 (z) + 28 (Z)) (4:r> Mos1)® 2 1(2 2,723 3; mz) -

P m

{ (‘“’) 1———1’—1(+——-P-—£n————3— +0(1)}

T{z+1)

. 2e 4 (m“Pl/gn _ZPE. +
- . o ¢

' 2z iy 2\
BpA~ & 2 (40)+ 2%(1))(4”) Lii-s) zFl(l'Z"Z? 2 n%)}po

m

(4.12)

which clearly reproduces exactly the amplitudes of ordinary zero-gravity
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electrodynamics except that here there remains a dependence on & in the

form of an effective inbuilt cutoff:

1 18 :
cutoff = x © 2X10 GeV . : (4. 13)
. 11) , . .
In particular ', for the mass correction, ZI(p) ]/pf=m , one obtains
$m _ 3a 1 '2_'_ o 2 s 2) 4 14
m “ir ((em) " ln(em)®) . (414

Similar remarks apply to the photon self-energy 11), That is, a
dipole at z = 0 in the transverse part C Yyields the usual electrodynamic

result subject to the effective cutoff {4, 13),

N N22+2
c) x5 an’ 2 i(ﬁo)z s )(D;%’_) :
\

2 2
1(2-2) I(4-z) F (4-2 2-z,-z-4,§- Z: k )
T(z+1) I’(-g--z) 32 2 4m? ) )z=0

. X S
_a 2~ 1) A)‘“ g LN+ JA 1,5 }
= - = ; (1)
i \"m> ( ( A (1+%)° - JX) 21

2

where A = -k2/4m
(4. 15)

Unfortunately, the longitudinal part D(kz) . which should vanish in a gauge-
invariant theory, also has a contribution from simple poles at z = -1 and

z =10

2 g 2
D(kz)'—t-a{SWBFzGZO 3,2, K +gﬂ- F(Zl ;3,55

=-= 1% -3 2+1—{E ?
S ar\ 2 m *7
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12)

which reflects a gauge non-~invariance of our procedure This will be

discussed in the next section. -

The charge renormalization may be computed from the transverse part

C(kz) of the photon self-energy as

b

2
e
R _, .,_2z , 21 2 2
5 =Zg=1-5; S +0{(km® Lnkm)) .
e
0
The contributions of the tripoles at z =1, 2, ... to the electron self-

energy will give terms like (/n x)z &, n>1 and can of course be neglected.
The important point about the results above is that the ultraviolet singularities
of the conventional theory have disappeared via the mechanism of the intrinsie
cutoff 1/k . They still leave their mark, however, as singularities of self-

energies inthe K plane, i, e., they reappear if the limit & — 0 is taken,

V. GAUGE INVARIANCE AND EQUIVALENCE THEOREMS

The Lagrangian of gravity-modified electrodynamics given in Sec. III

is formally gauge independent. It must follow from this that the scaitering
amplitudes also are gauge .independent provided the con!:putational procedure
employs a gauge-invariant regularization. Indeed, if these amplitudes
could be expanded in powers of e and k then they would be gauge independ-
ent in each order. However, it is one of the main arguments of this paper
that, owing to the appearance of logarithmic singularities at «k =0 , an
expansion in powers of k cannot be made. The question therefore arises

2

" as to whether it is necessary to include all graphs of order e® - and these
on general grounds must show gauge independence - or whether this collection
can be subdivided into sets - possibly of order ep(icz)m(fn K)n - which are
themselves gauge ~independent. We are at present unable to decide this
point and so must confine ourselves to some speculative remarks.
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Firstly, the prescription outlined in Sec,Ill for evaluating graphs with
one superpropagator is not a gauge-independent one., This much can be
seen from the fact that the vacuum polarization tensor, —ﬂ;w(ez) , obtained
in Sec.IV is not entirely transverse. Although the transverse part of
']Tuv is satisfactory and defines a finite Z_ , the existence of a finite

3
longitudinal component gives a clear indication of the breakdown of gauge

symmetry.

If we follow the standard procedure of selecting a gauge-independent
set of graphs in electrodynamics, the method is well known and was form-
ulated by F.ey,nm-an and W;'ard. * It consisis of attaching photon lines in all
possible ways to the basic graph of Fig. 3. This then leads to the set of
four topologically distinct graphs of Fig. 4. Now, since some of the vertices
in these graphs (e. g., vertices 1 and 3 and 2 and 3 in Fig. 4(b))are not con-
nected by superpropagators, we cannot apply the non-polynomial methods
“of this paper for computing these contributions. We are in a dilemma now.
If we do connect these vertices by graviton superpropagators we can carry
through the computation, but the Feynman-Ward procedure for securing
gauge-invariance would.now demand that we include more complicated con-
figurations with three or more superpropagators. For example, graphs
depicted in Fig. 5 would have to be added to Fig. 4(b). The resulting grai)hs
will themselves now ﬁeed new superpropagators, and so on. This leap-
frogging of the Feynman-Ward procedure for securing gauge invariance,
and of joining vertices with superpropagators has only one limit - we must
eventually reproduce the entire series S(ez_) . This complete series, as
stated before, is definitely expected to be gauge-invariant, The technical
problem - which we have not yet been able to solvé - is how to avoid this
leap-frogging and to secure gauge-invariance without having to sum the
entire S-matrix series S(ez) correct to second order in ez but to all

"orders' in «
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Another problem which we have not resolved in this paper is the

problem associated with different formulations of gravity theory., We have

MV

taken, in this paper, g as the basic field in terms of which tensors like

g)w are to be expressed. One could equally wéll start with the tensor

g,w as the basic interpolating field and then g#Y would be expressed as a
ratio of two polynomials in g}m} . If equivalence theorems hold for the

type of theory we have been discussing - and the se equivalence theorems

state that on-mass-shell matrix elements are identical'irrespective of which
interpolating field we start from, provided these fields possess the same
asymptotic states and also belong to the same locally-commutative equi-
valence class - then the results obtained in this paper should stand, irrespectir
of which field gl"‘v or guy We choose as basic. The only difference beiween
working with one or the other system of co-brdinates g’ or Euv would be
the technical difference of ease in obtaining results more readily in one
formulation of the theory relative to the other. The same remark applies

to co-ordinate transformations considered by general relativists by means
L]

of which one can incorporate the factor (detg) " into definitions of matter
fields, e.g. @' = (det g)_rtt// , and thus eliminate this factor from some of
the terms in the full gravitational-matter Lagrangian, The on-mass-shell
results we have obtained should be obtainable, if equivalence theorems hold,
by using any set of suitable co-ordinates, provided appropriate numbers of
terms are added together to secure the equivalence. It is of course also
conceivable that for non-polynomial Lagrangians of the rational (and so-
called Jaffe-non-localizable) variety, there are no equivalence theorems E_‘lt |

all, So far as this paper is concerned these problems are open.
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APPENDIX

In this Appendix the essential steps involved in the computation
of the electron and photon self-energies will be outlined. From Eqs.(5.9)
and (4.12) we have

2

A(pz'z) - % f i P (D(x))zafl (ipuap) AX) (A.1)
p .
B(pz,z) = 4e2 f d4x eip-x (D(x))z+1 A(X) (A.E)

where the integrals are taken over the euclidean region in x—space and are

2

dofined initially for p“< 0, The angﬁlar integrations may be performed

immediately using the polar wvariables

2
dx 47 r2 sin 6 dr d6

PX = '-AJ—p I cosé

Ir.

1
»
I

We encounter the following integrals:

v 3 {{~p?s
ar f de sin29 exp [~ q/-;?roosel = 4,-,-2 1( _.__.)_ (A 3)
0 : qZPZr .

o

w
2
4r j do sin @ cosd expl-i ‘J-pgrcosel = 47

; o2 (A.4)
and simplifying the derivative in A(pz,z) by writing
(lppﬁ YA = 2lpux g-éi- = 2i -p -9-.95 Teos O (A'5)
H Foax ar
we obtain the expressions
_30-
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-]
Ap'm) - 16"2"2(:'1%) f a1 (V%) (o 240
P or (4.6)
\/_ 2
2 2y 22 [® 3 Jl( p:) z+]
B{p ,2}) = 167 e oty ————— (D) Alr)

. Co2 (A.7)

into which must be substituted the forms

1 1
D(t) = 3 3
47 r
sy = m K, (mr)
' 41t2 r
A __m Kémn
61'2 4n2 5 r2

The resulting integrals converge for Rez <« 0 and using the standard
relations 13

, i 2 &
oo s -2 - _g
f N SO (u (J—;?)) - (—P—é> £ Nra) T2 Bz, -2: 2 pY/m)
m m
0

v 2 \} cp2 -ge 2
du u 2z-1 Kyu)J, (u =P Y- = —E 4 z-1 I(2-2) I'(-z) F(2-2, -z 3; p2/m )
e 2™ g m2 om?
0

we arrive at Eqs.(4,10).

To evaluate the contribution of the double pole at z = O in Eq.(4..

it is necessary to evaluate the derivatives of these hypergeometric

functions at z = 0, This may be done by considering the power series

development

' 2
1+(l-z) -z X + (2-z) (1-z) il-z)—li_

F(lz, ~2§ 2 X) > ~—53 gt eee |x| <1

from which
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F(l~2, ~z; 2} %)
az

1x 2% } . L xn
= = - * T + oene = - .
220 {2 23 2; ‘ L n(n + 1) (A.S)

n=1

‘This latter sum may readily be shown to be -{ (——j) log(l-x) }

and, substituting this result (with x =P /m )y plus a similar one for
F(l-z, -z, 3; pz/mz) into the Sommerfeld-Watson integral, we arrive at the

final expression for the electron self-mass given in Bq.(4.,12).

The computation of the photon self=-energy is somewhat lengthier.
The electron calculation was performed directly in configuration space,
By way of contrast and also to illustrate the different technique involved,
we shall compute the photon self-energy in momentum space using the usual
Feynman X-variables, In fact,as a congistency check we have computed

“"the two gelf-energies both in configuration space and in momentum space.

'The X-parameter form of Eg. (4.7 )ywritten in terms of the
functions C(kz,z) and D(kz,z),defined in Bq.(4.9) is

2 2 2 2
Il'py(k zZ) = (n”uk -kp Rv) C(-k.z)+ nuu D(k ,z)

~Z

ool
€ Agz 172 .
C(k $Z) = J donlj dc:a2 f 3 1_,(2_2) ) ] 2
0 (ala ala ao:)

ox Li2 %y . e e o m?
' P ao oo + oo CCI aZ

I'e 23 13

1-z

2 -] o0 o [+
2 _ e A(z) 3 1
P = Té—" J doy j da, j dos Nz
0 0

2
0 (o, + ooty + aot)

&g 2 %% 2 '2 oo 2
-k +o o +o )""-+ m A 4 o too too. T %™
0P+ Olgllg ¥ 040, (oo, + ool * oot 4o °‘2 °‘1

where A(z) = (47r)"22 T(2-2)/T(z) . These




itergted integrals are defined initially for lc-2 < 0 and a certain range

of z=-values. The final answer may be analytically continued to other valuss,

We shall compute D(kz,z) first and start by defining new
integration wvariables x2 = é— ’ y2 = g’(—*, zz = -Bl-/— and then converting to
' 3 2 1

polar co-ordinates, x = r cosb; y = sin 6 COSy 4 T =T sin{ sin&o .

This leads to

2 2 5/2 . w/2 & !
27= - 8 - .
D{kz,z) == Am)w f dqpf def drz 7=l sin cos¢ sin 6’3(('.056)2z 1
0 0 0 ‘ :

2 T'(2-2)

=

ol

o 2
2 4 2 .2 2 .4 2 .2 2
‘[rsm-ecos:fsmw-k 8in @ cos o &in ¢ +m ]-exp{ T Ty 2m2 2} *
r I sin 6 cos psin ¢

The r=integration is performed by defining u = 1/r2 and then consulting
a standard text 13) on Laplace transforms. The result is

2 %/2 /2 2 z
g _ - 3
oKl zy = S-A2) Tzl f dg f d0 sing cosg sin 0 (cos0) 2 | ( — -k)
4 I'(%z) 5 0 sin @sin p cos ¢

2 2 . .2 2 2
(sin4e sin ¢ cos ¢ zk -m (z+1~sin 6))

where k.2 < 0 and Rez < 1,

The ¢ integration may be carried out, using sin26 as the

variable , from the relation 13)

i
0P S et ax = o BRI ey viuey, - 1/a), Rep >0
p+vy 21 Rev > 0
0
leading to
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2 .1

2 A(Z) T(-z~1 -2 - -z 2

D(k 'Z) = pa (Z) ( z - ) r(z) (4m2)z \/ dt (].‘t) 2 {Z_I:&_'Z)_ k2 t z-1 E (z. 4-2: 4: —t]-(...-
32 .I(2-z) 0 4r(e). 21 4nf

2
2 L3z -z ) , L(22) -2 e o &N
m ———-—F(a) t Fl(z 3-z; 3; —) m (z+ —__I“(2) ,,2F1 (z, 2~z 2; 2>j
: 4m

where t = sin2 250 and 0 < Rez <1,

i3) -

Using the standard integral

1
f e P o 2,qu)_r()r(u) (@ 3,2 ip+v, bia)y  jaf<l,

T(ur ) 32 I 2
0

we obtain an expression for D(k° yz) in terms of 3F, functions. This may
expression
be usefully converted into one,in terms of Meyer G-functions giving

2 2 -
2 e A(z) T'(z 13 -k -1. 1, -3
D(k.z)=—”n——-—g_i) ()(k) {633 (—2 ) +
128 4m -z, -3/2, =3-z
+ G13 12 -1, 1, -3 .
33 4 2
m -1-z, -3/2, -3-z

13 &2 | -1, o, -2
Gy3 .
4m? | -1-z, -3/3, -2-z

4m -z=1, -z-3, -3/2

It was for this regmon that the Meyer Tunctions were introduced. The

final answer, expressed in terms of the more tractable 3F2 function,is
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2 2 z4] N
2 3¢ @) I(1/2) T(i-z) [(1-z) [(1~z) I(z) 2, -z, -l 3, 3/2-2] ——
Dk ,2) = ST T(z-) [(3)T@3/2-2) (k+z) SFZQZ B de clm 3 320 4m2)

The same manipulations for C(k2,z) yield

2 2z} ' 2 N
2 (;nz) 1"(1/2111"(1-:) ;‘(z-z)-l"&-Z) Iz) 3F2 (4-z. 2-z, ~z; 4, 5/2-z; k_é )
6% TEDTOTGR-2 4m

c k%2
4

which eimplifies slightly to give Egs.(4.11), The contribution of the
double pole at z = O is obtained from the power series expansion of the

3F2 functions as in the electron self-energy calculation,
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FIGURE CAPTIONS

Fig. 1 . .g-plane contours for the graviton superpropagator.

Fig, 2 (a) Electron self-energy, L .

{(v) Photon self—energy,TBLv .
Electron loop including gravitons,

. : 2
The gauge-invariant set of graphs to order e .

Superpropagator modifications of Fig. 4.
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