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ABSTRACT

Computations of gravity-modified quantum electrodynamics are per-

formed using non-polynomial lagrangian field theory techniques. The in-

verse of the gravitational constant appears as an effective cut-off mass and
2

in particular it is shown that, to order e , the electron and photon self-

energies are finite. The cut-off can be interpreted as if the electron had

an intrinsic radius equal to its Schwartzschild radius. A central feature

is the construction of the tensor gravity superpropagator.
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I. INTRODUCTION

It has been conjectured in the past that the universal and non-linear

coupling of gravitation to matter may provide a natural mechanism for the
1) 2)

damping of ultraviolet infinities in field theory . In a recent letter we

revived this conjecture and pointed out that the newly developed techniques

for computing with non-polynomial Lagrangians would lend themselves to

testing it. It is the purpose of this paper to show by actual computations

to second order in the electromagnetic coupling that the conjectured damping

indeed happens in gravity-modified electrodynamics. Our results are

) ~

if
/cmj

2
11

1
25

where K (the square root of 16?r times the newtonian constant G ) equals
_ 1 Q _, 1

0. 5 X 10 GeV . These results are of interest firstly because in spite of

the extreme sm aliness of the gravitational constant, K , the values obtained

for 6m/m and Se/e are of a reasonable order of magnitude and secondly

because the effective cut-off appears to come at a length which equals the

Schwarzschild radius of the electron**'R = 2m G (measured in units of m ).
c e * e '

4)

As pointed out recently it seems not unreasonable to hope that when

higher-order terms in the "effective perturbation parameter, [a in(Km) J ,

are included one may find, for example, that nearly all of the electron's

mass could be explained as electromagnetic (6m/m » 1) .

This paper is in the nature of a report on how these results were

arrived at and is planned as follows. In Sec. II we review Einstein's gravity

theory - particularly as applied to electrons - and state the Feynman rules

for graviton Lagrangians, The infinity suppression mechanism is presented

in Sec. Ill,which is devoted to the construction of the graviton superpropagator.

and in Sec. IV where the superpropagator is used in the explicit computation

V This observation has been made independently by Professor V.F. Weisskopf to whom we are deeply indebted

for stimulating and inspiring discussions.
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of the leading parts of the above-mentioned quantities 6m/m and 6e/e .

In Sec. V we briefly discuss the question of gauge invariance and equivalence

therems. The details of the computations needed for Sec. IV are contained

in the Appendix. Apart from the numerical results, the item of greatest

interest in the paper may be the graviton superpropagator exhibited in Sec. III.

II. THE GRAVITATIONAL LAGRANGIAN AND THE FREE

PROPAGATOR

Einstein's theory of gravity is based upon the requirement that the

equations of physics should be expressible in a form which is independent

of the system of space-time co-ordinates to which they are referred. That

is, these equations should be covariant under the group of general co-ordinate

transformations: they should be derived by varying an action integral which

is itself invariant under this group. To formulate the requirement one must

first assign the variables of the problem to realizations of the transformation

group. The following remarks are intended to sketch the main features of

this programme together with the steps necessary for treating quantum

gravity.

The basic field upon which the group of general co-ordinate transform-

ations are realized is the metric tensor g or, equivalently, the vierbein

system L . On the one hand,the metric tensor transforms according to
r*cL

the usual prescription

where 9x /dx* denotes the jacobian matrix of the transformation x -* x

The vierbein components, on the other hand, transform according to a

hybrid prescription
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where A denotes a Lorentz matrix,
a

A A 1, , = i) , (2. 3)
a c bd ab '

with J] = diag (+1,-1,-1,-1) . The metric tensor field can be expressed

in terms of the vierbein field by means of the formula

« / « ° L « , L * " " " • (2-4>

Conversely, the vierbein field can be expressed in a (locally) unique fashion

in terms of the metric if the sixteen components L are reduced to ten
#a

independent ones by imposing the symmetry condition

L = L . (2. 5)
/"a ayu y '

(In a pseudoeuclidean notation where 1 is effectively replaced by the

Kronecker symbol 6 , the symmetric matrix L is given by a square
ao

root of the symmetric matrix g .)

It is particularly important to realize that the symmetry condition

(2. 5) not only fixes L in terms of g but in addition serves to determine

the Lorentz matrix A of (2. 2) as a function of 3x/9x and L itself. This

results from the (local) uniqueness of the polar decomposition of the matrix

P = 9x fdx L into the product of a symmetric matrix L , and a
jUa ' va -1 h

(pseudo) orthogonal matrix (A ) . Thus, corresponding to each co-
u _ u a

ordinate transformation x —»x one has an associated Lorentz transform-

ation, A,of the vierbein system,

A b = A b (9x /9x , g) .
a. a.

The function indicated here is generally non-linear. One has constructed

in this way a non-linear realization of the group of general co-ordinate
5)transformations .
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Any local field which belongs to a representation of the Lorentz group

can be made to carry a non-linear realization of the general group. Thus

det w D{A) 0(x) (2. 6)

where A denotes the Lorentz transformation determined above and w

denotes a new parameter, the weight, which must be assigned. (For the

subgroup of Lorentz transformations on space-time we have A = 9x/9x

and |det9x/9x| = 1 so that w becomes irrelevant.) Non-linear realizations

based on Lorentz four-vectors and their products can be made over into linear

representations of the conventional sort with the help of the vierbein. Thus,

for example, if

(/> - > 0 = A 0,
a a a b

abthen the combination $ = L n <j>, transforms according to
(u (j& b

The spinorial non-linear realizations cannot be linearized in this way. In

order to treat the gravitational interactions of fermions it is essential to

construct the vierbein components.

The scheme adopted here for introducing gravity by means of a non-

linear realization technique (which is well known to differential geometers)

is not the usual one adopted in the physics literature. In the latter it is

assumed that the vierbein field has sixteen independent components L

which transform under the co-ordinate group according to

LMa d^M va

and under an independent "gauge group" according to

-5-



L - A b L ,
Va. a fJb

where A is not related to 9x/9x . In this view the field of say a Dirac
a

particle would comprise a true Dirac spinor under the gauge group and a set

of scalars under the co-ordinate group. This view is of course equivalent

to the one we adopt.

In order to obtain an invariant action integral one must construct the

lagrangian function so that it transforms as a scalar density,

e. ,

det —3x (2. 7)

When expressed in terms of fields which belong to non-linear realizations

X M clearly must take the form of a Lorentz scalar with w = -1 . Such

a Lagrangian can be generated from any Lorentz invariant one by intro-

ducing L {or g ) and its derivative in accordance with two simple rules:

i) adjust the total weight of each term in g£ to -1 by adjoining a factor

j det L I = I det g | ' which transforms as a Lorentz scalar

with weight w ;

ii) replace the ordinary derivative 3>ip = *p wherever it occurs by the

covariant form

*; a " La V " I B/<[bc] ** * + w ^ Lvb, „ « <2' 8>

be
where S denotes the Lorentz spin matrix appropriate to \0 and
B r , i ' the non-linear riemannian connection, denotes the com-/"[ab]
bination
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BMabl * X \ \ b - Lb \ hJ - X 3v L«b " Ll % L«a> "

~ i V ( 8 X L v " 9v L°X> L a Lb • '2-9>

jua
The matrix reciprocal to L is here denoted by L . This notation is

consistent with the convention that greek indices are to be raised with g

and lowered with g while latin indices are raised and lowered with the

minkowskian tensor n = rj „ Thus we have
ab

LM a

L

L

L
Va

g

= 6W

V

(2.10)

ba ,
7 ' e t c <

The connection B r / i is re la ted to the r iemannian connection

by the formula

B r . , = T X LV L i u - LV L . * . (2. 12)
ii L abj A*v a Ab a vb, ju

To the Lagrangian generated by means of the ru l e s i) and ii) it i s of

course n e c e s s a r y to add a purely gravitat ional t e rm , viz. ,

• —T {- det g ) R = —r (-det L ) R (2

where R denotes the scalar curvature which can be expressed in terms of

either the metric tensor g or the vierbein components L

- 7 -



It is well known that the ten equations of motion which are obtained

by varying g or the (symmetric) L are not all independent. They

satisfy four identities as a consequence of general covariance. In other

words, only six of the ten components of g can be determined by these

equations. In order to pick out a unique solution it is necessary to supple-

ment the equations of motion with a set of four "co-ordinate conditions"

(which are analogues of the gauge condition of electrodynamics). For

example, one could impose the Fock-de Donder conditions

^ g"Vj = 0 (2.14)

on the metric tensor or,, alternatively,

^ Ma\ = 0 (2.15)

on the vierbein components. These classical co-ordinate conditions have a

counterpart in the quantized theory which we shall now discuss.

In setting up the quantized theory one can allow for the fact that the

vacuum expectation value of the metric tensor coincides with the flat space

form by writing

g * V = r j ^ + K hMU (2.16)

and treating h as the graviton field. This represents only one of various
MX)

equivalent schemes. One could take instead of g any second-rank object

made out of the metric tensor, its square root L , or its inverse, g ,

multiplied into some power of Jdet g 1 , These different choices for the

basic graviton field would yield different expressions for the Green's functions

but presumably identical results for the on-mass-shell S-matrix elements.

On the other hand, the perturbation developments of S-matrix elements may

converge more rapidly for some choices than for others.

- 8 -



To construct the perturbation series one must separate from L
grav

the terms which are quadratic in h , These constitute the free Lagrangian

LQ . Corresponding to the parametrization (2.16) one finds for L_ the

expression
_1
" 4

(2. 17)

where contractions relative to the Minkowski metric are tacitly implied,
nu, 00 11 22 33

e, g. h ^ h - h - h - h . The remainder, L - L. , is to
grav U

be treated as an interaction Lagrangian.

The free Lagrangian (2. 17) is degenerate (in the sense that it yields

an underdetermined set of field equations) owing to the general covariance

of the system. In order to define a bare graviton propagator it is necessary

to take account of this general covariance by imposing a set of co-ordinate
conditions. One way to achieve this is by means of a Lagrange multiplier

gravmethod due to Fradkin , To L one adds the non-covariant term

B * V * 5v V (-a

where B denotes the non-local expression

(-detO7+Kh))*

(2. 18)

with a local field B (x) to be varied independently of h . The kernel

£$ is determined by requiring that the equation

d2B^(x) = 0 (2.19)

- 9 -



emerge as one of the equations of motion. Since this artificial field B

is free, one can pick out the space of physical states by means of the condition

= 0 (2. 20)

and be assured that the S-matrix is unitary in this space.

Having determined £6 one can proceed to decouple the artificial field

B(x) by means of a field transformation

(2. 21)

Since this transformation is a non-local one, it yields a jacobian factor with

a non-local structure which must be taken account of in computing S- matrix

elements. Thus

det (2. 22)

which can be evaluated by perturbation methods. The perturbation develop-

ment of this functional can be represented graphically by a set of diagrams

in which external graviton lines are coupled to closed disjoint loops of a

massless vector particle. We shall not go into the rather complicated
7)

details here since in fact we shall have no occasion to include the fictitious

particle loops in the processes to be considered in Sec. IV. This discussion

was intended only to make plausible the effective gravitational action

/ •
(2. 23)

from which one can separate the bilinear terms which define a non-degenerate

free graviton Lagrangian,

(2. 24)

-10-



The bare graviton propagator which corresponds to this Lagrangian is

simply

< T(h^(x) hvV)) > . \ (nX* n»p
 + n** nm - nXu nvp) D W (2. 25)

2 2-1
where D denotes the zero-mass causal propagator (-4.it x )

Similar argurnents can be applied when the graviton is interpolated by

the vierbein field L rather than g , One must substitute

L W a =.^ a
 + f^ a (2.26)

and collect the terms bilinear in h in order to define the bare graviton

propagator. Clearly these bilinear terms are the same as those obtained

above so that (2. 25) remains the bare graviton propagator. The interaction

Lagrangian,which involves terms of the third and higher orders, will be

different.

III. THE GRAVITON SUPERPROPAGATOR

The Lagrangian of gravity-modified electrodynamics is given by

I - I + I +t (3. 1)
grav matter

where the purely gravitational part X i s the usual Einstein one,

^grav = ~ r : ~ 7 R(L)

6
 K det L

A<a vb
= - T — ( B ^ c B ^ b - B ^ ^ Bucb) + four-divergence

K detL {32)

where R , the scalar curvature, has been expressed as a function of the

vierbein components. The vierbein connection B , is given by (2. 9) as

-11-



a function of L and its first derivatives. The matter part of (3. 1) is given

by

'matter det L»
0-

i ;M j r

j r* tx

- m

U

1 Ma
4 L L

xb
L L

(3.3)

where

(3.4)

The general covariance of (3. 3) and (3. 4) is assured if both the electron and

photon fields are assigned the weight w = 0 (see Eq. (2. 6)). In the above

expressions we are using the notational convention that repeated latin

indices are summed in the minkowskian sense: A B = r ? A B , = A B ,
a a a b a

etc.

In order to complete the system of equations it is necessaryj as out-

lined in Sec. IL to add to (3. 1) a term which breaks the electromagnetic and

gravitational gauge symmetries. Such a term is given by

gauge 2 detL
(3.5)

This choice of symmetry-breaking term leads to the following expressions

for the bare propagators of the photon and graviton, respectively:

(x) AV0))|0> = -V D(x)

\ D(x)

(3.6)

- 1 2 -



2 2 -1
where D(x) denotes the z e r o - m a s s causal propagator [-4JT (X - 10)]

/JaThe graviton field $ is defined in terms of the vierbein components by

i ^ - n ^ + f ^ .' (3.7)

With these definitions it is possible to proceed in the usual way to

separate from £_ + £ the interaction part and to construct a perturb-

ation series. For our purposes,only one part of the interaction need be

considered, viz.,

wa _
/ = e — — \by ib A {3. 8)
^ e m 0 d e t L v r a v n K '

2
which will be used in Sec.TV" to obtain a contribution of order e to the

electron and photon propagators. There will of course be other contri-

butions of this order due to gravitational couplings of the electron and

photon fields. These, which are presumably of higher order in the gravi-

tational constant K , we shall disregard. From (3. 8) one obtains for the

electron self-energy part,

r l ( x ) = eQ
2 S^a 'Vb(x) ya S(x) 7 fa D^'x) (3. 9)

and, for the photon self-energy part,

\ TT (̂x) = - e 0
2 ^ ) V b ( x ) Tr |y a S(x) r b S( -x )} , (3.10)

where S(x) and D (x) denote the electron and photon bare propagators,

respectively. The graviton superpropagator, 06 (x) , which appears

in these expressions is defined by

^ - / n i T ( L— (x ) L ( ° ) \ \n\ n i n
) - < 0 ] T ( ^ d e t L ( x ) d e t L ( 0 ) ^ | | 0 > (3 .11)

A*a Aa
where L (x) i s given in t e r m s of the ba re graviton field, $ (x) , by

A*a
(3. 7). The propagator of # is given by (3. 6), The construct ion of the
superpropagator from the ba re one is a complicated a lgebraic operat ion the

- 1 3 -



main steps of which are sketched in the remainder of this section.

It is convenient to refer the graviton field to a euclidean basis where

ithe minkowskian tensor J7 is replaced by the Kronecker symbol

At the end of the calculation one can transform back to the minkowskian

basis.

The basic step'in the simplification of (3. 11) is to introduce for

(det h) the integral representation,

= Ji f d 4 m d 4 n (3.12)

where m and n are integrated over euclidean fourrspace. This re-
ar a r

presentation is useful because the chronological pairing of exponentials takes

a simple form, viz. ,

< 0 | T

= exp[-a -b exp[a Qact aa c ap +
2

' yd 4

= e x p [ - a - b ] exp[(a ftb „ - } a b Q ) —— ] ,
aoc aa K ap ap aa pj3 4

which can be verified by expanding the exponentials in powers of

*ca n 0 (x) and Kb ,. (f> (0) , respectively, and applying (3. 6).

iation of (3. 13) with respect to aj-i and b u u yields the formula

(3.13)

0> -

2
* K- D ,j —;— +/ 4

( o - I 6

X <0| T 0 >

v In this section we are following the technique of R- Delbourgo and A. Hunt outlined in "A superpropagator for
gravitons", Imperial College, London, preprint ICTP/69/18. We wish to thank Dr. Delbourgo for an illuminating
discussion of the method.
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from which one obtains - by substituting a o = m mo + n n and
° ap a p a p

b Q - m1 m' + n1 n' and then integrating over all sixteen components - an
ap a p a p

expression for the superpropagator. It is convenient to define a pair of

scalar amplitudes *3f) and |£) by writing

. (3.14)

The amplitudes 3) and <2> are now represented formally by sixteen-

dimensional integrals:

8 1 4 4 4 4 l + V + n^m^ + n'2) ^ +4

(m + n ) (m + n

(m-n')2+ (n-m')2 + (n-n' Fe

7T J
.m d.n d.m' d.n1

4 . 4 4 4

2 2, . ,2
+ n

1 f
± (

9 2 2 ?\ icT\

(m-m1) + (m-n1) + (n-m1) + (n-riyji-f

(3.15)

where

F = -(

(3.16)

n 2) + \ (m-m1)2 + (m-n1)2 + (n-m1)2 + (n-n')2 -

t , 2 2 W 12 12. 1 /c^D
- 4 r ( m + n ) ( m + n ) > —^-

(3.17)

As they stand,the Riemann integrals (3, 15) and (3. 16) are divergent.

-15-



This divergence reflects the fact that one is attempting to sum divergent

series (the terms of which can be recovered by expanding the integrands
2

of (3. 15) and (3. 16) in powers of K D and performing the resulting Gauss-

type integrations). In earlier references the method of Borel summation

was used to obtain amplitudes for which the divergent series correspond to

asymptotic representations. An equivalent method, which is more con-

venient in the present case, is to obtain these amplitudes by means of
9)analytic continuation in a set of auxiliary parameters a , |3 , y . To

this end consider the integral

3, y) =

exp

d n'

+ n + n

(nv n ')2+ (n- m')2+ (n-n1)2

(3. 18)

which converges for real and positive values of K D provided

Ref /3 -^ j <0 , and Recr > 0 (3.19)

The amplitudes oO and o& are expressed in terms of SSfos /3, y)

and its partial derivatives as follows:

2

T 1 + T" T~ + ~ —

(3. 20)

where the limit cc = (i=~y = l is to be taken in a sense to be specified below.

-16-



Many of the integrations in (3. 18) are straightforward. Thus, for

example, since the exponent in the integrand is a bilinear form in the eight

components (m1 ,n' ) , these integrations are gaussian, yielding

n ' " 2 ) ( y 2 2 K2D\ ~2

X 2 2
(m n -

-1

Here the integrand depends only on the two combinations

2 2 2 . m2n2 - (m-n)2

? = m + n and u = 4 ^ 22—
(m +n )

and the integral takes the form

. . f t * - , D1
-2

du u - 2J3) + J3 u
8

-1

(3.21)

It is useful to change the integration variables from f, u to cr, v defined by

2 , 2
v = 1 - u

<T =
8q + (7-g) g K

D

where

0

(3. 22)
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The parameter cr , which ultimately takes the value zero, must in the course

of the integrations be kept in the half-plane

Re o-o > 1

The integral (3, 21} now takes the form

p \ -4

)

axpf-

2
cr - v^

(3. 23)

Of particular interest for the computations of Sec. IV is the Mellin transform

of ^(a, &v) defined by the integral representation

(3.24)

where the contour C lies parallel to the imaginary axis with -1 < Rez < 0

The amplitude. 3b is given by

10 r
d(/c2D)(K2D)"Z"5

exp
D 0 •_

4T(-z)

z+4 z+3

. - v do- o o o
(1+tr) (or - v )

(3. 25)

- 1 8 -



To evaluate the c integral one can first replace it by a contour integral

^. , ,z+3 , , z+3

dcr
(l+<r)2(a2-v2) 2i sinirz

dcr 2 2 2
(l+o) (cr -v )

where the contour C is shown in Fig, 1, Since the integrand falls off for

large lo"\ like |<rl it is possible to distort the contour so that it

encircles only the singularities at -1 and ±v , i, e. into the form C

shown in Fig. 1 - provided Re z < 0 . One finds

z+3

/

z+3

z+3

(i+a)2(cr2-v2)

z+3

d+v) (1-v)

z+2
(z+3)(aQ+l)

which can be substituted into (3. 25) to give

where

I(z,ff0) = - J d v (1-v2)^

z+3

(1+v) (1-v)'

- 2(z+3)(cro+X) z+2 v

1-v

(3. 26)

,-. 2 \ 2
(1-v )

(3. 27)

which can be evaluated with the help of a table of integrals. However, for

our purposes it will be sufficient to evaluate only the expression

-19-



dv (1-v )
z+3

(1+v
C O S T f z

3 3
= C0S7TZ B ( - , Z+4) F ( - , Z+4;

2* en

11

z+3
v

(1-v)2

J -1)

4v 2v(z+3)

( 1 - v ) 1-v

( - | , z + 4 ; z + | ; -1)

4B(-|J2) P ( | , 2 ; | ; -1)

2(z+3) B(-|, ( | , 2 ; | ; -1)
{3. 28)

This expression corresponds to a particular limiting procedure. Thus,

holding a and /3 fixed at positive real values, the limit o\—>±iO can be

interpreted as T-> /3 ± iO . Considered as a function of the complex variable

7 , the amplitude 3) has a branch point at 7 = 2/3 with the attached cut

running to the left. We are taking the average of the values on the upper

and lower sides of this cut in order to have a real amplitude. It may be

remarked that the difference of the upper and lower limits will vanish at

integer values of z and so must correspond to an entire function in moment-
10)urn space

In order to construct the Mellin amplitudes corresponding to y '

and > it is necessary to differentiate (3. 26) with respect to the para-

meter a, j3 and Y which are then set equal to unity. Using the identity

= (z+3) I(z-l,ff0) (3. 29)

which can be deduced from the integral representation (3, 27), one finds

- 2 0 -



= -2{z+4)

2 = z g(z-l)

~ g = z(z+3)

where
\Z+2
) r(z+l)r(z+4)

Finally one arrives at the formula,

vb

(3. 30)

<v(0) ~(1)
where the amplitudes 2i (z) and ^ ' (z) are given,respectively, by

36 z(19z+53)

(3. 31)

| z(z+8) g(z-l) +~ z(z-l)(z+2)2

with $^(z) given by
\ z+2 r

l \ " - • " r(z+4) J cos^z ( | , z+4) F { | , z+4; z + ~ ; -1)

(- | , z+4) P(- \ , z+4; z + | ; -1) - 4B(- \ , 2) F ( | - 2; | ; -1)

+ 2{z+3) B ( | , 2) F ( | , 2 ; | ; -1) | .

(3. 32)

Of particular importance for Sec, IV is the behaviour near z = 0 where

-21 -



= 1 + 7. 5 z + 0(z2) i

2
= - 0. 5 z + O{z )

IV. SECOND ORDER COMPUTATIONS OF SELF-CHARGE AND

SELF-MASS

We now apply the method outlined above to the computation of electro-

magnetic corrections to the electron and photon masses in the presence of
2

a gravitational field. The graphs to be considered are of order e and

are shown in Figs. 2(a) and 2(b). In these figures the electron propagator

is represented by the solid line, the photon propagator by the wavy line and

the multigraviton propagator by the dotted line. Corresponding to Fig. 1 (a)

the configuration space amplitude for electron self-energy is given by

(using the approximation of Eq. (3. 24)):

1
S(x) \

z) [5 ( 0 ) ( z ) + 2^ ( 1 )(z)j yM S(x) 7u(K

(4.1)

"(0) --(1)

where 55 '(z) and Ŝ  (z) are given by Eq. (3. 31). Graphically, the

pole F(-z) at z = 0 corresponds to the no-graviton exchange contributionj

the pole at z = 1 gives the one-graviton exchange contribution,, and so on.

Since, as will be seen in the following, the dominant contribution to

L comes from the neighbourhood of z = 0 , the important quantities are
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djftf0)(0) „ , m A 118 In 2+31 d g ( 1 ) 52J?n2-40 I (4. 2)
dz = - 2 ^ ( 1 ) + — ^ . — ^ - = 9 )

7. 5 ~ - 0 . 5

where ^(a) denotes the logarithmic derivative of the F function.

Corresponding to Pig. l{b), the configuration space amplitude for

photon self-energy is given by

C-"i«> (4. 3)
where c < 0 .

The momentum space amplitudes £(p) and sr (k) which correspond

to (4. 1) and (4. 3) a r e given, according to the method of Ref, 3 , by the

respective contour integrals

= ̂  J dz r(-z) ^ ( 0 ) ( z ) + 2 S6(1)(z)) ^{P. z) H. 4)

2 ^

where E(p, z) and T (k, z) are defined for sufficiently negative real

values of z by the convergent integrals

j L(p, z) = J dx e l p X e 2
 7jU S(x) Ty D^x) («2D(x))Z (4. 6)

- ^ ( f c , z) « J dx e X e T r ^ S(x) yv S(-x)J (K D(X)) . (4. 7)
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The contour in (4, 4) stands to the left of z = 0 where, as will be seen

below, L(p, z) has a simple pole. The contour in (4. 5) stands to the left

of z = -1 where fTLv '̂ z) n a S a s i m P l e pole.

Into the integrands of (4, 6) and (4, 7) one can substitute for the pro-

pagators as follows:

m K

1
/ m / x ' = gA*v 2 2

\ 4ff x /
(4.8)

and express L and If as integrals over the Feynman parameters a, ft
fA V

and 7 . Alternatively,, one could perform the integrals directly in con-

figuration space. The results are as follows. Writing

2 2
, Z) =^A(p ,z) + mB(p , z)

(4.9)

' z> = <k2 v - % V c<k2- z > + V D(k2' z>

one finds (the details are given in the Appendix)

x 2z
Mv2,z) = -^{~) r(2-z)

2 z ™ (4.10)

B(P",Z) = £ ( ^ ) r(i-z)r(-z)
^ / m
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^2 . _i y ^ ^ y i [r(2-z)]
2r(4-2

C(k,z)= - a . ^ — j "is' 4 - Z j 2 - z J - z ; 4 J - - z ;

4m2

(4.11)

where a = e /4JT denotes the fine structure constant. These results must

be substituted into (4. 4) and (4. 5) to give the electron and photon self-energies.

Since £{p, z) and TF (k, z) contain the factor (Km) one can obtain series

developments in powers of (KDH) by shifting the contour to the right.

The leading singularity in the integrand of (4,4) is a dipole at z = 0

which occurs in both of the scalar amplitudes A and B . The next

singularity occurs at z = 1 : a dipole in A and a tripole in B , The re-

maining singularities at z = 1, 3,. . . are all tripoles. The contribution of

the leading dipole takes the for.m

(4. 12)

which clearly reproduces exactly the amplitudes of ordinary zero-gravity
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electrodynamics except that here there remains a dependence on K in the

form of an effective inbuilt cutoff:

Acutoff * 'K- 2 * 1 Q 1 8 G e V • <4 '1 3

In particular , for the mass correction, £(p)[ , , one obtains

m

Similar remarks apply to the photon self-energy , That is, a

dipole at z = 0 in the transverse part C yields the usual electrodynamic

result subject to the effective cutoff (4. 13),

r \2z+2

r(2-z)2r(4-z) _ / . , 5 k2

S qF« 4 - Z J 2 - Z , - z ; 4 , - - z ;
| 3 ^V ^

-2

2 2
where A = -k /4m

(4.15)

2

Unfortunately, the longitudinal part D(k ) , which should vanish in a gauge-

invariant theory, also has a contribution from simple poles at z = -1 and

z = 0

f =?f . l . - l ; ,.
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12)
which reflects a gauge non-invar iance of our procedure , This will be

discussed in the next section.

The charge renormalization may be computed from the transverse part
2

C(k ) of the photon self-energy as

2
GR „ , 2a p

~2 =Z3=1~~^ ^eo

The contributions of the tripoles at z = 1, 2, . . . to the electron self-
2 2ti

energy will give terms like (In K) K. , n ^ 1 and can of course be neglected.

The important point about the results above is that the ultraviolet singularities

of the conventional theory have disappeared via the mechanism of the intrinsic

cutoff 1/K . They still leave their mark,however, as singularities of self-

energies in the Kjplane, i .e . , they reappear if the limit K -> 0 is taken.

V. GAUGE INVARIANCE AND EQUIVALENCE THEOREMS

The Lagrangian of gravity-modified electrodynamics given in Sec, III

is formally gauge independent. It must follow from this that the scattering

amplitudes also are gauge independent provided the computational procedure

employs a gauge-invariant regularization. Indeed, if these amplitudes

could be expanded in powers of e and K then they would be gauge independ-

ent in each order. However, it is one of the main arguments of this paper

that, owing to the appearance of logarithmic singularities at K = 0 , an

expansion in powers of /c cannot be made. The question therefore arises

as to whether it is necessary to include jill graphs of order e - and these

on general grounds must show gauge independence - or whether this collection

can be subdivided into sets - possibly of order e (K ) (IUK) - which are

themselves gauge-independent. We are at present unable to decide this

point and so must confine ourselves to some speculative remarks.
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Firstly, the prescription outlined in Sec. HI for evaluating graphs with

one superpropagator is not a gauge-independent one. This much can be

seen from the fact that the vacuum polarization tensor, 7] (e ) » obtained

in Sec. IV is not entirely transverse. Although the transverse part of

~[T o is satisfactory and defines a finite Z , the existence of a finite

longitudinal component gives a clear indication of the breakdown of gauge

symmetry.

If we follow the standard procedure of selecting a gauge-independent

set of graphs in electrodynamics, the method is well known and was form-

ulated by Feynman and Ward. " It consists of attaching photon lines in all

possible ways to the basic graph of Fig. 3. This then leads to the set of

four topologically distinct graphs of Fig. 4. Now, since some of the vertices

in these graphs (e, g. , vertices 1 and 3 and 2 and 3 in Fig. 4(b))are not con-

nected by superpropagators, we cannot apply the non-polynomial methods

of this paper for computing these contributions. We are in a dilemma now.

If we do connect these vertices by graviton superpropagators we can carry

through the computation, but the Feynman-Ward procedure for securing

gauge-in variance wouldnow demand that we include more complicated con-

figurations with three or more superpropagators. For example, graphs

depicted in Fig. 5 would have to be added to Fig. 4(b). The resulting graphs

will themselves now need new superpropagators, and so on. This leap-

frogging of the Feynman-Ward procedure for securing gauge invariance,

and of joining vertices with superpropagators has only one limit - we must
2

eventually reproduce the entire series S(e ) . This complete series, as

stated before, is definitely expected to be gauge-invariant. The technical

problem - which we have not yet been able to solve - is how to avoid this

leap-frogging and to secure gauge-invariance without having to sum the

ix
2

2 2
entire S-matrix series S(e ) correct to second order in e but to all
"orders" in K
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Another problem which we have not resolved in this paper is the

problem associated with different formulations of gravity theory. We have

taken, in this paper, g^* as the basic field in terms of which tensors like

g are to be expressed. One could equally well start with the tensor

g as the basic interpolating field and then g/*v would be expressed as a

ratio of two polynomials in g , . If equivalence theorems hold for the

type of theory we have been discussing - and these equivalence theorems

state that on-mass-shell matrix elements are identical irrespective of which

interpolating field we start from, provided these fields possess the same

asymptotic states and also belong to the same locally-commutative equi-

valence class - then the results obtained in this paper should stand, irrespecth

of which field gF* or g'^ we choose as basic. The only difference between

working with one or the other system of co-ordinates g^v or g would be

the technical difference of ease in obtaining results more readily in one

formulation of the theory relative to the other. The same remark applies

to co-ordinate transformations considered by general relativists by means
_ j_

of which one can incorporate the factor (det g) "•• into definitions of matter
_L

fields, e.g. 0' = (det g) * 0 , and thus eliminate this factor from some of

the terms in the full gravitational-matter Lagrangian, The on-mass-shell

results we have obtained should be obtainable, if equivalence theorems hold,

by using any set of suitable co-ordinates, provided appropriate numbers of

terms are added together to secure the equivalence. It is of course also

conceivable that for non-polynomial Lagrangians of the rational (and so-

called Jaffe-non-localizable) variety, there are no equivalence theorems at

all. So far as this paper is concerned these problems are open.
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APPENDIX

In this Appendix the essential steps involved in the computation

of the electron and photon self-energies will be outlined. From Eqs.(5

and (4.12) wo have

(D(x»Z+1 (lp"a) A(x)

B(P2.!

f A eip-

J d S . * " 1 (D(x))Z + 1 A(x) (A. 2)

where the integrals are taken over the euolidean region in x-space and are

defined initially for p2< 0, The angular integrations may be performed

immediately using the polar variables

2 2
dx = 4 n r sin 6 dr dQ

p*x = - v~P r

We encounter the following integrals:

4ff / de sin 9 exp [-i y-p roose] = 4ir — — ^ / . -j \

4ir / dQ sin e cose exp[ -i V-p rcos©] = 4ir — • — ; — (h A\

0 "

and simplifying the derivative in A(p ,z) by writing

2
ax

we obtain the expressions
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to r *2 2 2
A(p ,z) = 16 ir e

d i

T / T T \
2 2 2 f * 3 1\ P V Z+l

B(p , z ) = 16ir e / d r t — - - — • (D) A(r)
/ / 0 ^ (A.7)

into which must be substituted the forms

4ir r

m
6r2 4,r2

 2r2

The r e s u l t i n g i n t e g r a l s converge fo r Re z < 0 and us ing t h e s tandard

relations '

r

) = — \ 4"Z"1 rt2-z) T(-z) F(2-z, -z; 3;J du u"2^1 K2(u) J2 (u
0

we arrive at Eqs,(4,10).

To evaluate the contribution of the double pole at z = 0 in Eq,(4.

i t is neoessary to evaluate the derivatives of these hypergeometric

functions at z • 0, This may be done by considering the power series

development

2
l+(l-z)-z (2-z) (1-z) (l-z)-z x lit

F{l-z, -Z( 2;x) = . ^ x + :— ••* T T + . . . , x <• 1

from which
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dF(l-z, -z, 2; x) fl-x 2-1-x2 \

L 2 2t 3 2- J

OO

(A. 8)

This la t ter sum may readily he shown to be - J 1 + (~^J log(l-x)

and,substituting this result (with x = p /m ), plus a similar one for

F(l-z, - Z , 3J p /ID ) into the Sommerfeld-Watson integral, we arrive at the

final expression for the electron self-mass given in Eq,(4»12"),

The computation of the photon self-energy is somewhat lengthier.

The electron calculation was performed directly in configuration space.

By way of contrast and also to i l lustrate the different technique involved,

we shall compute the photon self-energy in momentum space using the usual

Feynman (X-variables. In fact, as a consistency check we have oomputed

the two self-energies both in configuration space and in momentum space.

The &-parameter form of Eq,(4.7 )»written in terms of the

functions C(k ,z) and D(k ,z),defined in Eq,(4.9) is

v D ( k 2 > z )

r^j
3-z

"3

3 r(2-z)

exp
f,.2 T 2

a 3

i r 2
+ a

2
a 3 + a i a 3

2
m -

D(k2
> z ) =

«„

- k
2 O t i a 2 a 3 2 1 f

, + m . exp -i k

)~ 2 zwhere A(z) - (4TT) r(2-z)/r(z) . These

-32-
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2
iterated integrals axe defined i n i t i a l l y for k• <• 0 and a certain range

of z-values. The final ans-wer may "be analytically continued to other values.

We shall compute D(k ,z) f i r s t and s tar t "by defining new
2 1 2 1 2 1

integration variables x m rr- , y = rr-f z = -TT- and then converting to

polar co-ordinates, x *» r cos B ; y » r sin # coscf , z a r sin# sin(j .

This leads to

D(k2,z) = e A^Z)ff T dtp I d0 if dr-r22"1 sinvcos^ sin3©,z) = e A^Z ) f f T dtp I d0 if dr-
2 IY2-Z) _w V y2 r ^ z > o- o

2 4fl 2 . 2 , 2 . 4 2 2 2 1 f k
r t i n 6 cos <j> sin v - k sin 0 cos tp a n V + m • exp -( — - -

2
m

2 2 2 2
sin 6 cos ^ sin (̂

The r-integration is performed "by defining u = l/r and then consulting

a standard text ' on Laplace transforms. The result is

[ ( a 8
4 T(2-z) jJ « ^-sin ©sin <p cos

4 2 2 , 2 2 2
sin e sin f cos ¥ zk - m (z + 1 - sin

2
where k •< 0 and Rez < 1.

2
The 0 integration may "be carried out, using sin Q as the

variable , from the relat ion '

leading to
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D(k2
lZ) s

 e

32 T(2

-1) T(Z) 2z f1

- * (4m ) / dt (1-
(2-z) J

•2 fzr(4-z)
\ 4F(4)

m 2 r(3-z) -z

where t = sin 2tp and 0 < Re z < 1*

Using the standard integral

ll T 2 - b;ax) =

we obtain an expression for D(k , z ) in terms of ^F funct ions . This may
expression J e-

he usefully converted into oneAin terms of Meyer C-functions giving

128

-k

4m £

-1 . 1, -3

-z , -3/2, -3-z

+ G13
33

+ G
33

( liL - 1 • !- "3 ^ +

\ 4m2 _!_Z| _ 3 / 2 i - 3 _ z /

(-, "'• °' " ) }
\ 4m'i -1-2, -3/2, -2-z / J

These G-functions may he comhined together to give

-3-z G
,13
r33

-k

4m

- 2 , - 1 , 1

- z - 1 , - z - 3 , -3 /2

It was for this reason that the Meyer functions were introduced. The

final answer, expressed in terms of the more tr,actahle ,F? function, is
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The same manipulations for C(k , z) yield.

2 2 z+1 2
, ~ , i 2 \ e (m ) r( i /2) r a - z ) r(2-z) r(4-z) r(z) r / n A , . „ k

1 ' ; "•" — B-1) T(4) T(5 /2- z) z 3 2

which simplifies slightly to give Eqs.(4.1l). The contribution of the

double pole at z s 0 is obtained from the power series expansion of the

J?2 functions as in the electron self-onergy calculation.
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Fig. 1 .{f-plane contours for the graviton superpropagator.

Fig. 2 (a) Electron self-energy, £ .

(b) Photon self-energy,

Fig . 3 Electron loop including g rav i tons ,
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Fig. 4 The gauge-invariant set of graphs to order e .

Fig. 5 Superpropagator modifications of Fig. 4.
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