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ABSTRACT

A lagrangian theory is formulated describing the intrinsic mixing of

the graviton with a massive 2 f meson which interacts universally with

hadrons through the stress tensor. The theory is developed as an analogue

of the well-known p-y jnodel of hadron electrodynamics and in particular

a field current identity is exhibited which equates the massive 2 meson

with the hadronic energy-momentum tensor. An Einstein-type Lagrangian

is used for both spin-two particles, and general covariance is preserved

throughout.

The non-linear coupling of the hadrons to the f meson leads, within

the framework of non-polynomial field theories, to a universal cut-off for

strong interaction physics.
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I. INTRODUCTION

Nature appears prodigal in respect of two of the fundamental forces,

electromagnetic and gravitational, in the following sense. The photon - a

neutral 1 massless particle - supposedly the mediator of the electro-

magnetic force, appears to share this property with other 1 particles.

In hadronic physics there are the P,u),<fi particles and in leptonic physics

there are 1 states of positronium.

The mixing of y with the p-D-0 complex (hereafter generically

called the p ) has been formulated in an elegant manner (the so-called

formalism of the field current identity) which attempts to stress that hadronic

electrodynamics can, to a good approximation, be separated from lepton

electrodynamics. Indeed the physical content of this theory is that the

photon interacts directly with leptons but only indirectly with hadrons via a

simple p - y mixing. A natural consequence of the formalism is the

identification, in the field-theoretic sense, of the p meson with the hadronic

electromagnetic current. The model has a number of successes to its credit,

in particular the correlation of photon and p-u-<j> total and differential

cross-sections. Among the failures the most prominent is the inability to

take into account consistently the individual polarization states of the photon

and p. mesork presumably due to the difficulty of covariantly separating

the polarization states of a massless y and a massive p-u-^ .

It is an attractive hypothesis that the Einstein graviton (g) and some

mixture of the known, massive, strongly interacting, spin-two particles may

present, in the field-current identity sense, a complete analogy of this p

photon scheme. In such a theory the graviton would interact directly with

leptons but only indirectly with hadronic matter, and in the field-current

identity the role of the current will be played by the energy-momentum tensor.

2)
It is well known that the existence of a conserved stress tensor which

can act as a source of the spin-two particles necessitates the adoption of an

Einstein-type system of field equations. For this reason, coupled with its

natural elegance, we use*the usual Einstein graviton Lagrangian together with

an identical one for the f meson. The crucial step in the theory is the con-

struction of an f-g mixing term which provides one of the spin-two fields

with a mass whilst maintaining general covariance,
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The plan of the paper is as follows, In Sec. II the essentials

of the p-y mixing are summarized in a somewhat simplified form so as to

bring out those aspects which have an analogue in the f-g theory. In the

third . section we quickly review the usual Einstein generally covariant

theory of gravity, paying particular attention to the somewhat knotty problem

of the definition of energy-momentum tensors in general relativity. The

f-g mixing is then introduced and the existence of a massive state and an

associated field current identity is made manifest.

Finally, in the conclusion,we speculate on some of the consequences

of the theory, from both the general relativistic and the field-theoretic

points of view.

H. PHOTON AND p MESON MIXING

We shall discuss the essentials of the photon-p -meson mixing phe-

nomena so as to motivate the analogous graviton-f-meson mixing proposed

in the next section. By the p meson is meant the neutral component of the

p-oi-ji complex with the same quantum numbers as the photon A^ . The

SU(3) symmetry aspects of the p coupling are not essential to the points

we wish to stress.

The p -y mixing, with the associated field-current identity, may be

illustrated in its simplest form using the Lagrangian

(2.1]

where

I Q 0 0 had

with p^vs 3^ PjJ - 9, Pl4 and A^ = 3^ Ay - dy A^ . The coupling constants

associated with p and A have been omitted for the sake of clarity. They
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may easily be supplied at the end of the manipulations. The leptonic cur-

rent J includes contributions from electrons, muons and W mesons,

whilst the hadronic current J containsthe charged p mesons together
3)

with all other hadrons .

The physical content of Eqs. (2. 2)-(2, 4) is that a photon couples di-
4)

rectly to leptons but only indirectly to hadrons via the p-y vertex exhibited

in Eq. (2. 4).

From this Lagrangian we obtain the equations of motion:

dp = J h a d - m* (p ° - A ) (2. 5)

which,when added together,imply the conservation of the total current

w , h a d + j u e P ) - ° • (2-7)

One now defines a new hadronic current

- 8, PMV (2.8)

which is conserved if and only if J is individually conserved. This will
+ 5)

happen if the W~ mesons are decoupled from hadrons , so that no charge
passes directly from leptonic to hadronic matter; that is , all lepton-hadron

0
interactions are mediated by the neutral A or p

At this point it is conventional to define P ~A to be the physical P

field, p , leading to the equations:

? + A) (I) (2.9)

The first of these equations (I) is known as the field-current identity, whilst

the second (II) is the equation of motion of the photon field. It is important
2

to observe thatfin spite of the appearance of a "m " te rm on the right-hand

side of Eq. (2. 6), the theory does in fact contain a zero bare mass state.
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This is easily seen if we write the Lagrangian of Eq. (2. 1) in the form
n

, , 22(e

(2.11)

where the p meson hadronic coupling constant (g) and photon electromagnetic

coupling constant fe) have now been correctly inserted. The diagonalized fields

are

~0 1

(e +g )

in terms of which Eq. (2.11) becomes

\ »0 ~0 i *, ~ m
2 -'

h a d e . --(7, T \ T p

III. GRAVITON AND f MESON MIXING

In this section we shall discuss the mixing of the graviton (g) with the

f meson (by which is meant the appropriate combination of f , f , A_

and any other massive spin-two mesons). The underlying physical idea, in

strict analogy with Sec, II, is that gravity should couple directly to leptonic

matter but only indirectly to hadronic matter through an f-g mixing. We

shall start by summarizing the usual Einstein theory.

The Einstein action integral for pure gravity is

6 K J

e
- 5 -



_ 22 -1
where K is the weak gravitational constant (K = 2. 2 X 10 m ) (mg 6 l g e e
is electron mass) and d£2 indicates the volume element. The curvature

tensor R(g) is defined as

where the Ricci tensor R is a contraction of the curvature tensor

C •with

B? - i * - i * + i f rA - i f rA , (3.2)

a 7)
and R = R . We shall be assuming a riemannian geometry so the
connection T is simply the Christoffel symbol and may be expressed in

IMS

terms of the metric tensor g as

We wish to emphasise that from a field-theoretic point of view there is only
fJL> - 1

one independent field g . The other entity (g ) , which is normally

written as g , must be regarded as a derived quantity. Specifically we

have

'V f P ^ ( 3 - 3 >
where g means the determinant of the contravariant tensor g . To

emphasise this dependence we shall frequently write the covariant tensor

g as (g ) . It follows at once fromEq. (3. 3) that (g ) is indeed

the inverse matrix of g satisfying

6 •

v

This point has great relevance when the techniques for handling non-

polynomial Lagrangians are applied to our theory.

Concerning notation, a comma written after a tensor indicates an

ordinary derivative, while a semicolon implies that a covariant derivative is

to be taken.
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In the presence of matter fields, the action integral becomes

(XV

Under a variation of g (which vanishes on the integration boundary) the

symmetric energy-momentum tensor T of the matter lagrangian density

Jt is defined by

- 5 )

Setting the variation of the total action of Eq. (3. 4) equal to zero leads to the

fundamental field equations,
2

where the left-hand side arises from the variation of the curvature tensor.
9)The Einstein tensor G has an identically vanishing covariant divergence ,

/A r

which implies in particular that

T/Ti/ = ° ' (3' 8)

One of the classic (and still unsolved) problems of general relativity

is the construction of some geometric entity which can serve to describe the

energy-momentum content of the combined system of gravitational and matter

fields. Such objects are of great interest to us as they form the analogue of

the currents of Sec. II.

One possible construct is due to Einstein himself. First remove the

second derivative terms from the gravitational Lagrangian of (3. 1). For

example;one may use the action

- 7 -



in which the integrand differs from that of (3.1) by a four-divergence. Now

compute the canonical energy-momentum "tensor" from the gravitational

Lagrangian X in Eq. (3. 9) defined as usual by

Using the vanishing of the covariant divergence of the matter field tensor

TV (Eq. (3.8)) and defining

it may be shown that

e1' =o , (3.12)

This vanishing of the ordinary divergence is a first requirement of

any energy-momentum tensor and led Einstein to choose the definition of

(3. 11) for the total energy-momentum complex

One important property, first demonstrated by Freud , of the
if

pseudotensor 6 is that it may be written as a four-diverge nee. That is

where the so-called superpotential if/ is antisymmetric in the upper two

indices and is given explicitly as

-4 ,va 1 f -1 , v$ aX «J3 v\3 ̂  U (

If a complex with two upper indices is required one might define & = g 9V.
a

This objectjhoweve^does not possess the desirable property of symmetry

between its indices. A symmetric complex can be defined as

- 8 -



with

(3.15)

t -g \ -g((-g) 2 g

and

^' = (~g) 2 g fea i • (3.17)

This allows an angular momentum complex to be constructed.

There are very many other possible choices for an energy-momentum

complex, none of which is a true tensor under the general co-ordinate group,

and all differing from each other by a four-divergence. For a given set of

global boundary conditions on an integration region on the space-time mani-

fold, it may be possible to limit this arbitrariness. Good discussions of

this problem may be found in Refs. 6 and 12.

We now come to the main part of the paper, which concerns the intro-

duction of a "strong gravity", massive spin-two particle into the theory.

We shall hypothesise that the pure f meson part of the Lagrangian has

the same form as that of (3. 1). Thus we write

Sf = ̂ 2 /Vff*R(f) dfi (3.18)

*f J

where K is the coupling constant of the strongly interacting f meson and is

roughly equal to the inverse of its mass. All geometric quantities in (3.)$)

are to be regarded as having their usual definitions in terms of f as the

metric tensor. The essential prescription now is that the hadronic matter

Lagrangian is to be formed using f as a metric tensor whilst the leptonic

one must use g , Thus we have as the combined Lagrangian

g (3.19)

where

=-~ (-f)"1 R(f) +ci(hadrons, f) (3.20)

•f

~* ^ g ) . (3. 21)
K *

S
- 9 -



So far the theory simply says that the universe consists of two non-
14)

communicating worlds - the hadronic and the leptonic. The crucial

step is the introduction of a mixing term ctf which causes these two

worlds to interact. This term must be chosen so that one of the rank-two

tensor fields (or more precisely some combination of both of them) des-
15)

cribes a massive particle

The simplest mixing term that we can think of is given by a straight-

forward "covariantization" of the usual mass term for a spin-two field,

£ « \ M
mass 4

(3. 22)

aB Bet
whose form is determined by requiring that P = F describe a pure

1 R\1 R\
spin-two system , Now in order that the Lagrangians of Eqs. (3. 20) and

(3. 21) make sense, the fields f , g viewed as 4 X 4 matrices must
17)

be invertible . In particular, we require that they have non-vanishing

vacuum expectation values and then normalize them in such a way that we

can write

g
IAS

Kf F

+ K hi

g

(3. 23)

where 7) denotes the usual Minkowski metric,diag(l, - 1 , -1 , -1 ) , In order

to make the expression (3. 22) into a scalar density it will be sufficient to

make the replacement

and make contractions relative to (g ) „ for (f ) o )• In this way

finds the mixing term

2; (-detff* (f^ - g a V X " gKX)(g'al g ^ ~ ell 8'^
f

one

M

4K,

(-detf) ctB

(3. 24)
-10-



One can easily verify that to zeroth order in K and *c this expression

coincides with (3. 22). Different mixing terms with this property can be

obtained by using g and f . in different ways to make the contractions.

Also one could use (-detg) * in place of {-detf) . Another sort of

mixing term, one which employs cosmological terms, is discussed in the

Appendix.

Consider now the equations of motion. Variation of f and g

yields the respective equations

T (hadrons, f)
-M = o (3. 25)

2(-f);
= 0

(3. 26)

where T (hadrons, f) is associated with o£(hadron, f) in Eq. {3. 20) and
A* ^

does not include a contribution from oL. . Likewise for

The contributions of the mixing term are given explicitly by

„ -2 \ .

T (leptons, g)

M

2K

1
2

2

f

of +
fg

-1

(3. 27)

where

a

denotes the combination

g'1 tf-f

ctv
7 By

f> (3. 28)

P o ) in zeroth order in /c,, and K
pY 1 g

ctv
which r e d u c e s to >7 (P -17

/ju f

and therefore can be viewed as an interpolating field for the massive spin-

two particle.
- 1 1 -



The equations of motion (3. 25) and (3, 26) can be put into the suggestive

form
2

" 7T~ 3 V = 0

(3. 29)

where ^ and T denote the expressions defined by Eqs. (3, 13) and (3. 14).

In (3. 29) the expression

T
-f)2-(-f)

, f) 1
J

is the Einstein complex associated with the hadronic Lagrangian (3. 20).

On the other hand, the quantity -°y J^ is simply the contribution of the

mixing term to the total canonical energy-momentum complex. Therefore

let us define

e'V(hadrons, f) = - ^ {^(f) + T>adrons, f) } - 6* of (3. 31)

in terms of which (3. 29) reads

2
= ^^{hadrons, f) - 2^~ ^ , (3.32)

On comparing this formula with Eq. {2, 5) one sees a term-by-term correspond

ence. Thus 3 <p corresponds to 9 P , & corresponds to the

current, J , and 3̂  corresponds to the massive field % . Finally,

by analogy with (2. 8), one should define the hadronic tensor current

0V(hadrons,f) - 6 (hadrons, f) + 9 ijjVa (3.33)
f*+ f*l Ct f-*
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in which case Eq. (3. 32) takes the form of a field-current identity,

2
$1 = ©^ (hadrons, f) (3.34)

This formula, together with the gravitational equation of motion (3. 30),

demonstrates the similarities between the p -7 and f-g mixing theories .

One slight difference is the following. If, in the p-y model, the W~

mesons are decoupled from the hadrons, then the hadronic and leptonic

currents are individually conserved. A similar decoupling - of the W~~

and electromagnetic interactions - in the f-g model will not ensure
y

d © {hadrons, f) = 0 . This is because part of this stress tensor is contri-
v fJ,

buted by the mixing term itself which contains the weak graviton (g) ex-

plicitly. To secure such a conservation equation we would have to make

the non-generally covariant substitution K = 0 in the mixing term, there-
to

by decoupling the hadronic and leptonic worlds gravitationally as well.
We like to end this section with the remark that if half-spin integer

fields are present in the matter Lagrangian, then the well-known vierbein
19)formalism for the gravitational fields must be introduced. There are

no consequences of this, apart from a slightly increased algebraic complex-

ity, and we shall not give the details here.

IV. CONCLUSIONS

The present theory can be surveyed from at least three distinct

points of view; a) that of a particle physicist, b) that of a general relativist

or c) that of a cosmologist,

a) From a particle physicist's point of view this is basically a theory of

strong interactions which employs Einstein's famous equation for describing

the f meson's universal coupling to the hadronic stress tensor. The

field stress tensor identity could, at a date in the far future, provide a

means of correlating graviton f scattering data just as the well-known

field current identity does for photon p scattering. Immediately, however,

-13-



the major testable statement of the theory would be the universality of the

f meson's coupling and its stress tensor form. To check this, it is im-

portant to state explicitly if our f meson can be identified with any of the

known massive spin 2 objects. These are the f (1260 MeV decaying
01 — 0

predominantly into two pions), f (1514 MeV decaying into Kj<) and A2

(1300 MeV decaying predominantly into p-T).

To decide on this, remark that the strong stress tensor transforms

for SU(3) as a mixture of a singlet, an octet, and possibly a ̂ 7-fold, with

the singlet predominating. Identifying^ a first approximation,our f with
0 01

the singlet mixture of f and f (in an ideal mixing scheme), a prelim-

inary investigation based on decay rate data, and exchange degeneracy of
0 0'

f and f with u and $ , does not seem to lead to any inconsistency
with the hypothesis that f couplings may indeed be proportional to the strong

20)
stress-tensor . Thus on present evidence it could well be identified with

a mixture of the known 2 objects, though nothing rules out the more
21)

aesthetic possibility that the f of this paper is a new object lying on the
22)

Pomeranchuk trajectory which, in view of recent data assigning to this

trajectory a slope lying between , 3 < a < . 5 , would possess a mass

between 1400 MeV and 1700 MeV. The universal coupling of the Pomeron

to hadronic matter would then be mirrored in the universal coupling of its

spin-two recurrence to the strong stress tensor.

Notwithstanding the title of this paper, we must confess the immediate

incentive we had for using an Einstein-type equation for strong f gravity

was the search for a universal non-polynomiality in strong-interaction physics.

From recently developed techniques in field theory we know that for such

Lagrangians the conventional ultraviolet infinities are automatically suppressed,

the inbuilt ultraviolet cut-off being proportional to the inverse of the (uni-

versal) length in the theory. For Einstein's gravity theory - and for lepton
23)

physics - it was shown in a recent paper that this inbuilt cut-off comes
-1 19

at around (K ) £ 10 BeV. For the strong gravity in its present form-
8 -1

ulation this would come at around (K ) ~ a few BeV. Most theoretical

work in strong interaction physics heuristically employs such a

cut-off; the present theory would provide a more rigorous formulation of
this.

-14-
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b) Consider now the implications of the theory for general relativity in

its metrical aspects. The theory works with two second-rank tensors.

The first question one may ask is : which of the two tensors approximates

to the "actual11 metric tensor on space-time? In regions far removed from

hadronic concentrations of matter, clearly the old tensor g predominates.

Inside hadrons, however the situation may perhaps better be described

using the f tensor. The geodesies associated with the f metric may

provide^semi-classical description of paths of "particles" inside hadronic

matter. Likewise one may be tempted to speculate with Wheeler on

whether "feons" - the analogues of "geons" - may not be the elementary stuff

of hadron physics.

c) The most exciting implications of the present theory may,however, be

cosmological. Could f-mediated gravity be repulsive for short distances

and what implications may this have for the problem of collapse? At the

very least, the gravitational law of force (for a particle of mass M) may
2/3

be expected to be modified exhibiting roughly an M dependence for non-

static high-frequency graviton interactions rather than a linear M dependence.

This would be in analogy with the results of the p-dominance.model of

hadron-electrodynamics where photonic high-frequency interactions with a
25)

large nucleus of charge Z are expected to show a surface dependence
(as a consequence of the conversion of the photon to the p meson, followed

by a short-range surface - rather than volume - absorption of the p meson)
2/3

giving effects proportional to Z ' rather than Z .
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APPENDIX

There is at present no criterion {other than that of simplicity) which

could serve to limit one's choice of the f-g mixing term. The one ex-

hibited in the text {Eq. (3, 24)) seems to be one of the simplest. However,

it may be worthwhile to consider others as well. One such is given by

«£f = X(-detg)~i:+ A'(-detf)"z+ V (-detf)"a (-detg)"^ (-det z(f+g))~r (A. 1)

where H,a,& and y are parameters which must be fixed in terms of the

"cosmological11 constants A and X1 . The following paragraphs are

concerned with developing the criteria whereby the parameters M,a,fi and

y are fixed.

Firstly, notice that general covariance by itself imposes only the

restriction

or + J3 + 7 = 1/2 . (A. 2)

Further conditions are obtained by expanding the Lagrangian

in powers of the quantized fields F and h which were defined by

(3. 23), In this expansion we require the terms linear in F and h

to vanish (absence of tadpoles) and that the quadratic terms define a sensible

propagator (absence of ghosts).

The determinants in {A. 1) may be typically expanded according

to the formula

-a Tr (KF - J;KZF2+---)

a(TrF)2)

(A. 3)

We want to show that of provides a mass term for one of the two particles.

On expanding this up to quadratic terms the constant and linear pieces are

-16-



+ terms quadratic in h,F' + higher-order terms.

(A. 4)

The linear pieces should be eliminated leaving only the quadratic ones, thus

imposing the constraints

A

A1
y
!) = 0

(A. 5)

(A. 6)

which when added together imply, on using Eq. (A. 2)

A + A1 + u = o . (A. 7)

Notice that the constant term in Eq. (A. 4) is eliminated simultaneously with the

linear t e rms .

The computation of the second-order quadratic terms is straightforward

but tedious. The result on substituting the above constraints i s :

AA'
fg 8(A+A')

+ higher-order terms .

Tr(K.F - K h)'

(A. 8)

A similar expansion must be performed for the quadratic kinetic terms of

the f and g fields. These appear in the form

h - h
uv,a

h + 2h
vv,a

h - 2h
av,v /

, a va,H i (A.(A. 9)

with a similar expression for the F field.

Prom (A. 8) it is clear that the bilinear terms in JL are diagonalized by
the fields P and h defined by

, 2 . 2,z ~uu ^/M/ . JJV

(K + K ) F = K F - K h

. 2 , 2.k rw - c ^ ^ jw
{Kf + K ) h = K F + . K f h

(A. 10)

-17-



in terms of which the pure spin-two part of the mass term appears as

3

o^2) = --jM2Y F.. F-.
fg 4 ^ ij ij

with

(A. 12)

Obviously none of the quantities above is necessarily a generally covariant
27)

tensor. The associated diagonalized tensor fields are

(A. 13)

2 /
•f

(A. H)

which are related to F and h by

(A. 15)

The parameters or ,

(A. 5), (A. 6) and (A. 7).

f g i

( K f
2 +

(A. 16)

and fi can be eliminated by the conditions

The parameter y can be eliminated by requiring
To see this a tedious calculation is necessary,

that no spin-zero, ghost should appear. A One must set up the spin-zero part

of the propagator matrix - in the centre-of-mass frame - for the fields F

defined by (A. 10). According to (A. 8) and (A. 9) this propagator is defined

by the bilinear form

1 " • ~ii
F )

M
1 2

M21

4 2
3 P

F
4 4

(A. 17)

M 22

-18-



where

M11

2 2
M 12 = M 21

M22

2, XX-
(A. 18)

In order that no ghosts should appear - in fact no spin-zero states of any kind
2 2

the determinant of (A. 17) must be independent of p , i. e, ]VL = 0 .
Thus the parameter y must satisfy the condition

= o

and the mass of the spin-two meson (A. 12) is given by

2 1 XX' 2

(A. 19)

(A. 20)

Apparently this mixing model requires that both cosmological constants

shall be non-vanishing.

In summary, we find the rather surprising result that the parameters

a , /3 , y and A* which specify the mixing term are completely fixed in terms

of the two cosmological constants,

1 (2X+X')X'
a = 9 2

2 (X+X-)2

2 (A + A')2

y = -
XX'

(A. 21)

U = - (A+A')

A constraint on the relative values of the two cosmological constants is pro-

vided by (A. 20) which gives the heavy graviton mass.
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An interpolating field, $ , for the heavy graviton in this model can

be defined by similar arguments to those used in Sec. III. The analogue of

Eq. (3. 28) is

M

- 2 0 -
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The insertions of Eqs. (A. 10) show clearly that the true weak and strong

gravitational coupling constants are, respectively,

K. K.

S

Experimentally of course K < « K and inversion of the above equations
^ 2 2 z"

shows t « < < . Essentially then (< + K ) m a y be set equal to «
and Eq.(A. 14) becomes simply

These coupling constant renormalizatiohs have an exact analogue in the p-y

case where, as shown by Eqs. (2. 11) and (2. 13),

2
~ eg ~
e = „ „ x and g =2 V
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