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I. INTRODUCTION

One of the important recent advances in field theory is the recognition

that non-polynomial Lagrangians of the transcendental (e. g. g e *) or

rational (e. g, g(l + K#) ) variety offer the prospect of infinity-free and
2)

(if some additional c r i te r ia are used) unambiguous computation of all

matrix elements including the finite computation of the traditionally infinite

renormalization constants. It also appears possible to extend the methods

used to more frequently encountered mixed Lagrangians of the type:

K$)~ or

The most serious problem as far as this finite computation of renormal-
i
ization constants is concerned is the problem of ambiguities. Present-day

mathematics appears to offer no unique prescription in this respect and

additional physical or mathematical criteria appear to be needed to solve

this problem. The approach in this note will essentially be an experiment-

al one in the sense that we shall try to guess from experiment what the de-

pendence of the renormalization constants on physical coupling constants

should be and then formulate a mathematical procedure to resolve the ambi-

guities accordingly.. In arriving at the suggestions made in this paper there

is the important circumstance that the above Lagrangians possess a simple

analytic dependence on the variable <<f> where <j> is the field and K is the

so-called minor coupling constant of fiie theory with dimensions of inverse

mass (g is the traditional major coupling parameter). Although it is only

in a vague manner that the idea is taking shape at present, it appears that

one may be able to formulate, corresponding to a given Lagrangian, a
some of

"maximum analyticity principle" in the K. plane, with^the singularities at
K = 0 being associated with the conventional infinities of residual Lagrangians

like gMA = i t , ° , . This principle may then provide one specific

recipe for the definition of the renormalization constants.

In the Appendix to this note ; which reports on work done together with

R. DelbourgOj C. J. Isham and J. Strathdee, we shall review the present

status of the ambiguity problem. The Appendix also gives the

procedure for the computation of the renormalization constants. In the
• « . . .
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text of the note we shall attempt to draw some qualitative and pre l iminary

conclusions about the magnitudes of the finite renormal iza t ion constants

within the context of this procedure which the p resen t theory gives. The

conclusion&rest on the following observa t ions :

1) The m a t r i x e lements in non-polynomial theor ies exhibit a cha rac t e r -
3) 2 2 2 2

ist ic dependence on the powers of log(K p ) where p is (momentum) .
of Lagrangians like *i>\)>A

2) The traditional renormalization infinitiesAmanifest themselves as
singularities in the minor coupling constant K plane when instead of

start with

g^^A we A the Lagrangian (g(^A))/(l+K<p) . Thus the traditional
logarithmic infinities now make their appearance in the form (log(K m )) ,

2 4

the quadratic infinities in the form 1/K and quartic :infinities as 1/K

As K -> 0 one recovers the old infinities. For conventional non-renormal-

izable theories the K plane singularities are of the form 1/(K ) with n

arbitrarily large. The magnitude of renDrmalization constants in any

theory is therefore connected with the (inverse) magnitude of the minor

coupling parameter.

3) We appear to have the paradoxical situation of the weaker the minor

coupling parameter, the stronger its influence on the magnitudes of the

renormalization constants. This apparent paradox becomes comprehensible

if one remembers that K is proportional to an inverse mass so that small

values of K are associated with small radii of particles or large inbuilt

cut-off masses.

4) Among the accepted non-polynomial Lagrangians of physics are:

i) The strong chiral Lagrangians of Giirsey-Weinberg variety:
2

(1 + X 2
£

2 f

with the minor constant X^ m

ii) Weak Lagrangians with the Fermi constant:

Here as we shall see in Sec. Ill, G_, acts both as the minor and major

constant.
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iii) Einstein's gravitational Lagrangian with the newtonian constant:

G = 8TT a2

N g

-22 -1
K = 2, 2 X 10 m (m is electron mass).

M e e

Here also K acts as minor as well as major constant (see Sec. IV).
g

These constants then appear to define a hierarchy of inbuilt cut-offs, the

least important (for the magnitudes of the renormalization constants) being

the strong cut-off defined by X^ and the most potent the one defined by

K . . In the next section we wish to consider - in a purely qualitative

manner - the interplay of these constants and the possibility ihat (with some

further assumptions) there might emerge connecting relations among them.

As an example we shall advance plausibility arguments within the theory

for the order of magnitude relation:

connecting electrodynamics and gravity. (The present value of the left-

hand side is W100/137.)
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II. STRONG INTERACTIONS

As stated before, the SU(2) X SU(2) chiral theories with

£ =Tr 9S 9S+

IT

(2)

are intrinsically non-polynomial in form. Here S and S (in Weinberg's

formulation) are given by

Sin) = 1 + i X £ ' x

1 - iX T ' j
and . (3)

1 + i\ yc r- TT

With the non-polynomial methods developed , these Lagrangians

would give rise to finite matrix elements with an inbuilt cut-off at

X~ f̂  2m /g N s; m . Unhappily, in addition to pions (kaons and Ts)

there are other strongly interacting particles - notably the gauge 1 and

1 particles - and the question arises: what can be done to compute the re-

normalization constants surviving in these theories?

Now in Ref. 1 i't was shown that there does exist a part-non-polynomial

formulation of gauge theories of massive spin-one particles which renders

some - though not all - renormalization constants finite. This is the formu-
4)

lation due to Boulware and we shall describe it here to point out precisely

what one may achieve and what problems are still left if one limits one-

self to strong gauge theories alone.

Consider a triplet of Yang-Mills fields described by

YM ^/i\> W^v + m W^ (4j

where

W = (9 W - 3 W + 2i f W x W ) . (5)

- 5 -
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The propagator for the W fields (W^ W^)+ - fg + ~^~\ A(V) i
d D

s~W>0 is
mJ

highly singular and the theory as it stands is non-renormalizable.

Following Boulware, let us now make a non-linear Stiickelberg-like

transformation on the field variables W . Write W = W * T and

introduce two sets of fields A and B , defined by the relation

Here S(B) is a unitary matrix which could be taken in the Weinberg form6)

as \ + 1 fj,m\ p . Write tyri = ~ S9 s"1 . The net effect of (6) is to
l - i tt/m) a Qf* 1 M

transform OLVM" to a part-polynomial (<ZVM(A)) and a part-non-polynomial

form:

. (7)

Now comes the important point. Boulware has shown that the two

Stiickelberg fields A and B in terms of which W has been re-expressed

can be assigned normal propagators (A , A ) = g A and (B(x), B(0)) = A(x)

provided the conventional rules for writing the S-matrix corresponding to the

Lagrangian (7) are supplemented by adding to (7) a term of the ^ 4^ E. ^ dtt

Here the triplet of F-particles represents "fictitious" bosons of Fermi

statistics first introduced into the theory by Feynman who showed that the

introduction of these bosons is needed to preserve unitarity of the S-matrix.

Consider now the final effective Lagrangian for the Yang-Mills field.

It can be written in two parts,, <iYM = ̂ 1 ^ +

(9)
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A is polynomial irf form, <=̂ YM *S non"P°^ynom^a^ with an inbuilt

cut-off at about m/f . The contributions to the traditional Z-factors, the

self-mass, the self-charge and the meson-meson scattering length, arising

from °^v,/r f are finite using the methods of the Appendix and proportional

to logf or m /f i etc. The contributions arising from the polynomial
j> (1)

part of the Lagrangian ^ Y M a r e s i ^ n o w e v e r ' ultraviolet infinite in the

traditional manner. To make them finite would need further

realistic non-polynomiality to be built into the theory. In the next section

we come back to a "realistic" provision of such non-polynomiality using,

for example, strong gravity theory. Without this, the traditional infinities
a (I) •

arising from O -̂V1VT would survive.

To summarize: Chiral Lagrangians possess inbuilt cut-off factors.

Parts of Yang-Mills Lagrangians also possess such factors but there are

other parts which are obstinately polynomial in form and give rise, if no

further modification of these Lagrangians is made, to the traditional ultra-

violet infinities. If an ad hoc procedure is adopted to regularize such in-
probably

finities, there is no known way - as,in contrast,there^is for non-polynomial

Lagrangians - to remove ambiguities.

III. WEAK INTERACTIONS

The discussion of the Yang-Mills field provides us with a model for

weak interactions mediated by intermediate bosons W^ . Since nothing

essential in the mathematics is altered even if we assume that the W mesons

form a gauge triplet W and W , we shall do so. (The physics is of course

altered because of this introduction of neutral currents, but at this stage

we are concerned with mathematical difficulties,) As is well known (see

Pig, 2),the Fermi constant and the constants f and m are related through

the formula

m

As before, make the Stiickelberg split of the W field in1;o normal fields

A and B , using the transformation matrix S(B) , given by
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From the non-polynomial part of the Liagrangian (analogous to oL J^ of

(9)) one can compute finite contributions to the renormalization constants.

As explained before, these depend on G ? . As an example consider the
2 2

computation of 6m up to the second order in f , The non-polynomial
part of the Lagrangian ofy ' will give rise to the super-graph

Fig-1

with millions of B-lines going across. The order of magnitude contribution

of this graph can be shown to be

2 2 . (11)

2 2From the relation G , , ^ f /m we would thus obtain,if the present com-r
putational procedure for renormalization constants is correct, as an order

2 2
of magnitude relation 6m «• m , i. e. nearly all mass of the particle is
self-mass.

p M)
The contribution from the polynomial part 3-^Jl > represented by

A

is,however, still unregularized and - as in the case of strong Yang-Mills theory,

explained in Sec. II - will, in accordance withAideas of this note, need further

(realistic) damping if we desire to assign to this contribution a well-defined

number.

Let us neglect for the present this infinite contribution and examine the
2 2 2

relation (11). We know that the relation G ,̂ & f /m correctly represents

the approximate inter-relation of the three constants f , m and G_ ; we

normally obtain the relation by considering the exchange graph
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Fie. 2

That the same relation should emerge from the self-mass graph

A
Fie. 3

is a welcome confirmation of the thesis of this note - which states

that in a non-polynomial theory the inbuilt cut-off is determined

by the minor coupling constant (in this case G 2) and the renormalization

constants of the theory are essentially expressed as functions of its inverse.

IV. GRAVITATIONAL INTERACTION

Einstein's gravitational Lagrangian is the non-polynomial Lagrangian

par excellence. Its form is given by:

i r -2 1
L = K R(g) + L(matter)

v/det g L S J

Here

ftp vX nv X

with

-1 ~-

Both r (through its dependence on (g ) „ and (det g) 2 are the sources of

the non-polynomiality. The important point to note is that the latter factor

universally multiplies L(matter) ; in addition, all the derivatives occurring

in L(matter) (the covariant derivatives 1(9 - IM] ) give rise to non-

polynomial expressions through the occurrence of T .
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uv
In the vierbein gravity scheme, g equals the product of vierbein

fields L ^ l / with l / a = n"a+ K h ^ . ( /*= 1,-1,-1,-1) . Thus
a g

u. v +-5- fxB. jua
(det g ) = t det (H + K h )J is a polynomial of fourth order in K

7v - 1
In two previous papers '> the reality of the inbuilt cut-off at K was

S
demonstrated in a calculation of electron's self-mass and self-charge. It
was shown^for example,that the traditional logarithmic infinities get regular-

2 2ized to the form log(/cra ) with

— a logf J + terms of order or*, log K- and ax. (log*)'

As was remarked in the first paper, the crucial part of the result - and one

which gives faith in the basic soundness of ffie. ideas - is the appearance in

the matrix elements of the characteristic logarithmic dependence on the

minor coupling constant (log(K?tnl) factors). For gravity theory these factors

are of the real essence. This is because there is no question but that the
- 22

gravitational constant «m <%, 10 represents an amazingly out-of-line

magnitude - out of line with the other constants for the other forces. How-
2 2

ever, the logarithm of the newtonian constant log (G m ) x 100 (G c 8?r K ) ,

is of the order of a. , The natural and characteristic appearance of

the combination a log (GN m ) x 1 for non-polynomial gravity-modified

electrodynamics appears to us far from being an accident.' It is important
2

to remark that Gm is the Schwarzschild radius of the electron in natural
e

units and this inbuilt cut-off has come at this magnitude.

From this point of view it is also encouraging that already in the lowest

order in a , 6m/m is of a reasonable order of magnitude (6m/m »* 2/11) .

Since we expect on general grounds that;for higher orders in a , the effective

constant will indeed be a log (G m )L one may start with the ansatz that all
L N J

electron self-mass may have its origin in gravity-modified electrodynamics

(6m/m a 1) and then compute a log (G m ) in reverse, from the series

& =l*£an(«16g(GNmV .
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Consider now the prospects of a universal gravity-modified field

theory in a general manner. The renormalized electrodynamics of leptons

and photons exhibits no infinities higher than logarithmic. (The ratio

SA /STT f° r niuon-decay is not even logarithmically infinite in the lowest
A V should be

order while the potentially quadratically infinite photon self-mass /\ zero
from gauge invariance,) When we consider strong interaction physics,

non-leptonic
however, (and also weak^physics) the situation alters. This is because here

one encounters quadratic self-mass infinities for bosons which when com-
2

puted as 1/ K by our methods would unacceptably give large masses to
•o

particles. We do need a universal, all-embracing non-polynomiality for

interactions other than lepton- electrodynamics, but not the one provided by

Einstein's gravity theory with its very small (minor) coupling constant K .

Fortunately, the model for a universal hadronic force, with the same

characteristics as Einstein's gravity (except for the coupling strength),

already exists, and this we exploit in the next section.

V. F-MESON DOMINATED GRAVITY

According to pur present ideas, one of the fundamental forces of
two

nature, electrodynamics, is mediated throughidifferent mechanisms depend-

ing on whether we are considering leptons or hadrons. For lepton electro-

dynamics the present picture is that of a Dirac equation with photons

interacting directly with muons and electrons. For hadrons, no such direct

interaction is postulated. Instead the photon is pictured as inter-converting

into a (prescribed) mixture of the known 1 strongly-interacting particles

(p , 0 ,io ) , which themselves couple strongly to hadi

which for this reason may be called "strong photons".

(p , 0 ,io ) , which themselves couple strongly to hadronic electric charge and

Now nature has been prodigal in exactly the same manner with 2
4

particles. In addition {p the massless graviton (with its obvious analogy
-- - + '

with the massless photon), we know of at least three 2 massive strong-

ly interacting particles f , f ' and A-. It seems very natural that the analogy

-11-



should carry further and that while leptons may interact directly with gravitons,

so far as hadrons are concerned, it maybe aroixture generic ally called P of

f , f (and perhaps other 2 objects which may be discovered) which

provides the agency mediating gravity. For this to happen, it is

mandatory that the F-meson in its strong interaction should couple to the

hadronic s t ress tensor just as the graviton does to the lepton s t ress tensor,

8)
We have constructed a generally covariant theory of a universal

strong coupling of F-mesons to hadronic s t ress tensor (with a coupling

parameter k & m % 1 BeV) and of the mixing of these particles to

gravitons, on an analogy with p-y mixing in electrodynamics. The

formalism is elegant - as indeed everything where general relativistic

invariance is concerned should be. The form of the final Lagrangian is

simple; it consists of three pieces ;

( 1 ) = (detg)~* [R(g) + L(leptons)]

(2) -A
> ' = (detf) 2 tR(f) + L(hadrons)]

2

L(3) = - f (detf)' Tr (fg"V" (Trfg"1)2

+ 6 Tr fg"1 - 12

Notice the symmetry of L and L ' so far as f and g tensors are .
**) id)

concerned. The lack of symmetry in L (which is a sort of cosmological
term) is a reflection of the physical lack of symmetry - in that the f-field

IK*. ',.
r epresents par t ic les of mass M. whilertg-field represents mass less gravitons.

(In the vierbein formalism, where

txv i&i u /ua jua /.
I = L L . • , L = r ) + / c h

Vs. 2

(12)

the physical fields are h and F< .)

•vWe discuss the problem presented by W mesons and to which particle, g or F they should directly interact,

plater. The idea of F dominance of gravity has been expressed by numerous authors, e.g. , P.G.O. Freund,
J. Schwinger, R. Delbourgo, Abdus Salam and J. Strathdee, K. Raman and/in a form essentially identical

to the above,by J. Wess and B. Zumino.

*V In Eq.(ia.) *e define the relation of the tensor f̂ " t 0 t h e physical F field.
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It is clear what this design will achieve. Strong interaction

physics will now have a universal inbuilt cut-off from the non-polynomiality
-A ~Tj

of (detf) 2 at about (K) . Lepton physics, or those parts of it included
(1) -1

in L , will exhibit the inbuilt cut-off at (K, ) as before.

Let us reflect on the work of Sees. II and III in the light of f and' g

gravitons and their interactions. Recall that in Sec. II a part of the Yang-

Mills strong Lagrangian, even after the Stuckelberg transformation, still

remained obstinately polynomial in character. This part will now be

multiplied by the factor (detf) 2 . In Sec, III the same thing happened for

W mesons. Now if these are treated on a par with leptons, and their free (and

self-interacting) Yang-Mills Lagrangian is added to L , their self-mass
2 2 2

will be proportional to (f / * ) + (f /GFerml)? i. e. , these particles would each
-5 ^

weigh some 10 gms. It would seem more reasonable - if W mesons

exist at all - to class them with hadrons. Notice we are making the

definite physical statement that W mesons interact strongly with F particles.
2 2

Paradoxically this is in aid of making them light (6m £ f /G )
2 2 2 Fermi

rather than too massive (6m » f /K ) ,
a

Of course there is no question that the photon free Lagrangian must
belong to L and so A the weak (J^ W^) terms. On the other hand, terms

2 0 2
of the form m (p - A ) giving the mixing of photons with the strong

0 jO 0 ? I J i. n * T (2) J , , , , , Thad w

p - 0 - w complex would belong to L and so would the term J W .

The mixed leptonic-hadronic weak processes thus acquire different cut-offs,

depending on the company they keep. Clearly the interplay of the hierarchy
-1 - - -1 -1of the various inbuilt cut-offs A , G 2 . , < and «•. in prediction of

JT Fermi g I

reasonable magnitudes for the renormalization constants when worked out
fully will provide severe and non-trivial tests of the ideas here expressed,**)*/ There is of course another and more primitive level on which the notion of f-g mixing can be tested. The

uncompromising statement of this theory that F- mesons couple with the strong stress tensor implies that F mesons

{like the 10 and « particles interacting respectively with baryon and hypercharge) interact more strongly with

ordinary matter, the more massive it is. Even if the F meson of the present theory is identified with a mixture
0 0'

of the existing f and f particles, there appears at present to be no experimental contradiction to this
statement.

me does not believe in strong gravity, and the only universal cut-off is assumed to^lie at (K "
possibly

585 (1958)) as arising from 6me/m0 = 6W/4n log(K mQ) and ^m p /m 0 - l/4ir G log<* m0) where G is the

(3EH2F) combination of octet coupling constants (K4.5 g ^ ) and mQ is assumed the same for nucleons and

**) if one does not believe in strong gravity, and the only universal cut-off is assumed to^lie at (K ) , we may
ibly understand the empirical relation m

N / m
e ^ g ^ i | / e 2 (Abdus Salam and J. Tiomno, Nucl. Phys. _9,

electrons. The origin of muon mass remains a mystery even among such disreputable (second order) derivations
'of mass formulae.
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APPENDIX I

A. THE NON-POLYNOMIAL METHOD AND ASSOCIATED

AMBIGUITIES

9)
No-one would question the thesis that the highly singular lagrangian

operators in field theories are at best symbolic entities,, and that to get

meaningful and unambiguous numbers from them is an art to be justified, at

the present stage of our mathematics, post hoc on the twin criteria of intern-

al self-consistency of any prescriptions used and the agreement of the com-

puted numbers with experiment. Two examples of the practice of this art

are the defining of the (highly singular) photon self-mass integral as zero

in deference to gauge invariance and the invention of Feynman-DeWitt-Faddeev

particles in the singular (zero mass) Yang-Mills theory (see Sec. II)

to ensure conservation of unitarity. But the most spectacular and most success-

ful example of supplementation of lagrangian theory with extra rules is the

invention of the renormalization procedure in electrodynamics designed to

calculate unambiguously all mass-shell quantities except two - self-mass and

self-charge. To excuse the inability of the procedure as originally formulated

to compute these two (singular) numbers in polynomial lagrangian theories,

Dyson^'put forward the wonderful thought that these two were in any case

intrinsically unmeasurable quantities and no heartbreaks need occur if they

cannot be computed. . Unfortunately, while this may have been true of

electrodynamics considered in isolation, the two magnitudes (defined, as they

are,on the physical mass-shell) 6m/m = {Z- m -m)/m and 6e/e = 1 - Z

are definitely measurable in a symmetry theory; for example in a theory

where the electron and the neutrino are treated as members of the same

doublet. Nothing in the mathematics is altered, but the numerical value of

mft can now be read off from neutrino mass. A better example is TT -ir
11)

mass difference which in strict renormalization theory would be called

unmeasurable.

It is clear why in Dyson's procedure Zm and Z could not be com-
-f 3

puted. In a polynomial lagrangian theory - like <3 . = g<j> - the constant
2 '

Zmn is related to the Fourier transform of the chronological product
distribution:

-14-



g
2 <T# 2 (xH 2 (0)> + = g2 Ap

2(x) .

12)
Now Gel'fand and Shilov , for example, do define this distribution and assign

a value to its Fourier transform

2
[log (- -3—r ) - 0(2) - 0(1) 1 ;

it is,however,well known ' that the distribution itself is ambiguous ^ at x = 0
4

up to an arbitrary multiple of 6 (x) and likewise for its Fourier transform.

The same applies to distributions like l/n1, <(T 4>n(x) 0n(O))> which are

ambiguous at x = 0 to the extent of (3 ) 6 (x) .

To put it very crudely, the so-called infinite constants are uncalculable

not because they are (in naive physicists' mathematics) infinite; they are

uncalculable because (even though sophisticated mathematics computes them

as finite) they are ambiguous. The ambiguity problem is therefore the

heart of the problem of computing self-mass, self-charge and other re-

normalization constants. The problem is bad enough for polynomial re-

normalizable Lagrangians with but a few matrix elements ambiguous. For

non-renormalizable Lagrangians of polynomial variety considered in the past,

its resolution appears to be nearly impossible.

Now, paradoxical though it seems, it appears that at least one consistent

resolution of this problem can be formulated for (the seemingly

non-renormalizable) non-polynomial Lagrangians - specifically for Lagrangians
-f r K$

like ot. = g(K.0) e . Here the Lagrangian is an entire function of the

variable K<f> . It might, on general grounds, be expected that a super-

propagator like (Te e / would be ambiguous up to

\ a (t> ) 6(x) with a real and \ a z an entire function *r"^ of order

< j . (In momentum space the corresponding ambiguity is that of the entire

Y 2 n
a (-p ) .)

*) In fact, as we shall see later, the definition we finally adopt differs from the above by a log g term.

y This condition has its origin in the Jaffe localizability of the operator e

- 1 5 -
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2)
Lehmann and Pohlmeyer havejhowever, shown that for such cases

there exists a unique minimally singular super-propagator. The definition

of this least singular super-propagator coincides with the one heuristically
14)

proposed earlier by Volkov, Filippov, Salam and Strathdee (VFSS) pre-

scription for all cases of what the last authors called super-normal, finite,

non-polynomial Lagrangians (i. e. , when r in £L. is less than or equal

to 2 ). The important point which Lehmann and Pohlmeyer and also

Blomer, Constantinescu and Mitter make is that from their point of view

the very existence of such a super-propagator is intimately connected with the

fact that,in contrast to the polynomial Lagrangian case,the distribution
2

exp (iK. A ) for non-polynomial situations can be defined as a limiting
r ^ — — —

value of an analytic function. We come back to this point later.
The minimally singular ansatz itself is very simple to state. Consider

2
the super-propagator exp (iK A ) . The existence of the ansatz is based on

the observation that the VFSS prescription for defining this super-propagator

gives rise to a function the real part of whose Fourier transform (being the

Hankel-transform of an infinitely differentiate function) decreases strongly
2 2

either for p ~> +°° or p ->• -co ^the sign ± co depending on the sign of the
2

exponent in exp (± itc A (x)) . The ambiguous terms,on the other hand,

• O O

possess the form \ a (-p ) n and define an entire function of order

n=0
2

< 4 . These terms do not vanish in any direction in the p plane. The VFSS
selects

prescription therefore/\(out of all ambiguous choices possible for the definition

of the super-propagator) the one which is minimally singular for the appropriate
2

limit p -* + °o or - <*» .

Lehmann and Pohlmeyer made their suggestions for purely exponential

Lagrangians, considering only second orders in the major coupling constant.

We shall tentatively accept their suggestion and also hopefully assume that the
2

analyticity ansatz in the variable K A(X) can be extended to functions of many
2

complex variables X., A(x.-x.) and similar uniqueness statements can be

made for higher-order super-propagators. Here we wish to extend the cri-

terion in two other directions:

* A more physical formulation of the same ansatz is due to Filippov who states it in the form of the requirement

that the ratio of the real part to the imaginary of the Fourier transform of the super-propagator should vanish when
2 9

p -» + »( i . e . along the physical cut in p plane).
* • •

- 1 6 -



1) We wish to consider not just the super- renormalizable
K.aJ

Lagrangians of the type ge but also the renormalizable Lagrangians
,2 K$ ,3 v<# — kd

gp e , gv e and mixed varieties g(^A) e in order to gain
a similarly well-defined computation of the still surviving infinities,

2) We further desire to consider rational Lagrangians of the super-

renormalizable((g#)/(I +K )̂ or (g$ )/(l+^$)) and renormalizable

varieties ((g*3)/(l+K0) , (g04)/(1+lc^) and (g^A)/(l+K£)) and show

that here too the renormalization constants can be unambiguously de-

fined and that their dependence on the variable \C is as stated in the
2

text, viz., log(Km) for the traditional logarithmic, l/K. for the

traditional quadratic and l/K- for the quartic infinities, (where we

have assumed that all particles are massless in order to simplify

discussion).

B. TREATMENT OF SURVIVING AMBIGUITIES IN RENORMALIZABLE

NON-POLYNOMIAL THEORIES

Let us briefly consider how we wish to extend the minimality principle

to give a meaning to the old infinite renormalization constants.

Consider two Lagrangians, one super-normal and the other renormalizable:

Lz = g(e K<f> - 1

The minimality ansatz for the super-renormalizable (finite) case L suggests

setting all ambiguity constants a. = 0 in the super-propagator S -(TL(x) L(0)

right away. We wish to show that this is not enough for (infinity-containing)

renormalizable lagrangian L n and we need an extension of the VPSS method.

To see this set a. = 0 in the super-propagator for both L and L , so

that

ST - g2 V "T (K2 A ) n for L = LT (A. la)

STT : « 2 ? 7 (K̂ 2 A ) n f ° r L = LTT ' (A* l b )

1 1 Z_i " • LL
H-3
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The VFSS method starts by converting S into a Sommerfeld-Watson integral,

rotating the contour and then taking the Fourier transform; thus

2 / 2 A , z

= js_ r (* *> d 2 • . { A .2 )

Since for this super-renormalizable theory the z-contour lies along 0 < Re z < 2

we can use the well-known expression for the Fourier transform of A (x) (for

zero-mass case)

(A. 13)

Thus (ignoring factors of 4JT) and on the basis of no more than

classical mathematics, once we start with (A. 2) it leads on to the result :

2 4 P r(2-z)(-K-2p2)Z"2_ 2 4 P r(2-z)(-K-2p2)Z 2

- g K j tan^r(z+l.)r(z) ' (A '4)

Consider S (x) now. Here the Sommerfeld-Watson-rotated contour

lies between 2 < He z < 3 and does not satisfy Re z < 2 . The "classical"

Fourier transform formula (A. 3) can no longer be used. The old VFSS

prescription for this case involved writing

2

II = S I ' ^ ( lC A ) ' ( A ' 5 )

as stated above,

Now,while S can be Fourier transformed^the second term in this split r e -

presents the familiar (logarithmic) infinity. Such terms in popular parlance
as residual infinities

have been called "sore thumbs (S, T, ' s ) " since they stick out/\when we shift
• ' *)

the z-plane contour from 2 < Re z < 3 to the region Re z < 2 , It was
suggested in the earlier papers that the sore thumbs - which,as we said,re-

should
present surviving infinities -*be left to be treated using Dyson's subtraction
formalism

Quite generally in x-space S.T. 's are the residues of those z-plane poles which lie between 2 < Rez < n

V—i v(n) n
where n is the first term of the series expansion L(0) = > —~ 9

0 ' f > ft*
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Prom the present point of view, it is clear that leaving sore thumbs

thus sticking out is wrong, One should never make a split of the type (A. 4);

simply define:

J tan^z r(z+l) r(z) * (A ' 6)

3
II(P > g * J tan^z r(z+l) r(z)

2 2 2

Here the Dyson term {-g /2 (K A) ) is not being Fourier transformed in

isolation; its transform is uniquely determined as the appropriate residue at

z = 2 of an analytic continuation of the minimally singular object £S in the
2 2

K p plane, defining thereby one special value for the renormalization con-

stant in question.

To summarize, what we are saying is the following. If we accept the.

Lehman-Pohlmeyer criterion for selecting from among the many possible

definitions of the super-propagator the minimally singular one for super-

renormalizable theories, a simple extension of the VFSS procedure will

give an equally specific definition linked to the Lehmann-Pohlmeyer ansatz

for the renormalizable cases, and thereby define a unique and distinguished

value for the old Dyson renormalization constants. It is this value which

formed the basis of all discussion in the present note.

C. RATIONAL LAGRANGIANS

The field-theoretic distinction between rational lagrangian operators of
n

the type LR = g (^/(l+K.0)) and transcendental lagrangian operators

L = g<hn e is well known. The transcendental variety e belong
T

to the Jaffe class of localizable operators - at least when the behaviour
2

of Jaffe1 s indicatrix function p(p ) is considered to second order in the major
2 f 2 2 t 2 2 '/̂ il

coupling constant g lPT(p ) ~ g expj (vc p ) | .This is not the case for the

2 2 i 2 2 i
rational Lagrangians (p (p ) v g exp| (K. p ) j when <p represents zero-mass

particles and;as shown by Efimov, PR Z % exP[ (j K ]p[ logj K. Jpf Jj

when m jf 0 ,
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2
To belong to the Jaffe class, p(p ) should not increase faster than

exp ( , l|piy(logp ) ) . if rational Lagrangians do not represent Jaffe

localizable fields - and doubts on this could be entertained on the score that

the hitherto tested second-order behaviour of the indicatrix function may not

be a true index of its exact behaviour - then local commutativity in the Jaffe
17)sense does not automatically hold.. In a recent preprint, Taylor ' has

examined this problem and attempted to define local commutativity for

rational lagrangian operators by means of a limiting procedure for the

Wightman functions (super-propagators) of the theory. Taylor

demonstrates for these Lagrangians the existence of TCP operator, the

cluster property, the existence of the asymptotic limit, LSZ reduction

formulae and forward dispersion relations.

Considering the ambiguity problem for such Lagrangians, one prescription,

related to the one used for transcendental Lagrangians for defining super-

propagators, is the following; Write L
R(^) ~ / LR(*) e d * a n d

define °°

<TLR(*(x» LR(*(0),> as J fa
where on the right,under the integral sign,appears the Lehmann-Pohlmeyer

minimally singular super-propagator. This is unambiguous but it is a tricky

problem to show that this definition coincides exactly with the one based on

the Mellin transform method used in our earlier paper14) We believe (without

having computed the formal proof) that this is indeed the case. (A proper proof

would involve tricky changes of orders of integrations and summations.)

Accepting this conjecture tentatively, however, we may consider the pro-

blem of estimating the K.-plane behaviour of matrix elements in (rational) re-

normalizable Lagrangians of the type g ( (ipipA) / (1+K<j>) J or
/ n \ ^ '

g { $ /(1+K.̂ ) ) , n^ 4 . What we wish to show is that so far as the re-

normalization constants are concerned, their dependence on (inverse) powers

of vC is simple and just what one might expect when the naive limit IC -* 0 is

taken.
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According to the traditional analysis of Ref.16 for self-interacting situa-

tions of Lagrangians like <p /(l+*q>), the cases n < 3 are super-normalizable
while ~

with all matrix elements finite; ^n = 3 and 4 represent renormalizable

situations, and n = 5 and higher are non-renormalizable, For mixed cases

no complete analysis exists; one may be certain,however,that theories of the

type (^A)/(1 + K0) are renormalizable,

4 —
Let us take the two cases L = cp /(1+Kcp) and L = (^A)/(l+vf^) as

typical of renormalizable theories. Both are characterized by the fact that
4

in the limit K,-»0 , the Lagrangians are singular like M . (We assign
n •

singularity behaviour cp^M , A /*/M , ip -vM ' to the fields from the knowledge

of how their propagators behave at x = 0 and throughout^ all fields massless.)

It is convenient to rewrite L1 and L in the form

, 4 3A >/•
T _ _̂  M L . T _ _L UL '

l"vc4 1 + ^ ' 2

From the result

, ,4 ,n-l

K4 J

it is clear (assuming zero masses) that S (icp) for a process

with E, external Bose and E external Fermi lines would in general behave

like

SfK.p)^ L
1 F(K2p2) •

Now the "sore thumb" contributions - which are related to the renormal-

ization constants - are always of the form (K. p ) [log (tc P )3 • Thus the

Maximum K -plane singularity (at X = 0) exhibited by these terms is

;s (log K P ) / t .J" , .thus proving the result stated in-paragraph 2
2

of the Introduction. It is interesting to remark that since K always appears
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2 4"E " w E

multiplied by p (apart from the overall factor X/K b * ' ) the
singularity structure in K plane and in p plane are the same for the

_
super-propagator. Maximal analyticity in K plane is synonymous with

2 ' '. ~
maximal analyticity in p plane. Qne can clearly generalize this to

4_£ »iip 0 0 0 0 0 0
functions of many variables 1/K b 2 f p^K ^ * " p« J t p« • • • )•

J. ^ O
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A P P E N D I X II

We wish to evaluate the super-propagator

L (x)
det L{x)

detLvb(0)
det L(0)

where

+

and the vierbein graviton propagator is given by

T h^(x) . h"b(0) ! 0> = i ( ^ % a b
 + i,*b „ D(x)

in a suitable gauge. The heart of the derivation lies in noticing that

4 /Us 1
is p r o p o r t i o n a l to / d n exp(L n n ) whi le ~TT~T"

can be similarly expressed

as an eightfold integral. Since formulae for super-propagator involving ex-

e '> = e ') such parametricponentials are easy to write (e. g. <̂ e

representations of (det L) simplify the work. More precisely write

D
KX,

=17
(1)

One can show that D and D can be expressed in terms of a

function it (a, fZ, y) and its derivatives as follows;

^ i.

where D(ct, fi, y) can be expressed as an eightfold integral over two four-

vectors, which eventually simplifies to the form:
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8 X

i T1

dv 2a - v

7-3
where or = ~~x^ .

0 R

This integral can be further simplified and expressed in terms

of hypergeometric functions. We shall not set down these forms, since

for most practical applications the form given above is adequate.
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