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ABSTRACT

The simultaneous breaking of conformal and chiral symmetry is
investigated within the framework of non-linear realizations and
effective Lagrangians. The expliocit introduciion of a masslesa
dilaton field,;& y enables conformal invariance to be preserved in
Lagrangians for massive matter fields, It is shown that the squation
of Callan, Coleman and Jackiw, B#ZDH = 9#/“ , remains valid notwith-
standing the introduotion of this particle and also that it is
possible to ocomstruct Lagrangians which are simultaneocusly invariant
under the chiral and conformal groups. If we introduce a term which
explicitly violates both symmetries then the dilaton acquires a
definite (bare) mass which can be expressed in terms of the masses
of the chiral bosons -~ the pion in the case of chiral SU(2) x su(2),
the pion and kaon in the case of ohiral SU(3) x SU(3). The precise
form of this mass relation depends upon the type of symmetry-breaking
torm adopted.
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I. INTRODUCTION

The well-known technigues of non-linear realization theory
have been used extensively in the treatment of chiral symmetries,
These techniques, which are based upon the concept of group action
on homogeneous spaces, have a wider relevance in that they provide
a natural vehicle for the desoription of any symmetry which is spon-
taneocusly broken. In particular they can be usefully employed in
discussions of conformal symmetry. The group of conformal trans-
Tormations on space-time certainly cannot be expected to manifest
itgelf as a symmetry of physical states in that its unitary
representations do not include discrete non-vanishing masses,
However, it is conceivable that this symmetry may be present at
least in the equations of motion although not in their molutions,
i.e., that it is & spontaneously broken symmetry. This point of
view has been advocated in recent works 1). In the present paper
we consider the problem of metting up effective Lagrangians which
are gimultaneously invariant under the conformal group and under a
chiral group (SU(2) x SU(2) or SU(3) x SU(3)). The resulting

theory possesses the following features:

a) physical states which are classified -according to unitary
representations of the direct product of the Poincaré group
and the internal symmetry group (SU(2) or SU(3));

b) Goldstone particles corresponding to the spontaneous
breakdown of the higher symmetries, viz:, a. magsless even-
parity spin-zero and chiral-invariant "dilaton" together
with an SU(2) triplet (or SU(3) octet) of odd-parity spin-—

zero massless "chiral bosons'j

c) some remnants of the higher symmetry which are expected

to survive in the tree graph approximation.

The degenerate vacua which are characteristic of the Goldstone
solution can be avoided by introducing explicit symmetry-~breaking
terms into the Lagrangian. Such terms serve to generate masses for
the Goldstone particles., Moreover, by choosing a symmetry-breaking
term which belongs to an irreducible representation of the combined

conformal and chiral groups we can relate the (bare) mass of the




,dilaton to the (bare) masses of the chiral bosonz., This mass relation
depends strongly on the type of symmetry Breaking chosen. Thus, in
the case of chiral SU(2) x SU(2), if we assign the symmeiry breaker
to the SU(2) scalar part of a chiral 4-vector, we find

2

m = dm

2
X
where My and Mg denote the masses of dilaton and pion respeotively.
In the case of SU{3) x SU(3), if we adopt a linear combination of
the even-parity SU(2) singlete in (3,3)@® (3,3), then we find

2 2 O

= m .
Sm;,L 3mg + 6M

On the other hand; if we take the symmetry-breaking terms from the

‘vepresentation (8,8), we obtain

5 z z b
Moy = 2M Ty

In Sec. II we review the general method for making any Lorentz-
invariant Lagrangian into a conformal invariant one through the intro-—
duotion of the dilaton field, ?( « The equation of motion satigfied

by this field can be put into the universal form

2.
O Xt Oup = Wy

provided there are no derivative-containing symmetry-breaking terms.
In this equation, D)Jl denotes the ourrent of the genarator of
dilatations and is of course conserved in a dilatation-invariant
theory. The tensor 9/“, denotes the usual 3) symmetrized form of
the canoniocal energy momentum tensor, It may be noted that the
equation of motion for 'X ‘'can be put into a form advooated recently

4)

by Callan, Coleman and Jackiw

a—

Oup = Ou Dy

where 8,, and Dy are defined by




- 1 - 2
8w =0, "5 @9 -, [NX

= 1
D =D +8 [-=(x8 -x2 )X +F ]
[ Mo V6 v 174 vy
An explioit formula for Fym = ~Fuv is contained in Sec. II. Such
redefinitions are permigsible in that the added terms contribute
neither to the space integrals of 90]7 and D, nor to the 4-

divergences, We have not examined the renormalizability of Q#V .

In Sec, IIT we discuss the problem of combining conformal
invariance with chiral invariance., The solution is given in the
form of a set of simple rules for generating a chiral and conformal
invariant Lagrangian from one which is only chiral invariant. The
remainder of Sec, III is devoted to the construction of symmetry-
breaking terms and extracting the associated mass formulas mentioned

above,

II. THE LAGRANGIAN FORMALISM

The conformal transformations of space-time constitute a
. fifteen-parameter Lie group which is characierized by the faoct that
the Jacobian matrix ax;L/axv is proporticnal to a Lorentz trans-

formation. More precisely,

9 x! BXL v 3! % af
0x BXB = det ox n (2‘1)
@

wheTe np\’ﬂ diag(+l, -1, -1, ~1) denotes the Minkowskian metric
tengor. The Poincare group is evidently included as a ten-parameter
subgroup., The property (2.1) allows one immediately to extend any
representation of the Poincaré group to the full conformal group.
Thus, suppose that the zet of fields yﬁ“(x) transforms under ‘the

Poincaré group acoording to

Y - P = D yio (2.2)

where /\‘m, = Dxfu/axv denotes a homogensous Lorentz transformation,
Since, according to (2.1), for any oconformal transformation we ocan

write




ox] ax! [k
& det 22— X a Lorentz matrix ,
Bxu 9x

it follows that the transformation law
% % 9x!
ax B
D ( l det 9x! va w(x) (.2.3)

Y(x) —» ¢Hx') = ldet %ix'—

is well defined provided I is a Lorentz scalar. The behavioui of
V under conformal transformations is completely specified by the

action of Lorentz transformations (2.2) and pure dilatations

x;‘ = )\xp (A >0) for which (2.3) gimplifies to the form:

y(x) - v = quy(x) i (2.4)

Sinoe the pure dilatations mist commute with the homogeneous Lorentsz
transformations, we must require that the matrix £ commites with
D(A). (in particular, if D(A ) is irreduocible ! will be a pure number.)

The Lagrangian of a conformal invariant theory must be a

Lorente socalar with f.'u- =4 4 1.0.,

L) = |det 35 JLwen (2.5)

in order that the action be invariant. In the absence of spontanesus
symmetry breakdown the condition (2.5) can be met only in theories

with dimensionless coupling constants and vanishing masses. However,

if we suppose that there is sponté.neous symmetry breaking in the theory,
then we have at our disposgal a fundamental scalar field 'X(x) with

I = -1 and whose vaouun expectation value 1s non-~vanishing 2 + Our

basic hypothesis, therefore, is that the conformal invariant Lagrangian 6)

Ly = 20« 1 (2.6)

ig capable of yielding a degenerate or Goldestone solution with

(X) # 0. In principle the value of <X> could be determined melf.
consistently in the manner of (Goldsitone., Since ,? = -1 for this
field, the non~vanishing of (% ) can only mean that the vaocuum state
is not a conformal invariant and, correspondingly, -that the x-—

particle is massless.
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The dilaton field X can be used to generate effective masses
and coupling constante for the other fields "P in the system. That
is, any given Lorentz-invariant lagrangian density L(9) oan be
turned into a conformal density L('{h X) by introducing % and its
derivative in the appropriate places. . Two fundamental oper-
ations areinvolved. Firstly, the weight of each term in L(¥, %)
is brought to fthe valus 2 = -4 through maltiplying by the appropriate
power - pomsitive or negative ~. of % . Secondly, the ordinary deriva-
tive 0 'W is replaced by the covariant form

9,,X
a“q, + (ﬂguv - iSuv) v : (2.7)

[}

Du v

where the matrices { and Suyv characterize the behaviour of Y
under infinitesimal dilatations and Lorentz transformations, respect-
“ively. Evidently this formulation requives (%> # O since the
field J, ocours in the denominator of (2.7).

We turn now to consider the general form of the eguation of
motion for % ‘« The disoussion is facilitated by first putting the

Lagrangian L(¥) into the canonical form )

Liy) = Ou Y - H(Y) (2.8)

where ‘!(T denotes the transpose of Y and T;',, denotes a set of numeriocal
matrices, The adoption of (2.8) represents no loss of generality

since any lLagrangian can be brought into this form by introducing
sufficient auxiliary filelds 7). ‘Moreover, we oan assume that the
components 1 are real, This implies thal the spin matr'ices, Sﬂ'v ’

defined by

P = (1 -ge, S,) v

for infinitesimal Lorentz transformations, are purely imaginary.
Lorentz invariance requires that H(’YJ) in (2.8) be a scalar in-

variant while 1;‘ must satisefy.

- oT ) )
! (Suv Fh M r‘l Suv) NN P;.z g,ul PV *
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Since'divergence terms in a Lagrangian are variationally insignificant,
no generality is lost in assuming that the matrices 7;‘ ares symmetric
bstween fermion fields and enti-symmetric between boson fields. Thus,
for example, the four-vector WTT'#‘(V vanishes identically while the
electric ourrent is repremented by the quadratic form 1.1.})1-1;‘ %W

with q an antisymmetric Lorentz scalar matrix.

For the conformal invariant Lagrangian corresponding to (2.8)
we adopt the real form

Lwx) = ity Trp oE

4 £
. ¥) - X H(X g) + Ly

(2.9)

where Lo is given by (2.6) and the covariant operator D, by (2.7).

Explioitly,

3, T g X

L, %) = igT x* T, it {au¢+ (g, ~iS ¥ _5;_(_} ¥
/

4 2 2
+ X {x- H(xw)} +30 ) .
s (2.10)
The equation of motion which is obtained from this Lagrangian by

varying % is given by

0% + bup = 0 (2.11)

3)

energy momentum tensor for the whole system (inocluding X, ). The
inclusion of a symmetry-~breaking .term Ll(T,V,X) in (2.10) will modify
this equation of motion. If we suppose that L1 contains no

whers 9}“« denotes the usual symmetrized form of the canonical

derivatives and transformes like a Lorentz scalar with ’?1 # =4 then
(2.11) is veplaced by

1 2
3 X + 6 =9 D =-(£,  +4) L , 2,12

where D),,L denotes the canoniocal dilafa'hion current

9 L
D L

M 9y

i

0
(xvau A+ aX

) ] (xvav + 1)X - Xu(L+ Ll) . (2.13)

It may be of interest to see that this current ocan be put into a
form similar to that given in Ref.4. To begin with, we have

i




T
T i+l i+£
=T + +
D uvxv v X r X Sugb Xaux

where T’.w denotes the canonical energy momentum tensor, A little

algebra gives
' D =68 x +X8 X+9 F
[T T A n v v
(2.14)

where FVP‘ = ~Fuy is defined by

F =3x (H +H -H )
uy o auy vue uve
. T A
T %+ A+0
B, =¥ X r, X sww ,

Define the new,non-oa.nonioal, currents
- 1 2
D D -¢& F +=(xd -x 9 )X
7 [T % vg B v MoV

- 1 2 ‘ |
g6 -= - X 2.1
9,uv uv 6 (apav g,uv D) ( > )

in terms of whioh the relation (2.14) takes the particularly simple
form

Ep = aw Xy, . (2.16)

Tt ahbuld be emphasized that while this relation has the same appearance
ag that of Ref. 4 it is not identical with it. Our definitions of

-]5:“ and "9_#\; differ from the canonical ones only through the presence
of the dilaton field % (in addition to the higher spin contributions
in FV}* ) whereas Callan, Coleman and Jackiw employ all of the zero-
epin fields in their redefinition, In partiocular, we make no claims

about the renormalizability of ‘é:u\, .

We conclude this section on the represeniation of conformal
gymmetry in a Lagrangisn framework by remarking that the conformal
invariant Lagrangian (2.10) must yield S-matrix elements which, on
the mass shell, are independent of . This follows from the fact
that the modifioation [ — I' can be effected by the field redefinition

8=




'y
'W-—» 'IP': x/ﬁ v

which, according to the well-known equivalence theorems 61’ field
theory, leaves the S-matrix unchanged. In the presence of the f-
dependent symmetry-breaking term

-,
Lny = 27wy, (4 -9

this statement remains itrue. It fails in more general broken

symmetry models.

III. BROKEN CHIRAL AND CONFORMAL SYMMETRIES

There are at lesast two equivalent methods of generating con-
formal invariant Lagrangians from ochiral invariant ones. However,
caution must be obgerved in applying the rules of Sec.Il in order that
the chiral invariance should not be lost. It will be found that the
dilaton field % is intimately inveolved in the non-linear ochiral

transformations,

The aimplest approach - and one which is particularly suited
to the chiral SU(2) x SU(2) case — is to consider chiral-invariant
Lagrangians expressed in terms of fields whioh transform linearly
under the chiral group. Since the conformal and chiral transformations
are commutative there will be no diffioculty in applying the pre-— '
sceriptions of Sec, II. Conformal invariance is obtained without
digturbing the chiral invariance provided only that the dilaton is
taken to be a chiral scalar. This we shall assume. Non-linearity
is now achieved by imposing the appropriate covariant constraints.
For example, in chiral SU(2) x SU(2) the pion field is usually assigned

to a chiral four-vector (0,7) which is then constrained according to
2z z b3

where f 1is a constant which, in the tree approximation, can be
identified with F., the pion decay constant., The constraint (3.1)
is conformally invariant only if both o and T are assigned the
conformal weight X = 0, This is a perfectly consimtent arrangement.

However, it is usually more convenient to aassign the value L s-1 to
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boson fields(such as T )} since this corresponds to the sssignment -
{ = -4 for the kinetic energy term (aﬂ }2 , which then appears
without the enoumbering weight factor ?52 +2. The conformal co-

variant analogue of the constraint (3.1) now takes the form

st = X Uy = Ko = Ly =--1) (3.2)
which is also chiral invariant since % is a ohiral scalar 5).
Clearly we should now expect (X)) = Fg + Using the generalized
constraints like (3.2) one can readily comstruct Lagrangians which
are invariant under both chiral and conformal transformations., (It
may be remarked that the constraint (3.2) is more a redefinition of
gcalar fields than a genuine consitraint. However, this is a
peculiarity of the SU(2) x SU(2) case whioh does not carry over to
SU(3) x SU(3). TIn both cases we introduce one chiral scalar, the
dilaton, into the theory; it Just happens that in the non-linear
SU(E) x SU(Z) cage only one field was removed by the constraint - as
" opposed to ten in SU(3) x SU(3).)

The non-linear chiral transformations of the pion field which
can be deduced by useing (3.2) to eliminate o from the relations
61!'“ = 5“5- take the form

$™ = e*X a-(%)z

‘In general we should obiain a relation of the form
a ab, 7w b

where the Tunotion fa.b depends upon the choice of chiral ¢o=
ordinates. ' ’

It is not always convenient to make explicit use of constraint
equations in sé'bting up chiral-invariant Lagrangians. The general
method is to start with a form which is invariant under the linear
gubgroup (SU(2) or SU(3)) and which does not contain the chiral
boson fields ( T or 77, K, ). Invariance under the full chiral
group is then obtained by everywhere replacing the ordinary derivative
a)u'q' by a chiral ocovariant form




= a @
TR

The pion kinetic energy is then expressed in terms of the covariant

derivative

V= N O w?

and added to the Lagrangian, In order to achieve conformal invariance
as well as chiral invariance this prescription must be modified.

Ingtead of V¥ and VuM' we must insert the ohiral and conformal

tovariant derivatives
' g X

= - ___V___ .!. L
Duw auw + (ﬂguv 1S“V)y ~ + Pum (X) au<x°> ¥

DT = X Xy (/%) N b)) (3.4)

Each term in the resulting Lagrangian is then brought to the correct
woight by multiplying with a power of the chiral-invariant dilaton

field X and, finally, the dilaton Lagrangian (2.6) is added. (The
formulae (3.4) are based on the assignment .Qr a <1 , If some other

value of k‘rr is chosen then we must replace v by %_Q“' in them.)

Congider now the problem of symmetry breaking. To the fully
invariant Lagranglan, made uﬁnaooording to the prescriptions ocutlined
above, we shall add a non-invariant term Ly . In general L; pust
be a2 Lorentz scalar with even parity. We shall require in addition
that it contains no derivatives. For the case of chiral SU(2) x Su(2)
we shall assign L, ‘to be the SU(2) singlet member of a chiral four~ -
veotor and in the case of SU(3) x SU(3) we shall oonsider two possible
aasignments: a mixture of SU(3) singlet and ootet components, firstly
in the chiral multiplet (3,3)® (3,3) and, secondly, in (8,8). 1In all
cages we shall take 21 a =1 ,

The point about assignhing the symmetry breaker L1 to a
definite irreducible representation of the direct product of the
chiral and conformal groups is that one obtains in this way =

relation between the divergenoés of the dilatation and axial currents.
Thus, '

90Dy = (L, + 4 L, (3.5)

iy




78 a
LA : .6
where Qg denotes the axial charge operator, Combining these
formulae with the fundamental relation of Sec. II,

! 1 y 3.7
%*Ih = aﬁp -+ irE?x, = QFF ( )

one could embark upon a current algebraic inveatigation of the
conseguences of partially broken conformal aymmetry. For example,
in the dase of SU(2) x SU(2) where we take 9)

Ll = A ] (Pl = "1)

with A4 a numeriocal constant, the equations (3.5) and (3.6) take
the rempective forms

a)“-bﬁl = 3Ac (3.8)
oA, = AR C(3.9)

and (3.7) then gives the basic formula

3
Oup = 112‘ Qs , 7] . (3.10)

The right~hand side of (3.9), sandwiched between appropriate states,
is direotly related to the so-called " o-terms" of low-energy
scattering 10) while, for zero momentum transfer, the left-hand

side yields the mass of the states,

One of the principal functions of the symmetry-breaking term
is to generate masses for the various Qoldstone particles in the
theory. In the tree approximation these masses will be related. A
simple procedure for extracting this mass relation is to express the
symme try-breaking term in powers of the Goldstone fields and examine
the coefficients of the second-order terms. In this approximation
it is necessary to allow for the non-vanishing of { X) by expressing
the dilaton field in the form

X =<X> + X

—_]Z-




and adjusting the parameter X in Lx so as to make the coefficlent
of the linear term in % equal to zero. The co-
efficient of ‘%%2 will then be interpreted as the dilaton 'bare

mass (squared). We oonsider the cases in tumni

A, Chiral su(z) x su(2) , L, € (2’2).

The symmetry-breaking term is given by

2
x

LI_ = Ac= A J((x) + 3‘()2 -

v _A 2 |
=A<x>.+Ax-§<"T>1 +oeee -

The pure dilaton part of the Lagrangisn is given by
2 4
L. = %(a“ X)“ + kX

=%(a#x) + kXD +4k{XD X+ 6D X7 + v ' (3.11)

4

The vanishing of the coefficient of ¥ gives the relation

2 A

Xy = - =

1< " T Xy
which can be used to eliminate K. from the expressiona for the bare

masses, These are given by

7 3R
n = -
T
z A - (3.12)
My (%

It therefore appears that breaking the ohiral SU(z) x S7(2) symmetry
with the isascalar component of a chiral four-veotor of oconformal

weight 1( = .1 yields the mass relation

S i
W\x = SWI,‘_‘_ « (3.13)

From Eq. (3.9)we obtain A = m,?F.,r which, together with (3.12),
implies the expeoted result

W = Fe . (3.14)

~-13=




'
As mentioned above, the oonstraint {3.2) can be looked upon

as a redefinition of the scalar fields., This suggests that the maszs
relation (3.13) should be obtainable by using (3.2) to eliminate the
dilaton field % rather than o, Thus we should write

| 4
L = ana + Kx + Ad-.
N Y CAr S 30 At Ac

[}

Applying the same method as above, we do indeed arrive at the
relation m§_= Bmi.. The existence of this alternative approach
is, as has already been remarked, a peculiarity of SU(2) x su(2).
The larger group SU(3) x SU(3) requires the first approach.

B, Chiral Su(3) x su(3) y Ly € (3,3) +.(3,3)

The symmeiry-breaking term is given by

L,= AU, + By, (3.15)

whare Iﬂo and Ué belong to the linear representation

(3,3) + (3}3) which contains a scalar nonst, U; s and a peeudo-~
scalar nonet, Vi , of the diagonal subgroup SU(3). These eighteen
components are oonstructed out of the eight independent Goldstone
fields M, , i = 1,2,++4,8, (or T, K, K, n) which constitute a
pseudoscalar octet of SU(3). In terms of exponential co-ordinates
the eighteen linearly transforming components oan be represented

by the expressions 11)

U.(M,X) = X Tr [ki<e21)" M/X | g=2iA M/X>:| ., i=0,..8

V.(M,X) = iX Tr [.\i('ew“ M/X e“21’“M/X)] , i=0,...,8

(3.16)
where all fields have begn asgigned the same conformal weight
f =1, end A _’-zz .AB; + The dilaton field oan be expressed
. i=l
in terms of the ocomponents LE and Vi by a formula of the same

type as the oomstraint (3.2), viz,

e e s B ;; - )
g A R




:EZ:: (tIIJ +V V’) '

, i=0
Another nine oconstraints exist - among these fields but we shall

not make any use of them,

Expanding L1 in powers of M we obtain

LR JO R ORI GEE JOLE

Incorporating this ﬁith'lgx as given in (3.11) we find, upon eetting
equal to zero the linear term in ¥, the ocondition

GA 2
4 (X =
af - s
whioh can be used to elimlnate K from the expressions for the bare

masses. These are given by

B RE 8 (2D -8 1)

2 R ;7
. 2hfz .16
My <x>J3 : (3.16)

The four masses are expressed in terms of two parameiers and hence

gatisfy two relations: the CUell-Mann-Okubo formula and

.
: iim?,'C = 3Mg + ém"’,\ | (3.19)

which implies for the dilaton mass m, 440 MeV ., Finally, the
parameter B/A which measures the ratio of SU(3) breaking to SU(3) x
SU(3) breaking takes the usual value & -1.25 .

G. Chiral SU(3) x su(3) , L, € (8,8)

Although the most popular method of breaking SU(3) x SU(3)
symmetry is via the (3,3) +-(3,3) representation,.this is by no

-15~




means the only interesting one. Indeed, the use of that par-
ticular representation was originally motivated by considerations
of a quark model for the veotor and axial veotor currenis and, it
may be argued, should not appear in a pure current model, In the
latter case a more natural symmetry-breaking representation would
‘be (8,8). This possibility has been discussed elsewhere 12).

The 64 linearly transforming components &), of (8,8) oan be
ropresented in terms of the Goldstone octet Ml,---,MB by the
formula

1oy (M) = X[QKP &%’M)Lb b = E )

whare (O-M)ab - gi; fabSMo + For the symmetiry-breaking ocontribution

t0 the Lagrangian we take

P ' . i ‘
L(gx) - »/% AZ Doa +f%— | 'BZ Agap Pab  (3.21)

& = ] ab=]

where the numerical factors are inserted for normalizing purposes
in order to facilitate comparison with the (3,3) + (3,3) case (they
do not affect the value of mi) .

The computation now proceeds in the same manner as before.

In particular, expanding Ll gives

= VEA GO+ X - m{(ﬁ;‘ BE) E +<-J%-$§)EK_+

G-ama)"}e




In addition to the Gell-Mann-Okubo mass formula, one obtains the
mass relation

2 _ 2 2
3mx = Zmz_ + 4mK (3.22)

which implies for the dilaton mass my % 590 MeV , Finally, the
ratio of SU(3)-breaking to SU(3) x SU(3) breaking is given by

(7-v
Es-)

’:T

g [}
#

-g,fz

g’m " ”l?ﬁ‘gw

B 5 (3.23)
J; = ~1,25 \/:’I . ‘
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C. Lanozos, Rev. Mod. Phys., 29, 337 (1957).

if V, is a conformal four-vector of weight { = =3 then -
H .5 = T = I ;
]M%:%%. ¥oreover, - if % 'T%? then %%f(%Y)M??
+"YTTI» :D#Y' H;—:‘_nce the term -(D»T’) Tju.ly is variationally
equivalent to qf'ﬂuj%u qr ao that (2.9) is real up to a

four-divergence,

This term was first considered in the context of dilatation

symmetry by G. Mack, Nucl. Phys. BS, 499 (1968); see also
G. Mack and A, Salam, Ann. Phys. (NY) 53, 174 (1969).
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