
IC/70/17

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

BROKEN CHIRAL AND CONFORMAL SYMMETRY

IN AN EFFECTIVE LAGRANGIAN FORMALISM

C.J . ISHAM

ABDUS SALAM

and

J. STRATHDEE

INTERNATIONAL
ATOMIC ENERGY

AGENCY

UNITED NATIONS
EDUCATIONAL,

SCIENTIFIC
AND CULTURAL
ORGANIZATION 1970 MIRAMARETRIESTE





IC/70/17

INTERNATIONAL ATOMIC ENERGY AGENCY

and

UNITED NATIONS EDUCATIONAL SCIENTIFIC AND CULTURAL ORGANIZATION

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

BROKEN CHIRAL AND CONFORMAL SYMMETRY

IN AN EFFECTIVE LAGRANGIAN FORMALISM *

C.J. ISHAM

ABDUS SALAM**

and

J. STRATHDEE

MIRAMARE - TRIESTE

April 1970

* To be submitted for publication.

* * On leave of absence from Imperial College, London, England.



«
f



ABSTRACT

The simultaneous breaking of conformal and c h i r a l symmetry i s

inves t iga ted within the framework of non - l i nea r r e a l i z a t i o n s and

ef fec t ive Lagrangians. The e x p l i c i t in t roduc t ion of a massless

d i l a t o n f i e l d , ^ , enables oonformal invariance to be preserved in

Lagrangians fo r massive mat te r f i e l d s . I t i s shown t h a t the equat ion

of Cal lan , Coleman and Jackiw. ^u^D.. =: B,,,. • remains v a l i d no twi th -

standing the introduction of this particle and also that it is

possible to oonstruct Lagrangians whioh are simultaneously invariant

under the chiral and conformal groups. If we introduce a term which

explicitly violates both symmetries then the dilaton acquires a

definite (bare) mass which can be expressed in terms of the masses

of the ohiral bosons - the pion in the oase of ohiral SU(2) x SU(2),

the pion and kaon in the case of ohiral SJ(3) x SU(3). The precise

form of this mass relation depends upon the type of symmetry-breaking

term adopted.
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I. INTRODUCTION

The well-known techniques of non-linear realization theory

have "been used extensively in the treatment of ohiral symmetries.

These techniques, whioh are based upon the concept of group action

on homogeneous spaces, have a wider relevance in that they provide

a natural vehicle for the description of any symmetry which is spon-

taneously broken. In particular they can be usefully employed in

discussions of oonformal symmetry. The group of conforraal trans-

formations on space-time certainly cannot be expected to manifest

itself as a symmetry of physical states in that i t s unitary

representations do not include discrete non-vanishing masses.

However, i t is conceivable that this symmetry may be present at

least in the equations of motion although not in their solutions,

i . e . , that i t is a spontaneously broken symmetry. This point of

view has been advocated in recent works . In the present paper

we consider the problem of setting up effective Lagrangians whioh

are simultaneously invariant under the conformal group and under a

chiral group (SU(2) x SU(2) or SU(3) x SU(3)). The resulting

theory possesses the following features:

a ) physical states which are classified aooording to unitary

representations of the direct product of the Poinoare group

and the internal symmetry group (SU(2) or

b) Goldstone particles corresponding to the spontaneous

breakdown of the higher symmetries, viz. , a massless even-

parity spin-aero and chiral-invariant "dilaton" together

with an SU(2) triplet (or SU(3) octet) of odd-parity spin-

zero massless "chiral bosons"j

c) some remnants of the higher symmetry which are expected

to survive in the tree graph approximation.

The degenerate vacua which are characteristic of the Goldstone

solution can be avoided i>y introducing explicit symmetry-breaking

terms into the Lagrangian, Such terms serve to generate masses for

the Ooldstone particles. Moreover, by choosing a symmetry-breaking

term which belongs to an irreducible representation of the combined

oonformal and chiral groups we oan relate the (bare) mass of the

- 2 -



,dilaton to the (bare) masses of the ohiral "bosons. This mass relation

depends strongly on the type of symmetry breaking ohosen. Thus, in

the oase of chiral SU(2) x StJ(2), if we assign the symmetry breaker

to the SCT(2) scalar part of a ohiral 4-veotor, we find

2. z

where my and m__ denote the masses of dilaton and pion respectively.

In the case of SJ(3) x SU(3), if we adopt a linear combination of

the even-parity SU(2) singlets in (3,3) ©(3 ,3 ) , then we find

On the other hand, if we take the symmetry-breaking terms from the

representation (8,8), we obtain

In Seo. -II we review the general method for making any Lorentz-

invariant Lagrangian into a conformal invariant one through the intro-

duotion of the dilaton field, ^ . The equation of motion satisfied
2 )

by this field can be put into the universal form

provided there are no derivative-oontaining symmetry-breaking terms

In this equation, D^ denotes the current of the generator of

dilatations and is of course conserved in a dilatation-invariant

theory. The tensor 9^^ denotes the usual symmetrized form of

the canonioal energy momentum tensor. It may he noted that the

equation of motion for ^ oan be put into a form advooated recently

by Callan, Coletnan and Jaokiw '

where B v and D^ are defined by
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e = e - ̂ (3 a - g • ) x2

5 = D + a [-~ (x a - x a ) x2 + F ]
U n v 6 v fi \x v v\x

An explioit formula for Pv^ => - F ^ is oontained in Seo. II. Suoh

redefinitions are permissible in that the added terms contribute

neither to the space integrals of 9^ and D-- nor to the 4-

divergenoes. We have not examined the renormalizability of

In Seo. Ill we discuss the problem of combining conformal

invariance with chiral invariance. The solution is given in the

form of a set of simple rules for generating a ohiral and conformal

invariant Lagrangian from one which is only chiral invariant. The

remainder of Sec. Ill is devoted to the construction of symmetry-

breaking terms and extracting the associated mass formulae mentioned

above.

I I . THE LAGRABTGIAlf FORMALISM

The conformal transformations of space-time const i tu te a

fifteen-parameter Lie group which i s characterized by the fact that

the Jaoobian matrix d x ^ / S x ^ i s proportional to a Lorentz t r a n s -

formation. More prec ise ly ,

a— ~ *7 = det
a x Bxo

a p
where 1̂ " =• diag(+l, -1, -1, -l) denotes the Minkowskian metric

tensor. The Poinoare group is evidently included as a ten-parameter

subgroup. The property (2.l) allows one immediately to extend any

representation of the Poincare group to the full conformal group.

Thus, suppose that the set of fields V'v (x) transforms under the

Poincare group acoording to

y(>0 -• y'(*') - ])(A)W(*) (2.2)

where ^uv = ^^M/^w ^•en0'';es a homogeneous Lorentz transformation.

Since, aooording to (2.1), for any oonformal transformation we oan

write
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9x'
—£ =
9xv

det
9x'
9x

X a Lorentz matrix ,

it follows that the transformation law

det
9x'
9x

D
ax (2.3)

is well defined provided X is a Lorentz scalar. The behaviour of

y imder oonformal transformations ia completely specified "by the

action of Lorentz transformations (2.2) and pure dilatations

(A "> 0) for whioh (2.3) simplifies to the form

= \ (2.4)

Sinoe the pure dilatations must commute with the homogeneous Lorentz
transformations, we must require that the matrix Z commutes with

I>( A) , (En particular, if D( A ) is irreduoible Jt will be a pure number.)

The Lagrangian of a oonformal invariant theory must be a
Lorentz scalar with L = -4 » i . e . ,

det | i (2.5)

in order that the action be invariant. In the absence of spontaneous

symmetry breakdown the condition (2.5) can be met only in theories

with dimensionless ooupling constants and vanishing masses. However,

if we suppose that there is spontaneous symmetry breaking in the theory,

then we have at our disposal a fundamental scalar field 9((x) with

I = -1 and whose vaouuia expectation value is non-vanishing . Our

basio hypothesis, therefore, is that the conformal invariant Lagrangian

(2.6)

is capable of yielding a degenerate or Ooldstone solution with
^"K.y f 0- In principle the value of ^X^ could be determined self-
oonsistently in the manner of Goldstone. Since jL • -1 for this
field, the non-vanishing of (%y can only mean that the vaouum state
is not a conformal invariant and, correspondingly, that the
particle is massless.
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The dilaton field % can be used to generate effective masses

and ooupling constants for the other fields y in the system. That

is, any given Lorentz-invariant lagrangian density L(^) can be

turned into a conformal density L(w f%) by introducing % and its

derivative in the appropriate places. . Two fundamental oper-

ations are involved. Firstly, the weight of each term in l>{ft %)

is brought to the value I => -4 through multiplying by the appropriate

power - positive or negative -of "it . Secondly, the ordinary deriva-

tive S^y is replaced by the covariant form

where the matrices -C and S ^ characterize the behaviour of ^

under infinitesimal dilatations and Lorentz transformations, respect-

• ively. Evidently this formulation requires (.%} j 0 since the

field % ocours in the denominator of (2.7).

We turn now to consider the general form of the equation of

motion for % . The disoussion is facilitated by first putting the
7 }

Lagrangian L(y) into the oanonioal form }

Lfy) = i Y T ^ d My - Hfy) (2.8)

where T^ denotes the transpose of \}? and 1^ denotes a set of numerical

matrioes. The adoption of (2.8) represents no loss of generality

sinoe any Lagrangian oan be brought into this form by introducing
7 )sufficient auxiliary fields , Moreover, we oan assume that the

components ^ are real. This implies that the spin matrices, 5

defined by

for infinitesimal Lorentz transformations, are purely imaginary.
Lorentz invariance requires that H(y) in (2.8) be a scalar in-
variant while V, must satisfy

A*

i (ST r\ +1\ s ) = g . r - g . r .



Since divergence terms in a Lagrangian are variationally insignificant,
no generality i s lOBt in assuming that the matrices 7̂  are symmetric
"between fermion fields and anti-symmetric between boson f ields. Thus,
for example, the four-veotor iy/TT)Ur y vanishes identically while the
eleotrio ourrent is represented by the quadratic form i *UJ TT, Q V
with q. an antisymmetric Lorentz soalar matrix.

For the conformal invariant Lagrangian corresponding to (2.8)

we adopt the real form

where L^ is given by (2.6) and the covariant operator D^ by (2.7)
Explicitly,

+ X4 {K - H(xV) l + i(3 X)2

J M (2.10)

The equation of motion which iB obtained from this Lagrangian by

varying % is given by

v - o (2.ii)

where 0^ denotes the usual symmetrized form of the canonical

energy momentum tensor for the whole system (inoluding % ). The

inclusion of a symmetry-breaking .term L^^X) in (2.10) will modify

this equation of motion. If we suppose that L, contains no

derivatives and transforms like a Lorentz soalar with X^ } -4 then

(2.11) is replaced by

where DM denotes the canonical dilatation current

I t may "be of interest to see that this current oan be put into a

form similar to that given in Ref.4. To begin with, we have

- 7 -



D = T x + it i r r x x s ^ + x a x

where T^v denotes the oanonical energy momentum tensor, A l i t t l e

algebra gives

D = 6 X + X 9 X + 9 F

(2.14)

where FyfA • ~^u,v * s defined by

F = i x (H + H - H )
IdV a ayv v\xa ixvot

H = ^ T r X1 •* S 0 ,

Define the new;non-oanonioal7currents

D = D - a - | F + ~(x 3 - x d )X2\

9 = 8 -~(d a - g D ) x 2 (2.15)

in terms of whioh the relation (2.14) takes, the particularly simple

form

xv

It should be emphasized that while this relation has the same appearance

as that of Ref. 4 it is not identical with it. Our definitions of

HJU and 0̂ tv differ from the canonical ones only through the presence

of the dilaton field % (in addition to the higher spin contributions
i n FM.! ) whereas Callan, Coleman and Jackiw employ all of the zero-

spin fields in their redefinition. In particular, we make no claims

about the renormalizability of

We conclude this section on the representation of oonformal

symmetry in a Lagrangian framework by remarking that the oonformal

invariant Lagrangian (2.10) must yield S-matrix elements which, on

the mass shell, are independent of X . This follows from the fact

that the modification A -> X oan be effected by the field redefinition
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£-*

whioh, according to the well-known equivalence theorems of field

theory, leaves the S-matrlx unchanged. In the presence of the

dependent symmetry-breaking term

this statement remains true. I t fails in more general broken

symmetry models.

III. BROKEN CHIEAL ATO CONFOMAL SYMMETRIES

There are at least two equivalent methods of generating con-

formal invariant Lagrangians from ohiral invariant ones. However,

caution must be observed in applying the rules of Sea. IE in order that

the ohiral invariance should not be lost. It will be found that the

dilaton field % is intimately involved in the non-linear ohiral

transformations,

The simplest approach - and one which is particularly suited

to the chiral SU(2) x SD(2) case - is to consider chiral-invariant

Lagrangians expressed in terms of fields whioh transform linearly

under the chiral group. Since the conformal and chiral transformations

are commutative there will be no difficulty in applying the pre-

scriptions of Sec. II. Conformal invariance is obtained without

disturbing the ohiral invarianoe provided only that the dilaton is

taken to be a ohiral scalar. This we shall assume. Non-linearity

is now achieved by imposing the appropriate oovariant constraints.

For example, in chiral SU(2) x SU(2) the pion field is usually assigned

to a chiral four-vector (T,Tr) which is then constrained according to

* (3.D

where f is a constant which, in the tree approximation, can be

identified with F^ , the pion decay constant. The constraint (3.l)

is oonformally invariant only if both a* and Tr are assigned the

conformal weight X «» 0. This is a perfectly consistent arrangement.

However, it is usually more convenient to assign the value Z » -1 to

-9-



boson fields(such as IT ) since this corresponds to the assignment

Jt • -4 for the kinetic energy term (3^. ) , which then appears

without the encumbering weight factor % . The conformal co-

variant analogue of the constraint (3. l ) now takes' the form

<Tl + T£ = X* ( 1 T - K • ^* - ' - I ) ( 3 .2 )

which is also chiral invariant since % is a ohiral scalar »

Clearly we should now expect (%) •* F-. . Using the generalized

constraints like (3.2) one can readily construct Lagrangians which

are invariant under both ohiral and conformal transformations, (it

may he remarked that the constraint (3.2) is more a redefinition of

scalar fields than a genuine constraint. However, this is a

peculiarity of the Sd(2) x SU(2) case which does not carry over to

SU(3) x SU(3)• In both cases we introduce one chiral scalar, the

dilaton, into the theory; it just happens that in the non-linear

StT(2) x SLT(2) case only one field was removed by the constraint - as

opposed to ten in SU(3) x StJ(3).)

The non-linear ohiral transformations of the pion field which

can be deduced by using (3.2) to eliminate <r from the relations

OK a £*V take the form

•In general we should obtain a relation of the form

6K* = X f1 ( T ) tb (3.3)

where the funotion f , depends upon the choice of ohiral oo-

ordinates.

It is not always convenient to make explicit use of constraint

equations in setting up chiral-invariant Lagrangians. The general

method is to start with a form which is invariant under the linear

subgroup (SU(2) or S[J(3)) and which does not contain the chiral

boson fields ( TT or TT, K, ft ). Invariance under the full chiral

group is then obtained by everywhere replacing the ordinary derivative

^uV1 by a chiral oovariant form

-10-
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V i> = 9 xb + T i*)(d

The pion kinetio energy is then expressed in terms of the oovariant

derivative

and added to the Lagrangian. In order to -achieve conformal invarianoe

as well as chiral invariance this prescription must be modified.

Instead of V^y and
dovariant derivatives
Instead of V^y and Vp.1* we must insert the ohiral and conformal

a y

Each term in the resulting Lagrangian is then brought to the correct

weight by multiplying with a power of the ohiral-invariant dilaton

field % and, finally, the dilaton Lagrangian (2.6) is added. (The

formulae (3.4) are based on the assignment %tr = -1 . If some other

value of Jt^f. is chosen then we must replace % by /£•"" ̂  in them.)

Consider now the problem of symmetry breaking. To the fully

invariant Lagrangian, made up according to the prescriptions outlined

above, we shall add a non-invariant term L, . In general L-, must

be a Lorentz scalar with even parity, We shall require in addition

that it contains no derivatives. For the case of chiral SCT(2) x SU(2)

we shall assign L.. to be the SU(2) singlet member of a chiral four-

veotor and in the case of SU(3) x SU(3) we shall oonsider two possible

assignments; a mixture of $11(3) singlet and octet components, firstly

in the ohiral multiplet (3,3)(-D (3,3) and, secondly, in (8,8). In all

cases we shall take i-, = -1 .

The point about assigning the symmetry breaker L-. to a

definite irreduoible representation of the direct product of the

ohiral and oonformal groups is that one obtains in this way a

relation between the divergenoes of the dilatation and axial currents.

Thus,
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vhere Q,- denotes the axial oharge operator. Combining these

formulae with the fundamental relation of Seo. II,

= & ( 3- 7 )

one could embark upon a current algebraic investigation of the

consequences of partially broken oonformal symmetry. For example,

in the case of SU(2) x SU(2) vhere we take "'

1^ - A<r , (^ - -1)

with A a numerioal constant", the equations (3.5) and (3.6) take

the respective forma

( 3 * 8 )

and (3.7) then gives the basic formula

The right-hand side of (3.9)» sandwiched between appropriate states,

is directly related to the so-called " a-terms" of low-energy

scattering ' while, for zero momentum transfer, the left-hand

side yields the mass of the states.

One of the principal functions of the symmetry-breaking term

is to generate masses for the various Goldstone particles in the

theory. In the tree approximation these masses will be related. A

simple procedure for extracting this mass relation iB to express the

symmetry-breaking term in powers of the Goldstone fields and examine

the coefficients of the second-order terms. In this approximation

i t is necessary to allow for the non-vanishing of ^X^ ^v expressing

the dilaton field in the form

X - <%>

-12-



and adjusting the parameter l£ in L<y so ae to make the coefficient

of the linear term in % equal to zero* The oo-
*" 2 '

effioient of ~ir% will then be interpreted as the dilaton bare

mass ( squa red ) . We oonsider the oases in t u r n !

/\, Chi ra l SU(2) x SU(2) , L, t ( 2 , 2 )

The symmetry-breaking term is given by

x = Ao- = A J «X> + X)2 - *"

-A<X>+A5f-

The pure dilaton part of the Lagrangian is given by

i(3 X)2 + K < X > 4 + 4ic<X>3 X + 6K<X> 2 X 2 + • • •

The vanishing of the coefficient of X gives the relation

whioh can be used to eliminate X, from the expressions for the bare

masses. These are given by

* <%>

t7- A
J

I t therefore appears that breaking the ohiral StJ(2) x SCj(2) symmetry

with the isQscalar component of a chiral four-veotor of oonforoal

weight Jt̂  « -1 yields the mass relation

W" = 3 ^ , (3.13)
A*

From Eq. 0»9)""« obtain A.-.in^P^ which, together with (3.12),

implies the expeoted result

<%> = F-- . (3.H)

-13-



As mentioned above, the constraint (3.2) oan be looked upon

as a redefinition of the scalar fields. This suggests that the mass

relation (3.13) should be obtainable by using (3.2) to eliminate the

dilaton field % rather than (r. Thus we should write

Applying the same method as above, we do indeed arrive at the
2 2

relation m = 3m_ . The existence of this alternative approach

is , B.B has already been remarked, a peculiarity of Stf(2) x SU(2),

The larger group SU(3) x SU(3) requires the f i r s t approaoh.

B , Chiral SU(3) x Stl(3) , L1 £ (3,3~) + (1,3)

The symmetry-breaking term is given by

where I/Q and Ug belong to the linear representation

(3,3) + (3,3) whioh contains a scalar nonet, U. , and a pseudo-

scalar nonet, V. , of the diagonal subgroup Sll(3). These eighteen

components are constructed out of the eight independent Goldstone

fields M , , i - 1,2, • • • , 8 , (or 7T, K, K, \f\ ) which constitute a

pseudosoalar octet of SU(3). In terms of exponential co-ordinates

the eighteen linearly transforming components can be represented

by the expressions '

i = 0.. .8

V.(M, X) = i X Tr [ M e i¥1/ - e " ' 'Ml , i = 0 8

(3.16)

where all fields have been assigned the same oonformal weight

X - - 1 , and A »M » / _ . > 11. . The dilaton field oan be expressed

in terms of the components U. and V. by a formula of the same

type as the constraint (3.2), viz.

-14-



8
2 \ '

x = > (u.u. + v.v.) .
i = 0

Another nine constraints exist among these f ie lds but we shall
not make any use of them.

Expanding L, in powers of H we obtain

(>/!.' A / I ) ^ }
 + •" ' (3.17)

Inoorporating this with L« as given in (3.1l) we find, upon setting

equal to zero the linear term in %, the oonditiori

whioh oan be used to eliminate K from the expressions for the bare

massea* These are given by

I S A ( / ? B [ T \ 2 l B A / ' f ? B / 1 \ 2 1 6 A ^ / 1 B / l \
* <X>W.3 AN13J1 mK=<X> VN3 "2AV37' % =<X> \ 3 " A*J 2^

The four masses are expressed in terms of two parameters and hence

satisfy two re la t ions : the Gell-Mann-Okubo formula and

8m* = 3 % -i- 6m^ (3.19)

whioh implies for the dilaton mass m ̂  a# 440 MeV . Finally, the

parameter B/A which measures the ratio of SU(3) breaking to SU(3) x

SU(3) breaking takes the usual value % -1.25 .

G. Chiral SU(3) x SU(3) , L± 6 (8,8)

Although the most popular method of breaking SLf(3) x SCT(3)

symmetry i s via the (3,3) + (3,3) representation, th i s i s by no

-15-



means the only interesting one. Indeed, the use of that par-

tioular representation was originally motivated by considerations

of a quark model for the veotor and axial veotor currents and, i t

may be argued, should not appear in a pure ourrent model. In the

la t ter case a more natural symmetry-breaking representation would

be (8,8). This possibility has been disoussed elsewhere ' .

The 64 linearly transforming oomponents **, of (8,8) oan be

represented in terms of the Goldstone octet M ,̂«»»,Mg by the

formula

r ' ' " ' " ' (3.20)

where (OM) , » \ \ f . M . For the symmetry-breaking contribution

to the Lagrangian we take

- M A ab (3.21)
a « 1 ab«l

where the numerical faotors are inserted for normalizing purposes

in order to facilitate comparison with the (3,T) + (3»3) case (they

do not affect the value of n j •

The computation now prooeeds in the same manner as before.

In particular, expanding L1 gives

JL 1 B\ 2 \

-16-



In addition to the Gell-Kann-Okubo mass formula, one obtains the

mass relat ion

3mv = 2m2 + 4mL (3.22)

which implies for the dilaton mass m̂ . X 590 MeV . Finally, the

ratio of SU(3)-breaking to SU(3) x SU(3) breaking is given by

p.,
v m

2

C 3 * 2 3 )

-17-
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