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I. INTRODUCTION

Barring lepton electrodynamics, most Lagrangians of physical interest

arevnon-renormalizable',' the apparent non-renormalizability arising either from

their non-polynomial nature or from higher spins. Typical non-poly-

nomial cases are the chiral SU(2) x SU(2) Lagrangian

(1.1)

in Weinberg's representation or the gravitational Lagrangian

K

where

r x = i gXp (a g + 3 g

The components g which enter the expression for g = det g „ are a
uvratio of two polynomials in g . A typical example of a higher spin case

is the intermediate-boson mediated weak Lagrangian, e. g.; the neutral '

vector W interacting with quarks Q ,

So far as non-renormalizability is concerned, this is manifested most

simply by transforming(li3) into a non-polynomial form. In Stiickelberg
B

variables (Q* =e 5 " Q , W =A +rr9 B) an equivalent interaction is
H /u It- JU

given by

It is clear therefore that if Lagrangian theory is to play any direct role in

particle physics beyond that for electrodynamics, methods must be de-

veloped to extract numbers from non-polynomial theories. Basically

any such methods must ensure the resolution of the two distinct difficult-

ies of non-renqrmalizable theories, i .e . , an infinite number of distinct

infinity types and^high-energy behaviour which violates Froissart-like bounds.
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Problems with conventional treatment of non-renormalizable theories

1) An infinite number of infinity types:

Ignoring derivatives for the moment, one may write oL. in the
lijX

typical form

, (typicallyy(n) «f") J
where v(n) contain powers of f~^Y~~\ (We shall call f the minor coupling

n ,n

constant.) A perturbation expansion may be written to any given order N

in the major coupling constant G and to any desired n order in the minor

coupling f . In this linearized form all contributions of f ^ interact-

ions with n > 4 give rise to non-renormalizable infinities. To remove

these in the conventional manner, one would need more and more counter-

terms in each order, reducing very considerably the predictive power of

the theory.

2) Unacceptable high-energy behaviour
theories

The high-energy dependence of individual graphs in all / with JL ocf

(n > .4) increases (unacceptably) as the order increases and is not poly-

nomially bounded. (One aspect of this is that the counter-terms needed to

cancel infinities must contain arbitrarily high-order derivatives of field

variables, making the counter-Lagrangians non-local.)

To my knowledge the first acceptable treatment of problem 1) was

given by S. Okubo as early as 1954 in a paper which was apparently

overlooked by others who subsequently worked on different aspects of this

problem. These include Arnowitt and Deser, Fradkin, Efimov, Peinberg

and Pais, Giittinger, Volkov, Fried, Lee and Zumino, Fivel and Mitter in

addition to Delbourgo, Strathdee, Boyce and Sultoon, and Roller, Hunt and
2)

Shafi . I shall review the earlier results and also state some new ones

particularly relating to renormalization constants. These are joint work

of Trieste and London groups.

The basic idea in dealing with problem 1) is that for a fixed order in
N

the major coupling constant G one can Borel-sum the entire perturbation

series to all orders in f . Formally this is an asymptotic series

with each term given by an infinite expression. These Borel sums have

the remarkable property that the summation automatically quenches
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most of the infinities. (This is perhaps not too unexpected a result when

one considers that the Lagrangians of the type

1

1+f t2

visibly appear to possess a built-in damping factor for higher frequencies.)

For some Lagrangians this quenching is so strong that all matrix elements

are rendered finite, offering thus the possibility of computing even self-

masses and self-charges. For others some few infinities still survive

and these need renormalizing.

There are a number of different formulations of the summation pro-

cedure - several variants - which fall basically into two classes: the x-

space methods and the p-space methods. The results obtained using either

method are equivalent. The chief problem is to ensure that the Borel sums

i) possess the requisite analyticity properties in p-space, ii) satisfy unit-

arity and iii) are unique. Since good reviews of these methods exist,

I shall not attempt to make this report comprehensive; I shall confine my-

self to a statement of results. In respect of problem 1), these are: i) the

requirements of analyticity and unitarity are most likely met by these

asymptotic sums, though uniqueness seems to need additional criteria;

ii) for a large class of non-polynomial Lagrangians, a consistent renormal-

ization programme can be devised where all infinities can be incorporated

into acceptable counter-Lagrangians.

Regarding problem 2),which concerns the high-energy behaviour of

Borel sums in the minor coupling constant, we obtain a perfectly acceptable

behaviour for space-like momenta. For time-like momenta the
2

cross-sections computed to order G in the major coupling constant in-

crease unacceptably fast with energy. It appears, however, that a further

summation, this time in the major coupling constant G. of sets of chain-

graphs alters this, just as is the case in conventional theory where, for

example, a summation of ladder type perturbation diagrams produces

Regge asymptotic behaviour.
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II. A RAPID EXPOSE OF THE METHODS

The basic ideas of the summation methods can perhaps be rapidly

illustrated by considering

a) The formal series expansion for amplitudes

Formally an expectation value like

equals the asymptotic ser ies :

,£_ n! f A p ( x 1 - x 2 ) . (2.1)

Each term is infinite. Indeed as n increases,the

singularity of A (x)oC (1/x )n gets worse and worse. We shall use the Borel

method to sum the ser ies . Ultimately we are interested in the Fourier

transform of this sum:

F(p2) = fF(A)e l p Xd4x . (2.2)

The criterion for an acceptable summation technique is that F(p ) should

exhibit conventional p-space analyticity.

b) The euclidicity postulate
2

To guarantee this consider the Symanzik region in p-space (p < 0) .

(When more than one external momentum p. is involved, the Symanzik
2 1

region is the region for which p. <: 0 , p .p .< 0 . Certain other res t r ic t -

ions on momenta are also placed but the heart of the matter is that all mo-
2

menta can be simultaneously chosen such that p . - = 0 .) For p < 0 ,
choose the frame where p = 0 . Clearly we may make a Wick rotation

x -* ix4 without altering the value of F . Thus for the Symanzik region of

p-space one needs to consider A (x) for euclidean vectors x only. (For
2 2 2 2 2

a zero-mass field A(x) = -1/4TTx , where x = -x - x and is real and
positive.) For p-space regions outside the Symanzik region we analytically
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continue (2.2). (It cannot be emphasised strongly enough that for divergent

series of the type (2.1) one is not starting by "proving" the validity of the

Wick rotation. Rather, euclidicity is a basic postulate - part of the pro-

cess of defining the theory. One accepts it for the Symanzik region in p-

space; outside this region one makes an analytic continuation in the momenta.)

c) Borel summation

To give meaning to the divergent sum F{£$, use Borel transforms

and write:
oO

(2.3)

using the identity:

n!

d) The x-space method

The x-space method consists of inverting integration and summation

in £3) and writing it as:

oo

F(A) = 1 d?e s (1 - £f A) . (2.4)
o

The expression fi. 4) defines the amplitude F(A) . For zero-mass particles

(m =0) this equals:

OQ

Notice that as r ->0 , F(A) is perfectly well behaved. The Borel sum-

mation has quenched the ultraviolet infinities. (Fradkin and Efimov have

given explicit expressions of the type (2. 4) for Borel sums to all orders
NG where this quenching effect can be explicitly seen.)
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e) At this stage we encounter our first problem in the x-space method;

the integrand has a pole on the integration path at

which equals — when m = 0 (r =x +x ) .

We must define how to go round this singularity, the final objective being

that the Fourier transform should be an analytic function which when con-
2

tinued to positive p (outside the Symanzik region) has the unitarity cut

from p - 0 to oo .

One answer is: take the principal value. This is because,from (2. 3),

F(A) must be real. The p. v. prescription for the integral representation

(2.4) of F(A) will guarantee this,*) The Fourier transform of (2.4) when

m = 0 can be explicitly evaluated and a continuation to time-like values
2 ~ 2

of p carried out to demonstrate explicitly that F(p ) possesses the
2

correct analyticity structure in the p -plane. The asymptotic behaviour .
of F(p2) is:

F(s)

iir exp(f2s) s —* + °°± iO

Footnote l :

Ambiguities arise if instead of the p.v. we consider the more general real combination

2 2
(|+ib)F(A,f +ie)+{l-ib)F(A, f -ie) .

2
T .JC result differs from the principal value integral by a purely real term of the form b exp (1/f A) which

possesses everywhere a zero expansion around A = 0, and which,when added to the p.v.yioes not affect its

• icrturbation representation: ~

n=0 2

The Fourier transform of this additional term is analytic in the entire p -plane so that in this order

unitarity places no restriction on it. Higher-order unitarity,however,does seem to restrict such ambiguous

terms. In Ref. 3 it is argued that once the constant b is defined in the second-order super-propagator {see also

footnote 3) the same constant or its multiples appear in all higher orders.
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where a = p . *)

f) The p-space method
method which works directly in

One can use an alternative / p-space. It depends on Volkov's

observation of the power of the Gel'fand-Shilov investigation of the Fourier
Z * ? 7

transform of the generalized function (A(m = 0)) = r in the range
0<Rez < 2 .

The crucial formula is

„,

0 < Re z < 2

To use this formula go back to the Borel sum(2.3)and employ a Sommerfeld-

Watson transformation to convert the series into a formal integral of the

form

(2.7)

with the contour T enclosing the positive real axis in the z-plane.

Straighten the contour to lie along the imaginary axis with Rez constrained

to lie in the range 0 < Re z < 2 . Using Gel'fand-Shilov's formula we

obtain:

~ 2 i r — dz (
" ' ^ = 2 / sin*z s i n i r z r ( z ) r ( 2 - l ) T ^ ' °^' (a-. 8)

* Footnote 2:

The basic reason why the Fourier transforms of the BOEI sums possess the correct unitarity cuts has been spelled

out by Lee and Zumino. While the infinities come from small r values of (A(r) •» 1/r ) of the propagators,
T->0

the unitarity (singularity and threshold) structure arises from large values of r /A(r) we /r \ . Once

Vr~ /
it can be shovm that (2.4) is an asymptotic representation of the perturbation expression (2.3) for large r , the

correct unitarity behaviour of (2.4) is guaranteed.
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where 0 < a < 2 . (The term 6(p) corresponds to a graph which contains

no internal line.)

f) Formula (2.8) is the master formula. By closing the contour along

the left, one can immediately obtain the asymptotic behaviour of F(p ) for
2

p -* -oo and the result (2. 5). As in Regge pole theory, the right-most pole

of the integrand gives the leading contri bution to the asymptotic behaviour;

in this case the right-most pole lies *) at z = -1 , giving the asymptotic

expression « » - „ as before in (2. 5).
(f P )

III. HIGHER ORDERS

a) Super-graphs ^

Consider «*». (#) = G £_ > ~ i W ( v(n) contains the minor

coupling parameter f ) .

N
It is easy to verify that the G contribution to an amplitude

F ( x - , . . . , x ) with E external line can be written as a sum of contri-

butions from a set of super-graphs constructed as follows:

a) Take N points x1 , x , . . . , x .

b) Join all points pair-wise with just one super-line joining two distinct

points (x. , x.) ; associate with this line a positive integer n.. .

^Footnote 3:

The principal value ambiguity of the x-space method noted in Footnote 1 has a counterpart when we take

o account the appearance of the (-)ive sign in front of A in (-A) in the

To see this more explicitly, introduce a multiplier X. in front of A ; thus,

2

into account the appearance of the (-)ive sign in front of A in (-A) in the Sommerfeld-Watson transform.

We must interpret the limit \ - * + l by a real average of the values (-X)Z = e l i r z and (-\)Z = e"lffZ , obtain-

ing in general:

F(A) = [ dz ( ^ - + b) T(z + 1) ( f W

with b an arbitrary real constant. This ambiguity of the constant b parallels the ambiguity noted in Footnote 1.

As noted in Footnote 1, from unitarity one can show that all ambiguous constants arising in higher orders are

multiples of this second-order b .
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c) For each line write the factor - [A fx - x )] ^
n..I F i i

d) For each point x. write a vertex factor v( ) n., + m.) . Here

1 r̂—• i j i

m. is the number of external lines impinging on the point x. .

e) The contribution of the super-graph to the amplitude equals

TT V -

nn L i
(3.1)

The limits of the n.. are given by

Nf) To get the total contribution in order G , sum over all configurations

of the external lines with the m. lines at the i-th vertex distributed
1

over the various vertices, such that

b) Super-graphs in momentum space

The great beauty of the p-space method lies in the similarity of the

p-space expressions for super-graphs and normal Feynman diagrams.

One can introduce Feynman1 s auxiliary parameters and carry out the

loop integrations. The result is an elegant expression

for the super-graph contribution as a weighted average integral of contri-

butions of conventional graphs. The utility of such an expression is two-

fold.

i) The sums of super-graphs in different orders of G closely re-

semble the sums for conventional graphs and the methods previously

discussed by Polkinghorne, Federbush

through the summation can be taken over.

discussed by Polkinghorne, Federbush and others for carrying



ii) The discontinuity formulae of Cutkosky - and the proof of the

unitary relations using such formulae - follow the conventional

lines.

For the zero mass case, the integral expressions for the N-th order

super-graph is the following: (We consider here the simple case

D Q - 0 . )

Associate with each super-line a four-momentum vector q.. . The

Sommerfeld-Watson transform of (3.1) in p-space equals:

P(Pl) = GN H [ dz.. p(Zi.) f d ^ . (-q-/ 1)" 2 54(EPl + Efly) . (3.1)
i i J J

Here p(z..) is the product of the vertex factors v( Z-*. z.. + ni.) , the

l + bcosirz..
factors —: (or more generally : ^ ) and the factors

simrz.. sinirz..

sinirz . T z..) r(z . .~ 1)
i j iJ !J

for each super-line. The p. "s are the momenta

carried by the external lines at the i-th vertex and the 6 -functions express

conservation of energy and momentum. The contour in each z..-plane

for the case Dn ~ 0 liesalong the imaginary axis for each z.. . (We consider

later the location of these contours when D / 0 , The problem of

any surviving infinities in the theory is bound up with the location of these

contours.)

Introduce Feynman's auxiliary parameters, using the integral r e -

presentation *)

2,z-2 1 1 , 1-z arq2

4
One may now carry through the d q integrations in the subsidiary

integral I defined by

.,..> \ (.,£ qj> UtZvzijf n 4'« (3-4)

Footnote ^;
For z = 1 we recover Feynman's foimula for normal propagators.
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The result is identical to the case of con-

ventional Feynman graphs with F = (N(N-l))/2 internal lines. (This is

because I(p.,a..) is not z..-dependent.) The evaluation of

I(Pit <*j.) can easily be carried through using the methods of Chisholm5^ ;

the final expression tor the amplitude F(p.) reads:

(35)-n j v . p.̂ ,

where p' differs from p by the factors 11 • -
i I J T P ( 2 - z . , )

N

The result for the N-point function evaluated in order G can there-

fore be stated thus:

Draw a Feynman graph with internal lines joining all the N-points

pair-wise. Introduce Feynman parameters; the result of performing loop

integrations is the standard Chisholm expression I(p.,<*.,) . Multiply

this by the factors (a,.) 'J and the weight function p'(z..); integrate

over Feynman parameters p.. and the Sommerfeld-Watson parameters

z.. . This gives the super-graph contribution.

IV. SUPER-GRAPHS

Infinities and renormalization

1. Using super-graphs one can investigate quite simply the possible in-

finities of non-polynomial theories. Among these are theories with no

infinities whatsoever. The physically interesting cases, how ever, are of

mixed theories where polynomial and non-polynomial Lagrangians both

occur together. Such, for example, is the case for chiral Lagrangians

(with nucleons interacting with pions for example) or weak Lagrangians

(where the Stiickelberg B-field occurs non-polynomially while the A-field
(see (1.4))

interacts polynomially 1 ), Not all these mixed theories are renormalizable.

By renormalizable, we shall mean theories where all infinities can be

absorbed in a finite set of counter-terms. (Naturally the counter-terms

must NOT contain arbitrarily high-order derivatives of field variables

-11-



9 0 , for example in non-polynomial combinations like l/(f+ f (8#)2),

otherwise the counter-terms would represent non-local additions to the

original Lagrangian.)

2. Before we proceed, it is important to remark that,for non-polynomial

Lagrangians with multitudes of external lines coming out of single vertices,

the familiar statement of graphs getting less and less singular as the

number of their external lines increases needs revision. The worst

offenders in this respect are graphs with only two vertices. Here we have

the surprising result: S n a S . To see this, consider the simple
XXI f \J KJ j \J

case

In momentum space

m)v(z)
mO(P ' simrz r(z + l> F(z-l)

where the contour lies parallel to the imaginary axis along Rez - 1 .
2

For p < 0 the high-energy behaviour is given by the first pole of the

integrand on the left of Rez = 1 , Clearly this lies to the left of z = 0

(it would come from the factor v(z)) irrespective of what the value of m

is. (Barring special cases,the corresponding singularity of v(m + z) is

still further left since m > 0 .)

One can easily prove the following results which give the

precise connection between the singularities of graphs with different

number of external lines.

Theorem: If N is the total number of vertices:

For N = 2

j V»k. "^ ' "I > ^



For N = 3 or greater,
f n

S 2,0 ,0 ( A l2 ' A 23 ' A 13 ) = ^.03 a A ~ TT~ Sn n n • (4- 2)23 dA, „ 9A, Q / S0, 0, 0
12 ~13

Thus,for N > 3 , all S can be related by repeated different-

iations (A) or by operations of the type (B) above to the amplitude Sn ,
0, U, 0, • • •

or at worst to Sx Q Q . Roughly this states
that if in momentum space- Sn (p.) behaves like M , as ex-

ternal momenta p. go to infinity S behaves like Wi

3. A rough estimate for finiteness of super-graphs may be stated at

this stage. The total number of super-lines F in a super-graph where all
N(N-l)

vertices are connected to each other is given by F = — r̂—L while the

number of loops equals (F - N + 1) . Thus the convergence

of an integral

£ = f td4k) loops

requires that the factor associated with each super-line 1/k must be such

t h a t
 k(4-«)F - 4N + 4 ( 4 g ,

does not increase with N . Clearly a %• 4 is sufficient to ensure this.

Roughly .then, each super-propagator should behave for large k like a

dipole 1/k for finiteness. Later we make this criterion more precise.

4. Although the considerations of this section are really more general,

to simplify discussion consider interactions of the type:

JPO

where D_ and D are integers . Note that

-13-



I -,p
H

The index D is the Dyson index which for conventional polynomial theories

determines the possible infinities of the theory and if the theory is renormal-

izable. For example, for theories with D = 3 , the second-order vacuum

graph (with no external lines E = 0) is quadratically infinite [ ,,&' M )

while second-order self-energy (E = 2) is logarithmically infinite (jv log M).
4

For D = 4 , all vacuum graphs (E = 0) behave like M , self-energy
2

graphs (E = 2) like M and scattering graphs (E = 4) like log M .

For non-polynomial cases the infinities and renormalizability again

depend on the index D but in a more subtle manner. Our tentative results

are:

A) When D < 2 there are no infinities.

R) For D = 2 , the only graphs possibly infinite are the star-fish graphs

which modify the fundamental super-vertex -*""~/7\ to

(with arbitrary numbers of external lines and arbitrary numbers of

stars). Counter-terms (independent of field-derivatives) can be

introduced to absorb these.

C) For D = 3 , the only infinities again come from modifications of the

fundamental super-vertex. These are of two types:

1) Tadpole modifications:

(4.4)

2) Proper self-energy-like modifications:

(4.5)

-14-



Plus what we shall call repetitions of these patterns; for example

tadpole repetitions

{4.6}

Similarly the self-energy-like repetitions:

D)

>*: H-

(4.7)
These infinities can be absorbed in non-derivative counter-terms

which renormalize the basic super-vertex. (These counter-terms are

exhibited in the next section.)

For D = 4 , the infinities come from the star-fish modifications

of the basic super-vertex

Type I Type II Type III Type IV

One may write counter-terms to absorb these, but this time there are

an infinity of distinct types of counter-terms and these also contain

derivatives of tie Id-variables to arbitrary high orders. Even if this

fundamental super-vertex is made finite, new infinities arise when

graphs with two and more super-vertices are considered. Thus a

non-polynomial theory like $ /(l+f$) is non-renormalizable.

-15-



E) To complete the statement of renormalizable theories, it appears

that one may introduce as many as four derivatives without affecting

renormalizability, though this conclusion is as yet tentative.

Symbolically, for (£ = 9 % with D < 3 , D + a 4 4 , i t i s likely

that no new problems arise , but this needs further examination.

5. To prove these resul ts , consider the basic x-space expression:

X . x,)

VV
aHJt

where all n.. ^ 0 and^subject to the restrictions

L. = ) n.. + m >. Dn
i S-1 ij i ' 0

(L. is the total number of lines at the vertex i.)

A Sommerfeld-Watson complexification of n.. gives

sin ir z. . F(z.. + 1)

with the contours in z.. planes encircling the real axes

subject to the restrictions:

Re L. = > Rez . . + m . £ D n . R e z . . ^ O/ - n 1 0 IT

Now, from the Gel'fand-Shilov theorem we know that the Fourier transform

of A exists provided 0 < Re z < 2 . Our first task is to shift the con-

tours so that Re z < 2 ; in the process we shall pick up infinite modifications

of super-vertices which will need renormalizing. A second minor task will

be to shift the contours still further down to 0 < Re z < 1 to get all super-

-16 -



4 2

propagators to behave like 1/k for space-like k . This will give rise

to some completely harmless tadpoles, the finiteness of the theory being

maintained.
This double shifting task is facilitated by expressing the limits

in the form

L iO
i

all i

L aO L 2:0
i i

one L. = O.1 ,2 , . . . ,D twoL, =0,1,2, . . . , D

allL =0,1,2 Dn
l 0

(4.8)

We shall call these subtracted terms the "ghost terms". There is a very

simple graphical representation of these. Write:

1 +f ,D0-D

(4.9)

i.e., as a sum of a polynomial Lagrangian L and non-polynomial

Lagrangians L . For the latter the relevant index D = 0 .

The important point to stress is that in the expansion (4, 9)L,the highest

polynomial term has the index D and not D~ . We shall assume hence-

forth that D ^ 4 - if we do not make this assumption the polynomial part

of L is non-renormalizable from the start. In terms of this split of the

Lagrangian (4. 9), the expansion (4. 8) of the matrix element has the follow-

ing meaning. The first term in the sum y corresponds to the contri-

N
bution from (L p ) , the first ghost term to (L^

N-l
)

on, the last ghost term corresponding to {!-._,)

consider

) ' ~(L"p) and so

(As an illustration

-17-



L =
X+

+ f + f

The third-order vacuum graphs are

propagators
Thick lines represent super-lines. Thin lines are ordinary lines with ^ AF .

Consider the graph which consists of super-lines only. There is no

difficulty in going over to Fourier space; this is because L. £. 0 implies

n £ 0 , so that the a., contours can be Sommerfeld-Watson rotated to

lie between 0 < Re z.. < 1 .

- plane

-x-

To estimate the high-energy behaviour of these graphs we need knowledge

of the left-most singularity of the integrand. Barring some exceptional

cases, this will lie to the left of z., - 0 t giving at least a factor

fk..) ^ = (k..) for each super-line. This guarantees the finiteness of

all such graphs.

Consider now the cases D = 1, 2, 3, 4 individually for singularities

of ghost graphs. The sub-graphs which are entirely made from the poly-

nomial Lagrangian ^ , r ^ D may have their own singularities; these

will need the conventional counter-terms and we shall assume that these

have been introduced. We have only to consider mixed graphs and,in

particular, star-fish modifications of super-vertices.

a) D = 1

2 2
The star-fish consists of spokes with a factor A(p = 0, m ) = (1/m ) .
These tadpoles are harmless so far as infinities are concerned.

-18-
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b) D * 2

The star-fish consists of the basic star

plus repetitions:

The full contribution of these diagrams is

c.
o

o
(4.10)

where

0

1 2
2! C0

X c
3

3' 0

Clearly (and not unexpectedly) the series (4.10) sums to an exponent-

ial 2

) N . P

If we had started with the Lagrangian

instead of L , _. there would be no star-fish infinities.

-19-



c) D * 3

In this case there are two types of modifications :

Type I - tadpole-like modifications:

+ repetitions of these, like /\*d)

The modified Lagrangian reads:

exp i -

Cj, C2, C«, . . . j are the (infinite) contributions from the basic graphs.

The repetitions are all taken care of by the exponential.

Type II

The second category of infinities arises from sell"-energy-like graphs

These are taken care of by starting the theory with the modified

Lagrangian

exp
(--i

One final modification. Replace L (̂ ) in the formulae above by

. This takes care now of the self-energy infinity as
well.
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d) D = 4

The tadpole-like infinities present no difficulty.but the infinities of

Type II,

being quadratic (M ) , quartic (M ) , , . . , now need a modified

Lagrangian:

i .e. , the modified Lagrangian contains derivatives of field variables

to any arbitrarily high order. Clearly, this - according to the cri-

terion stated earlier - is a non-renormalizable situation.

Having taken care of vertex modifications of Type I and Type II for

D = 1, 2, 3 cases, we now need to see if there is any possibility of new

infinities arising from joining pure L sub-graphs with pure L graphs.

For D = 2 , the proof that none so arise is trivial. One can get, at worst,

situations like

\

which are finite if one remembers that the super-line gives a factor like

1/k . A slightly more complicated argument is necessary for D = 3 .

Basically, the proof needs the result (4. 2) stated earlier, viz..,

a super-graph S^ m ^(k^ t with X. m. external lines,

decreases faster by a factor l/(k l ) than S. . Consider
1, 0 , U . . . _

a super-graph connected with m internal lines with a graph made of 0

vertices only. The worst case for infinities is when neither the super-
g

graph nor the pure 4> graph has any external lines. From the well-

known Dyson count,the pure ^ graph contributes a factor
S 0 , 0 . Q . . . ^ ^ 1

- 2 1 -



From (4.2) the super-graph contributes

0 , 0 , 0 « " (k)

the m-lines give 1/k . There are at most ( J_, m-1) new

loops made by these m connecting lines, so that the over-all behaviour

of the mixed graph is finite and given by:

M-

-4 Em+3 (A)
Era-1

M

connecting lines

super-graph

(see (4.3))
(Here we have assumedlthat S* _ _ (k)

A u, 0 , 0* • *

4P -4N +4
s s

» k
-4N +4

S

Note that our final result regarding high-energy behaviour for the

total vacuum contribution of a non-polynomial <f> Lagrangian is

S ss log M for D = 2

S » M2 for D = 3 .

P'or D = 3, for example, although the pure super-graphs gave a finite
3

contribution, the pure polynomial 4> graphs give the well-known behaviour
2 ,3

M of the <p -theory.

6. This is perhaps the stage at which one might remark on derivative

couplings. Notice that when we power-count for super-graphs, in the

naive count

4F -4N +4
s s

4F

-4N
there appears the factor k If each

super-vertex carried derivatives up to fourth, the extra contri-
4N

bution would not exceed k s . Thus, provided that all sub-graph in-

finities (like those of star-fish graphs) could be consistently removed, up

to fourth-order derivatives might be acceptable (with Lagrangians of the

type 9 % D , a + D<:4 .
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7. The ghost-diagrams which have played such an essential role in the

above analysis can always be associated with ghost-La grangians whenever

~f \ Ĵ * r
we can wri te «**. in the form / a y + ; , n , . When I-spin or

L > r 1 + p 9
r

unitary spin is present and t e r m s like (B^qvqj) a re involved this is clearly

impossible . We believe one can st i l l c a r ry through the ideas of ghost-

graphs without writing corresponding ghost-La grangians; we hope to d i s -

cuss this in detail e lsewhere .

8. Let us now finally turn to weak interact ions. This is the case of

mixed fields and, as we shall see , here new types of infinities will a r i s e

and will need renormalizing. But before considering this difficult case ,

take a simple example of a mixed theory with two fields <ft and B with

At each of the N vertices there are p, B-lines and (N-l) super-lines.

A necessary condition for re nor ma liz ability is clearly p + D^ 4 . (This

is easily seen by writing

a * 1

+ t <4Do"D *—' r

In what follows we concentrate on the case D = 0 , p-£ 4 . All infinities

come from the vacuum, self-energy and scattering graphs of the B-field,

embedded inside super-graphs. For example, for «C = B f(^) where

one may expect from the graph shown in the figure an over-all singularity

at worst of the type:

(k4) X
k
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4(The factor k is the contribution of the B-field vacuum graph; the factor

1/k is for the ^ super-propagator.) This infinity needs a new variety of

counter-term of the form:

4 2
where C , C1, C are infinite constants of order M , M , log M ,

respectively. The important point is that the counter-Lagrangian which

has the form

/ 0 2 0 4 ,0.

may itself produce singularities in its turn and, to absorb these, an expo-

nential form of counter-term discussed before will be needed, but any

counter-terms needed at any stage appear to fall within what we have called

the renormalizable class.

The situation above is typically the weak interaction situation. Using

a formalism involving the intermediate boson W , write the minimal weak

Lagrangian:

W " JM u + h*°*

0
'EM L*> " " '"" A

Here J~ are the charged weak currents; W~ are charged intermediate

bosons. For fixing ideas one may assume that J~ and J are currents

made up of quarks (Q) and lepton fields (%) and are of order M

For the W-fields themselves it is not essential, but it makes things

very much easier, if we consider not just the two charged fields but a

self-interacting triplet of Yang-Mills fields

= W • W + m W
Y M —A»V —--fjiv —ft

where

W = (9 W - S W + if W x WJ
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We now make a non-linear Sttlckelberg transformation on the W field
—n

variables; write W s W • *C and introduce two fields A and B by the

relation
= -Sl(B) Â  SI"1 W + y &(£)

Here fi(B) is a unitary matrix; (in Weinberg's representation one may

write fl(B) in the form " ! / ? ' — ; ft(B) ^ M° ). Writing
1 + 1 f 2. * B

the net effect on °^VM *s t o t r a n s f ° r m ^ t o t n e

There are corresponding changes in the interaction Lagrangians for both

weak and E. M. cases. For example the new weak Lagrangian has the form

F^ ' is at most of order M4 with f^(B) % B° while f'2'(B) is at most

of order 9 (B) with FK ' V '(B) <y M .

Now comes the important point. Boulware has shown that this non-linear

Stiickelberg analysis gives,for the A and B fields, propagators which are

perfectly normal (i.e. are no more singular than A(x) ) and the S-matrix is

unitary provided the Lagrangian is supplemented by an additional term of the

form F_ X 3 F/A where the triplets of F_ represent "fictitious" particles
r* P*

first introduced by Feynman. From the point of view of renormalizability

all we need to know is that in our power counts, A ~ M and B ~ M , while

n ~ M and X 3 9 (M ) . Clearly Ct falls within the category of

re norm aliz able interactions tabulated in this discussion, and so does the

additional Lagrangian for the fictitious particles.
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We have not written out in detail all the counter-terms, nor is it inter-

esting for anyone undertaking any practical calculations. As in most r e -

normalization theory, what is important is the existence theorem - the

statement that it can be done. We expect the practical rules for writing

S- matrix elements to be:

1) Replace W by the Stuckelberg field A

2) For closed loops of W fields, introduce Feynman's fictitious

particles to preserve unitarity.

3) Add to the contributions above super-graph contributions involving

B-particles. These will need renormalizing. (In practice, knowing

that these super-graphs, after renormalization, are finite, one may

as a first approximation neglect these B-particle contributions. One

may be certain that unitarity is preserved with just the contributions

1) and 2).)

All this was on the assumption that we do not wish to modify the basic

weak Lagrangian but wish to start with what we have called the minimal

Lagrangian. There is no reason why one may not modify the weak Lagrangian

itself such that its Dyson index is less than two and it produces no infinities

whatsoever. This is what Mitter and Fivel have done.

V. SUMMARY

We summarize the situation regarding non-polynomial Lagrangians:

I should make the qualification that an enormous amount of verification is

needed before the problems of renormalizability are all sorted out, but

one may tentatively state:

1) All matrix elements are finite for theories where the Dyson index

D is less than two.

2) For the cases when D = 2 or 3 , counter-terms have been explicitly

written which absorb all infinities and the theories are renormalizable.
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3) Mixed theories of polynomial and non-polynomial fields appear to be

renormalizable provided the Dyson indices separately and jointly

fulfill renormalizability cr i ter ia . We believe that weak interactions,

chiral Lagrangians and Yang-Mills theory fall into this class though

detailed proofs have not yet been constructed.

4) It seems likely that to each order in the major coupling (and to all

orders in the minor coupling) the S-matrix elements, as computed

by methods outlined, satisfy the necessary unitarity and analyticity

requirements.

5) The real parts of the physical amplitudes (the parts not restricted by

unitarity) are non-unique. This appears to be similar to the type of

non-unique ness one meets in conventional renormalization theory for

polynomial cases, i . e . arbitrariness up to finite renormalizations.

Umtarity requirements restr ict this lack of uniqueness though they do

not completely eliminate it. If one imposes on the theory the criterion

that all such extra terms must be represented by (finite) modifications

to the starting Lagrangian - and with no derivatives of arbitrarily high

order appearing - no arbitrariness remains.

6) Non-polynomial theories give perfectly acceptable high-energy be-

haviour in the Symanzik region and where external momenta are space-

like or on the mass shells. For time-like momenta, however, the

lowest order in the major coupling constant gives cross-sections in-

creasing arbitrarily fast with energy. If now a simple chain diagram

is summed, or a Regge ladder summation carried out, the results

alter drastically. Alternatively and perhaps equivalently, if in the

Symanzik region one computed K-matrix elements and used the ex-

pression S = (1 - iK)/(l + iK) to continue to time-like momenta, the

exponential growth would not survive. (It is important to realize that
Nin the Symanzik region T (the T-matrix element to order G in the

major coupling constant) equals K^ . This very powerful method

will be elaborated on elsewhere.) This appears in line with a general

result recently claimed by Fradkin and Feinberg (unpublished) where

they asser t axiomatic CPT, spin and statistics and polynomial bounded-
7)ness in energy for theories of the type we have considered . If this
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result holds and if a reliable summation technique in the major coup-

ling can be devised, the last major objection to these theories would

disappear. This is because if one extrapolates the results of Jaffe,

Glimm, Hepp and others for polynomial Lagrangians in two dimen-

sions to those in four dimensions there is no hope of obtaining finite

self-masses and finite self-charges. We must turn to Lagrangians

described in this paper if we are ever to compute these constants

finitely and to make acceptable statements regarding phenomena like

Goldstone bosons and symmetry breaking through the graphs for

vacuum expectation values of scalar fields.
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