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I. INTRODUCTION

It is well known that Lorentz-covariant systems of equations can

be made covariant under general co-ordinate transformations by

introducing into them the appropriate gravitational couplings. In

this development the gravitational field itself is to be regarded as a

dynamical variable and must be represented by a suitable term in the

action integral.

A similar technique has recently come into prominence in strong

interaction theory,where it is known as the method of non-linear

realizations . More particularly, a system which begins by possessing

only the isospin symmetry SU(2) is modified by the introduction of certain

couplings to a (massless) pion field, so as to obtain the chiral SU{2) x SU(2)

symmetry. In this intrinsically interacting scheme the pion plays the

role of the graviton.

Our aim in this paper is to extend this qualitative analogy between

the geometric structure of general relativity and the group-theoretic

techniques of non-linear realizations to a quantitative one. We do this in two
2)

parts. In the first (Sec. II), the recent treatment , using non-linear

realizations, of the conformal group is re-examined and re-interpreted

in terms of metric tensors and connections on space-time. In the second part

(Sec. HI),the classical theory of general relativity, especially in relation

to its Vierbein content, is reformulated within the framework of non-linear

realizations. One does not expect any new development in the notoriously

difficult problem of quantizing gravity to result from this modified point

of view. However, some insight may be gained by regarding general

covariance as a spontaneously violated symmetry and, aorrespondingly»regarding

gravitons as Goldstone bosons. The point here is that a non-linear

realization scheme, with its intrinsic c-number displacement group

action on certain fields (known as "preferred" fields),is a natural

vehicle for the manifestation of this phenomenon.

In the section wytfitconformal group these "preferred" fields are a

scalar particle <r and a 4-vector; <£ , ' The group action on these fields
a"

is very similar to a gauge transformation and, indeed, this partially
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motivates the re-expression of the theory in terms of connections and

tensors. We show in Section II, by the usual current field commutator
4)method ;that the theory contains a massless scalar particle (a Goldstone

boson) which we shall associate with the preferred cr-field. This is in

spite of the non-local nature of the dilatation current operator.

We will start by giving a short summary of the relevant features

of non-linear realizations. Let G and H denote, respectively, the

group whose realizations are required and some subgroup whose

linear representations are known. For example, G could be chiral

SU2 x SU2 and H the isospin subgroup, the latter group serving to

classify the particle multiplets. The basic group action is that

of G on the quotient space G/H, taking one coset into another. That

is, if g^H is a coset in G/H, then a group element g maps it into the

coset ggnHj thus inducing a non-linear realization on the various

quantities of physical interest which are used as parameters or co-

ordinates on this quotient space. When these parameters are fields

they are known as preferred fields and in the chiral SU2 x SU2 example

are interpreted as the triplet of pions. In the case of induced rep-

resentations ' of the Poincare' group, in which such group actions

on cosei spaces also occur, the co-ordinates are associated either with

Minkowski space-time or with a mass hyperbola in momentum space.

When G is the conformal group we take the homogeneous Lorentz group

as H and the nine parameters on G/H are identified as four (flat)

space-time co-ordinates and the scalar and vector fields, a and tj> ,
EL

previously mentioned. In the gravitational case G is GL(4, R) while

H is O(3,1) with the ten parameters now being related to a set of

"Vierbein" fields.

This group action of an arbitrary element g of G on the cosets
2) 5)

may be written in the form

g: L , - * ' ! ^ , = gL^ h"1 (1.1)
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where L denotes a matrix of G, parametrized by the coset space co-
ir .

ordinatesr , which represents one of the cosets in G/H}and where

h » h(ir, g) is an element of the subgroup H and is a calculable function

of it and g.

The formula (1.1) defines implicitly the basic non-linear realization
•K -» ir1 but it also defines the group element h{xt g) which belongs to H

and which governs the behaviour of all the other fields ip under trans-

formations of G. That is,

g ; 4, -> 0' = D(h(7T, g)) 4J (1. 2)

where D{h), defined for all h e H, denotes one of the linear representations

of H and is assumed known.

Having specified the transformation laws for * and 0,we must

now define "covariant derivatives", by which is meant combinations of

the fields and their ordinary derivatives, which transform according to

the law in eq. (1. 2). All of the relevant information is contained in the
— 1

matrix L 3 L which evidently belongs to the infinitesimal algebra

of G. Under the transformation (1.1) we find

g ; L ~ 9 L -» L , 9 L , a hfL"1 3 L ) h"1 + h 9 h"1 . (1. 3)

Thus, the matrix L 9 L decomposes into at least two pieces, one

of which transforms according to a non-linear realization of the type

(1.2) while the other,belonging to the subalgebra H, involves the in-

homogeneous term h 9 h in its transformation law. The latter
^ 9)

part is to be interpreted as a type of connection and used in the

construction of the covariant derivative D 4/, The former may be

interpreted as the covariant derivative of r1 itself. Thus, if we write

the matrix
(L^ 9M V / = DM *" (Ai )/ + ̂ ( V V

where the generators of H are denoted by V and the remainder by

A , then D T transforms covariantly as does
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D ^ = 3

where the matrices T generate the infinitesimal form of D(h).

To construct Lagrangians which are invariant under G is now

straightforward: take any Lagrangian which is invariant under H and

replace the ordinary derivatives 3 ^ everywhere by the covariant D \j/.

Add the term ^D r D ir in order that * shall propagate like the

other dynamical variables. The resulting Lagrangian does indeed possess

the enlarged symmetry,although one cannot infer that this symmetry

will be reflected in the solutions. Rather, one can show that, as

mentioned before, the transformation law T -» ir contained in (1.1)

is generally inconsistent with the assumption of a unique invariant

ground state. The whole technique appears to be geared to the description

of spontaneously broken symmetries with the preferred fields
4)

playing the role of the well-known Goldstone bosons

II. THE CONFORMAL GROUP

The use of non-linear realizations to deal with the conformal group

of space-time was considered by two of the authors in Ref. 2 (referred to as

I and II in the following). In the first part of the present paper this work is

extended and some of the concepts are clarified by reformulating

the theory in a more intuitive geometrical language.

The conformal group is a fifteen-parameter Lie group of t rans-

formations of the flat space-time of special relativity. It contains the

Foincare' group as a subgroup, the remaining transformations being

a H TT -t- M Y

x -> x = ^-7T (2.1)

and

9 *?
2j3-x + fix

a _ a X a ,„ o .
x -> x = e x (2.2)
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where p and A are the special conformal and dilatation group parameters,

respectively. The dot products in these formulae refer to the usual

Minkowski metric which we will consistently denote as n = diag(+l, -1, -1, -1)
abwith inverse written as n . These expressions may be inverted to

give

- a o a - 2
x - j3 x (2.3)

and
a ~X _ a

x = e x

For later convenience we define the quantity

J(x, 2/3-x + |32x2 , , ax
det —dx

-1/4

(2.4)

(2.5)

which is related to the determinant of the Jacobian of the special conformal

transformations as indicated and in terms of which eq. (2.1) may be

succinctly written as

_ ax I
2 log J(x, (2.6)

The Lie algebra of the conformal group is that of the non-compact

group SO (4, 2) and indeed,.the transformations above may be derived from

the natural action of this orthogonal group on the "light cone" of a six-

dimensional pseudo-Euclidean space equipped with the metric

(+1, -1, -1, -1, -1, +1). Minkowskian space-time is then regarded as a

subspaoe of the five-dimensional protective space with which the Euclidean

space and its light cone are canonically associated. We shall not adopt

this viewpoint here but will take eqs. (2.1) and (2. 2) as our definitive

starting point.

The basic question which now naturally arises is, how should

particle fields transform under the action of the conformal group? Two

powerful, closely related, methods that have been employed are those of

induced representations and non-linear realizations . Both
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techniques construct a representation of the full conformal group from

some known representation of one of its subgroups. In II the latter

approach is used in which the group G (the conformal group) acts in

the standard manner , summarized in the introduction, on the quotient

space G/H (where H is the homogeneous Lorentz subgroup) taking one

coset into another. We write for an element of G/H

in which ^ (x) and cr(x) are the preferred fields and where P , K and
a a

D are the translation, special conformal and dilatation generators,

respectively . Note that the space-time co-ordinatesthemselves form

the remaining four parameters. This is possible since the group action
j y , T">

induced on the "x" in the e part of eq. (2. 7) is precisely that of
eqs. (2.1) and (2.2).

The resulting special conformal transformations of the preferred

fields were derived in II as

£ (S) = (1 + 2/3-x + /3 x ) <ft (x) + (1 + 2x^(x)) (1 + 2fi'x - 2x 3-6(x)) B -
a a a

a

cr'(x) = cr(x) - log(l + 2j3-x + j32
X

2) (2. 9)

while the dilatation actions are simply ^ (3E) = e $> (x) and o-'(x) = CT(X) +X.

The characteristic feature of these transformations is the appearance of

an inhomogeneous term corresponding to a c-number displacement of

the quantum fields and resulting in a possible manifestation of the

Goldstone phenomenon , Under the action of the Poincare' subgroup

the induced transformations of x j (x) and <r(x) are the usual ones of

space-time, a Lorentz vector and a Lorentz scalar, respectively.

The action of the conformal group on any other field may be con-

structed in what is by now standard non-linear realization fashion.

The result, which is the same as that derived using induced representations,
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is given in infinitesimal form in II as

<*(x) = -0 a (x% a b - 2xaxb) afe ^(x) - 2i|3.x tfx) - 2i/fxb S ^ *(x)

(2.10)

6^(x) = -Xxa9 &(x) +\&t(x) (2.11)

where S are the homogeneous Lorentz group generators appropriate

to the arbitrary quantum field ^(x). The constant S. is known as the

"jd-value" of the field <//(x) and is essentially defined by eq. (2.11),

which describes the actions of space-time dilatations on 0(x). It is

not an a priori determined quantity and is initially, at least as far

as the group theory is concerned, open to some choice. The "covariant

derivatives " of all fields may now be constructed within the non-linear

realization framework as sketched in the introduction and we refer to

Ref. 2 for further details.

As a first extension of these results we will express the "matter"

field transformations of eqs. (2.10) and (2.11) in a compact form which is
8xa

also valid for finite group actions. Let A (x) - -^ denote the

Jacobian of the special conformal transformations. Then the following

key identity may be readily verified:

. - a. / x . t , . 1 \ 3x bd dx ac
A(x)rjA(x) = l—= or ) i? *7

2 - (If)
1/2

(JMV
= ° (2.12)

where the function J(x) was defined in eq. (2. 5), showing that the matrix

J(x) A , (x) is an element of the Lorentz group. Therefore if ip(x) is

an arbitrary field with Lorentz group representation matrices D, then

the transformation

^(x) -+ 0'(x) = J (x) D(J(x) A(x)) 0(x) (2.13)

is a well defined action on this field with i an arbitrary constant.

Similarly for space-time dilatations we get the transformation
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tf,(x) = e (2.14)

and these two express ions define what i s , in fact, a l inear r epresen ta t ion

of the full conformal group. That it actually is a rep resen ta t ion follows

immedia te ly from the fact that J(x), being re la ted to the determinant of

the Jacobian, itself defines a one-dimensional r ep resen ta t ion . The

infinitesimal forms of eqs.(2.13) and (2.14) a r e exactly eqs.(2.10) and

(2.11), r espec t ive ly , which demons t r a t e s the equivalence of this global

rep resen ta t ion with that of I I .

F o r integer spin fields 0(x), these finite t rans format ions take on

the in te res t ing form of those of a t ensor density. F o r example, let

ip (x) be a Lorentz vector t rans forming under the homogeneous Lorentz
SI

group contragrediently to the fundamental representation

M = (A* A£SO(3,1) .

(2.15)

Then under a conformal transformation x
Pi

x we have

D(JA)
-1,

(
9 x

f t

a;i I eq. (2. 13) reads

(x) =• J(x) v ^ ' —
3xa

det (i) - a

(2.16)

showing that \p (x) does indeed transform under conformal co-ordinate
a

changes as a genuine tensor density of weight

Thi H observation motivates the introduction on space-time of a
ab

metric tensor g transforming correctly under a conformal group
ab

action as a rank-two tensor, so that a quantity such as ip ip g is
cL U

manifesuy a scalar density. The weight of any density may be altered

by multiplying it by suitable powers of V~g where g = det(gafe). This
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will, in general, be necessary since the requirement that the action

integral

A- = F d4x & (x)

be a group invariant implies that ot(x) must transform as a scalar density
4

of weight one, owing to the non-invariance of the volume element d x

under special conformal and dilatation group actions.

The incentive to re-interpret the group theoretic structure of

conformal invariance in this geometric fashion is further increased by

the observation that the conformal group transformations of the preferred

fields, given in eqs. (2. 8) and (2. SĴ may be compactly rewritten as

CT'(X) = a(x) - log

where , b means . These are significantly reminiscent of gauge
ax

b

transformations and forcibly suggest that the fields 0 and <x could be
3.

used to construct affine connections on space-time.

The first step is the construction of a suitable metric tensor which,

since we do not wish to introduce additional dynamical variables, must be

expressible in terms of the fields $ and cr already at our disposal.
a

The simplest such object is

with the inverse
ab, . ab 2cr(x) /o o m

g (x) = n e v ' . (2.20)

The correct tensorial transformations of these quantities follows at once

from eqs. (2.12) and (2.18). We shall adopt this definition for the metric

tensor on space-time and will use it in the usual manner to raise and lower
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abindices. The only exceptions to this rule are the upper indices on n
ab

in eqr (2. 20) which,as before,merely imply that n is the inverse

matrix of 17 = diag(+l, -1, -1, -1 ) to which it is, of course, numerically

equal. The compatibility of these definitions with the Poincare transform-

ations is immediate since these transformations are already in the form of

eqs. (2.17) and (2.18) with detfy

The natural connection, constructed from this metric tensor,

which may be imposed on space-time is the standard Christoffel symbol

= - (6* (T + 6a a - n n a d <T ) (2.22)
b , c c ,b be , d

where, in deriving the second line, eqs. (2.19) and (2.20) have been used.

We may now construct the usual covariant derivatives of tensors in

terms of this connection and ask how they compare with the group

theoretic covariant derivatives'derived in a completely different

fashion in II. The answer is, as shown below, that they are

identical provided the preferred field <f> in II is identified with

- — — — . This is clearly possible because, as can be seen from
2 _ s.

dx

eqs. (2. 1?) and (2.18), the fields ^ (x) and - - cr(x) ^ have exactly

the same group transformation properties. This remark is relevant

oirsid'1 he context of the present paper and implies that to achieve

full coniormal symmetry only one extra scalar field c(x) is strictly

necessary.

The vector field ^ can, of course, be retained if desired, as

a separate entity and must, as such, be slotted into the geometric frame-

work that We are building up. This can be done by defining an alternative

connection (not the Christoffel symbol) on space-time as

V = C ( 5b *c + 8c *b - «bc ̂  ( 2 ' 2 3 )

-11-

< * • •*-* ••• rt •



where C is some constant yet to be determined. It must be emphasised

that we are still regarding the space-time manifold as being equipped

with the metric tensor of eqs, (2.19) and (2. 20) and with which indices

are raised and lowered. ~- For the object defined above to be

a connection it is necessary and sufficient that it should transform

under a conformal group action as

a i a _ dx.1 9x^ 9x^ • k a V 9 ^ dx2

be be b c k 13be be __b -_c - k 13 Q I a i ,,_b ,,_c
3x 3x 9x J 8 x 3 x J 3 x 9x

which, from the known transformation properties w $ (eq. (2.17)),fixes

the value of C as +2. Thus

r, a = 2(6 a <f> + 8a ^, - g^ * a ) = 2(6f; * + 6 a * , - v^ n a d * J
be x b r c c r b Bbc x b c c b be d

(2.25)

which on comparison with eq. (2. 22) shows clearly that one "degenerate"
1 a

possibility is ^ - - — tr in which case V becomes the normal
a ci j a DC

Christoffel symbol. In general, however, this will not be so, and as

a result the geometry defined by V is non-Riemannian. The covariant

derivative of the metric tensor g defined with respect to this

connection will not vanish (as it does in the Riemannian case) resulting

in the non-invariance of lengths of vectors under parallel transport.

Whenever two connections are available, such as, for example,

r. and X , > , the affine sum fF, + (1-f) \ , > defines a new
be \ b c J be I b CJ

connection where f may be any real number or indeed any scalar

function. In our case this sum is

a \ + ffr a - i \ a 1^ = / a \ + 2f
) cJ \ be ^b cJ J \jo cJ

b c 2 ,

The second term in this expression is in the form of eq. (2. 23) but with

^ replaced by the combination (̂  + — c ) . As is clear from the
SI cl <£t f Si

transformation laws of the preferred fields, this particular combination
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(denoted D c in II ) transforms linearly, without any inhomogeneous

terms, as a covariant vector. Thus the second term in eq. (2. 26)

transforms as a genuine tensor and could, as far as the dictates of the

group theory are concerned, be dropped leaving just the Christoffel

symbol as the connection, thereby re-affirming our previous remark

that -— <r is an adequate form for the vector field 4> • For the time
£i , a a

being,we will continue to keep the field (ft as an independent dynamical
a 1

variable, bearing in mind that the particular "solution" (ft = - — a maya c* , a
always be inserted into any results that follow.

We will therefore now construct the geometric covariant

derivatives associated with the connection of eq. (2. 25) and show that

they agree exactly with the group-theoretic ones of II. In the field

of general relativity, where the main concern is with invariance under

the infinite-dimensional gauge group of general co-ordinate transformations,

the covariant derivatives of an arbitrary tensor T may be written as

V T = T - \¥V V 7 T (2.27)
H ,fi y nv

where T is the general gravitational affine connection. The finite-

dimensional matrices F define the representation of GL(4,E) to

which the tensor T belongs and satisfy the usual commutation rules

. I F p , F fiJ - 66 F £ 6 p F 5 . (2.28)

Fields with half-integer spin are incorporated either by using the Vierbein

formalism or by adopting the alternative scheme proposed in the second

part of this paper.

We should like to write down an expression similar to eq. (2. 27)

for our simpler case in which the invariance group is the finite-

dimensional conform al group. The first observation is that, as shown

in eq. (2.12), only the subset of F matrices corresponding to Lorentz and

dilatation (determinant changing) subgroups of GL(4, E) ever occur in

the transformation laws for any tensor. Secondly,the number 8. occurring
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in the field transformations of eqs, (2.13) and (2.14) is the eigenvalue of

the finite-dimensional matrix - iF in the irreducible representation

of the field 0(x) . This may be demonstrated by considering a simple

space-time dilatation

a _a X a 9x ,a X ,„ . . .
x -i- x = e x ; — - = 6. e (2.29)

3x

which may be written in terms of the self-representation of the F

matrices

= 16: (2.30)

in the form

(2.31)

This enables the representation of the dilatation group on the field

(eq. (2.14)) to be written as

= e v" c ; 0{x) (2.32)

where D and D denote the Lie group and Lie algebra representation

matrices, respectively. Evidently D(F ) is simply - i i , in keeping

with Schur's lemma,since the dilatation and Lorentz subalgebras of

the conformal group algebra commute. Naturally, if 0 is a reducible

Lorentz field then D(F ) need not be a multiple of the unit matrix

although it must restrict to one on any Lorentz irreducible subspace.

The required covariant derivatives may therefore be written in

the form of eq. (2. 27) using only the subset of the GL(4, H) matrices

that corresponds to the dilatation and Lorentz subgroups, the generator

of the former being -iF with eigenvalue i . As is shown below, the
c

form of F, , defined by eq. (2. 5) is such as to project out exactly this
be

particular seven-element subset of the sixteen GL(4, R) generators.
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The resulting expression for the covariant derivatives is immediately

applicable to half-integer as well as to integer spin fields. This is

because, as already stated, only Lorentz group and dilatation group

generators occur and any spinor representation of the former may

always be extended to include the latter by simply defining the field

transformation under this abelian subgroup as 0(x) -» e ^(x). The

representation cannot, of course, be extended further to include the
a step

full GL(4 ,E) group,Awhich necessitates the introduction of Vierbein
fields or some similar technique.

The covariant derivative of an arbitrary field ip may therefore

be written, using eq. (2. 25),as

V \p - 3 0 - i F b T L °0a a c ab ^

= B ip - 2 i F b (6C $. + 6* 0 - g . $C) \p
a cv a r b b ya Bab y v

= dj, - 2 i F C
c ^ a 0 - 2 i ( P b

a ^ - F b
c g a b g ° d ^ d ) ^ . (2.33)

The generators of the homogeneous Lorentz group are defined in terms

of the GL(4, H) generators as

S = ) 1 J F d - ) ? , F d (2.34)
ca ad c cd a

and so

"ad ̂ c - A • (2.35,

Thus,remembering that g , = 17 , e and hence that g , g = n , H ,
ad ad ad ad

we finally obtain the following form for the covariant derivative of any

field 4it
hr*

V ^ = a 0 + 2 i 0 t f / - 2 i S r) <j> tp (2.36)
a a a a o c

which is precisely the expression obtained in II using the non-linear

realization techniques.
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The next stage is the construction of "covariant derivatives" for the

preferred fields <r and <j> . Due to the non-tensorial nature of cr and
cL

^ } the term covariant derivative does not refer to the standard geometric

object constructed above but rather to combinations of these fields which

contain their first derivatives and transform as genuine tensors. For the

CT-field a suitable combination is cr + 2 ^ which,as already mentioned,
i t a 3.

transforms as a covariant vector.

For the case of an independent <j> field, the key point is to observe

from eq. (2. 25) that this Lorentz vector can be reconstructed from the
c 1 bconnection T , by means of the identity ^ = — T , . This implies

cL 0 cl o a- D

that the rank-two tensors for which we are looking will very probably

be expressible in terms of the connection and its first derivatives. The

fundamental geometric object of this type is the rank-four curvature

tensor defined conventionally as

rh." - ̂  V • <2'37>

The associated Ricci tensor is defined as

R. . = RK ,° (2.38)
bd bed

while the curvature scalar is

R = g b d Rb d • (2. 39)

There are three linearly independent rank-two tensors' containing the

first derivatives of $ which may be constructed from the above ex-

pressions. They are R. ., R, , , and g f e R * where the first two

are defined as

R, . v = \ (R . + R, ) (2.40)
(ab) 2 ab ba

Rr . , = - (R . - Ru ) . (2.41)
[ab] 2 ab ba

-16-



Inserting the explicit form for the connection we obtain

I V ) = *a. b + *b. a " " K *b + 4 *ab «•" K + I •". c> <*• 42>

; R r , , = * , - +. (2.43)
4 [ab] a, b b, a v '

The non-vanishing of the antisymmetric part of the Ricci tensor is

a direct result of the non-Riemannian nature of the geometry defined by

the connection F. In the degenerate case when cp = - — cr , the
a £i j a

connection becomes the Christoffel symbol and this antisymmetric tensor

vanishes identically. This is in accord with the general principle that

a Riemannian geometry has a symmetric Ricci tensor.

Any combination of R- , ,, Rr Li and g ,R may be used in the
(ab) I abj ab

construction of conformally invariant terms for a Lagrangian. A

useful one is the symmetric tensor E , defined as

S Bab * \ R(ab) " T2 SabH ' • . . b + *b.a

(2.45)

in which the divergence ^ has dropped out. A covariant derivative
j a

for the ^ field may be constructed from this expression by covariantly
subtracting off the ,̂ term. Thus we define

bj a

Da *b = I <2R(ab) " K b R " R[ab] > = *a. b " 2 *a K + ^ab ^ K

(2.46)

which is indeed the covariant derivative of the preferred field <]> as
EL

computed in D (remembering again the numerical identity
cd cd

g , g = t] r] ). Conformally invariant Lagrangians may now be
a. D cL D

easily constructed using covariant derivatives and the curvature tensors,

-17-



with indices saturated by the metric tensor. Notice in this context that

bilinears constructed, for example,from Dirac spinors transform as

densities since from eq. (2.13) we obtain

y 0 -» J< i +^ J D ^ J A J T D(JA)0
EL 3 .

det —

In this expression y ,with a lower index, refers to the usual constant
3.

Dirac matrices,which are also used in the definition of the adjoint field

0" ; the constant S. is simply the complex conjugate of i. Appropriate

factors of y-g may be used to adjust the weight of the final Lagrangian

density to +1 or,equivalently,to an i value of -4.

A suitable kinetic term for the preferred field $ is, in the non-

degenerate case

1 /—• „ „ a c bd 1 , . . % , i J x a c bd
T6 V ^ R[ ab] R[cd] g g " I (*a, b " *b, a> (*c, d " *df c

} n U '

(2.48)

A mass term for this field can be constructed from the covariant

combination D o - cr +2(4 asa , a a

f i g a b Daa Dbff - e"2ff (« a », „ + * #a •b + *« . *b) I"" (2- « )

or may be taken from the scalar curvature in the form

= e~2<7(*atfb + ^ a b ) n a b . (2.50)

Eq. (2.49) also contains a kinetic term for the a-particle although in fact

the expression

na b 9 e"*7 Bu e~a = rjah e"2<7 9 a 9Ka (2. 51)
a b a b
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is sufficient since under a conformal group action it transforms into it-

self plus a divergence. The (r-field may easily be given a bare mass

via the density \f^g = e , in marked contrast to the preferred field

associated with a non-linear realization of an internal symmetry. This

is an interesting distinction between the "Goldstone bosons" of the two

theories and is a direct result of the non-invariance of the volume
4

element d x in the action integral under a space-time transformation.

It does not however imply that the physical mass of the or is non-zero.

To illustrate this consider the dilatation current which is defined as

v vX ^ (2. 52)

where T . is the usual energy-momentum tensor. The second term in

this expression is a local field whose space-time displacements are

generated, as usual, by the momentum operator in the theory. This

property is not enjoyed by the first term because of its explicit x-depend-

ence (a manife

placement law

4
ence (a manifestation of the non-invariance of d x) and results in the dis

e ' <#(x) e ' X = «o (u; + x l
vx

(U) •
(2.53)

The existence of Goldstone bosons is usually demonstrated by examining

the spectral sum of the vacuum expectation value of the commutator of

the relevant currents and particle fields. In the case above, the use of

eq. (2. 53) to obtain the spectral resolution results in the appearance of

an extra, explicitly x-dependent, term which has to be dealt with before

deriving the usual conclusions. Thus we write the two spectral r e -

solutions:

fd4k e(k)

', a{0)] > = J d \ e (k) e i k ' X xV B(k2) (k2

= - 3i [ d k e(k) e l k ' X k B(k2)
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leading to

J d 4 k € ( k ) e l k ' X k C(k2)

2 2 2
where C(k ) = A(k ) - 3B(k ) . Taking the derivative with respect to

2
x on both sides of this equation leads to the conclusion that C(k ) = 0
or 5(k ). The former is excluded by the c-number displacement character-

izing the a-field transformation induced by the dilatation current;and thus

we are left with the usual prediction of zero-mass particles in the theory.

There are therefore two immediate physical interpretations for

the c-particle. It may be taken as massless, in which case the theory

is evidently one of scalar gravity . This possibility is strengthened

by the suggestive coupling of the 0 field to the symmetric energy

momentum tensor of all the fields (including the a itself) in the theory,

which an application of general canonical field theory reveals as

O l e ) - - * % y • (2.54)

This argument is by no means conclusive, however, being really only a

restatement of the universal coupling ô ' the cr-field to all other matter,

a fact which does not in itself exclude a mass. In the alternative of a

massive particle an obvious candidate is the ubiquitous scalar, isoscalar,

two-pion resonance with a mass around 700 MeV. With this interpretation

some form of explicit symmetry breaking is necessary in order to avoid

the appearance of a Goldstone particle with physical mass zero. This

will be discussed at greater length in a forthcoming article. Similar

considerations apply to the (optional) 4>u field which could correspond to

electromagnetism in the massless case and to one of the various strongly

interacting neutral vector particles in the massive situation. These
12)various possibilities are discussed at greater length in another paper _,

to which the reader is referred.
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Finally we must remark that for notational ease we have not yet

normalized the preferred fields. This is easily performed by re-

defining them as f̂  and kcr, resulting in a trivial re-expression of the

various formulae. For example, the covariant derivative of a matter

field is
hr

v 0 = a 0 + 2if * 0 - 2if s »r $ \p (2.55)

while the new metric tensor is

g = 77 e K . (2.56)

Here f and k are two coupling constants.
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III. GENERAL RELATIVITY

The first part of this paper was concerned with the reformulation

of the group-theoretic approach to conformal symmetries in terras of a

geometric structure imposed on physical space-time. In this second

part we wish to reverse the procedure and show that the normal

geometric treatment of general relativity, particularly as it concerns

the Vierbein formalism, may be partially and usefully re-interpreted

in terms of non-linear realizations.

The invariance group of general relativity is the infinite-

dimensional pseudogroup of differentiate . redefinitions of co-ordinate

systems.TJnder such a co-ordinate transformation x —*• x (x), the

Jacobian matrices

A / ( x ) = ^ (3.1)

being real and non-singular, belong to the group GL(4 ,]R) . The usual

transformations of tensors constructed from these matrices and their

inverses constitute representations of this general invariance group.

Our aim is to obtain non-linear realizations of the group GL(4, K) and

to connect these with the conventional structures of general relativity.

The first step is to choose the subgroup H of G (= GL(4, IR)) from

which the quotient space G/H will be formed. This subgroup must

be one whose representations are already known. We will choose the

Lorentz group, thus enabling us to define group actions of GL(4, ]R) on

half-integer as well as integer spin fields.

The dimensions of GL(4, IR) and O(3,1) are sixteen and six,

respectively, implying the need for 16 - 6 = 10 parameters/co-ordinates

to specify an element of the quotient space GL(4, B)/O(3,l). The

assignment of these parameters,which are the preferred fields of the

present theory, is facilitated by the following remark. Any element of
13)GL(4, IR) admits a unique polar decomposition as the product of a

positive symmetric matrix (which is itself the exponential of a symmetric

matrix) with an element of the maximal compact subgroup O(ijl A
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similar local result applies if the Lorentz O{3,1) subgroup is used. Thus

if L is any 4 x 4 invertible matrix, in some suitable neighbourhood of

the unit matrix, it may be written as

(3.2)

r i b

where L is an element of the Lorentz group, so that

r -]
and -| L j- is pseudo-symmetricfwith ten independent elements) in the

sense that

{ L } " "a, " { L } V (3-4)

where rj is the Minkowski metric. As is implied above by the word

"local",this decomposition is no longer unique. It is,however?well

defined on some finite neighbourhood of the identity element of GL(4,E)

and this is sufficient for our purposes. Eq. (3. 2) mimics the local

isomorphism G — G/H X H, thus enabling the matrices A L J-

to form a local co-ordinate system on the quotient space G/H. These

matrices,being the exponentials of pseudo-symmetric matrices, may be

written as

| L | =^expHJ a
PV^ (x)]J (3.5)

where J are the appropriate subset of the GL(4, ]R ) Lie algebra

generators and the ten preferred fields V- (x) constitute our

parametrization of the coset space GL(4, E)/O(3,l), We will now fix

our attention on a matrix L which is already pseudo-symmetric in the

form of eq. (3. 5), andAwill for notational ease drop the curly brackets

round it.
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The non-linear realization induced on these preferred fields by

a group element A = is obtained from eq. (3, 5) by multiplying

L on the left by A and re performing the polar decomposition

( A L ) = { A L |
The action on the preferred fields, which constitutes the GL(4, TR)

realization, is derived from the transformation

L b(x) -> L<b(x) = | A L | (x) . (3.7)

For convenience we will denote the Lorentz matrix j AL as h ,
Ja

in terms of which eq. (3. 7) may be rewritten as (cf. eq.(L 1))

b
_ *(x) = ( AL ^ ( FAL] ~l }

*i VO1"1) • (3-8)

This is the basic equation for the non-linear realization description of

the general invariance group of co-ordinate transformations. Evidently

the matrix L transforms in a hybrid manner, linearly on the greek

indices and non-linearly on the latin indices.

We may now define the non-linear realization of GL(4f ]R) on any

field (including those with half-integer spins) which carr ies a representation

D of the Lorentz group;

0(x)-»0'(5) = D(h) 0(x) . (3.9)

Hybrid fields carrying representations D and D ' of GL(4, E) and

the Lorentz group, respectively, may also be incorporated by defining

the transformation
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| | Q D(2)(h) 0<x) (3.10)

of which eq. (3.8) is clearly the prototype.

From the pseudo-symmetric matrix L we can construct a

genuine rank-two tensor,which transforms linearly, by defining g as

Under a co-ordinate transformation we obtain, from eq.(3.8),

( , i .-, ax* dx$ _ a T b 1 \ C A - l

This enables us to identify g as the metric tensor whose components

form the basic dynamical potentials of general relativity. It is related
o

via eq.(3. 5) to the preferred fields V p(x) of the non-linear realizations.

The contragredient tensor g is defined as usual as the inverse matrix

of g and these two tensors may be used in the standard manner to

raise and lower greek indices. It is convenient to regard the latin

indices (which carry the non-linear realization) on L as being raised

and lowered with the usual Minkowski metric tensor. This convention may be

consistently extended to include the latin indices on the Lorentz matrix

h of eq.(3. 8) and indeed this motivated our original assignment of the

various indices from the two alphabets. With this notation we may

derive the expressions

j U a T _ A M . T
J U a T - A a . T ̂ a T V - J™ T " a T b - « a b

va. v ' /Lib b a 6 ' A<

(3.14)

which demonstrates the duality between the two types of index.
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There is obviously a very close connection between our non-linear
14)

realization scheme and the Vierbein formalism which takes eq. (3.11)
EL

as its starting point. In the latter case, however, the matrix L is

only determined up to an arbitrary Lorentz transformation on its latin

indices. This group of space-time dependent Lorentz transform ationsj

known as the Vierbein gauge group, acts upon spinor fields which are,

however;taken as scalars under general co-ordinate transformations.

The requirement that a Lagrangian be invariant under the general co-

ordinate group and also under an arbitrary redefinition of L (which

is equivalent to a Vierbein gauge group action) necessitates the

introduction of a spinor connection onto the space-time manifold with

associated covariant derivatives.

We have proceeded differently by observing that out of all possible

choices (which are inter-related by Vierbein transformations) for the

matrices L^ in eq. (3,11), one unique choice exists which is pseudo-

symmetric. It might be thought that by using this special form for all

time" we have lost the invariance under the Vierbein group and the

equivalence with the standard formalism. This is not so because our

spinor fields are not scalars under co-ordinate transformations but

transform in the manner prescribed by eq. (3.19). Any arbitrary Lorentz

transformation H,say, may be imparted to the spinor field 0{x) by means

of the co-ordinate transformation x -* :f (x) where x is arranged such

that

(3.15)

which, since
b.. [AL] -

a
leads, by eq. (3. 9), to the desired result. This particular co-ordinate

transformation has a natural interpretation since, from eq. (3.11), L

transforms the system to a co-ordinate chart in which the metric tensor

is (locally) Minkowskian and this is then followed by the desired Lorentz

transformation H.
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The final equivalence between these two approaches is demonstrated
i

by constructing the non-linear realization "covariant derivatives" for the

fields transforming as in eq. (3.10). These turn out to be identical with

the geometric covariant derivatives constructed from the spin connection

of the Vierbein scheme, showing that the two formalisms really are

physically equivalent. Essentially, we have exchanged the Vierbein

gauge group for the "non-linearly11 transforming spinor fields and it is

hoped that this throws an interesting light on the whole Vierbein

structure (or vice versa). The non-linear approach does of course carry

the bonus of potentially incorporating the Goldstone phenomenon which

in this case is manifested by the symmetric Vierbein fields.

Before constructing the covariant derivatives an important

technical distinction must be made between the non-linear spinor

representations occuiring above and those of, for example, chiral

symmetries. In the latter case the non-linear realization of the group

G on a matter field (by which is meant all fields except the preferred

ones) may be embedded in a higher-dimensional linear representation

of the group. More precisely, if D denotes a linear representation

of G on a field 1, then the field ip defined by

4/ = DfL)"1* (3.17)

transforms in the standard non-linear way. Conversely, given any non-

linear realization of G on a field ^ , it may be embedded in a linear

representation D on a field Y provided that D, when restricted to the

fundamental subgroup H, contains that finite-dimensional representation

of H which is carried by the field \\j. If G is a chiral group this can

always be done. This will not, however,always be possible when G is

GL(4, K) because no finite-dimensional linear representation of this

group contains half-integer spin representations of the homogeneous

Lorentz subgroup H. The technique employed inl and II for constructing

covariant derivatives relied to some extent on the existence of such an

embedding and is also algebraically complicated in the present case. There-

fore we will use here a different, more geometric,method.

- 27 -



To orientate our sign conventions we will write out the infinitesimal

form of the hybrid transformation of eq. (3.10) as

where F and S are the Lie algebra representation matrices of

D and D* , respectively. We define the covariant derivative of

as

0 = 0 - i (r F \ + B , Sab ) i> (3.

where the connections T and B are required to transform as

f X
r

dx7 "** dxadx^ dx*

g = 12L ^ h
 c

 h
 d

 B . -' h C hK
d r) . ) (3.21)

juab 3-/u \ a b acd a, a b cd J

and are at the moment two independent quantities. If we require (as

is customary) that r = V and that the covariant derivative

of the metric tensor should vanish, we obtain the unique form for F:

T , X f • X "1 1 Xa , . .
fiv \ ti-v J 2 6 Ba(i,v Bav, n ejui/, a *

(3.22)

Under these conditions the acts of raising and lowering indices and taking

covariant derivatives commute.

The matrix L may be used to interchange latin and greek

indices. Thus, given any linearly transforming vector if/ we may

associate with it a canonical non-linearly transforming field 0 defined

by
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Conversely,

= L a 0 (3.24)
ju * a

is a linear field if ijj transforms non-linearly on the index a. These
a

equations are the concrete form, for Lorentz vectors, of the embedding

construction mentioned earlier. We would like this interchanging of

indices to commute with covariant derivation, that is

\V a; v a H; v

which requires the vanishing of the covariant derivative of L ,

L = L - T X L. + B . L b . (3. 25)
juaj v t*ajV V(Jt Aa y&b ju

Equating this expression to zero we may solve for B in terms of the
ircL D

preferred fields

2 a fib.v b /Ja,v 2 vc a b v /u,A A,M

- i- (L^ L ,_ - L ^ L ) (3 .27)
2 v a vb.v b i/a,A*

which clearly transforms as in eq. (3. 21) and is,as claimed earlier, the

usual spinor connection of the Vierbein formalism thereby demonstrating the

equivalence of the two approaches.

The covariant derivative of a hybrid field will transform as

^ D(1) ( I t ) ° ( 2 ) ( h ) *-Jx) - (3-28)

We can also define a "non-linear" covariant derivative (cf. eq. (3. 23)

and (3. 24)) as

4> = L** 0

- 29 -

-srar « 5 r «



which transforms as

y * > - * ; > = C D(1) ( I f ) D ( 2 ) ( h ) *ib <3-29>
and which may be useful on occasion .

A bilinear expression in Dirac spinors has the transformation

property

7 0 -> 0 AV) y A(h)0 = h % 7 j (3.30)
9 3 cL D9.

where A are the representation matrices of the spinor ff/,and y are
a

the usual constant Dirac matrices satisfying the anticommutation law

Such a bilinear, being a Lorentz vector, may be converted to a linearly

transforming form using eq. (3. 24), that is

L a 0 r ^ -* ^ ( L a ^ 7 a ^ ) • (3.31)
H a 3-/4 v a

This conversion may be regarded as a redefinition of the Dirac matrices

as

7 (x) = L (x) 7
/u M a

which satisfy the new anticommutation law

-IT ,7 > -\_ JU V J - 2

of the generalized Clifford algebra which frequently appears in the

standard treatment of spin structure on space-time.

Invariant Lagrangian densities may now be readily constructed by

saturating latin indices with n , greek indices with g and multiplying

by the appropriate powers of •/-][ to achieve the desired weight of one.

There is nothing in principle to stop our adding into the theory the cr

and 0 fields of Sec. II after suitably extending their
a

-30-



transformation laws in the obvious manner suggested by eqs, (2.17) and

(2.18). The c-field might be introduced as a factorization of the gravita-

tional metric tensor g in the form

* -2a
£ = g e

The density g describes the pseudo-tensorial component of the gravita-

tional force and in the absence of this interaction reduces to the Minkowskian

metric r\ with a resulting restriction of the invariance group to the con-

formal subgroup. Alternatively,we could form the affine sum of the natural

connection defined by the cr-field, with the Christoffel symbol associated

with the space-time metric g . Another possibility is Simply to intro-
-4(7

duce e as a normal field in its own right, since it is a scalar density of

weight one. In this case it has no intrinsic geometric significance.

The <i> field may best be incorporated as an independent massless

vector by forming the affine sum of the appropriate connections. The

ensuing theory with its non-Riemannian geometry is very similar to Weyl's

formulation of electromagnetism.

We have throughout regarded the conformal group as a sub-

group of the group of general co-ordinate transformations. Indeed in our

formulation of conformal symmetry we deliberately constructed the metric
-2a 2 a b

tensor & , - n , e so that the line element ds = g , dx dx was
"ab ab ab

invariant. Invariance under the latter group then automatically implies

invariance under the former and from this point of view the cr field is

not necessary if we are provided with the gravitational field g . It is

possible to regard conformal actions as being something quite distinct

from general co-ordinate transformations, which act directly on the

gravitational metric tensor,resulting in a non-invariance of the line ele-

ment on the space-time manifold. We,however,prefer the interpretation

above with its implied hierarchy of space-time groups: Poincare*, con-

formal and general co-ordinate. Invariance under the latter two then

enforces the successive, but not mutually necessary, introduction of the

a and g fields with their respective coupling strengths.
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