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ABSTRACT

Any Lorent2- invar ian t Lagrangian oan "be made conformally

invar ian t provided a gauge f i e l d 0 i s introduced as par t of a

covariant d e r i v a t i v e . The f i e l d ^ ,whose t ransformat ions are thus

symptomatic of spontaneous symmetry breakdown, i s decomposed in to

t ransverse arid long i tud ina l p ieoes whose p r o p e r t i e s and poss ib le

manifes ta t ions are d i scussed . Among them i s a n a t u r a l p lace for

C-violat ion.
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The purpose of this note is to clarify some aspects of the

theory of spontaneously broken conformal symmetry as presented

recently in an article "by two of the authors . The discussion of

Ref.1 was framed within the context of non-linear realizations and

culminated in a spontaneous symmetry "breaking associated with a set

of Goldstone particles in accordance with general theory '» With

this approach i t "beoomes possible to construct conformal invariant

Lagrangians for massive fields. However, there were some peculiar

aspects of this application of the general method: first ly, the

realizations turned out to "be linear (although inhomogeneous in the

case of the Goldstone fielda) and, secondly, the Goldstone particles

were able to acquire mass. In effeot, the massless vector field which,

at first sight, would seem to be associated with the spontaneous

breaking of the conformal symmetries has oonapired - according to a

well-known mechanism ' - to obliterate the "classical" Goldstone effect.

This means that the full apparatus of non-linear realizations can be

dispensed with and the results of Ref.1 derived more directly.

Let us begin by reviewing the definition of the oonformal group

on space-time. It is a 15~parameter group whioh includes the

following transformationsi

a) Inhomogeneous Lorentz transformations

XM - Anv x i / + *V , A e 0(3,1) , (1)

b) special conformal transformations

x + x a
-if <L_ , (2)

1 +2x0

o) dilations

eX x.. (3)

where A , a , j3 and X are all real quantities independent of x.

¥e are using the Minkowskian tnetrio

v • diag
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and the t ac i t summation conventions. Bx = 8 x •» n 8

This will not cause confusion sinoe we shall always view the

reotangular co-ordinates in a f la t space-time.

x , , e t c .
V

as

The defining oharaoterist ic of conformal transformations i s

the preservation of angles "but not lengths. In faot, the various

transformations ( l ) , (2) and (3) can be summed as the t o t a l i t y of

mappings x —+ x whioh satisfy the identi ty

9x

9x

ax1

y det r^ (4J

This basio formula oan "be used to set up the linear representations of

the oonformal group supposing one is already given the representations

of the inhomogeneous Lorentz group. To this end, consider the matrix

A (x) = det —V 9x
*

(5)

According to (4) it is a Lorentz matrix, A(x) 60(3,l). Moreover,

it constitutes a linear representation of the oonformal group (since

both |det( 9 x1/ 9 x) | and 3x' /d x are themselves linear

representations). Therefore, given a set of fields V^fx) which

belong to a linear representation of the inhomogeneous Lorentz group

D(A)

is defined for all A whichwhere the representation A -* D( A)

belong to 0(3,l), it is clearly possible to represent the conformal

transformations (l.), (2) and (3) by

det £')
JL/4

D(A(x)) (6)

where A (x) is given by (5)> and the faotor Idetax'/^^l has

been inoluded for greater generality. Consistency requires that i bs
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a Lorentz soalari a pure number if D(A) is irreducible, otherwise

a matrix which commutes with D. The infinitesimal form of the global

transformation (6) coincides with that derived in Ref.1 by non-linear

realization techniques and in Ref«4 by the method of induced

representations.

Clearly, since the A..,, in (6) depends upon xu , the ordinary

partial derivative

Rather, one finds

9 it will not transform in a simple fashion,
A*

9x
i

ax1 det
jg/4

D(A(x))
vp vp' P

(7)

where S a ~Syu denotes the usual spin matr ices which generate

the i n f i n i t e s ima l form of D(A)# Following the standard procedure

we can invent a covariant de r iva t ive ^ „ by introducing a gauge f i e l d

(or connection) 0 as fol lows:

= \b - iS (8)

transforms aocording to the rule

9x

r det
dx
dx (9)

With this construction, the covariant derivative (8) transforms

according to the rule

***
(x>) = det

9x'
3x

A D(A) 0 (x)

and is seen to be a oovariant objeot of "weight " j g - 1
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Having de3ori"bed the conformal transformations of fields and

defined their covariant derivatives, let us now consider the problem

of oonstruoting oonformal invariant Lagrangians, Actually, since

the Jaoobian determinant is not t r ivial we must take oare to make the

Lagrangian density L(0) & scalar density of weight i « -4, i , e .

det ^

In order to meet this oondition it was assumed in Ref,1. that there

exists a Lorenta soalar field cr (x) with the anomalous transformation

behaviour

= or(x) + i in de t
3x'
3x (10)

With suoh a field at our disposal we can construct the Lorents scalar

of weight Jt , given "by exp(icr) and multiply this factor - with &

ohoeen appropriately — into any given Lorentz soalar term in the

Lagrangian thereby making i t a scalar density of weight -4*

Thus, with the fields <j> and cr we can turn any Lorentz-

invariant Lagrangian into a oonforraally invariant one. However, these

fields evidently transform in a manner which is not consistent with

the invariance of the vacuum state (except, under the subgroup (l) for

which det |93C!/9x| = l ) and i t appears that we are dealing with a

theory in which the oonformal symmetry is spontaneously broken.

This was the point of view adopted in Ref.l.

However*, there remains some ambiguity in this programme. I t

appears on comparing (9) and (10) that 0 and -§-9̂ <7 transform

identically. Therefore, we oan everywhere replace # by G^t - % d a

where C,, transforms like an ordinary field with i - - 1 , I t follows

that the oouplings of. G are not controlled by the conformal

requirements. Any Lorentz-invariant coupling is permissible for 0 ,

The interactions of o-(x) , on the other hand, are governed

completely by the requirements of conformal invariance. In fact, the

equation of motion for v} derived from a conformal invariant action,

can be put into the form
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where @ denotes the symmetrical energy-momentum tensor of all the

fields (including a i t se lf) .

From the appearanoe of (11) one oould choose to interpret cr(x)

as a soalar gravitational field and make i ts couplings correspondingly

weak. It is even possible to give this "gravitation" a geometrical

meaning "by interpreting the expression g = n exp(-2cr ) as the

metric tensor in a Riemannian space-time. This point of view will "be

presented in some detail in a forthcoming article.

A second possibility is to interpret cr(x) as a strongly

coupled field with a finite range. The oonformal invariance of the

action is not disturbed by including the term exp(-4o") in the

Lagrangian density and from this term a mass can be extracted. If

this interpretation is adopted then it would be necessary to break the

symmetry insofar as leptons are concerned. It would not be acceptable

to have CT(X) ooupled strongly to the leptons. Hence, the right-»hand
, . (hadron)

side of (11) must be replaced by 2Q . I t may be remarked, how-

ever , that if the leptons were truly massless then they would not

contribute to g . We should perhaps look upon the lepton mass

terms as spontaneous breakers of conformal symmetry, which means that

the self mass ' . exactly equals the physical mass, the bare mass being

Can nature have a direot use for the field C = <£ (x) + ^9

So far as conformal invariance is conoerned, i t oould be dispensed with

at least so long as we have ^a(x). However i t s manner, of appearanoe

*) It was suggested in Ref. 2 that it might prove possible to compute the pion mass - in the context of

cliirai SU(2) x SU(2) - by treating it as a counter term: something to be added to and subtracted

from the Lagrangian and computed self-consistentiy- This programme is being pursued at the

present time by workers at Imperial College.

It is possible to set up conformal invariant theories in which o does not appear. They are

characterized by the absence of mass terms. In addition, the 4-values of the fields are highly

constrained. Thus Ret = -1 for scalar and vector fields and Refl = -3/2 for the Dirac spinor.

(These assignments are discussed in a recent article by G. Mack and Abdus Salam (Ref.4). They

can be referred to as the canonical weights.) The imaginary parts of I are unrestricted.



in the covariant derivative and its characteristic couplings are
extremely suggestive in themselves - particularly when we remark that

whenever Re.? « -1 ("bosons), - ^ (fermions) and ImiJ ^ 0, On oouplea

to a conserved neutral ourrent. We wish to l i s t some attractive

possibilities of the role this field might play in partiole physics.

a) As the electromagnetic field! If Im 2 is identified with the

eleotrio charge e and Ĉ  is masqless, the field oould "be

identified with the electrotnagnetio field.

"b) As t h e ba ryon - con s e r v i n g f i e l d t I f C^ i s massive and Im I

is proportional to baryon number* C,, oould be identified with

a baryon-conserving field possibly with the <T a 1

6)-particle.

o) If Im] a 0 and Re.? £ J?canonical CLwould be an exotic particle
PC ~+

of the second kind with J = 1 , assuming that the theory

is invariant for antiparticle conjugation.

d) It cannot have escaped the readers notice that the conflicting

charge-conjugation properties postulated in b) and c)

immediately suggest a possible mechanism for C-violation. This

may be the most important role of the C-partiole.

See second footnote on p.6.
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