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Any Lorentz-invariant Lagrangian can be made conformally
inveriant provided a geuge field ¢p is introduced as part of a
covariant derivative., The field qbu,whose trangformations are thus
symotonatic of spontaneous symmetry breakdown, is decomposed into
tranaverse and longitudinal pieces whose properties and possible
manifestations are discussed. Among them is a natural place for

C~violation.
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The purpose of this note is to olarify some aspects of the
theory of spontaneously broken conformal symmetry as presented
recently in an article by two of the suthors 1 . The discussion of
Ref.l was framed within the context of non=linear realizations and
culminated in a spontaneous symmetry breaking associsted with & set
of Goldstone particles in accordance with general theory 2). With
this approach it becomes posgible to constiruct conformal invariant
Lagrangians for massive fields. However, there were some peculiar
aspects of this application of the general method: firstly, the
realizations turned out to be linsar (although inhomogeneous in the
case of the Goldstone fields) and, secondly, the Goldstone particles
were able to acquire mass, In effect, the massless vector field which,
at first sight, would seem to be associated with the spontaneous
breaking of the conformal symmetries haz consplired =~ according to a
woll-known mechanism 3) . to obliterate the "classical Goldstone effect.
This means that the full apparatus of non~linear realizations can be
dispensed with and the results of Ref.,l derived mors directly.

Let us begin by reviewing the definition of the conformal group
on gpace=time, I+ is & l5=parameter group which inocludes the

following transformations:

a) Inhomogeneous Lorentz transformations
I;J A,_w Xy + 8, » A €0(3,1) , (1)
b) special conformal tranaformations

P4
x + x°B
X = H 4 ? (2)

1+2xB+x232

= -

¢) dilations

x A e}L x (3)

where 1\“V y B, Bu and A are all real quantities independent of z.

7]
We are using the Minkowskian metrio

n, = diag (¢ == =)
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and the tacit summation conventions, fx =g x uu B V’ eto.
This will not cause confusion since we shall aslways view the x,; as

rectangular co-ordinates in a flat space~time,

The defining charaoteristic of conformal transformations is
the preservation of angles but not lengths. 1In faot, the various
transformations (1), (2) and (3) can be summed as the totality of
mappings x - x;‘ which satisfy the identity

i
1
ax' ax' vl 2
i v py o _ 9x KA
8ch 8x>L " det(ax ) 1 (4)

This basic formula can be used to set up the linear representations of
the conformal group supposing ons is already given the representations

of the inhomogeneous Lorentz group. To this end, consider the matrix

1

4
A (%) = det(ax'>
i,

According to (4) it is a Lorentz matrix, A(x) €0(3,1). Moreover,

FH
':-.

(5)

it constitutes a linear representation of the conformal group {since
both |det(9x'/8x)| and ax' /@ x, are themselves linear
representations). Therefore, given a set of fields Vo((x) which

bslong to a linear representation of the inhomogeneous Lorentz group
v'(x') = 2(A) ¥(x)
where the representation A — D{A) is defined for all Auv which

belong to 0(3,1), it is clearly possible to represent the conformal
tranaformations (1 )}, (2) and (3) by

0/4 -
o) = faet( 32 Diae) v (6)

£
where A (x) 4is given by (5), and the faotor ldet ax'/axl /4 has

been included for greater generality. Consistency requires that { be
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a Lorentz scalar: a pure number if D(A) is irreducidle, otherwise
a matrix which commutes with D, The infinitesimal form of the global
trangformation (6) coincides with that derived in Ref.l by non—linear
realization techniques and in Ref.4 by the method of induced

repressentations.

Clearly, since the Ay, in (6) depends upon Xy s the ordinary
partial derivative Y = auw will not transform in a simple fashion.
/

Rather, one finds

' %y oxt \|£/2 L S o tn et
: 1) = — = += - t—
G = g aet N Do {u 005 e, 18, g fae 2 oo
(7)
where Suv = -Svu denotes the usual spin matrices which gensrate

the infinitesimal form of D(A ). TFollowing the standard procedure
we can invent a covariant derivative \0;“ by introducing a gauge field

{or connection) qﬁl_‘l as follows:

= + 2(4 - iS
"D:u w,u ( M uv) ¢, ¥ (8)
Wwhers éﬁi transforms according to the rule
ax t

! 1 = v - .1_ l ?—E
qﬁu(x) -—r-ax“ dvv(x) 3 Buﬂn det ry

) (9)

With this construction, the covariant derivative (8) transforms

according to the rule

£-1
v = fdet 35T AL, DO Y ()

and is seen to be & covariant objeot of "weight" g =1,




Having desoribed the conformal transformations of fields and
defined their covariant derivatives,let us now consider the problem
of constructing conformal invariant Lagrangians, Actually, since
the Jacobian determinant is not trivial we must teke care to make the

Lagrangian density L(¢) a scalar density of weight £= -4, i,e,

-1
]
det ox

LIy = =2 Lw -

In order to meet this condition it was assumed in Ref.,l1. that there
exists a Lorentz scalar field o{x) with the anomalous transformation
behaviour '

' 1 dx!'
o) = olx) + g o |deti| (10)

With such a field at our disposal we can construct the Lorents scalar
of weight £ , given by exp(fo¢) and multiply this factor = with £
chosen appropriamtely = into any given Lorentz scalar term in the

Lagrangian thereby making it a scalar density of weight =4.

Thus, with the fielda ¢Lr‘and o we oamn turn any Lorentz-
invariant Lagrangian into a conformally invariant one. However, these
fields evidently transform in a manner which is not consistent with
the invariance of the vacuum state (except.under the subgroup (1) for
which det |az'/ax| = 1) and it appears that we are dealing with a
theory in which the conformal symmetry is spontaneously broken,

This was the point of view adopted in Ref,l.

Howevery. there remains some ambiguity in this programme, It
appears on comparing (9) and (10) that ¢# and -%8‘10 transform
identically. Therefore, we can everywhere rsplace ¢“ by Cu - %—aug
where C, transforms like an ordinary field with £a =1, It follows
that the couplings of. C“ are not controlled by the conformal

requirements, Any Lorentz-invariant coupling is permissible for Cu.

The interactions of o(x) , on the other hand, are governed
completely by the requirements of conformal invariance. In fact, the
equation of motion for o, derived from a conformal invariant action,

can be put into the form




-20

Lle ™) =28 (11)

Mu

wherse & v denotes the aymmeitrical energy=-momenitum tensor of all the
fields (including o itself).

From the appearance of (11) one could choose to interpret o(x)
as a soalar gravitational fieldjgnd make its oouplings ocorrespondingly
wealk, It is even possible to give this "gravitation" a geometrical

meaning by interpreting the expression g‘u, = 79 exp(~20 ) as the

pv
metric tensor in a Riemannian space=time. This point of wview will be

presented in some detail in a forthocoming article.

A gecond possibility is to interpret a(x) as a strongly
coupled field with a finite range. The conformal invarience of the
action is not disturbed by including the term exp(-4c) in the
Lagrangian density and from this term a mass can be extracted., IT
this interpretation is adopted then it would be necessary tc break the
symmetry ingofar as leptons are concerned, It would not be acceptable
to have a(x) ocupled atrongly to the leptons. Henca, the right=hand
side of (11) must be replaced by ZGGMdmm » It may be remarked, how=
aver , that if the leptons were trulyﬁxgssless then they wounld not
contribute to @ . We should perhaps look upon the lepton mase
terms as spontanégts breakers of conformal symmetry, which means that
the self mass ™. exactly equals the physical mass, the bare mass being

Lell.

Can nature have a direct use for the field Cu==¢u(x) +-%8Lia(x)?
So far as conformal invariance is concerned, it could be dispensed with

*% .
at least so long as we have o(x). * However its manner of appearance

) 1t was suggested in Ref, 2 that it might prove possible to compute the pion mass - in the context of
chiral SU(2) x SU(2) - by treating it as a counter term: something to be added to and subtracted
from the Lagrangian and computed self-consistently. This programimne is being pursued at the
present time by workers at Imperial College.

%)

It is possible to set up conformal invariant theories in which o does not appear. They are
characterized by the absence of mass terms. In addition, the g-values of the fields are highly
constrained. Thus Ref = -1 for scalar and vector fields and Ref = ~3/2 for the Dirac spinor.
(These assignments are discussed in a recent article by G. Mack and Abdus Salam (Ref.4). They

can be referred to as the canonical weights.) The imaginary parts of £ are unrestricted.

=G



in the covariant derivative and its characteristic couplings are
extremely suggestive in themselves ~ particularly when we remark that
whenever Rel = ~1 (bosons), = %’(fermions) and Imf{ £ O, Cy couples
to a conserved nesutral current. We wish to list some attractive

poseibilities of the role this field might play in partiole physics.

a) As the electromagnetic field: If Im§ is identified with the

electrio charge o and qu is masgless, the field oould be
identified with the electromagnetic field,

b) As the baryon-conserving fields If Cﬂ is massive and Im f
is proportional to baryon number, QH could be identified with
a baryon-conserving field possibly with the JPC -1
@-particle,

o) If Im{ = 0 and Ref # Rcmmnm;?quwould be an exotic particle

of the second kind with JP =177 , agsuming that the theory

is invariant for antiparticle conjugation.

d) It cannot have escaped the readerk notice that the conflicting
oharge=-conjugation properties postulated in b) and c)
immediately suggest & possible mechanism for C~violation., This

may be the most important role of the C-particle.

*
See second footnote on p.b.
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