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1. INTRODUCTION

1. Lagrangian field theory, if it is to have any future, must learn to
cope with non-renormalizable interactions, This becomes apparent when
one examines what we currently believe are Lagrangians of physical

interest. These include:

a) Chiral SU(2) x 8U(2) Lagrangians for strong interactions. A typical

example is Weinberg's Lagrangian for r-mesons:

i (3 ¢)

(1+fi)

b) Intermediate-boson mediated weak Lagrangian, An example
is an intermediate neutral vector meson Uu interacting with quarks Q ;
As is well known in Stiickelberg's representation . {U Au +% Bu B), iint
can be written in the typical form:

k) B

=1Q 7 (1+%) QA +m Q7! 1) Q

int
c) The gravitational Lagrangian of Einstein expressed in terms of the

. v
contravariant tensor

R S s 1 D § JL
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The covariant components g“v which enter the expression for g= det g B
v
are expressed as a ratio of two polynomials in g"
The interaction Lagrangians in all these theories are typically of a
non-polynomial form in field variables, These Lagrangians can be ex-

panded in power series of the type:

- v(n) g4yn
(#=a \; o (8. (1.1)



(Here ¢ is a scalar field and for simplicity we are ignoring derivatives, )
The coefficients v(n) are proportional to " where f 1is a coupling
constant 1). All terms in such expansions with n> 4 are non-renormal-
izable. Thus, barring quantum electrodynamics, the rest of Lagrangian
particle physics apparently needs a closer study in respect of non-renormal-
izability.

2. Right from the very early days it was emphasised, particularly by
Heisenberg, that the perturbation expansions of the S-matrix in powers of

N .
G fr_ for the case of unrenormalizable theories suffer from two distinct

(though related) difficulties:
a) Infinities:

The integrals in the theory become more and more infinite in each
increasing order of perturbation., In each order one needs new counter-

terms containing higher and higher derivatives of fields if the conventional

subtraction philosophy of renormalizable interactions is to be extended to

these theories, (These infinite order higher derivatives are likely to pro-
duce a non~local counter-term Lagrangian, )
b} Unacceptable high-energy behaviour:

Even after a successful subtraction scheme has been cgrried out,
the high-energy behaviour (of the finite parts) of integrals is physically
unacceptable, As external momenta become’large, the dependence of
these integrals on external momenta increasea polynomially with the order

of the approximation, unlike the case for renormalizable theories.

3. Of these two types of difficulties, the first - concerning the infinities
of the integrals - has begun to be seriously investigated recently., Three

types of approaches have been considered:

a) The conventional approach, where the Feynman momentum space

N .
integrals in each order G f* are considered as they stand and a consistent

2)

subtraction procedure defined . It appears 3) that all three rigorous

subtraction procedures used for renormalizable theories, i.e,, i) the

Dyson-Salam method4), ii) the Bogolubov-Parasiuk-Hepp methods) and

6)

iii) the analytic renormalization method ', can be extended to non-renormal-

izable theories. To our knowledge the second technical problem of a
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systematic organization of the counter-terms has not yet been examined
for any of the theories, nor‘,\ﬁle problem of physical interest posed by finite
changes in the definition of renormalization constants, (Since there are
an infinity of renormalization constants, such changes could reduce the

predictive power of the theory to naught, )

7), 8)

b) The x-space approach of Efimov and Fradkin for theories with

rational non-polynomial Lagrangians. Formally one can write the N-th
order approximation in the major coupling constant G in x-space toa

typical amplitude in the form of a divergent series:

FN(xl,xz,»-o)= cN Z(f)p"'q"'"' a Yoo

Pro - q -
‘ A (xl xz) AF(x2 X
.P,%.-. I

pqo-u 3

(1.2)
Efimov and Fradkin have described an elegant technique of carrying out

Borel sums of such series in the minor coupling parameter f ., These

sums can be examined in the ultraviolet limit (x1 - x2)2—> o,

2
(x., - x4) -0, - - The important result of their investigation

(eitended in Ref, 8) is that if the Dyson index D of the rational Lagrangians
is less than or equal to four - i.e., the same as that for renormalizable
the ories - (the Dyson index D is defined by the limit ©L(¢) = q’:D ),

-0
only a few types of Borel sums exhibit any ultraviolet infinities - again
like the case for renormalizable theories. In particular,if the Dyson
index D is less than two, none of the Borel sums (including those represent-
ing vacuum-to-vacuum transitions) 1s ultraviolet infinite. Thus if in some
sense.the Borel sums represent the physical amplitudes, all theories with
D <2 - and for these theories the Lagrangian must be non-polynomial -

9)

are super-renormalizable ',

This is a beautiful result, The important question to decide is to
what extent the Borel sums represent the physical amplitudes, Do
the p-space Fourier transforms of these x-space functions possess the
requisite analyticity and unitarity properties? And,finally,is the high-energy

behaviour of these p-space Fourier transforms polynomially bounded,as it

“3-



should be if physical amplitudes are being represented?

A detailed study of the Fourier transform of the Efimov-Fradkin

two-point function in second order of the major coupling constant G has

10)

been made by Lee and Zumino who have concluded (with Efimov) that:
i} the corresponding Borel sum does possess the requisite analyticity and
unitarity properties, ii) it is not polynomially bounded, iii) the well-known
lack of uniqueness of Borel sums of divergent series is reflected in an

arbitrariness of the amplitudes up to an entire function,

c) The p-space method:

Since it is the momentum-space Fourier transforms of the amplitude
(1.2) which are the quantities of primary physical interest, it is valuable
to have a summation method which works directywithin p-space. The
present paper is devoted to the development of such a method, following
11)

a procedure first discussed in this context by Volkov and which in its

essentials goes back to a discussion (in the appropriate region of x and
n) of the Fourier transform of [-1/1~:2]n by Gel'fand-Sl'ﬁlovlz). In
particular we show that:

i) The amplitudes appear to possess the analyticity structure associated

with the unitarity requirements,

i) The method gives immediately the asymptotic behaviour for large
values of external momenta and , in particular, for the two-point

2 . .
amplitude in the second order in G studied by I.ee and Zumino,

we reproduce very simply their result,

iii) The discussion of ultraviolet infinities of Borel sums in x-space is

closely parallelled by a similar one in p-space,

iv) One can develop a graph technique of Feynman-~like diagrams with

super-lines representing super-propagators (AF(x))n replacing

normal lines corresponding to Feynman propagators AF(x) . In
p-space, the closed loop integrations for super-graphs can be per-
formed with the help of Feynman's auxiliary parameters in exactly
the same fashion as for conventional polynomial Lagrangians, . In-

so far as there is (essentially) just gne super-graph in each order

-4-
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N . .
G , the topological analysis of super-graphs is simpler than

Feynman diagrams for polynomial Lagrangians,

4, The problems

It would appear from the above that for non-polynomial interaction
Lagrangians with index D < 2 one can construct amplitudes with no ultra-
violet infinities and which (if one can extrapolate from the limited experience
so far) are likely to satisfy the correct analyticity and unitarity requirements
(unitarity verified to each order in the major coupling constant G ). There

are two remaining problems:

a) The arbitrariness in the amplitudes which the Borel-summation method
in x-~-space allows or, as we shall see, its weaker analogue,which still exists
when the p-space method is used., The problem is analogous to the problem
of arbitrariness of finite renormalization constants in renormalizable

theories,

b) The more serious problem of non-polynomial bounded high-energy
behaviour of the amplitudes, We believe that any inference in this respect
on the basis of order-by-order calculations in powers of G is likely to be
misleading and a final verdict on the true asymptotic behaviour of these
theories can only be given after a summation of the series in the major
coupling constant G has been performed. For renormalizable theories,
as is well known, this summation has been carried out for certain sequences
of graphs for the four-point function and for a number of production ampli-
tudes. The result iglzgmergence of Regge behaviour for large values of
energy, unsuspected if one had only considered individual terms of the
perturbation expansion. We believe,on the basis of certain indicative
considerations,that a similar {drastic) change in the high-energy behaviour
also occurs in the present theories when the summation in G is carried
out. The p-space method is extremely convenient for summing the super-

graphs insofar as the analytical expressions for the super-graphs resemble

those for conventional polynomial Lagrangian theories.,




5, Plan of the paper

To make the plan of the present paper clear and to bring out the paral-
lel sets of ideas involved in the x-space and the p-space methods, we set

down here a brief and non-rigorous summary of the paper.

A) Super-graphs:

)
Consider iint(tﬁ) =G Z lr%l (-¢)n, (v(n) contains the minor
' n=20 .

coupling parameter f . The factor (_)n is included for later convenience, )

It is easy to verify that the GN contribution to an amplitude F(xl, ,xN)
with E external line ecan be written as a sum of contributions from a set of

super-graphs constructed as follows:

a) Take N points Xis X9y vee s Fg oo

b) Join all points pair-wise with just one super-line joining two distinct

points {xi . xj) ; associate with this line a positive integer nij .

1 .
c) For each line write the factor o [AF(xi -x)] 1
ij’ ]
d) For each point X, write a vertex factor v (Z nij + mi) . Here
i

m, is the number of external lines impinging on the point X, .

e) The contribution of the super-graph to the amplitude equals:

ey

Fon  Oxy) = G > 1T ’U“(}_:'n;j ‘”“i) T (Z-\p(x:_xj})
. ) i N T

morh .
v M
1‘\,3 4 4(3

. f
T.A;’- .

(1.3}
NS N . .
) To get the total contribution in order G~ , sum over configurations

of the external lines with the mi lines at the i-th vertex distributed

over the various vertices, such that




g) In the above set of rules we omit all tadpole contributions
(lines joining a point x, to itself), This is justified if we consider
instead of (1.1) a suitably Wick ordered interaction. Figs, 1 and 2

show a typical super-graph and a super-line ,

x
h) It is clear that the Green function !

R (X p P, X )
m,m,mye ++ 1077 EN

X3 ¢ .
Fig.1. A four-point super-graph. Thick lines are
super-lines each of which represents the
function Ag .

with m, , M, non-zero is simply related to

2 Fig.2: A super-line stands for the

collection of graphs.

le—l’m —I’m ,.‘"

2 3 . Fn'; 2

For example
A(x 'X)F = OJOJOJ-..
1 2 1'1.0,0,... al

where F(A) on the right-hand side of (1, 4) is obtained from (1. 3)
by replacing A(xl-xz) by ?LA(xl-xz)

B) To illustrate the x-space and p-space techniques, consider a simple

example with iint :

o0
V#) = T = C Zo (-t4)" (1.4)
h=

Here v{n) = (+ f)n n!

a) The formal series expansion for amplitudes

Formally an expectation value like

F(B) = Fylxnx,) = SVIBlx, ), Viglx,)) )
equals the divergent series:

=G Zn! f AF(xl-—xz) . (1.5)



We are interested in giving a meaning to this divergent series such that the

Fourier transform
Fp2) = j F(a) P a*x (1.6)

possesses correct analyticity and unitarity properties.

b) The Fuclidicity postulate

To do this consider the Symanzik region in p-space (p2 <0). (When
more than one external momentum pi is involved, the Symanzik region is
the region for which pi2 £0, pipj £0 .) Following Efimov, we can define

the integral (1.6) by making a Wick rotation Xy > ix For this region

in p-space one therefore needs to consider A(x) for i}uclidean X-space
only, {For a zero-mass field A(x) = -1/411’2;;2) (x2 = -xi - 3{_2) and is
real and positive.) For p-space regions outside the Symanzik region we
must appropriately analytically continue (1.6). (It cannot be emphasised
strongly enough that for divergent series of the type (1. 5) one is not starting
by "proving'' the validity of the Wick rotation, Rather, Euclidicity is a
basic postulate - part of the process of defining the theory . One agcepts

it for the Symanzik region; outside this region one makes an analytic

continuation,)

c) Borel summation

To give meaning to the divergent sum F(A) use Borel transforms

[

and write:
o0
F(a) = E g et elea) . (1.7
n=0 Yo
(Here we have used -
a0
n! = K e Sar )
0

d) The x-space method

The x~space method consists of inverting integration and summation

in (1, 7) and writing it as:

et s 7 < ——— - A S, - b S o ey b AR S




o0

- 2,.~1
F(4) = j ate S (1 - er?a)"t (1.8)
o
F(b)
The expression (1. 8) defines the amplitudex. At this stage we encounter our
first problem in the x-space method; the integrand has a pole on the in-

tegration path at

1 411'2r2 2 2
g_—z———_ 5 for the case m=0,r=.3£."x4
A f

We must define how to go round this singularity.

One obvious answer is: take the principal value, This is because
F{A) in the Symanzik region is a sum of real terms. ‘The p.v. prescript-
ion for the integral representation (1. 8) of F(A) will guarantee this, Lee
and Zumino show that this is essentially the correct prescription, barring
an arbitrariness (to be specified later) associated with functions like
exp (1/(1’26)) which possess an expansion everywhere zero when expanded

around A= 0 , and which can be added to f{A) without affecting its re-
o)

presentation in the form E : n! (f?'t'.\)r1

h=0
. . / 2
e) One may now compute the Fourier transform, using {r = J/-x") ;
i - -1
Fip?) = 5 dx e ™ p. v, j age S (1 - grla)
o9
(-~ ]
2

An dr r2 Jl {/ -p r) p.v. d¢ e-g (1 --fng)_1

[~ ;

0
(1.9)

2
for p2 < 0 and continue direct to 0 < p2 <m . Inverting the order of

integrations:

2 oo = 1 -1
ﬁ(pz) = 4”2 f d¢ e-r f dr r4 J'l (-p2r) l:rz - §(f/21r)2] .




This integral can be explicitly evaluated and a continuation to time-like
2
values of p carried out to demonstrate that f(pz) possesses the correct
2
analyticity structure in the p -plane., The asymptotic behaviour of
~ 9 . :
F(p) is: - 1
F(s)— ~—5—~ § — =9

(t%s)>

— £ iw exp(fzs) s— +o1 il (1.10)

where s = p2

f). The p-space method

Our procedure is different. It depends on Volkov's observation of
the power of the Gel'fand-Shilov investigation of the Fourier transform

"2z in the range 0 < Rez <2 ,

of the generalized function {A(m = 0))2 = p
(In Sec, II we consider the case m # 0. We have no exact expression for
this case similar to (1,11} below but the general considerations are parallel

to those treated here,)

The crucial formula is

. 2.2-2 2-22
fd4 -ipx (-p) (4%}
pe

Az(x) - 1 .
sin 7z I'(z) I{z-1)

(27) (1.11)

0<Rez <2

To use this formula go back to the Borel sum (1. 7) and employ a Sommerfeld-

Watson transformation to convert the series into an integral of the form

sinmz

F(A) = -jé— f dz f dt e“f(‘ngA)Z . (1' 12)
r

with the contour I’ enclosing the positive real axis in the z-plane, (The

conditions for validity of employing this transformation are discussed in

-10-
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Sec.IIl.) Straighten the contour to lie along the imaginary axis with
Rez constrained to lie in the range 0<Rez < 2 , Using Gel'fand~-Shilov's

formula to take the Fourier transform we obtain

f‘( 2) = ..i. rvee dz (-fz)z('pz)z-zr(g'!'l)_ + (2#)46(13)

P 2 . gsinrz  sinwxz I{z)I{z - 1) (1.13)
d-1L00 ‘

where 0<a<2 ., (The term &(p) corresponds to a graph which contains

no internal line,)

In the above passage from (1. 5) to (1. 13) we have changed orders of
summation and integration repeatediy. The justification is provided in
Sec, III, Here we are only concerned with a rapid exposition of the p-space
method whose chief ingredients are the Sommerfeld-Watson transformation

{1,12) and the Fourier transformation (1.11),

g) Formula (1.13) is our master formula. By closing the contour along
the left,one can immediately obtain the asymptotic behaviour of ]?‘(pz) for
p2 - =~ o (and,in particular,the Lee-Zumino result (1.10)). As in Regge
pole theory, the right-most pole of the integrand gives the leading contri-

bution to the asymptotic behaviour.

h) The principal value ambiguity of the x-space method noted in d),
which does not seem to arise explicitly in this treatment, has a weaker
counterpart when we take into account the appearance of the (-)ive sign
in front of A in (—A)z in the Sommerfeld-Watson transform. To see

this more explicitly, introduce a multiplier A in front of A ; thus,

F(M)=i§ f—d-i— fdr et (-onla) . (1.14)

sinnz

We must interpret the limit A—> +1 by a peal average of the values

(-0% = e and (-1 =e "% , obtaining finally

-11-




1
tanrz

F(A) = S dz { +b) INz+1) (sz)z (1.15)

with b an arbitrary real constant, The ambiguity introduced by

('l)z = "% = ¢"™ e shall call the "signature ambiguity" of super-

propagators., {Note that this method admits of an arbitrariness up to a

. 2 -
constant and not an entire function of p as in the x-space method.)

i) In paper I we showed that a superficial count indicates that the number
of distinct types of ultraviolet infinities depends on the Dyson index D

( ;im Vi(¢) = ¢D) of the Lagrangian. This number is finite if DL 4 ,
=00

The result was proved by considering x -~ 0 (x-space-like) behaviour of

Borel sums (1.7). For example, explicitly when V(¢) = G/(L+£¢) , with

D= -1, F(A) is given by:

°0 -1
- 2
F(4) = p. v. a? j dt e x2 éz -t -_2frr)) for zero mass fields ¢ .

G
This expression is finite in the limit x-»0 . For the interaction Lagrangian
Vi¢) = ¢5 /(1+1¢) with D = 4 , however, we recover the ultraviolet in-

finities since the corresponding expression for F(A) equals
_ .5 -t 2 -1 . : :
F(A)= A d¢e ° (1 - " ¢A) . The question arises: where in the

p-space method is there an indication of a Dyson index? The answer, as
we shall see in Sec, III, is that it is the Gel'fand requirement 0 < Rez < 2
for the unique definition of the Fourier transform of Az(x) which forces

us to distinguish between Lagrangians like V{¢) = 1/(1+f¢) and

Vig) = ¢5/(1 +f¢) . In order to give a precise meaning to F(A) for the

latter,we are constrained to write it in the form

sinmz

4 ' driee 2, ,\2
. F(A) = Zn! An+l-f dz GE L) e-gdl,"(1<d<2).

ne?

-12~
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z 1 n
The terms which appear in the sum n! A are just the ones which
h=2

give rise to ultraviolet infinities,

K) Higher orders

The great beauty of the p-space method lies in the similarity of the

p-space expressions for super-graphs and normal Feynman diagrams.

One can introduce Feynman's auxiliary parameters and carry out the
loop integrations. As we shall see below, the result is an elegant expression
for the super-graph contribution as a weighted average integral of contri-
butions of conventional graphs. The utility of such an expression is two-
fold,

i) The sums of super-graphs in different orders of G closely re-

semble the sums for conventional grap}is )and the methods previously

3

discussed by Polkinghorne, Federbush and others for carrying

through the summation can be taken over,

ii) The discontinuity formulae of Cutkosky - and the proof of the

unitarity relations using such formulae - follows the conventional

lines,

the
Forleero mass case, the integral expressions for the N-th order

super-graph is the following:

a
Associate with each super-line‘four-momentum vector qij . The

Sommerfeld-Watson transform of (1. 3) in p-space equals:

S - g\ Sdz'j =) gdqq;j (-q?i)zu',—ﬂ b ( 2p +2 4, )

K;

(1.16)
Here p(zij) is the product of the vertex factors v{ Zj‘ zij + mi) , the
it
1 1+bcosr zi]_
———————————— M t S
factors in "zij (or more generally sina'zij } and the factor

-13-



1

i -1
sm'.-rzij F(zij) I(zij )

for each super-line., The P, 's are the momenta

carried by the external lines at the i-th vertex and the 6 -functions express

conservation of energy and momentum,

Introduce Feynman's auxiliary parameters, using the integral re-

14)

presentation
o

2.z-2 _ 1 1-z aq?
(-qa7) TT2-2) S dea e . (1.17)
0

4
One may now carry through the d q integrations in

T p :“?i) = S (‘XI’ 2 “ ﬁt; ) qu (zn +24; ).)N ﬂ—du"i*a

(1.18)

The result is identical to the case as if we were dealing with normal Feynman
graphs with F = (N(N-1))/2 internal lines.rather than super-graphs. (This is
because I(pi, aij) is not zij-dependent. ) Such normal graphs we shall call skeleton

raphs. The evaluation of the functions I(p.,«..) for the skéleton raphs
grap (py- @) o grap

can easily be carried through using the methods of Chisholm "3 the final

~t
expression for the amplitude F(pi) reads:

F) = T {an pleed) (g o™ 10, 4,
(h:) S TR TR LU T R (LT )
(1.19)
. 1
where p' differs from p by the factors H ——'—'5*—'—'——' .
iy THE - Eg)
The result for the N-point function evaluated in order 6N can

therefore be stated thus:

Draw a normal Feynman graph with internal lines joining all the
N-points pair-wise, We shall call such graphs skeleton graphs.

Introduce Feynman parameters; the result of performing loop integrations

-14-
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in skeleton diagrams is the standard Chisholm expression I(p a, )
Multiply this by the factors (af ) “%if  and the weight function p(z ) H
integrate over Feynman parameters a13 and the Somrnerfeld-Watson

parameters Zij . One obtains the super-graph contribution,

m) Finiteness of the super-graphs

One may examine the super-graph integrals for ultraviolet infinities.
It is easy to see that a superficial power count would indicate that for an
N-point function, with F = N(N-1) /2 internal lines and £=F - N+1
loop momenta, the super-graphs have no ultraviolet infinities provided
each super-propagator contributes a factor falling like (qz)-2 . Itis
crucial to remember that with our Euclidicity postulate it is the asymptotic
behaviour for space-like q2 for the super-propagators which is relevant
here. This also leads us to stress once again that it would be a mistake to
evaluate super-graphs in each order in the major coupling parameter G
for the Symanzik re gion,to continue the external momenta to the physical
region and then sum the series in GN . Qwﬂm_ﬁy_m; (as

indeed has been done for the series in the minor coupling constant f) and

then continue the sum to the physical region,

n) As stated earlier, the G2 approximation to tie two-point amplitude in

a typical non-polynomial theory behaves asymptotically, as illustrated in

Figs, 3 and 4,
ty L't
DX
Fig. &
Fi y: 3
A contribution to the s-wave scattering amplitude, A contribution to the electromagnetic form factors
F(s)'vexp l[{constys]l , s>0 , ?(t)'-ol/t3 . t<0 .,

Thus to order G2 a simple evaluation for form factors (Fig. 4) immediately
1 ~ 2,3 .

yields physically sensible results 6), (F{t) & G /t} while the same

approximation in the time-like region s > 0 gives, for the four- part1c1e

scattering amplitude, a physically unacceptable behaviour ’_F(s)oc G exp(as)J

~15=




It is clear that before rejecting non-renormalizable theories on the grounds
of unacceptabilityﬁheir predictions in the lowest-order calculation in the
time-like region of external momenta, one must first carry out a summation

of a chain of diagrams. This crucial problem is being studied.

II THE SUPER-PROPAGATOR

As we have been stressing in Sec, I, the basic generalized function
in terms of which all the Green functions are ultimately to be expressed
N z
is A where 2z denotes a complex number in the strip 0 <Rez < 2,

and A the usual propagator for a free scalar field of mass m ,

(TP (@) > = A (-io, ) (2.1)

. . 2 2, . s .
The function A{x ,m") is analytic in the xz-plane cut from 0 to +eoo0,

Explicitly,

AGEw) = m K, (md-x)

ar’ foxv (2.2)

where K1 denotes the modified Hankel or Macdonald function, 'The function

A is real and positive on the negative real axis, It has no zeros in the finite

2
x -plane and its behaviour near x2 =0 and xz = 00 is given by

-1G~
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4 ("t.‘m’) v -1 /7(2 x> o
~ (-‘x.l)-3/4 MP(’W ﬁp) 1 [X’ia Ll
(2.3)

. . Z
The generalized function A" which we shall call the Super-propaga-
tor is well defined provided one can find a space of test functions f(x)

over which the integral

(&=, §) g dox & £ (%) (2. 4)

is convergent and satisfies the appropriate continuity conditions,

This integral can certainly be defined for f(x) € L, the space of
infinitely differentiable functions with bounded support, provided z

lies in the strip 0 < Rez <2 . (Presumably it can be extended to
iarger spaces but we have not examined this problem.) Following the
standard proceduremi?or defining a generalized function that corresponds
to an ordinary function with an algebraic singularity, we can define

(Az, f) outside the strip 0 < Rez < 2 by means of analytic continuation,
The result is an analytic function of z with simple poles at the integers

z=2,3,4,...

The Fourier transform D(pz,z) of the super-propagator must, like
the latter, be an analytic function of z ., It is defined on the segment

Imz=0 , 0<Rez <2 by the classical integral

Dpzy = 2 [d.,x N (2. 5)

L

which converges absolutely for p2 <0 . Infact one can perform a

Wick rotation of the x_-contour and replace the Minkowskian integral

0
(2. 5) by an equivalent Euclidean one which reduces to the form
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Dip=) = \}f_ fdrT‘J:‘(J-_PIr)A(--T’,m‘)Z (2.6)
-Pl )

after performing the angular integrations, It is clear that (2, 6) con-
verges for a wider range of z than does (2.5): 0<Rez <2,

~o0o <Imz <° , The analytic continuation of D(pz, z) outside this
strip will be considered below, It will be shown that like the functional

(Az_,f) , it has poles at the integers z = 2,3,4,...

For the zero mass case we can express the integral
(2. 6) in terms of elementary functions and so perform the analytic

continuation explicitly, The result is

)2-22 (~ P‘)l'l

DGiz) = = (4w :
sz M(z)Tr(z-1} (2. 7)

which clearly exhibits the poles at z = 2,3,4,... (It shows in addition
the rather unexpected feature of zeros at z =0,-1,-2,... We have
not yet been able to prove that this is true also of the massive super-

propagator. )

The asymptotic behaviour of the super-propagator, both in p2 and
in z , is of particular importance, For ‘pzl—;oo with z fixed we
shall assume that D(pz, z) can be approximated by Do(p?', z) . For
jz| —» 00 with p2 fixed the situation is less clear, The behaviour of

the zero-mass super-propagator

Z-12 ~2Kaz - 2
Dy ~ ) -2 [m%z,l<n
{(2.8)
may or may not provide a useful guide to the massive case.
2 o
Consider the structure of D(p ,z) in the finite z-plane

with p2 < 0 . The integral representation (2, 6) is valid only in the
strip 0 <Rez <2, Inorder to continue to the right of Rez = 2 we

must modify the behaviour of the integrand of (2.6) at r=0 ., We

-18-
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propose to subtract and add the first N terms of a Maclaurin expansion

of J1 . Indeed, if we write

M-t "
3, (Fpr) S [Pra)
= 3 —— o« R 2.9
Vot k=0 R’ (R4t).
then (2, 6) takes the form
N-1 y )h'. o ]
D{fz) = an’ 2 (_f_j__ jdr ‘rﬂ“a A m’)
k~o R (k4! %
o Ae [or e R (pr) & ()
(2.10)

The term involving R.. is easily shown to converge in the extended

N
strip
O0<Rez<N+2 (2.11)
. 2.2 ZN .
since near r =0 we have RN(p r‘le~r . The other terms in

(2.10) will of course exhibit poles when continued out of the strip
0<Rez <2 . (This can be slown by the method of Gel'fand and
Shilov,) The important point here is the fact that the residues of the

poles at z = 2,3,4 are polynomials in p2 . (This is simply a re-

flection of the well-known fact that the ultraviclet divergences mani~
fest themselves in the coefficients of a polynomial,} By increasing

N indefinitely we can thus prove that D(pz, z) with p2 < 0 is analytic
in the half-plane Rez > D except ai the points z = 2,3,4, .., where it
has simple poles, the residues of which are polynomials in p2 {of
order z-2), The structure in the half-plane Rez < 0 is more difficult

to unravel and we have not attempted this.
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Consider now the structure of D(pz,z) in the pz-plane. It is

trivial but helpful to continue into the strip 0 < Re \/;é <m Rez by

expressing the integral (2. 6) in the modified form

o0

tz) = ﬁEi * gt )
Dy, ) ‘[PT Sodrr I1(\['f7*f) O (vt ) (2.12)

It is the convergence or lack of it at the upper limit which controls the
analyticity in p2 .  We shall be able to make analytic continuations
by displacing the r~contour in (2,12), The integrand has no singular-
ities in the finite plane and for large values of |r] it can be approx-

imated by
T;_-(n-z) e (mz - ¥pv )T

assuming Revgé‘ > 0, Letus keep z fixed in the strip1 < Rez < 2,
It is clear that we can rotate the r-contour through the angle 6 without

affecting the value of the integral provided we maintain the condition

e { ('MZ—\IT")e*‘g] > 0

or, otherwise expressed,
IM“E (’mz -ﬂ:’) + 6 \ < (2.13)

This follows from the absence of singularities of AZ in the r-plane
apart from the branch point at r = 0 where the convergence does not

depend on arg(r) . Starting with the original contour, 6 =0 , we

have analyticity in the half-plane

< OW(} (Nz-—\[f;) < (1)

i x
2 z

Increasing € continuously to +7/2 rotates the convergence domain into
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~© <o mz-F) < o 1

while decreasing @ to -»/2 rotates the domain into

o < ars (wz —J}?) < (II1)

The regions (I), (II) and (III) so obtained can be pictured in the plane of

v p2 as in Fig, 5:

Im JFr
H

|
:
!
[z,

- e e =W o am

7Rv-fr_’—.

Fig. 5 The structure of the super-propagator it the complex
p? plane,

where the dotted lines indicate boundaries between the regions, Thus

'
'
i
f
i
|
|

it appears that the integral (2,12) defines a function Wthh is analytic
in the half-plane Re ﬁ > 0 except at the point p2 = m2z where it
presumably has a branch point, The discontinuity across the branch
cut is given by D__ - D... where D_ and D. . are defined by the

I III I IIX
contours with 6 = %/2 - 0 and 6 = -w/2 + 0 , respectively.

Equivalently,
D (=) = = jaw 3 (Fu) (4 L_(_mu))
: i "
7 ~ S ‘ H(I)(W\u) =
D (fz) = gwod T(0Fw) (-IL‘ |
X P (F Jv 1 I “ )
(2.14)

These formulae are valid for 1 < Rez< 2 , If we add and subtract

the Maclaurin terms as in (2.10) they can be extended in an obvious

way into the half-plane Rez > 2 . Pfesumably their range of validity
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can be extended down to Rez = 0 without difficulty (at z =1 the

branch point should reduce to a simple pole).

To summarize, from the integral representation (2.6} and its

modifications (2,10), (2,12) and (2, 14) we deduce that the super-
propagator D(pz, z) viewed as a function of two complex variables
has the singularities: a) fixed poles at z = 2,3, ... the residues of
which are polynomials of order z-2 in p2 , b) a singular surface
p2 = zzm2 which manifests itself as a branch point in the pz-plane
except when z =1 in which case it become.s a simple pole. The
discontinuity across the branch cut is a regular function of z - at
least for Rez > 0 . Whenever z is an integer the singularity

2
surface p = 22m2 corresponds to normal thresholds as implied by

unitarity.

We have no clear idea of the behaviour of the super-propagator
for Rez £ 0 except, of course, in the zero-mass case where it is

analytic with zeros at z =0, -1, -2, ..,

For large values of |p2| it is presumably adequate to approximate
D(pz, z) by the zero-mass form (2,7). For large values of |z | it

may or may not be possible to use (2. 8).

Finally, let us consider an alternative regularization of the super-
propagator - A" which can be used in the zero-mass case, (This
regularization will be referred to in Sec,IIL,) Introduce the

regularizing parameter a to define

a,, (ro) = 1L L. avo

1
4 s a0l

(2.13)

which has no singularity at »r=0 . Substituting this form into (2. 6)

we find the corresponding momentum space super-propagator
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#e) = G fa\r ra0e)

D
TE% \ITI; ® (**+0t )%

- ) (T i)

(z) 20.
(2.16)
and, as was to be expected, the fixed poles at z = 2,3, ... have dis- |

appeared. In order to see what happens in the limit a — 0 1let us
assume that z is not an integer and replace- Kz__2 by its series

expansion, The result is

Z-2
D“a (Fz) = = (™ CF) [1_ 4,
SRz =) T(z-) z-1 A4

. (Q_lp‘)‘_m _ oz 1z-1) (_;‘)2'2_

2z(z) ' 4 7 (3-2)
- of’-qz I (z-1) (_E)g'z e
T(a-2)* 4

(2.17)
In the limit @ =0 every term except the first vanishes if Rez < 2
In this way the super-propagator (2. 7) can be obtained as the limit
of a regularized function,
If, on the other hand, we were to take 2 < Rez <3 then the limit

would be singular,

4-22

-z Q

—_— (2.18)
(z-1)(z-2)

D, (F2) > Dylfiz) - )

2 N .
This means that contour integrals involving Dreg(p ,2z} must be moved

to the left of Rez = 2 before the regularization is removed.
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III. REGULARIZED PERTURBATION SERIES

Consider now the problem of developing perturbation expansions in
the non-polynomial interaction, V(¢) . As discussed in Sec.I, we could
begin formally by expanding V in powers of ¢ and then, for each power
tﬁn , develop the usual series, Let us therefore suppose that the inter-
action Hamiltonian, considered as a function of the complex variable ¢ ,

is analytic in some neighbourhood of ¢ = 0 so that we can write,
LV n
\/(tb) = 2 n (-¢) ’ o} < r (3.1)
n.

It is convenient for our purposes to consider, instead of the usual

many-body Green functions, the equivalent set of amplitudes

(=3 rm___mN(A) = <T(V[m)(¢1)"‘ V(Mn)(d)n))>

(3.2)

where dl = ¢(x1), ... and V(m)(é) = amvw)/aqu . If we substitute the
power series (3.1) into (3. 2) then, after some straightforward ma nipulations,

we obtain the series

BRI
F (6) = 2 ‘U('M,+in‘j)-- v{mﬂ'*z"uj) T (A(xl ,))

L1 LY n‘J l(] ﬂ.‘)!

{3.3)

where the indices i, j run from 1 to N and the nij = nji from 0 to 9.

n..
We shall suppose that n,. = 0 since the factors A(0) 1 produce no more
than a rather simple renormalization of coupling strengths which we can

17)

regard as having been done already

For the interactions we shall be considering, the series (3. 3)
generally diverge. Thus, for example, corresponding to the interaction

(1.4) we have v(r) = an n! and so in the simplest case N = 2, m, = m, * 0,
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which clearly diverges. However, we can easily regard such series

as asymptotic expansions and direct our attention to the problem of

defining the amplitudes which are so represented. As a first step

towards such a definition let us consider the Borel sum of (3, 3),

“a - 1'}|'J‘
20 = [T cF T wery)e T ByAtew)
oMy L

l(j ﬂ’-;u "<]' ,“.:’ {

(3. 4)

The summations over ng; are by this method - or some generalizationl8)
of it - made to converge so that we are left with the problem of inte-
grating over the gij . The §-integrals may well be ill
defined since the analytic function in the integrand can develop
singularities on the path of integration, These can always be avoided

by distorting the £-contours or by giving the A's suitable imaginary

parts,

The precise details of the method used to define the functions
FB(A) are not important since we are using the Borel integrals only
at an intermediate stage of our programme. The essential step will
be the replacing of the sums over nij in (3. 4) by contour integrals
over z.. . To do this we need to interpolate the expansion coefficients
Vo by an analytic function v(z) . The existence of such an inter-

19) -

polating function is assured by the condition

)
g o e v < e 55
o

for some range of @ . Indeed if (3.5) is satisfied then V(¢) may be

represented by the Mellin integral

s TR Te ] (
N 1y il Z
l = & S‘ _1:.. >
Vi) 2 ) Tutz [{zen) \ (3.6)
-1




where v(z) is an analytic function defined by the integral

Ve = [ 0 477 V) gzeo G0

In order to compare the integral representation (3, 6} with the power
series (3.1) we have only to perform the inverse Watson-Sommerfeld
transformation., It appears that a is constrained by the minimum

value, n of n appearing in the sum (3.1), i.e.,

0 »

n1<q<n0 (3. 8)

where n, and n, are determined by the limiting behaviour,

V) ~ ¢° . -0 (3.9)
~ 4"“1 R

(We shall be assuming later that V{¢) can be expanded in powers of
1/¢ for |¢]| > R, . Inthis expansion the lowest power to appear
is -ny .)

To avoid the notational obscurities consequent upon the
use of general formulae like {3, 4) we devote the remainder of this

section to a detailed treatment of the second-order amplitudes,

> (o) = jd?:zz Z Tlwm )V (wam) CA)

", n-o (n )

(3.10)

Formal generalizations for the higher-order amplitudes can usually be
made without difficulty, New features connected with the problem of
defining products of super-propagators may appear in the higher
orders; about these we can draw tentative conclusions. These

problems will be presented in Sec.IV,
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It will prove convenient in the following to have an auxiliary
complex variable A at our disposal, Let us therefore consider the
functions FBOLA) bearing in mind that we shall take a limit A— 1
at the end. Let us now replace the summation over n in {(3,10) by
a contour integral using the v(z) of (3,7), analytically continued, to

interpolate the coefficients v, e

3 S - . dz  artzem)V(zem,) 2 z
F- (na) < [d;& > — ' (-2) (xa)

ml“l / o
T S’WKZ r(zfl)z

{3.11)
where I' denotes a contour coming from +¢¢ which encircles the
integers z = M, M+1, M+2, ..., in the negative sense, and returns
to oo , The non-negative integer M is fixed as the lowest power of

A appearing in the sum (3.10), It is defined by

M = max (no-m‘ Mo, 0 ) (3.12)

Let us now open the contour I' after the fashion of Watson-~
Sommerfeld. This is possible because of the postulated existence
of the Mellin representation for V{($) . The factor 1"(z+1)-2 pro-
duces a strong damping effect for (z|woo , largzl < /2 . Once
the contour has been opened, however, the factor I'(z+ 1)"2 ~

~rEXD (r[Imz |} acts to weaken convergence. Hence it is advisable
at this stage to interchange the § and z integrals and perform the

§-integration to obtain

X4+ 100
T ‘ :
FN"!(ZA) = f’»i J\ ;ii 'U;(wa.)'tf(zfiuj) (DF AF
' P * M(z+1)

(3.13)
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where o« lies in the range

M1 <a< M (3.14)
where M1 denotes the position of the singularity of the integrand near-
est on the left to z = M , This will generally be a pole at z = M-1
due to the factor (sirm'rz)_1 . However, if M =1 or 0 this will be
a pole from one or both of the factors v(z+m1) and v(z+m2) . Let

us defer these questions until we come to consider the construction of

asymptotic series for the momentum-space amplitudes.

In formula (3, 13) we have thus obtained an integral representation
of the Mellin type involving the super-propagator AZ . If M1 <2
then this integral defines unambiguously the generalized functions
FB(RA) . If, onthe other hand, M, > 2 then it will be necessary
to translate the contour to the left of the line Rez = 2 and, in so
doing, pick up the poles at z = 2,3,... [Mlzl . The part of the
generalized function defined by the new contour is unambiguous but

[Ml-.l

2 3
the separated terms, involving & , A, ..., A , are not. They

carry the usual ultraviolet divergences.

A simple illustration of this effect can be given in the zero-mass
case using the regularized super-propagator Dreg(pz' z) in place of
A% in (3.13), This propagator, given by (2.16)}, has no z-poles and in
the strip 0 < Rez < 2 it reduces to the correct form (2, 7) in the limit
when the regularization is removed, However, if Rez > 2 then
singular terms appear when the regularization is removed, That is,
the Fourier transform of FB(AA) is well defined when the regular-
ization is removed only if the contour is contained in the strip

O0<Rez <2 ,

Assuming now that 0 <a < 2,we can immediately write down the

Fourier transform of FB(AA) . It is given by

0 A4 00

-~ B . )

Prw (2 = 2 2 wEmvGn) )
. T{z+t)
XAy 7

(3.15)
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At this point we must remark that the continuationto z = 0 of D(pz, z)

must be treated carefully, For the zero~-mass case the explicit

formula (2. 7) gives
D(p’,0) = 0

1

On the other hand we should expect the Fourier transform of AO
to be (275')4 64(p) . This means that if, in the integral representation
(3.13), the contour lies to the left of z=0 , i,e,, if M= 0 , then,
before defining the Fourier transform we must translate the contour to
the right of z = 0 where we can use (3,15) and, in compensation, add

the term

vim,) vim,) (211" 6, (o) (3.16)

which is the Fourier transform of the contribution of the pole at z = 0,
Clearly (3.18) corresponds to a disconnected graph, The contour method

apparently picks out the connected graphs only.

Let us now consider the problem of constructing an asymptotic
series to represent the function ﬁB(pz, A) . To simplify the discussion
let us suppose that M =0 or 1 , (If M> 2 the necessary modifications
can be made without difficulty,} For large space-like p2 we shall use

the zero-mass approximation for D(pz, z) and write (3, 15) in the form

o4y o
E‘B (P")) v oA _f’_}_ V(2w )V (zZ 4w, ) z (2) (-~‘»‘)m—"L Lou
ﬂm& a2 - - Mﬂ)
q_;nswh' r('zf‘.)l ginrz Mz-)
K4ADD
Z 2 .
a9z wlmivlem) o ey ) F)  tas]
* Swrz M2+t Ll
IR

(3.17)

Our aim, in order to geta series in inverse powers of pz, is to collapse
conventional
the contour onto the negative real axis - a mirror image to the/Watson-
contour on the positive
Sommerfeld ,{ real axis, By our assumption that V(¢) can be

expanded in inverse powers of ¢ for sufficiently large | ¢ | , it follows
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that v(z)/I(z) is damped with sufficient strength for the inverse Watson-
Sommerfeld transformation to go through in the half-plane Rez < 0 .
The only factor in (3.17) which hinders this operation is T(2-z) which
explodes, However, this can be removed by the Borel trick. That is,

we can write

~ DB 2 dg T - N 27 BE2 292z
mel (l),k) ~ Z e i j ;f::' Uz )U(z 4m;) z (_‘y) Mr.ju
4 3
° IEYS RZ'H)Z "
(3.18)

The dominant term as pz—-;»oo is going to come from the pole or dipole

of v(z+m1) v(z+m,) furthest to the right, For simplicity let us

o)
suppose that the poles of v(z} occur at negative integer values of z

This happens in many cases of interest and it is a consequence of

requiring that V(@) has a Laurent expansion at ¢ = 00, Suppose

v = 2L et

Comparing this with the integral representation (3, 6) we find

v(z) = - Iz) u(-z)

I(-z)
so that, in particular,
+ - -
etm) )z am- 1) a1y Zmm) (3.19)

I(z+1) I{1-z-m)

which vanishes for z = -1,-2,...,-m. It will vanish also for

= -m-1 ~-m-n, +1
z m,...,mn2

where n, denotes the lowest power of ¢ occurring in the regular

part of the Laurent expansion of V(1/4) , i.e., u(n)= 0 for
n=20,1,..., n2-1 . The poles of the integrand of (3,18) therefore
occur at
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z = ~-N-1, «N-2, ...

where N is given by

+n_. -1, m_+n,-1) (3. 20)

s+ Ty T, 2" 0y

N = max (ml, m2

Hence we can write

fo oo :
r':fm 2) =~ j 0z % > ot ) wlnew) -0
0 4 TN ('ﬂ'm,'l)' (n—na,}.' {?’I-Wa—l),'

——

N+ \
W) g (6]
tn-m,)! LY b

T

(3.21)
. . . 20
F'inally, to obtain the asymptotic ) series we interchange the { -integration

with the summation, We obtain the result

F4
~ [ _ \ - ‘ - (Z T2
F: ([".)\) . Z A" f(ﬂ n).]u(?\ ml) uln-my) e (_ ffr_v )
" L B from ) rom,)L () (nomy)! P

(3.22)

There are two important aspects of this formula. Firstly the leading
term in ﬁB turns out to be (-pz)"N-3 where N is given by (4.20),

(If M > 2 we must include additional terms corresponding to the poles
at z=1,2,... ,IVI1 These are (l/pz) , An pz. ces (pz)Mi-z./fn p2 )

Secondly, the asympiotic series (4.22) is single valued in A

The functions F‘_B(pz, A) defined by the integral (4,15) are not
single valued in A . Generally they have a logarithmic singularity
at A =0 ., This can be seen if we collapse the contour of (4.15) onto
the positive real axis and pick up the residues of the dipoles at z =2,3,.,. .
Let us use again the zero-mass expression for the super-propagator to

write
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o £io

=B .
Fm"'lz(P’l'A) : ‘5_ S EE' U-(z'rw.)'lffz{-wb) ' (- 1)1-:

(-A)
. ¢wmhz A
ot Mz+) Sz T(2)T(2-1)

= Ul UTiem) Y Ve D { Viztw ) Uz ew,) &Yy (-p* 7‘2}
= N . Z’ 9
p T ya 0Z Mz+) =) Tz 1) Z=n

- A YU Caw, ) A o+ 1 Z mn-m‘)mnm,)(~J\)“(_Hmzx

]Pt T onea n' (ner ) (m-2)!

' fngw) . U (new,)

< =Ynet) “Yn) —dn-1) 4 é‘u(—))-tb*(*p‘)}

X

TNEw) g (nemy)

(3.23)

where (z) = I"'(z)/I(z). That is, we can write

B

F'mmz P = Amm (#,0) + %(-A)mez (Y (3. 24)

where A and B are entire functions of A ., Moreover, B is an

2
entire function of p as well,

That B(pz,?t) is an entire function of p2 can be seen from the
fact that the discontinuity of ﬁB is an entire function of A and must
therefore come from the function A(pz, A} . Considering the massive
case, we can use the property that the absorptive part of the super-
propagator, D(pz,z) , vanishes for pz < (mz)2 to evaluate the
absorptive part of ﬁB by translating the contour in (4, 15) to the right
of Rez = ‘\/l?/m for given \/p_zI >0 . Only the poles separated in this

way can contribute to the discontinuity which is therefore given by

N IF/m] .
droc F:m,(f-‘,)) = Z motn Dirtyem 2z MD(PL,W)
ne " (3. 25)
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which is just a polynomial in A ,

The form (3. 24) which has been derived for the zero-mass case
is probably true in general, Its validity depends only on the feasibility
of the inverse Watson-Sommerfeld.transformation together with the fact
that D{pz, z) has simple poles at the integers z = 2,3,... These

combine ‘with the zeros of sinmz to make dipoles,

[ad
The dispersive part of FB is certainly not an integral function
of A and we shall have to adopt some definition of the limit A—1
- It is at this point that a basic uncertainty enters the programme, In the

absence of guidelines we can interpret lim (-?L)z by an average of the

a2
terms
. (1ku)1:'z
2 . ko, 1, 2,
That is, we should write
~ - B e 2kt )
1 &~
F—"l""z (Pl) = Zk a/k Fﬂlwl (t,) - v ) (3. 26)

with arbitrary complex parameters a Substituting the form (3. 24)

k -
this reads

(ﬁ‘"“(t}) = (zak) Amw;(Fﬂ) + A (% (zku)ak) ‘Bﬂu,m?(ﬁ{)

(3.27)

so that there are really only two arbitrary constants.

There is one very important constraint to be imposed, That is
unitarity, The imaginary part of f‘(pz) should be given by (3. 25)
with A =1 and it should vanish for p2 <0 , This gives us the

conditions

S ac=1 and ir ) (2k+l)a =b (3. 28)

where b is real, Thus it appears that the Fourier transform of the

generalized function F(A) may contain one arbitrary parameter, b.
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Possibly we could take b= 0 . This corresponds to the choice advocated

7
in earlier references (Efimov ) and paper I 8)) and it may receive just-
ification when we are able to impose the unitarity requirement in higher

orders,.

The final choice of amplitude f‘(pz) represented by (3.27) and
(3.28) can be expressed by the integral

O 4acd
- « Ulzen,) O (Z¢m \ 7
E“-"H-(PL) = zj dz ! v D(f‘,z) { _— +bf
Yot Tz otz
(3.29)
IV, HIGHER ORDERS AND THE FEYNMANIZATION OF SUPER-

GRAPHS

Corresponding to a diagram with N vertices which are pairwise
connected by super-propagators there exists the momentum space amplitude

inx

Zi'
P - 3 -
dx1 ‘ de e l—lj A(:-{i xj)

= (2r9* 5(Zp) Dp, - --

s 2

Py {4.1)

1207°7)

depending upon N-1 independent momenta and %N(N-l) independent
c0mp1éx parameters zij . , The singularities of this integral occur on the
various light cones (xi- xj) =0 ., An overall convergence condition can
be obtained by considering the behaviour of the integrand when all com-
ponents X, - 0 simultaneously. This gives the overall singularity

-2 I Re Zi;

3 «N{(N-1) Rez
x = X

if we assume for simplicity that Re zij is the same for every zij .



This singularity is compensated by 4(N-1) integrations, Hence we have

superficial convergence if
N{(N-1) Rez < 4(N-1)
i.e., Rez < 4/N (4.2)

An equivalent representation of the amplitude (4,1) is given by the

momentum space integral

* [ B - 2
loops i<ij
(4. 3)
2

where D(q ,z) denotes the super-propagator of Sec,II, The %N(N-l)
momenta qi.‘i associated with the super-lines are expressed in the usual
way by linear combinations of the loop momenta kl’ s k£ and the ex-
ternal momenta Py-oe Py - The convergence of (4.3) can be justified
by the same power-counting arguments as were used above. Using the

2 2,z~-2
asymptotic form D(q ,z) ~ (-gq )z , one arrives again at the condition

(4. 2).

The problem of analysing higher-order contributions ié a very
standardized one. For each N there is one and only one skeleton graph.
This graph is obtained by joining the vértices in pairs - one line to each
pair. The resulting diagram has -;-N(N-l) lines and —;-(N-l)(N—z) loops.
The amplitude which corresponds to this diagram would be highly divergent
if ordinary bare propagators were associated with the lines. It is the
possibiiity of taking Re zij sufficiently small which makes the amplitude
converge when super-propagators are associated with the lines, The
analytic function defined by this convergent integral can then be continued
outside the original domain Re zij < 4/N exactly as was done for the super-

propagator itself,

In this way one is led to define the higher-order momentum space

amplitudes by the multiple contour integral
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(4.4)

where the z-contours lie initially in the strip 0 < Re 25 <4/N , The
auxiliary parameters kij must then be set equal to +1 and it is at this
stage that some ambiguity can enter the problem. The general procedure
should be to define the true amplitude as a linear combination of the

possible limits Aij =1, i.e,,

F ( ) I ( VT

Py Py © IV Py Py "€ I
m ot my 1 N Vs ml m, 1 N

v ’..‘
(3
(4. 5)

where each Vij takes the values +1 and -1 . The coefficients

allj . are to be chosen consistently with unitarity but are otherwise

2
arbitrary. Substituting the representation (4. 4) into (4. 5) one obtains

the form
~ . dZ" A
_— — 1 )
F-ml...'m“(h"“’“) = ETF (; Sw—'thz o )) X
R /N

< 1 v(mk"zc-z’xf) <D("1"|"N;Z:L-“) achuzf"-)

vuhin

(4. 6)

N
where a (z,,,'" ‘') denotes an entire function defined by the sum

12*
N LI = N 3
a (212_ *) z a’ .. exp (17\‘Zvij zij) . (4.7)
~-36~

BET R IR T LY T Sy AP Y—




It is necessary to investigate in what way this "ambiguity function" (which
resembles the signature ambiguity in Regge theory) is constrained by the

requirements of unitarity.

The unitarity problem is of course an extremely intricate one and
so we shall confine the discussion to a conjecture about normal thresholds.
To this end let the N vertices be divided into two sets, 1,2,...M and-
1,27, ,,., M (M+M'=0N) , If the amplitude D(pl.-! Py} zij) , con-

. . . - 2
sidered as a function of the variable (p1 + ... F pM)J' = (pl, + ... F pM,)
has a branch point at

2
)

Py +... t Py mz( Z.zi,-_.)2 (4. 8)
ii

and if the discontinuity across the associated cut is given by the integral

I(TT d‘iq') 8(?’-.4»- “h ‘Eﬂ) D (424, ; %y *

x| Q(q"&r) d{'/JC’D(‘i,},'Z-'J) (D(hr"'gcﬁ'i;-- ;'Z;ij)
1}’

(4. 9)
where the variable qij' denotes the four-momentum carried from vertex
i in the first set to vertex j' in the second, we would have a situation for
super-graphs similar to the Landau-Cutkosky discontinuity formulae for
normal Feynman graphs. The plausibility of (4.9) can be seen when we
consider that the discontinuity (4.9) is a regular function of the zij' which
vanishes when the real part of 2 zij' is taken sufficiently large, This
follows from the properties, established in Sec.II, of the super-propagator

D(qz. z) .

If the expression (4. 9) for the discontinuity of D(ple " Py zij) is
used in conjunction with the representation (4. 4) it is possible to give the

discontinuity of F in the form
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verhién

|
=

o dzp ()™
(-f — __....__J—-)— ) T M‘MR-PZZM,)
verhcay

X YW(M|*') g(hﬁ“"“h’l -)_—q;") -D(h"'gc[la" )Z:))"

X “ ‘B(Cl‘v) diac D(qv.,zq ) D(P1 +iq i) Z;I)

{4.10)

The appearance of this formula can be simplified considerably by translating
to the right the contours zij' corresponding to particles exchanged between
the two sets, In the course of this translation simple poles due to the zeros
of sin wzij| will be crossed and their residues must be collected, Ultimately,
when the contours have beenpushed far enough, the contribution of these
contours to the discontinuity will vanish, The discontinuity is thereby ex-
pressed - for given (p1 +... +pM)2 - by the residues of the {inite set of

poles at zij' = nij' which have been crossed, The result is

die Bl (bps%) = 2 [T (dgy B0g,,0) 8 (244 7
My
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(4.11)
where Qn(qz) denotes the n-particle phase volume,

A similar factorization of the discontinuity into the products of
lower-order amplitudes will be obtained for the true amplitude (4. 6) pro-
vided the entire function aN factorizes according to

(_)Zn--

lim aN(zlz: v:) = aM(zij) aM'(zi,j,) 'y (4,12)

Z;J--bh;j
(For the two-point function discussed in Sees.I and III, az(z) = cosrz +

bsinwz ,) One possible form for general aN which satisfies (4.12) is

aN(zij) = -ﬂ- az(zij) - though this may not be the most general one,
I,j =1

This is a strong result and would imply that there is just one arbitrary

constant b in the whole theory. A result similar to this but not as strong

has been claimed by Efimov who shows on the basis of unitarity that in his

21)

recent formulation of the theory, there is jist one arbitrary function

b(s) associated with super-propagators,

Another method of attack on the unitarity problem which may give
more iﬁsight is to eliminate the loop momenta from (4. 3) in favour of a
set of Feynman parameters. As will be seen below,this method has the
advantage of making a sharper separation between the factors which depend
on the details of the interaction and the kinematical factors which are
common to all interactions, In fact the momentum space amplitude in

N-th order can be expressed in the form
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(4.13)

where € (a) and D(a, p) are functions which are completely determined by
the structure of the skeleton graph which for these considerations will
always be taken as the set of N vertices pairwise connected by %N(N-l)
lines. The functions © and D are those defined, for example, in

Ref, 22 with the stipulation that zero-mass bare propagators be used in the

(a, ., )contains the dynamical inform-
ml' v ?mN 12’Un

ation and also the ambiguities, It will be defined in the following,

definition. The function I

The derivation of the integral representation (4, 13) proceeds in the
following way. Firstly, since the super-propagator D(qz,z) is analytic
in the q2 half plane Re q2 < Re (rnz)2 and bounded there by a power,it can
be expressed as a Laplace transform,

% 2
D(qz,z) = 5 do B(a,iz) %4 , Re q2 < Re (mz)2 . (4,14)
o

The new amplitude D , the a-representative of the super-propagator, is

obtained by inverting this integral, For o> 0 ,

p+109
o~ 1 2 -aq2 2
D{a,z) = i dq e D{g ,z) ,
B~ 1oo 5
B < Re (mz)
- -3
1 2 -~a 2 2
= > dq® e %Y gisc D(q°, 2) (4.15)
(w 2)>
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where the latter form is obtained by collapsing the contour onto the cut
which extends from (mz)2 to +00 in the qz—plane. The fixed poles at
z=2,3,4,... contained in D(qz, z) are absent from its discontinuity and
therefore also from the new amplitude D . It is clear that 5 , con-~
sidered as a function of complex « , is analytic in the half-plane Rea > 0,

In general there is a singularity at a = 0 where

l=2
D(a,z)N-T-i—"(-l—_;) , a=0 . (4,16)

For |a|» e , |arga] < W2 one finds

~ - 2
Di{a,z) ~ e @(mz) . Rezz> 0 (4.17)

provided m> 0 ., For the zero-mass case

l-2

2-2z
Um (4.18)

Do) = 5
exactly.

The Laplace representation (4. 14) is easily generalized to higher
forms like (4,3). One can do this formally by substituting an integral
like (4.14) for each factor in (4, 3) and then exchanging the loop integrals

with the a~integrals. One obtains

2

‘D(t“\ k“ 5%n ) =

o;—-—\z

IL (b0 Dlym)) T 7
(4.19)

This exchanging of the integrals can of course be justified only in the
Symanzik region of the external momenta and only after a Wick rotation
has been applied so as‘to make all the loop integrals Euclidean, qizj L0 .,
Under these circumstances the loop integrals in (4.19) can be performed

explicitly to give
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(4.20)

24,9y 2 W, p)
T (dk) e =  Clxy uxp( 2 )
besps - o0

where @ (a) denotes a homogeheous polynomial of degree { while Df(e, p)
is linear in the invariants pipj and homogeneous of degree f +1 in alz, - -
The degree f is equal to the number of loops in the skeleton graph which

in this case is given by [ = (1/2)(N-1)(N-2) .

To compute an amplitude one must multiply (4.19) by the appropriate

vertex factors and integrate over the zij , L.e.,

~B dz.- ..
S .. N - z, -2 - Y ) x
'“‘r-"“n(h Py > Aa ) j&(;ﬁ T=2,) ( )
x TF V(wh‘*’zzﬂ) D (h" P 57::,—"')
Vorheo L
x ) 2 D, p )
- ) F g dan) CGS (__.__
) S—ﬂddu) M-y e, wr) Ll “p o)
o .
(4. 21)
where ithe new amplitude IE‘B is defined by
TF:__N folg oy My ) = T (ff_-‘i T(zy) (-q.‘.)za;,' —'5{,,‘5'2..',. ).(
N s N oam
X —n— v + 2 Z
vorhio (’“‘k L )
(4. 22)
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There is no need to leave {4, 22) in the form of a contour integral, One

could collapse all of the z-contours onto the positive axes and collect the
residues of the poles there. The resulting sum, which represents the

amplitude within some hypercircle of convergence, is given by

il

3 N, ~
F o Wa-dy) = 2 1T ('A;J ' D (a m;: ) ;:,‘) )

Wi Ty

x 1] 'D‘(m,ﬂ-ze g

Ve ey (4. 23)

For the class of theories considered in this paper the series (4. 23) con-
verges for sufficiently large |a| and defines an analytic function of the
Feynman parameters, In general this function has singularities,some of
which move onto the positive real axes when Aij <+ +1 . This phenomenon
necessitates a distortion of the a-contours in the integral (4,9), In order
to define a sensible momentum space amplitude it will be necessary to take
an average of the limits flij = exp(irw vij) with vij = +1 exactly as was

done above.
To illustrate this,consider once more the second-order vacuum -

graphs corresponding to the interaction

v =Gi'n!
n

in the zero-mass approximation, FPor this case (4.11) reads

-n

P 2 n & ! M(T‘I)‘
o l2) = G 2n A (n-1)! “-"g
_ 2 3{20(1
(0{—9\{'1)1

Corresponding to the definitions adopted in Sec. Ill,one can define the "true"

amplitude by the limit
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where P, V., ( ) denotes the principal value and b is real . The
momentum space amplitude which corresponds to this is given by (4.13)
with C{a) =1 and ID{a,p) = czp2 s

P (F) = GIL:FZ [ (A jdd (Z c_F.v,)'t— + ’ﬁ'b-f (‘FZP-HI)JZPJ

R AR
+ wb Glfq (ff”m)efﬁ

23)

where E*(z) denotes the exponential integral function cut from 0 to

2
-¢a ., The term containing E*(-f p2) behaves asymptotically like (1/p2)3
provided larg pzl > 0 . The term containing b , an entire function
of p2 , dominates the asymptotic behaviour if Iarg (pz)l £ 7f2 . This

may be a good reason for taking b =10

In general the result of this averaging of limits will be an integral
like (4.13) with IFF given by

(R (R ™oy,

(4. 24)

a limit which must be interpreted in the sense of generalized functions,
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That is, F{a} will have prescribed singularities suchas P.V. (a-ao)-
or &{a- ao) on the integration contours.

Before discussing the unitarity problem it will be useful to have yet
another representation at one's disposal, In the power series (4,23) one
can substitute for the a-representative of the sﬁper-propagator the form

oo
Bla, n) = S aw? 8(k? - (nm)?) 7@

0
2
where Qn(lt) denotes the n-particle phase volume. One obtains in this

2
K 2
Q
(1)

2
way, after making an interchange of the Kij-integrals with the nij sums,

o2

2 - T xx*

HT‘MI My (qll:“' ) = g ﬂ‘(d\‘{u ) O-‘M ..-"IMN (Ki)V\-) e *
o ben '

(4. 25)

where the spectral function ¢ is given by the finite sum

o (%y,.) = ) TT Ol i) Sln; (5 Tr ulmgdngg )

moy e
LUTEE by .ﬂ‘q._r Verhoa

(4. 28)

Tt must be emphasised, however, that the spectral integral (4. 25) converges

only for sufficiently large aij where it defines an analytic function. K
the a's are decreased until a singularity of the function IF is reached
then (4. 25) will of course diverge, This happens for the class of theories
considered in this paper because the spectral function defined by the sum

: 2
(4. 26) tends to increase like exp K

]

Although the integral representation (4.25) is not valid for the entire
range of the a's it provides a very useful tool for the analysis of singular-
ities in the momentum space amplitudes, This is because,according to the
integral representation (4.13), only the behaviour of IF(a) for large a is
relevant to the finite p-space structure., Thus if the a-space integrals
are divided into two pieces 0< aij <R and R < aij < o0 then the former
yields an entire function of the momentum variables while the latter yields

the expression
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(4.27)
The integral over aij contained here approximates to the simple Feynman
amplitude corresponding to a diagram with N vertices joined pairwise by
lines which correspond to the propagation of bare particles with mass K.fj .
It certainly has all the usual singularity structure that is proved for per-
turbation amplitudes. Since the amplitude (4. 27) is just a summation of
these simple processes weighted by a spectral function which is itself given
by a sum of simple phase-space integrals, it seems at least plausible that

the requirements of unitarity are met,

It must be remarked, however, that the formal interchange of Yo
and a-integrations employed in arriving at the result (4. 27) is not usually
permissible. The K-z-integrals as written are divergent, This difficulty
can be met simply by cutting off these integrals at some large mass M2 .
Such a cutoff will not affect the singularity structure in any given range of
the external momenta if M2 is taken sufficiently large. One of course

takes the limit Mz—) o0 in the end.
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FIGURE CAPTIONS

A four-point super-graph. Thick lines are super-lines each of which

represents the function A; .

A super-line stands for the collection of graphs.

A contribution to the s-wave scattering amplitude,

g‘(s) ~ exp [(const)s] , s> 0 ,

A contribution to the electromagnetic form factors

) ~ 168, t<o

The structure of the super-propagator in the complex sz plane,
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