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I. INTRODUCTION

1. Lagrangian field theory, if it is to have any future, must learn to

cope with non-renormalizable interactions. This becomes apparent when

one examines what we currently believe are Lagrangians of physical

interest. These include:

a) Chiral SU(2) x SU(2) Lagrangians for strong interactions. A typical

example is Weinberg's Lagrangian for v~ me sons:

b) Intermediate-boson mediated weak Lagrangian. An example

is an intermediate neutral vector meson U interacting with quarks Q ;
^ 1 -f

As is well known in Stiickelberg's representation (U = A H— 3 B), cL.
can be written in the typical form:

+ m ^ ( e " ^ " 1 ) Q '

c) The gravitational Lagrangian of Einstein expressed in terms of the

contravariant tensor g

2 V"« * ^ p ^ ^ V

where

X = i Xp + 3 g - 8 g ) .

The covariant components g which enter the expression for g = det g „

are expressed as a ratio of two polynomials in g

The interaction Lagrangians in all these theories are typically of a

non-polynomial form in field variables. These Lagrangians can be ex-

panded in power series of the type:
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(Here ^ is a scalar field and for simplicity we are ignoring derivatives.)

The coefficients v(n) are proportional to f where f is a coupling

constant , All terms in such expansions with n > 4 are non-renormal-

izable. Thus, barring quantum electrodynamics, the rest of Lagrangian

particle physics apparently needs a closer study in respect of non-renormal-

izability.

2. Right from the very early days it was emphasised, particularly by

Heisenberg, that the perturbation expansions of the S-matrix in powers of
N r

G f for the case of unrenormalizable theories suffer from two distinct

(though related) difficulties:

a) Infinities:

The integrals in the theory become more and more infinite in each

increasing order of perturbation. In each order one needs new counter-

terras containing higher and higher derivatives of fields if the conventional

subtraction philosophy of renormalizable interactions is to be extended to

these theories. (These infinite order higher derivatives are likely to pro-
duce a non-local counter-term Lagrangian. )
b) Unacceptable high-energy behaviour:

Even after a successful subtraction scheme has been carried out,

the high-energy behaviour (of the finite parts) of integrals is physically

unacceptable. As external momenta become'large, the dependence of

these integrals on external momenta increases polynomially with the order

of the approximation, unlike the case for renormalizable theories.

3. Of these two types of difficulties, the first - concerning the infinities

of the integrals - has begun to be seriously investigated recently. Three

types of approaches have been considered:

a) The conventional approach, where the Feynman momentum space
N r

integrals in each order G f are considered as they stand and a consistent
2) 3)

subtraction procedure defined . It appears that all three rigorous

subtraction procedures used for renormalizable theories, i . e . , i) the
4) 5)

Dyson-Salam method , ii) the Bogolubov-Parasiuk-Hepp method and

iii) the analytic renormalization method , can be extended to non-renormal-

izable theories. To our knowledge the second technical problem of a
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systematic organization of the counter-terms has not yet been examined

for any of the theories, norA^e problem of physical interest posed by finite

changes in the definition of renormalization constants. (Since there are

an infinity of renormalization constants, such changes could reduce the

predictive power of the theory to naught.)

7) 8)
b) The x-space approach of Efimov and Fradkin for theories with

rational non-polynomial Lagrangians. Formally one can write the N-th

order approximation in the major coupling constant G in x-space to a

typical amplitude in the form of a divergent series:

F N ( x , . V " ) - G N X T (f)pfq+* ' ' a AP(x -x )A5,(X -x ) •-. -
i & p q . . . p 1 ^ r J o

(1 .2 )

Efimov and Fradkin have described an elegant technique of carrying out

Borel sums of such series in the minor coupling parameter f . These
2

sums can be examined in the ultraviolet limit (x - x ) -» 0 ,
2

(x - x ) -> 0 , • • • , The important result of their investigation

(extended in Ref. 8) is that if the Dyson index D of the rational Lagrangians

is less than or equal to four - i .e . , the same as that for renprmalizable

theories - (the Dyson index D is defined by the limit L(0) = <S> ) ,

only a few types of Borel sums exhibit any ultraviolet infinities - again

like the case for renormalizable theories. In particular,if the Dyson

index D is less than two, none of the Borel sums (including those represent-

ing vacuum-to-vacuum transitions) is ultraviolet infinite. Thus if in some

sense the Borel sums represent the physical amplitudes, all theories with

D < 2 - and for these theories the Lagrangian must be non-polynomial -

are super- renormalizable .

This is a beautiful result. The important question to decide is to

what extent the Borel sums represent the physical amplitudes. Do

the p-space Fourier transforms of these x-space functions possess the

requisite analyticity and unitarity properties? And,finally, is the high-energy

behaviour of these p-space Fourier transforms polynomially bounded;as it
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should be if physical amplitudes are being represented?

A detailed study of the Fourier transform of the Efimov-Fradkin

two-point function in second order of the major coupling constant G has

been made by Lee and Zumino who have concluded (with Efimov) that:

i) the corresponding Borel sum does possess the requisite analyticity and

unitarity properties, ii) it is not polynomially bounded, iii) the well-known

lack of uniqueness of Borel sums of divergent series is reflected in an

arbitrariness of the amplitudes up to an entire function.

c) The p-space method:

Since it is the momentum-space Fourier transforms of the amplitude

(1. 2) which are the quantities of primary physical interest, it is valuable

to have a summation method which works direci^within p-space. The

present paper is devoted to the development of such a method, following

a procedure first discussed in this context by Volkov and which in its

essentials goes back to a discussion (in the appropriate region of x and

n) of the Fourier transform of [-l/x ] by Gel'fand-SMlov ' . In

particular we show that:

i) The amplitudes appear to possess the analyticity structure associated

with the unitarity requirements.

ii) The method gives immediately the asymptotic behaviour for large

values of external momenta and , in particular, for the two-point
2

amplitude in the second order in G studied by Lee and Zumino,

we reproduce very simply their result.

iii) The discussion of ultraviolet infinities of Borel sums in x-space is

closely parallelled by a similar one in p-space.

iv) One can develop a graph technique of Feynman-like diagrams with

super-lines representing super - pr opa gators (AF(x)) replacing

normal lines corresponding to Feynman propagators Ap(x) . In

p-space, the closed loop integrations for super-graphs can be per-

formed with the help of Feynman's auxiliary parameters in exactly

the same fashion as for conventional polynomial Lagrangians. In-

so far as there is (essentially) just one super-graph in each order



N
G , the topological analysis of super-graphs is simpler than

Feynman diagrams for polynomial Lagrangians.

4. The problems

It would appear from the above that for non-polynomial interaction

Lagrangians with index D < 2 one can construct amplitudes with no ul t ra-

violet infinities and which (if one can extrapolate from the limited experience

so far) are likely to satisfy the correct analyticity and unitarity requirements

(unitarity verified to each order in the major coupling constant G ). There

are two remaining problems:

a) The arbitrariness in the amplitudes which the Borel-summation method

in x-space allows or, as we shall see, its weaker analogue,which still exists

when the p-space method is used. The problem is analogous to the problem

of arbitrariness of finite renormalization constants in renormalizable

theories.

b) The more serious problem of non-polynomial bounded high-energy

behaviour of the amplitudes. We believe that any inference in this respect

on the basis of order-by-order calculations in powers of G is likely to be

misleading and a final verdict on the true asymptotic behaviour of these

theories can only be given after a summation of the series in the major

coupling constant G has been performed. For renormalizable theories,

as is well known, this summation has been carried out for certain sequences

of graphs for the four-point function and for a number of production ampli-
the

tudes. The result is/emergence of Regge behaviour for large values of

energy, unsuspected if one had only considered individual terms of the

perturbation expansion. We believe,on the basis of certain indicative

considerations,that a similar (drastic) change in the high-energy behaviour

also occurs in the present theories when the summation in G is carried

out. The p-space method is extremely convenient for summing the super-

graphs insofar as the analytical expressions for the super-graphs resemble

those for conventional polynomial Lagrangian theories.
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5. Plan of the paper

To make the plan of the present paper clear and to bring out the paral-

lel sets of ideas involved in the x-space and the p-space methods, we set

down here a brief and non-rigorous summary of the paper.

A) Super-graphs:

Consider ©£.. (0) = G / , —*-p (-^) , (v(n) contains the minor
int n_Q n.

coupling parameter fn . The factor (-) is included for later convenience. )

NIt is easy to verify that the G contribution to an amplitude F(x , ... ,x- )

with E external line can be written as a sum of contributions from a set of

super-graphs constructed as follows:

a) Take N points x , x , . . . , x .

b) Join all points pair-wise with just one super-line joining two distinct

points {x. , x.) ; associate with this line a positive integer n,. .

1 nij
c) For each line write the factor [A^(x. - x.)]

n... i j

d) For each point x. write a vertex factor v ( T^ n.. + m.) . Here
l ^ lj i

i
m. is the number of external lines impinging on the point x, .

e) The contribution of the super-graph to the amplitude equals:

y

(1.3)

Nf) To get the total contribution in order G , sum over configurations

of the external lines with the m. lines at the i-th vertex distributed
l

over the various vertices, such that

Z m i = E •
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g)

h)

In the above set of rules we omit all tadpole contributions

(lines joining a point x. to itself). This is justified if we consider

instead of (1.1) a suitably Wick ordered interaction. Figs. 1 and 2

show a typical super-graph and a super-line .

It is clear that the Green function

m,m,mT' •• ' N'

with m1 ,

Fig. 1'. A four-point super-graph. Thick lines are
super-lines each of which represents the
function Ap .

n o n - z e r o i s s i m p l y r e l a t e d t o P l g . 2; A super-line stands for the
collection of graphs.

F
i't I

For example
(X)

), 0, 0,. . .
1.0.0,

x=

where F(X) on the right-hand side of (1.4) is obtained from (1. 3)

by replacing Afx^x^ by

B) To illustrate the x-space and p-space techniques, consider a simple

example with 3i. :
int

(1.4)

nHere v{n) = (+ f) n!

a) The formal series expansion for amplitudes

Formally an expectation value like

F(A) =

equals the divergent series:
OO

= G ^ _ n! f 2n n (1.5)
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We are interested in giving a meaning to this divergent series such that the

Fourier transform

1F(P2)= f F(A) elpX A (1.6)

possesses correct analyticity and unitarity properties.

b) The Euclidicity postulate
2

To do this consider the Symanzik region in p-space (p < 0) . (When

more than one external momentum p. is involved, the Symanzik region is
2 1

the region for which p. ^ 0 , p . p . ^ 0 .) Following Efimov, we can define

the integral (1.6) by making a Wick rotation x -> ix . For this region

in p-space one therefore needs to consider A(x) for Euclidean x-space
2 2 2 2 2

only. {For a zero-mass field A(x) = -1/4TT x ) (x = -x . - x_ ) and is

real and positive.) For p-space regions outside the Symanzik region we

must appropriately analytically continue (1.6). (It cannot be emphasised

strongly enough that for divergent series of the type (1. 5) one is not starting

by "proving" the validity of the Wick rotation. Rather, Euclidicity is a

basic postulate - part of the process of defining the theory . One accepts

it for the Symanzik region; outside this region one makes an analytic

continuation.)
c) Borel summation

To give meaning to the divergent sum F(A) use Borel transforms

and write: *

IF(A)= > I e ? ( f 2 ? A ) n . (1.7)

(Here we have used

d) The x-space method

The x-space method consists of inverting integration and summation

in (1,7) and writing it as:



F(A) = \ (1.8)

F(A)
/
()

The expression (1. 8) defines the amplitude/. At this stage we encounter our

first problem in the x-space method; the integrand has a pole on the in-

tegration path at

r - *S - - 5 —
f A

4r2r2 . . . 2 2 x 2
f o r t h e c a s e m = 0 , r = J i . + x ^

We must define how to go round this singularity.

One obvious answer is: take the principal value. This is because

F(A) in the Symanzik region is a sum of real terms. The p. v. prescript-

ion for the integral representation (1. 8) of F(A) will guarantee this. Lee

and Zumino show that this is essentially the correct prescription, barring

an arbitrariness (to be specified later) associated with functions like
2exp (l/{f A)) which possess an expansion everywhere zero when expanded

around A= 0 , and which can be added to f(A) without affecting its re-

E^ 2 n

n! (f A)
/Te) One may now compute the Fourier transform, using (r = /-x ) ;

d* e
l p xp.v.

dr r2 J {

o 9

for p < 0 and continue direct to 0 < p < m
integrations:

p.v. | dre" f ( l-f^A)"1

(1.9)

Inverting the order of

F ( p
2

) = f°d?e-? f dr r 4 X, 1 \
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This integral can be explicitly evaluated and a continuation to time-like
2 ~ 2

values of p carried out to demonstrate that F(p ) possesses the correct
2

analyticity structure in the p -plane. The asymptotic behaviour of

F(p ) is: „ x

(f2s)3

—• ± iir exp(f2s) s -*

where s = p

f) The p-space method

Our procedure is different. It depends on Volkov's observation of

the power of the Gel'fand-Shilov investigation of the Fourier transform

of the generalized function {A(m = 0)) = r in the range 0 < Re z < 2 .

(In Sec. II we consider the case m *f 0 . We have no exact expression for

this case similar to (1.11) below but the general considerations are parallel

to those treated here.)

The crucial formula is

sinrz r(z)r(z-l)

0 < Rez < 2

To use this formula go back to the Borel sum (1. 7) and employ a Sommerfeld-

Watson transformation to convert the series into an integral of the form

with the contour r enclosing the positive real axis in the z-plane. (The

conditions for validity of employing this transformation are discussed in
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Sec. III.) Straighten the contour to lie along the imaginary axis with

Re z constrained to lie in the range 0 < Re z < 2 . Using Gel'fand-Shilov's

formula to take the Fourier transform we obtain

(1.13)

where 0 < a < 2 , (The term 6(p) corresponds to a graph which contains

no internal line.)

In the above passage from (1. 5) to (1.13) we have changed orders of

summation and integration repeatedly. The justification is provided in

Sec, III, Here we are only concerned with a rapid exposition of the p-space

method whose chief ingredients are the Soramerfeld-Watson transformation

(1.12) and the Fourier transformation (1. 11).

g) Formula (1.13) is our master formula. By closing the contour along
*' 2

the left^one can immediately obtain the asymptotic behaviour of F(p ) for
2

p _^ _ oo (and,in particular,the Lee-Zumino result (1.10)), As in Regge

pole theory, the right-most pole of the integrand gives the leading contri-

bution to the asymptotic behaviour.

h) The principal value ambiguity of the x-space method noted in d),

which does not seem to arise explicitly in this treatment, has a weaker

counterpart when we take into account the appearance of the (-)ive sign

in front of A in (-A) in the Sommerfeld-Watson transform. To see

this more explicitly, introduce a multiplier X in front of A ; thus,

F(XA)4 f l ^ T fdre-?(-?XfV . (1.14)

We must interpret the limit X-> +1 by a cejai average of the values

(-X)z = e
l l T z

 and (-X)Z = e"11lZ , obtaining finally
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F(A) = \ dz < -— + b) n*+i> t r ^ r (1.15)

with b an arbitrary real constant. The ambiguity introduced by

(-1) = e = e we shall call the "signature ambiguity" of super-

propagators. (Note that this method admits of an arbitrariness up to a
2

constant and not an entire function of p as in the x-space method.)

j) In paper I we showed that a superficial count indicates that the number

of distinct types of ultraviolet infinities depends on the Dyson index D

( lim V(^) = 6 ) of the Lagrangian. This number is finite if D ^ 4 .
f

The result was proved by considering x -^ 0 (x-space-like) behaviour of

Borel sums (1. 7). For example, explicitly when V($) = G/(l + f£) , with

D = - 1 , F (A) is given by:

F(A) = p.v. G 2

0

-°o
r J W - ? 2 2 _ - / ' f fl"d? e x (x - f (.'ott'/ / f ° r zero mass fields ^ .

This expression is finite in the limit x -» 0 . For the interaction Lagrangian

V(^) = 6 /(1+iA) with D = 4 , however, we recover the ultraviolet in-

finities since the corresponding expression for F(A) equals

5 0 - f 2 -1
F(A) = A I djj e (1 - f ?A) . The question arises: where in the

J

p-space method is there an indication of a Dyson index? The answer, as

we shall see in Sec. Ill, is that it is the Gel'fand requirement 0 < Rez < 2

for the unique definition of the Fourier transform of A (x) which forces

us to distinguish between Lagrangians like V(̂ ) = 1/(1 +f^) and
5

V{$) = <j> /(1+f^) . In order to give a precise
latter,we are constrained to write it in the form

5
= <j> /(1+f^) . In order to give a precise meaning to F(A) for the

.F(A)= 2 _ n l A + ^ ' dZ

n«2
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4-
The terms which appear in the sum £ t n! A are just the ones which

give rise to ultraviolet infinities,

k) Higher orders

The great beauty of the p-space method lies in the similarity of the

p-space expressions for super-graphs and normal Feynman diagrams.

One can introduce Feynman1 s auxiliary parameters and carry out the

loop integrations. As we shall see below,the result is an elegant expression

for the super-graph contribution as a weighted average integral of contri-

butions of conventional graphs. The utility of such an expression is two-

fold.

i) The sums of super-graphs in different orders of G closely re-

semble the sums for conventional graphs and the methods previously
13)

discussed by Polkinghorne, Federbush and others for carrying

through the summation can be taken over.

ii)The discontinuity formulae of Cutkosky - and the proof of the

unitarity relations using such formulae - follows the conventional

lines.

the
Forfzero mass case, the integral expressions for the N-th order

super-graph is the following:

a
Associate with each super-line/four-momentum vector q.. . The

* 3̂
Sommerfeld-Watson transform of (1.3) in p-space equals:

,N TT

(1.16)

Here p(z..) is the product of the vertex factors v{ /_*. z.. + m.) , the

j 1+bcosirz,.
factors —: (or more generally : •* ) and the factors

simrz.. * B J smirz.. '
i] i]
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—: =7—T-rr: 77 for each super-line. The p. 's are the momenta
sinirz.. r(z..) r(z - 1) 1

carried by the external lines at the i-th vertex and the 6 -functions express

conservation of energy and momentum.

Introduce Feynman's auxiliary parameters, using the integral re-
14)

presentation

<-"2>z"2 • v n k r J —1""-*fl2 • f1-")
0

4
One may now carry through the d q integrations in

I
(1.18)

The result is identical to the case as if we were dealing with normal Feynman

graphs with F = (N(N-l))/2 internal lines,rather than super-graphs. (This is

because I(p., a,.) is not z. .-dependent.) Such normal graphs we shall call skeleton

graphs. The evaluation of the functions Up., a..) for the skeleton graphs
1 ^

can easily be carried through using the me
r-J

expression for the amplitude F{p.) reads:

15)
can easily be carried through using the methods of Chisholm ; the final

- TT j
(1.19)

where p1 differs from p by the factors | j ~-Afn T"

The result for the N-point function evaluated in order G^ can

therefore be stated thus:

Draw a normal Feynman graph with internal lines joining all the

N-points pair-wise. We shall call such graphs skeleton graphs.

Introduce Feynman parameters; the result of performing loop integrations

-14-



in skeleton diagrams is the standard Chisholm expression l(p.,a..) .
1-z" */**i

Multiply this by the factors (a..) '1 and the weight function p(z..) ;

integrate over Feynman parameters a., and the Sommerfeld-Watson

parameters %.. . One obtains the super-graph contribution.

m) Finiteness of the super-graphs

One may examine the super-graph integrals for ultraviolet infinities.

It is easy to see that a superficial power count would indicate that for an

N-point function, with F = N(N-l) /2 internal lines and 1= F - N+l

loop momenta, the super-graphs have no ultraviolet infinities provided
2.-2

It iseach super-propagator contributes a factor falling like (q )

crucial to remember that with our Euclidicity postulate it is the asymptotic
2

behaviour for space-like q for the super-propagators which is relevant

here. This also leads us to stress once again that it would be a mistake to
N

evaluate super-graphs in each order in the major coupling parameter G

for the Symanzik region.to continue the external momenta to the physical
N N

region and then sum the series in G . One must sum in G first (as

indeed has been done for the series in the minor coupling constant f) and

then continue the sum to the physical region.
2

n) As stated earlier, the G approximation to the two-point amplitude in

a typical non-polynomial theory behaves asymptotically, as illustrated in

Figs. 3 and 4. ^.

F;«.3

A contribution to the s-wave scattering amplitude,

F(s)~exp [(const)s] , s> 0 .

Fin.

A contribution to the electromagnetic form factors

F(t)"l/t3 , t< 0 .

Thus to order G a simple evaluation for form factors (Fig. 4) immediately
16) **

yields physically sensible results , (F{t)
2 3

G /t ) while the same

approximation in the time-like region s > 0 gives, for the four-particle

scattering amplitude, a physically unacceptable behaviour [_F(s)ocG exp(as)J

-15-



It is clear that before rejecting non-renormalizable theories on the grounds

of unacceptability^xheir predictions in the lowest-order calculation in the

time-like region of external momenta, one must first carry out a summation

of a chain of diagrams. This crucial problem is being studied.

II THE SUPER-PROPAGATOR

As we have been stressing in Sec. I, the basic generalized function

in terms of which all the Green functions are ultimately to be expressed
z

is A where z denotes a complex number in the strip 0 < Rez < 2 ,

and A the usual propagator for a free scalar field of mass m ,

<T (<(>(*) CJ>(0));> ~ A (x ' - iG,™*) (2.1)

2 2 2
The function Afx , m ) is analytic in the x -plane cut from 0 to
Explicitly,

(2.2)

where K denotes the modified Hankel or Macdonald function. The function

A is real and positive on the negative real axis. It has no zeros in the finite
2 2 2

x -plane and its behaviour near x = 0 and x = oo is given by

-16-
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(2.3)

The generalized function AZ which we shall call the super-propaga-

tor is well defined provided one can find a space of test functions f(x)

over which the integral

{ (*) (2.4)

is convergent and satisfies the appropriate continuity conditions.

This integral can certainly be defined for f (x) £ 06 * the space of

infinitely differentia ble functions with bounded support, provided z

lies in the strip 0 < Re z < 2 . (Presumably it can be extended to

larger spaces but we have not examined this problem.) Following the
12)

standard procedure for defining a generalized function that corresponds

to an ordinary function with an algebraic singularity, we can define

(A , f) outside the strip 0 < Re z < 2 by means of analytic continuation.

The result is an analytic function of z with simple poles at the integers

z = 2,3,4,...
2

The Fourier transform D(p ,z) of the super-propagator must, like

the latter, be an analytic function of z . It is defined on the segment

Imz = 0 , 0 < R e z < 2 by the classical integral

(2.5)

2
which converges absolutely for p < 0 . In fact one can perform a

Wick rotation of the x -contour and replace the Minkowskian integral

(2. 5) by an equivalent Euclidean one which reduces to the form

-17-



A t-T\rff (2.6)

after performing the angular integrations. It is clear that (2. 6) con-

verges for a wider range of z than does (2. 5): 0 < Re z < 2 ,
2-oo < Im z < °° . The analytic continuation of D(p , z) outside this

strip will be considered below. It will be shown that like the functional
7

(A ,f) , it has poles at the integers z - 2, 3, 4 , . . .

For the zero mass case we can express the integral

(2. 6) in terms of elementary functions and so perform the analytic

continuation explicitly. The result is

= i t [Axz/
-fz-i) (2.7)

which clearly exhibits the poles at z = 2, 3, 4,. . , (It shows in addition

the rather unexpected feature of zeros at z = 0, - 1 , -2,.. . We have

not yet been able to prove that this is true also of the massive super-

propagator. )
22

The asymptotic behaviour of the super-propagator, both in p and
2
2

I
2

in z , is of particular importance. For Ip I—>oo with z fixed we
2 2

shall assume that D(p ,z) can be approximated by DQ(p *z) . F o r

2
)z|—*oo with p fixed the situation is less clear. The behaviour of
the zero-mass super-propagator

T)o \
° f i (2.8)

may or may not provide a useful guide to the massive case.

2
Consider the structure of D(p ,z) in the finite z-plane

2with p < 0 . The integral representation (2.6) is valid only in the

strip 0 < Re z < 2 . In order to continue to the right of Re z = 2 we

must modify the behaviour of the integrand of (2. 6) at r =0 . We

-18-



propose to subtract and add the first N terms of a Maclaurin expansion
of J . Indeed, if we write

then (2. 6) takes the form

(2.10)

The term involving R is easily shown to converge in the extended
strip

0 < R e z < N + 2 (2.11)
2 2 2N

since near r = 0 we have R-̂ fp r ) ^ r . The other terms in

(2.10) will of course exhibit poles when continued out of the strip

0 < Re z < 2 . (This can be shown by the method of Gel'fand and
Shilov.) The important point here is the fact that the residues of the

2
poles at z = 2, 3, 4 are polynomials in p . (This is simply a re-

flection of the well-known fact that the ultraviolet divergences mani-

fest themselves in the coefficients of a polynomial.) By increasing

N indefinitely we can thus prove that D(p2,z) with p < 0 is analytic

in the half-plane Re z > 0 except at the points z = 2, 3, 4, . . . where it
2

has simple poles, the residues of which are polynomials in p {of
order z-2). The structure in the half-plane Re z < 0 is more difficult

to unravel and we have not attempted this.
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2 2
Consider now the structure of D(p , z) in the p -plane. It is

trivial but helpful to continue into the strip 0 < Re Vp < ni Re z by

expressing the integral (2. 6) in the modified form

It is the convergence or lack of it at the upper limit which controls the
2

analyticity in p . We shall be able to make analytic continuations

by displacing the r-contour in (2, 12). The integrand has no singular-

ities in the finite plane and for large values of \ r 1 it can be approx-

imated by

assuming Re ̂ p2 > 0 . Let us keep z fixed in the strip 1 < Rez < 2 .

It is clear that we can rotate the r-contour through the angle 6 without

affecting the value of the integral provided we maintain the condition

or, otherwise expressed.

-J?) + & <

17

This follows from the absence of singularities of A in the r-plane

apart from the branch point at r = 0 where the convergence does not

depend on arg(r) . Starting with the original contour, 0 = 0 , we

have analyticity in the half-plane

- C DMT fftt \T~v ) < ^

Increasing 0 continuously to +v/2 rotates the convergence domain into

-20-



- IT < (WTQ ITAZ. - \ f p ) < 0

while decreasing $ to -?r/2 rotates the domain into

(ID

< TT (III)

The regions (I), (II) and (III) so obtained can be pictured in the plane of

\J p as in Fig. 5:

I Fig. 5 : The structure of the super-propagator in the complex
p plane.

where the dotted lines indicate boundaries between the regions. Thus

it appears that the integral (2.12) defines a function which is analytic

in the half-plane Re Vp2 > 0 except at the point Vp2 = mz where it

presumably has a branch point. The discontinuity across the branch

cut is given by D - D where D and D are defined by the

contours with 6 = fr/2 - 0 and 9 - -tr/2 + 0 , respectively.

Equivalently,

ft?

M

(b»

(2.14)

These formulae are valid for 1 < Re z < 2 . If we add and subtract

the Maclaurin terms as in (2.10) they can be extended in an obvious

way into the half-plane Re z > 2 . Presumably their range of validity
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can be extended down to Re z = 0 without difficulty (at z = 1 the

branch point should reduce to a simple pole).

To summarize, from the integral representation (2. 6) and its

modifications (2.10), (2.12) and {2.14) we deduce that the super-
2

propagator D(p ,z) viewed as a function of two complex variables

has the singularities: a) fixed poles at z = 2, 3, . . . the residues of
2

which are polynomials of order z-2 in p , b) a singular surface
2 2 2 2

p = z m which manifests itself as a branch point in the p -plane

except when z = 1 in which case it becomes a simple pole. The

discontinuity across the branch cut is a regular function of z - at

least for Rez > 0 . Whenever z is an integer the singularity
2 2 2

surface p = z m corresponds to normal thresholds as implied by
unitarity.

We have no clear idea of the behaviour of the super-propagator

for Re z ̂  0 except, of course, in the zero-mass case where it is

analytic with zeros at z = 0, - 1 , -2, . . .

For large values of | p I it is presumably adequate to approximate

D(p , z) by the zero-mass form (2. 7). For large values of | z i it

may or may not be possible to use (2. 8).

Finally,let us consider an alternative regularization of the super-

propagator A which can be used in the zero-mass case. (This

regularization will be referred to in Sec. III.) Introduce the

regularizing parameter a to define

(2.15)

which has no singularity at r = 0 . Substituting this form into (2. 6)

we find the corresponding momentum space super-propagator

- 2 2 -



(arr)

%

(2.16)

and, as was to be expected, the fixed poles at z a 2, 3 , . . . have dis-

appeared. In order to see what happens in the limit a—* 0 let us

assume that z is not an integer and replace K by its series

expansion. The result is

<

(2.17)

In the limit a—»0 every term except the first vanishes if Rez < 2 .

In this way the super-propagator (2. 7) can be obtained as the limit

of a regularized function.

If, on the other hand, we were to take 2 < Re z < 3 then the limit

would be singular,

5

2
This means that contour integrals involving D (p ,z) must be moved

reg
to the left of Re z = 2 before the regularization is removed.
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III. REGULARIZED PERTURBATION SERIES

Consider now the problem of developing perturbation expansions in

the non-polynomial interaction, V(0) . As discussed in Sec. I, we could

begin formally by expanding V in powers of ^ and then, for each power

<# , develop the usual ser ies . Let us therefore suppose that the inter-

action Hamiltonian, considered as a function of the complex variable ^ ,

is analytic in some neighbourhood of ^ = 0 so that we can write,

V(« -

It is convenient for our purposes to consider, instead of the usual

many-body Green functions, the equivalent set of amplitudes

( 3 .2 )

where ^ " ^ ( x ^ , . . . and V (m)(*) = amV(*)/3*m . If we substitute the

power ser ies (3.1) into (3. 2) then, after some straightforward manipulations,

we obtain the ser ies

r TT

(3.3)

where the indices i , j run from 1 to N and the n.. = n..

We shall suppose that n.. = 0 since the factors A(0) produce no more

than a rather simple renormalization of coupling strengths which we can
17)

regard as having been done already

For the interactions we shall be considering, the ser ies (3. 3)

generally diverge. Thus, for example, corresponding to the interaction

(1.4) we have v(r) = Gf n! and so in the simplest case N = 2 , m1 = m_ = 0 ,

-24-
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_ a V^ 2n

which clearly diverges. However, we can easily regard such series

as asymptotic expansions and direct our attention to the problem of

defining the amplitudes which are so represented. As a first step

towards such a definition let us consider the Borel sum of (3. 3),

(3.4)

The summations over n.. are by this method - or some generalization^)

of it - made to converge so that we are left with the problem of inte-

grating over the if.. . The ^-integrals may well be ill

defined since the analytic function in the integrand can develop

singularities on the path of integration. These can always be avoided

by distorting the jj-contours or by giving the A's suitable imaginary

parts.

The precise details of the method used to define the functions
BF (A) are not important since we are using the Borel integrals only

at an intermediate stage of our programme. The essential step will

be the replacing of the sums over n.. in (3.4) by contour integrals
J

over z.. . To do this we need to interpolate the expansion coefficients

v by an analytic function v(z) . The existence of such an inter-
n 19)

polating function is assured by the condition

(3.5)

for some range of a . Indeed if (3. 5) is satisfied then V($) may be

represented by the Mellin integral
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where v(z) is an analytic function defined by the integral

[ f7'1 V W , &z,<x (3*7)

In order to compare the integral representation (3, 6) with the power

series (3.1) we have only to perform the inverse Watson-Sommerfeld

transformation. It appears that a is constrained by the minimum

value, n_ , of n appearing in the sum (3.1), i .e . ,

n l < a < n 0 (3.8)

where nn and n are determined by the limiting behaviour,

(We shall be assuming later that V{£) can be expanded in powers of

for 1 <f> | > R1 . In this expansion the lowest power to appear

is -n. .)

To avoid the notational obscurities consequent upon the

use of general formulae like {3. 4) we devote the remainder of this

section to a detailed treatment of the second-order amplitudes.

Formal generalizations for the higher-order amplitudes can usually be

made without difficulty. New features connected with the problem of

defining products of super-propagators may appear in the higher

orders; about these we can draw tentative conclusions. These

problems will be presented in Sec. IV,
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It will prove convenient in the following to have an auxiliary

complex variable X at our disposal. Let us therefore consider the

functions F (\&) bearing in mind that we shall take a limit \—» 1

at the end. Let us now replace the summation over n in (3.10) by

a contour integral using the v(z) of (3. 7), analytically continued, to

interpolate the coefficients v t

(3.11)
where V denotes a contour coming from +°° which encircles the

integers z = M, M+l, M+2, ,.., in the negative sense, and returns

to oo , The non-negative integer M is fixed as the lowest power of

A appearing in the sum (3.10). It is defined by

) (3.12)

Let us now open the contour V after the fashion of Watson-

Sommerfeld. This is possible because of the postulated existence

of the Mellin representation for V(0) . The factor T(z + 1) pro-

duces a strong damping effect for |z|—»oo , |argzl<jr /2 . Once

the contour has been opened, however, the factor T(z + 1)" *"

exp(r | lmz |) acts to weaken convergence. Hence it is advisable

at this stage to interchange the ? and z integrals and perform the

£-integration to obtain

(3.13)
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where or lies in the range

M <a < M (3.14)

where M denotes the position of the singularity of the integrand near-

est on the left to z = M . This will generally be a pole at z = M-l

due to the factor (sinirz)" . However, if M = 1 or 0 this will be

a pole from one or both of the factors vfz + rn^ and vfz + m j . Let

us defer these questions until we come to consider the construction of

asymptotic series for the momentum-space amplitudes.

In formula (3.13) we have thus obtained an integral representation

of the Mellin type involving the super-propagator A . If ML < 2

then this integral defines unambiguously the generalized functions

F (AA) . If, on the other hand, 1VL > 2 then it will be necessary

to translate the contour to the left of the line Re z = 2 and, in so

doing, pick up the poles at z = 2 ,3 , . . . [MJ} . The part of the

generalized function defined by the new contour is unambiguous but
o Q I *i\/r I

the separated terms, involving A , A , . . . , A * , are not. They

carry the usual ultraviolet divergences.

A simple illustration of this effect can be given in the zero-mass
2

case using the regularized super-propagator D (p , z) in place of
z

A in (3.13), This propagator, given by (2.16), has no z-poles and in

the strip 0 < Re z < 2 it reduces to the correct form (2. 7) in the limit

when the regularization is removed. However, if Re z > 2 then

singular terms appear when the regularization is removed. That is,

the Fourier transform of F (XA) is well defined when the regular-

ization is removed only if the contour is contained in the strip

0 < Rez < 2 .

Assuming now that 0 < oL < 2 , we can immediately write down the
B

Fourier transform of F (XA) . It is given by

a-MOO

(3.15)
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2
At this point we must remark that the continuation to z - 0 of D(p ,z)

must be treated carefully. For the zero-mass case the explicit

formula (2. 7) gives

D(p2,0) = 0 .

On the other hand we should expect the Fourier transform of A = 1
4

to be (2T) S.fp) . This means that if, in the integral representation

(3.13), the contour lies to the left of 2 = 0 , i . e . , if M= 0 , then,

before defining the Fourier transform we must translate the contour to

the right of z - 0 where we can use (3. 15) and, in compensation, add

the term

vfrn^ v(m2) (2*)464(p) (3.16)

which is the Fourier transform of the contribution of the pole at z - 0 .

Clearly (3.16) corresponds to a disconnected graph. The contour method

apparently picks out the connected graphs only.

Let us now consider the problem of constructing an asymptotic

series to represent the function F (p ,X) . To simplify the discussion

let us suppose that M = 0 o r l . (If M ^ 2 the necessary modifications
2

can be made without difficulty.) For large space-like p we shall use
2the zero-mass approximation for D(p , z) and write (3.15) in the form

of • ( -»<*

0 dx trfi+m^iHz+nO

• "

(3.17)

2
Our aim, in order to get a ser ies in inverse powers of p ; is to collapse

conventional
the contour onto the negative real axis - a mir ror image to the/Watson-

contour on the positive *\
Sommerfeld J^ real axis. By our assumption that V(^) can be

expanded in inverse powers of ^ for sufficiently large | ^ | , it follows
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that v(z)/F(z) is damped with sufficient strength for the inverse Watson

Sommerfeld transformation to go through in the half-plane Re z < 0 .

The only factor in (3.17) which hinders this operation is F(2-z) which

explodes. However,this can be removed by the Borel trick. That is ,

we can write

(3.18)

2
The dominant term as p —*oo is going to come from the pole or dipole

of v(z + m1) v(z + m ) furthest to the right. For simplicity let us

suppose that the poles of v(z) occur at negative integer values of z .

This happens in many cases of interest and it is a consequence of

requiring that V(<fr) has a Laurent expansion at <£ = oO . Suppose

v{*) = H - ^ (-< )̂"n

ix n -

Comparing this with the integral representation (3. 6) we find

, ^ Hz) . .
vfz) = — u(~z)

so that, in particular,

which vanishes for z = - 1 , - 2 , . . . , -m. It will vanish also for

z = - m - l s . . . , -m-n +1

where no denotes the lowest power of $ occurring in the regular

part of the Laurent expansion of V(l/$) , i . e . , u(n) = 0 for

n = 0 , 1 , . . , , n -1 „ The poles of the integrand of (3.18) therefore

occur at
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z = -N-l, -N-2

where N is given by

N=max(m1, n y n^ + ̂ - l , m2 + n 2 - l ) (3.20)

Hence we can write

Co

r

'0

(3.21)

we interchange the £ -i

with the summation. We obtain the result

20)
Finally, to obtain the asymptotic series we interchange the £ -integration

^ H=M+I iiwWr,y. fo^j: («*v.y h ^ ) ! v P1

(3.22)

There are two important aspects of this formula. Firstly the leading
"B 2 ~N-3

term in F turns out to be (-p ) ' where N is given by (4.20).

(If M > 2 we must include additional terms corresponding to the poles

at z = l ,2 Mx . These are (1/p2) , i n p 2 , . . . (p2)M l"2in p2 .)

Secondly, the asymptotic series (4.22) is single valued in X .

The functions F (p , X) defined by the integral (4.15) are not

single valued in X . Generally they have a logarithmic singularity

at X = 0 . This can be seen if we collapse the contour of (4.15) onto

the positive real axis and pick up the residues of the dipoles at z = 2, Z, . .

Let us use again the zero-mass expression for the super-propagator to

write
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r) «rf(-rrz
 x

(3.23)

where ^(z) = r'(z)/r(z)» That is, we can write

* W ^ Y A ' * A*« l^.A> + 4 l ( -»»L_ (fc^) (3.24)

where A and B are entire functions of X . Moreover, B is an
2

entire function of p as well.
2 2

That B(p ,\) is an entire function of p can be seen from the
*vB

fact that the discontinuity of F is an entire function of X and must
2

therefore come from the function A(p tX) . Considering the massive

case, we can use the property that the absorptive part of the super-
2 2 2

propagator, D(p tz) , vanishes for p < (mz) to evaluate the

absorptive part of 1? by translating the contour in (4.15) to the right

of Rez = Vp /m for given vp > 0 . Only the poles separated in this

way can contribute to the discontinuity which is therefore given by

- Z
(3.25)
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which is just a polynomial in X .

The form (3. 24) which has been derived for the zero-mass case

is probably true in general. Its validity depends only on the feasibility

of the inverse Watson-Sommerfeld transformation together with the fact
2

that D(p , z) has simple poles at the integers z = 2, 3 , . . . These

combine with the zeros of simrz to make dipoles.

'•B
The dispersive part of F is certainly not an integral function

of X and we shall have to adopt some definition of the limit X—*•! .

It is at this point that a basic uncertainty enters the programme. In the

absence of guidelines we can interpret Km (-A) by an average of the
A*!

terms

t fa I , -t 7 , . .t fa r O

That is, we should write

f^J1 * l ^ l ) l r ) (3.26)

with arbitrary complex parameters a , Substituting the form (3. 24)

this reads

(3.27)

so that there are really only two arbitrary constants.

There is one very important constraint to be imposed. That is

unitarity. The imaginary part of F(p ) should be given by (3,25)

with \ - 1 and it should vanish for p2 < 0 . This gives us the

conditions

and i r £ j2k+1) afc = b
i 2 g )

where b is real. Thus it appears that the Fourier transform of the

generalized function F(A) may contain one arbitrary parameter, b .

-33-



Possibly we could take b = 0 . This corresponds to the choice advocated
7) 8)

in ear l ier references (Efimov and paper I ) and it may receive just-

ification when we are able to impose the unitarity requirement in higher

orders .
-" 2The final choice of amplitude F(p ) represented by (3.27) and

(3. 28) can be expressed by the integral

f -
(3.29)

IV. HIGHER ORDERS AND THE FEYNMANIZATION OF SUPER-

GRAPHS

Corresponding to a diagram with N vertices which are paii?wise

connected by super-propagators there exists the momentum space amplitude

i£px z

i< i x -1

depending upon N-l independent momenta and —N(N-l) independent

complex parameters z.. , The singularities of this integral occur on the

various light cones (x.-x.) =0 . An overall convergence condition can

be obtained by considering the behaviour of the integrand when all com-

ponents x. -> 0 simultaneously. This gives the overall singularity

-2 rRez i ; j -N(N-l)Rez
x = x * '

if we assume for simplicity that Rez . . is the same for every z.. .
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This singularity is compensated by 4(N-1) integrations. Hence we have

superficial convergence if

N(N-l) Rez < 4(N-1)

i .e . , Rez < 4/N (4.2)

An equivalent representation of the amplitude (4.1) is given by the

momentum space integral

(4.3)

2 1

where D(q , z) denotesthesuper-propagatorofSec.il. The — N(N-l)

momenta q.. associated with the super-lines are expressed in the usual

way by linear combinations of the loop momenta k., . . . , k. and the ex-

ternal momenta p . . . p . The convergence of (4. 3) can be justified

by the same power-counting arguments as were used above. Using the
2 2 z-2

asymptotic form D(q ,z) /w {-q ) , one arrives again at the condition
(4 .2) .

The problem of analysing higher-order contributions is a very

standardized one. For each N there is one and only one skeleton graph.

This graph is obtained by joining the vertices in pairs - one line to each

pair. The resulting diagram has —N(N-l) lines and — (N-l)(N-2) loops.

The amplitude which corresponds to this diagram would be highly divergent

if ordinary bare propagators were associated with the lines. It is the

possibility of taking Rez., sufficiently small which makes the amplitude

converge when super-propagators are associated with the lines. The

analytic function defined by this convergent integral can then be continued

outside the original domain Rez.. < 4/N exactly as was done for the super-

propagator itself.

In this way one is led to define the higher-order momentum space

amplitudes by the multiple contour integral
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TT

(4.4)

where the z-contours lie initially in the strip 0 < Re z.. < 4/N , The

auxiliary parameters X.. must then be set equal to +1 and it is at this

stage that some ambiguity can enter the problem. The general procedure

should be to define the true amplitude as a linear combination of the

possible limits X.. -» 1 , i. e . f

(4.5)

where each v.. takes the values +1 and -1 . The coefficients
N 1J

a are to be chosen consistently with unitarity but are otherwise

arbitrary. Substituting the representation (4. 4) into (4. 5) one obtains

the form

J
( " l i p 1

(4.6)
N

where a (zlr>t * • ') denotes an entire function defined by the sum

< i w l * z ) . (4.7)
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It is necessary to investigate in what way this "ambiguity function" (which

resembles the signature ambiguity in Regge theory) is constrained by the

requirements of unitarity.

The unitarity problem is of course an extremely intricate one and

so we shall confine the discussion to a conjecture about normal thresholds.

To this end let the N vertices be divided into two sets , 1 ,1, . . . M and

l ' , 2 ' , . . . , M ' (M+M1 = N) . If the amplitude D(p - - -p • z..) , con-

sidered as a function of the variable (p, + . . . + p,_f" ~ (pi • + . • . + P,--.)^
I M I1 M'

has a branch point at

(P1 + . . . + P M ) 2 = m
2( Z / n . ) 2 (4-8)

i l

and if the discontinuity across the associated cut is given by the integral

Y

(4.9)

where the variable q.., denotes the four-momentum carried from vertex

i in the first set to vertex j 1 in the second, we would have a situation for

super-graphs similar to the Landau-Cutkosky discontinuity formulae for

normal Feynman graphs. The plausibility of (4, 9) can be seen when we

consider that the discontinuity (4. 9) is a regular function of the z.. ( which

vanishes when the real part of H z . . , is taken sufficiently large. This

follows from the properties, established in Sec. II, of the super-propagator

D(q ,z) .

If the expression (4. 9) for the discontinuity of D(p • • -p ; z..) is

used in conjunction with the representation (4.4) it is possible to give the

discontinuity of F in the form
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• eta , . . r
me V L R . - - . K I *, > • ; ) - T T

lL

(4.10)

The appearance of this formula can be simplified considerably by translating

to the right the contours z.., corresponding to particles exchanged between

the two sets. In the course of this translation simple poles due to the zeros

of sinTZ,,, will be crossed and their residues must be collected. Ultimately,

when the contours have been pushed far enough, the contribution of these

contours to the discontinuity will vanish. The discontinuity is thereby ex-
2

pressed - for given ta + . . . +PM) ~ by the residues of the finite set of

poles at z..f = n..( which have been crossed. The result is

F - X|T(^B^.))
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F
1X,

(4.11)
2

where $2 (q ) denotes the n-particle phase volume.

A similar factorization of the discontinuity into the products of

lower-order amplitudes will be obtained for the true amplitude (4. 6) pro-
N

vided the entire function a factorizes according to

lim a (z r - : ) a a (z .) a (z ,.,)(-) '->' (4.12)

2
(For the two-point function discussed in Secs.J and III^ a (z) = cosirz +

N
z .) One possible form for general a which satisfies (4.12) is

a (z..) = Yf a (z..) - though this may not be the most general one.

This is a strong result and would imply that there is just one arbitrary

constant b in the whole theory. A result similar to this but not as strong

has been claimed by Efimoy who shows on the basis of,unitarity that in his
21)

recent formulation of the theory, there is just one arbitrary function

b(s) associated with super-propagators.

Another method of attack on the unitarity problem which may give

more insight is to eliminate the loop momenta from (4. 3) in favour of a

set of Feynraan parameters. As will be seen below,this method has the

advantage of making a sharper separation between the factors which depend

on the details of the interaction and the kinematical factors which are

common to all interactions. In fact the momentum space amplitude in

N-th order can be expressed in the form
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(4.13)

where <C (a) and D(a, p) are functions which are completely determined by

the structure of the skeleton graph which, for these considerations will

always be taken as the set of N vertices pat&wise connected by —N(N-l)

lines. The functions CC and D are those defined, for example, in

Ref. 22 with the stipulation that zero-mass bare propagators be used in the

definition. The function IF (a1o Jcontains the dynamical inform-

ation and also the ambiguities. It will be defined in the following.

The derivation of the integral representation (4. 13) proceeds in the
2

following way. Firstly, since the super-propagator D(q , z) is analytic
2 2 2

in the q half plane Re q < Re (mz) and bounded there by a power,it can
be expressed as a Laplace transform,

D(q2 i 2

daDfo.zJe0*1 , Req2<Re(mz)2 . (4.14)
The new amplitude D , the a-representative of the super-propagator, is

obtained by inverting this integral. For a > 0 ,

2ni

< Re (mz)

2
dq2 e~aq disc D(q2, z) (4.15)
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where the latter form is obtained by collapsing the contour onto the cut
2 2

which extends from (mz) to +00 in the q -plane. The fixed poles at

z = 2, 3, 4, . . . contained in D(q^, z) are absent from its discontinuity and

therefore also from the new amplitude D . It is clear that D , con-

sidered as a function of complex a , is analytic in the half-plane Re a > 0 .

In general there is a singularity at or a 0 where

D(a,z) ~ ~ ^ - } , o->0 . (4.16)

For |or|-*. oo , |argor| < ^2 one finds

D(or, z) ~ e v ' , Rez > 0 (4.17)

provided m > 0 , For the zero-mass case

r- cr1 Z (4.18)

exactly.

The Laplace representation (4.14) is easily generalized to higher

forms like (4. 3). One can do this formally by substituting an integral

like (4.14) for each factor in (4. 3) and then exchanging the loop integrals

with the a-integrals. One obtains

(4.19)

This exchanging of the integrals can of course be justified only in the

Symanzik region of the external momenta and only after a Wick rotation
2

has been applied so as to make all the loop integrals Euclidean, <l^4 0 •

Under these circumstances the loop integrals in (4.19) can be performed

explicitly to give
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i It fak) e — (Lf^J t«{> [ , . r, 1 (4.20)

where <L(a) denotes a homogeneous polynomial of degree I while D(a, p)

is linear in the invariants p.p. and homogeneous of degree J? +1 in a o, - -•
p i ] 1 ^

The degree * is equal to the number of loops in the skeleton graph which
in this case is given by I = (l/2)(N-l)(N-2) .

To compute an amplitude one must multiply (4.19) by the appropriate

vertex factors and integrate over the z.. , i.e.,

I

CO

(4.21)

where the new amplitude IF is defined by

- fir (ii'i

I)

(4.22)
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There is no need to leave (4. 22) in the form of a contour integral. One

could collapse all of the z-contours onto the positive axes and collect the

residues of the poles there. The resulting sum, which represents the

amplitude within some hyper circle of convergence, is given by

7)
y * (4.23)

For the class of theories considered in this paper the series (4. 23) con-

verges for sufficiently large J a \ and defines an analytic function of the

Feynman parameters. In general,this function has singularities .some of

which move onto the positive real axes when A..-* +1 . This phenomenon

necessitates a distortion of the ar-contours in the integral (4. 9). In order

to define a sensible momentum space amplitude it will be necessary to take

an average of the limits -A.. -> exp(iir v..) with v.. - ±1 exactly as was

done above.

To illustrate this, consider once more the second-order vacuum

graphs corresponding to the interaction

v =Gf%!n

in the zero-mass approximation. For this case (4.11) reads

Corresponding to the definitions adopted in Sec. III,one can define the "true"

amplitude by the limit
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(ot-pJJT*

where P. V. ( j denotes the principal value and b is real . The

momentum space amplitude which corresponds to this is given by (4.13)

with (C(a) = 1 and JD(a,p) = ap ,

* 23)
where E (z) denotes the exponential integral function cut from 0 to

to 2 2 2 3
- oa . The term containing E (-f p ) behaves asymptotically like (1/p )

I 21
provided | arg p | > 0 . The term containing b
of p , dominates the asymptotic behaviour if | arg (p )] ^ Ttf2

, an entire function

)] ^ This

may be a good reason for taking b = 0 .

In general the result of this averaging of limits will be an integral

like (4.13) with IF given by

(4. 24)

a limit which must be interpreted in the sense of generalized functions.
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That is, F{or) will have prescribed singularities such as P. V. (a-a )

or 6{a-arn) on the integration contours.

Before discussing the unitarity problem it will be useful to have yet

another representation at one's disposal. In the power series (4.23) one

can substitute for the a-representative of the super-propagator the form

oo

D(a,n) = \ duT B{vC - (nm) l e

2 °
where U (VL ) denotes the n-particle phase volume. One obtains in this

n 2
way, after making an interchange of the K-. .-integrals with the n.. sums.

(4.25)

where the spectral function c is given by the finite sum

TT

(4.26)

It must be emphasised, however, that the spectral integral (4. 25) converges

only for sufficiently large a,, where it defines an analytic function. If

the a's are decreased until a singularity of the function IF is reached

then (4. 25) will of course diverge. This happens for the class of theories

considered in this paper because the spectral function defined by the sum
2

(4. 26) tends to increase like exp K .

Although the integral representation (4.25) is not valid for the entire

range of the a's it provides a very useful tool for the analysis of singular-

ities in the momentum space amplitudes. This is becausejaccording to the

integral representation (4.13), only the behaviour of W(a) for large a is

relevant to the finite p-space structure. Thus if the a-space integrals

are divided into two pieces 0 < a.. < R and R < a.. < oo then the former

yields an entire function of the momentum variables while the latter yields

the expression
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•

R

(4.27)

The integral over a., contained here approximates to the simple Feynman

amplitude corresponding to a diagram with N vertices joined pair-wise by
2

lines which correspond to the propagation of bare particles with mass K. . .

It certainly has all the usual singularity structure that is proved for per-

turbation amplitudes. Since the amplitude (4. 27) is just a summation of

these simple processes weighted by a spectral function which is itself given

by a sum of simple phase-space integrals, it seems at least plausible that

the requirements of unitarity are met.

It must be remarked, however, that the formal interchange of K.L

and a-integrations employed in arriving at the result (4. 27) is not usually

:u
.2

2
permissible. The Ve -integrals as written are divergent. This difficulty
can be met simply by cutting off these integrals at some large mass M

Such a cutoff will not affect the singularity structure in any given range of
2

the external momenta if M is taken sufficiently large. One of course
2

takes the limit M -^ oo in the end.
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FIGURE CAPTIONS

Fig. 1

A four-point super-graph. Thick lines are super-lines each of which

represents the function A .
F

Fig. 2

A super-line stands for the collection of graphs.

Fig. 3 A contribution to the s-wave scattering amplitude,

F(s) ~ exp f(const)s] , s > 0 .

Fig. 4 A contribution to the electromagnetic form factors

F(t) ~ 1/t3 , t < 0 .

/ 2The structure of the super-propagator in the complex VP plane.

A >
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