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INFINITIES OF NON-LINEAR AND VECTOR MESON LACRANGIAN THRORIES

ADDENDA

1. It is interesting to remark that if the chiral SU(2) x SU(2)
theory set out in Seo, 5 is regarded as a theory of the pion triplet
then one finds upon introducing the electromagnetic interaction by the
conventional recipe dy - QM -ie 4, , that the resulting inter-
action Lagrangian is of order M ,for example, for the Weinberg
paremetrization, . This would mean that the +t. m°

mags difference is finite., A caloulation is under way to compute this

number.,

2. Subsequent to the writing of the paper a number of related

vapers bave come to our noitice., These include

(A) G.V, Efimov I Kiev preprint ITF 68-52
II Kiev preprint ITF 68-54
111 Kiev preprint ITF 68-55,

(Some of the material of I and II has been publighed in Englishi
G,V., Efimov, Commun, Math, Phys., 7, 138 (1968),
0.V, Efimov, Commun, Math, Phys. 5, 42 (1967) = the rest is in Russian,)

These papers deal with, emong other matters, the problems of
causality and unitarity that arise with non=polynomial interactions,
Efimov discusses the connection of such interactions with quasilocal
Lagrangians for which he has found a set of rules for evaluating the
perturbation series in a manner compatible with the ugual unitarity,
relativistic invariance and anslyticity requirements., If this programme
has been validly oarried through "this is a remarksble result, deserving
of careful study to be sure that no hidden troubles have been overlooked",®

® 4,3, Wightman, Proceedings of 14th International Conference on High-
Energy Physios, Vienna,1968.



(B) H.M, Fried, Diffioculties with nomiinear (e.g. chiral)
dynamios, MNuovo Cimento 524, 1333 (1967);

H,M, Fried, Correlation between itranscendental and poly-
nomial Lagrangians, Phys, Rev, 174, 1725 (1968),

We should like to acknowledge that Fried was the first to con=
gider using E=F methods for the chiral Lagrangians slthough he did this
in s qualitative way only by ignoring the problems of treasting derivat-
ives in the interaction,

The diffioulty in the E-F method oconsidered by Fried concerns,
in the simplest instance, the possible existence of & singularity of the
vacuum matrix element < T(Lint (x) Lyt (y))) for spacelike (x=y).
Such a singularity would upset the unitarity and causality of the theory.
However, it seems %o us that this problem has been dealt with in a con-
vincing way by Efimov (JETP 17, 1417 (1963)) where he shows that this
metrix element considered as a funoction of the causal propagator, A(x=y),
must have an essmential singularity at & = 0, Such functione do not
guffer from the Fried objection, In fact, the essential singularity at
A = Ol is a basic feature of the amplitudes calculated by the E=F pro-
cedure and distinguishes them from amplitudes obtained by conventional

perturbation methods.

3 We have found that in the treatment of the massive Yang=-Mills
the'ory, integrations over the auxiliary variables wu, and v, do not
give the behaviour f_;(uMz uniformly for all matrix elements; the
behaviour of ¢ appears to vary in a complicated manner with the number
of external A lines, To make the normality of the theory explicit a
further change of variables appears to be necessary. This we shall
discuss in detail in a iater note dealing also with weak interactions,
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ABSTRACT

The unitarity and causality preserving technique for summing
perturbation contributions introduced by Efimov and Fradkin is extended
and applied to non-linear (chiral) type Lagrangian theories and also to
theories of massive Yang-Mills and neutral pseudovector mesons. It
is shown that the only likely infinities in these theories are those
associated with self-mass and self-charge. The same conclusions
appear to hold for weak interactions mediated by intermediate bosons,
Crucial to the treatment of vector meson theories is the use of (purely

self-interacting) unitarity~preserving Stlickelberg-like auxiliary fields,
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INFINITIES OF NON-LINEAR AND VECTOR MESON LAGRANGIAN
THEORIES

1. INTRODUCTION

(a) One of the significant recent advances in particle theory has
been the formulation of chifally invariant Lagrangian theoriesl).
These theories have so far been used with reasonable success for
predicting low-energy (soft meson) amplitudes in the following way:
the interaction Lagrangian - an exponential or rational function of the
spin zero meson fields d:i - is expanded as an infinite power series in

2)

(61 and then used to evaluate tree diagram contributions to the ampli=-
tudes, Clearly at the next level of sophistication one is interested in

the closed loop contributions at which stage two related problems arise.

(i) Since the Lagrangian itself is expressed as an infinite
power series, ;fint = ; a_ gn an (aqS)z , the number of

perturbation diagrams in each order n increases (typically)

rerturbation

as fast or faster than n' . On any reasonable estimaite the,(

expansion must be a divergent series, For respectable

theories like quantum electrodynamies, with Lagrangians

which are polynomial in field variables, one has always

3)

suspected that the perturbation expansion provides an

2
asymptotic series in e /i‘ic ; here, with Lagrangians which

are themselves infinite series, this behaviour appears a

virtual certainty.

(ii) Each of the terms in the expansion of the Lagrangian
(terms like qbn,(agb)z : n21) represents a non-renormalizabie
interaction in the conventional sense. The ultraviolet
infinities of the perturbation expansion therefore get progress-
ively more virulent. On the face of it this is rather sur-
prising, since it is well known that every non-linear theory
can be reformulated as a theory of linear group represent-

4)

ations ' with polynomial Lagrangians together with a certain
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number of constraints on the fields t{)l . Before the im-
position of the constraint the theories are renormalizable;
if any non-renormalizability occurs, it must arise through

the imposition of the constraint,

In this paper we argue that both difficulties (i) and (ii) stem
from the same circumstance, namely the expansion of the Lagrangian
"in a power series of field variables, and that a summation 5), or even
a partial summation, of the divergeni perturbation series is likely at

6)

the same time to reduce the problem of ultravieclet infinities

(B) A basic and much neglected advance was made towards the
(partial) summation of perturbation series arising from rational and
exponential Lagrangians in a series of pabers by Efimov and Fradkin R
during 1963, Like all summation methods for divergent series the
problem of uniqueness of the sum remains unresolved in their technique
too, Efimov however has shown that besides satisfying the usual
analyticity requirements, the Efimov-Fradkin (E-F) summation method

meets the demand of consistency with Landau-Cutkosky unitarity at

least for the self~energy and vertex functions, In this paper we wish
io apply the E~-F method for summing the perturbation series of non-
linear Lagrangians of the chiral variety and for the related problem of
theories with gauge vector mesons, We wish to show that the infinities
in such theories are no worse after summation than those encountered
in conventionally renormalizable theories, Central to our discussion
is the result which states that the degree of ultraviolet infinity of E-F
sums depends on the growth of iint(ti)) as ¢ = o for non-linear
theories just as for usual linear theories, To be more specific, the
result (extended below to include derivative couplings so essential in

non-linear chiral Lagrangians) can be stated as follows:

(i) Assign to each scalar field ¢(x) (with the propagator
-2 2
< T{d}(x) ¢(0)1> = Alx) » x °© as X -+0) the "singularity"
el
behaviour ¢(x) = 1/ ,/xz ~ 1/x as x - 0 or equivalently

¢NM with M- o0 ,




(ii) Likewise assign the behaviours

2 2
dd(x) » 1/x or 3¢ A~ M
H x -0 K Moo
3/2 3/2 1,
P(x) ~ 1/x or ¥  M/7; y=spinz field
x>0 M->od
‘ 2 2 . .
U (x}) o 1/x or U A~ M ; U=spinl field .
H x —0 H IM—» o0

A theory is expected to be renormalizable, with only a few

4

types of integrals that are ultraviolet infinite, if ‘imt ~ M

Mo

This criterion applies equally to integrals in conventional polynomial

Lagrangians like iint =g ¢4 or g g-bvlblqﬁ , as well as to E~F sums
in theories with Lagrangians like g ¢2(3¢)2/(1 +¢2). We shall call
such theories normal. Theories like Ofi_nt =g ¢3 or g(3¢)2/(1+¢2)
which behave like M3 or M2 or lower ( ‘fintNMn : n < 4) will be

called supernormal, = All theories which behave worse than ¢4 , l.e.,

for which sfintN M?, n> 4, will be called abnormal, For super-
normal theories there is the attractive possibility that when n< 2 all

integrals including those for self-mass and self~charge are finite,

(C) In this paper we shall consider in detail the problem of in-

finities in two types of Lagrangian theories,

(i) Non-linear Lagrangians of the chiral type which we

show 'are normal but not supernormal,

(ii) Vector meson Lagrangians, particularly the massive
Yang-Mills theory., It is well known that the interaction of
the spin zero component of the vector field can be shown to

8)

be equivalent ' to an exponential type of interaction in a

Sti ckelberg formulation of the theory, By adopting a variant
of the Stiickelberg form studied recenily by Veltman and
Ghose 9) and by using equivalence theorems 8) we prove that

theories of neutral pseudovector mesons interacting with
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nucleons and of massive Yang-Mills fields are indeed normal

in the E-F sense with only a few types of integrals in the

10)

theories which are possibly infinite .

(D) The plan of the paper is as follows: In Sec, 2 we give an out-

.lin'e of the E-F method which has two ingredients, (i) Hori's exponential

11)

of Wick's normal ordering theorem and (ii) the E-F

K

representation
integral representation of Hori's exponential operator, The power
counting rules for estimating over-all ultraviolet infinities of E-F sums
is given in Sec.3, We consider derivative couplings in Sec. 4 and
formulate the rﬁles_ for writing E-F sums in such a manner that the
ultraviolet power counting estimate can also be stated here, Sec.5
contains the application of these results to the non-linear (chiralltype)
Lagrangians in'an SU(2) ® SU(2) symmetric theory. Sinceequivalence
theorems, which state that on-mass-shell S-matrix elements are un-
altered by contact transformations in field space, play such a critical

12)

role , we devote Sec. 6 to a non-rigorous discussion of the circum-
stances in which such transformations are permissible. Finally in
Secs, 7 and 8 we study vector meson interactions and their ultraviolet
infinities, both for a neutral pseudovector theory and -for the Yang-

Mills case,
(in preparation)

The companion paper by Koller)\is concerned with explicit
computations of E~-F sums for derivative coupling Lagrangians and the
techniques needed for their evaluation, In a subsequent paper we shall
consider weak interaction Lagrangians to show that the methods of this
paper carry over to achieve in a straightforward manner a weak inter-

action Lagrangian theory with just the normal infinities.




2. THEORIES WITH NON-DERIVATIVE COUPLINGS

We summarize below the steps needed to arrive at the

7)

the interaction Lagrangian contains no field derivatives. (In Sec.4 we

Efimov-Fradkin (E-F) representation ° of the S-matrix, assuming that

shall extend the techniques to cover situations where derivatives are
encountered.) An illustrative example is presented to demonstirate the

power of the E-F method.

Step 1 Begin with the standard perturbation expansion of the S-matrix
N

1
ET_. , where

(N) . N 4 4 _
sN - g fd ... a2 TL{o@ )]0 L)l ()
and we are supposing in this section that

L =g L{Q’(X)} (2)

int
where © denotes a real scalar field.

The further expansion of the S-matrix into normal Wick

products can be compactly expressed through Hori's functional

ogeratbr 1) as follows,

¥
2

[L{o(z,)]...L{o(z,)]] (3)

42]
a——

where A(xl-le denotes the bare causal propagatof for the scalar field

@ . This formula can be simplified to read
N 2
N)_ N4 4 . ‘
=g fd Zyeos d Zy exp@ Aij _amiBQI )[L{(pﬁ. {q)N]Iil(p T

B AEE)
(4)

Here Py = cpeXt (zk) is the wave function of any external particle which

-G~




may be acting at the point z One may rewrite (4) in a form where

k ° .
these external wave functions are exhibited separately by writing

fdx... tp(xl)...cp(x) ()(xl..--.X) (5)

where the n-point function in the N-th order equals

5° ()
‘éq}(xl)...dqa(xn) s o)

S(N)(xl,...,xn) =<0

4 m (m,.)

i ng d421"'d N Z 5 l(x'zl)""s mN(""ZN) Sml....mN(A)
1
(6)
with
™y

§ (x-zl) = 6('xr-ia -zl) S(X1 --zl)...n!i(xi -zl), ete,, (7)

1 2 m

and 1

| Sml...mN(A) =exp{ Z ij . aq,aq, :Kapl) ( ) ]:L(q)l).-.L(qJN)]

i.

(8)

The vacuum graphs are given in their entirety by

z fd 2peendzg Sp0 (A) (9)

2

N
1 3
SOO. .o O(A) ) exP(zZ Aij aq,ia(pj> L(Cpl). . .L(q)N) , (10)
ij

while the two-point (self-energy) graphs are completely described by

N
-, lig) S 4 4 ety - .
Sy oy d'zy...d'zy Holx;-2))8(xy-2,)Sy 00 - (&) +

+ é(xl-zz)é(xz—zz)s (A) + ..

020" "

L-Sllo...(A) +... } (11)

.}+

{(lx -2 )8(x,=2,) +8(x, =2,)6(x,~2 )+

F=0

-




with

SN 32
Fig. Ya) q’l
—@-Sllo. .. () = exp z A J acplacp L(qal)...L(cpN)) )
2 9=0, etc,

Fig.A(b) (12)
Step 2. Give a simple integral representation of Hori's exponential
operator by making use of the E-F lemma 7):

2
exp[A ] Flo ¢ )
dpag'

= ;lr-fdzu expE ful 2 uc 5% + u¥e” **-a—:l Flp,9")
op

=%fd2uexp[-|l1|23 F(o+uc, o' +u¥c) (13)
with the parameters ¢ and c¢' constrained to satisfy cc = A , but
otherwise arbitrary, [ They can be chosen to suit one's purpose, Thus

= c‘ = /A would correspond to the most symmetric choice,one we
often make: ¢ = A, ¢' =1 to the most asymmetric choice, In any
event the final result cannot explicitly involve any équare roots of A
and must only depend on the product ce' = A .1 Since the final ex-
pression on the right of (13) involves as integrand the function F
shifted from its value ato , 9’ to @ + uc, o' + u*¢’ we shall call

this the'exponential shift" lemma.

Applying the lemma to the N-th order S-matrix by introducing
complex variables u,, , ¢,. between every two pairs of points ij, one has
1} 1]

the representation

oo GT 3, sk
G ) kil ) | X

17 L{on *) N U |
k | (14)




with

c..c..= A.. (nosummation over ij)
ij i i
and
=y X
uij = uy (15)

(If we make the restriction i# j above, we exclude all graphs in
which A(0) appears thrmfgh a contraction within each L{q)]. This

amounts to assuining that L{q)}. is already normally ordered,)

As an application of the lemma consider all vacuum graphs

of order gN . These are given by:

SOO. "‘ 0('A) = E[(% fdzui:i)exp (—Z,uij |2)L<Z,c1kulk)' .o L@ CN]éc“Nk)

(16)

Likewise the self-energy graphs of order gN are given in terms of

S20...008 7 -g_(#g"ﬁ%]') xp (‘zl‘kajll) L"(% n u.&) L(%CN&KN&)

. (17
and so on, Here 'L’ si}-l’- , L" 2L , ete,
ek 2
90

To see how this works in practice take the model for which

4 2
gL{o) = go /(1 + )i.ztp } . The power of the technique, which explicitly
displays sums of perturbation series to each order in g , is already

2

apparent since all orders in A~ are automatically taken into account by

the E-¥ expressions. Thus to second order in g and all orders in

12 the vacuum contribution equals

/4 %4
2S (x )=' 2 dzu -Iulz c4u4 c 4u 4
€ Spp\ ¥ ¥ 78 |\ Tp © 2 2 2 2 12 24

1+2A"cu 1+X ¢




where cc' = A(xl-xz). Likewise the two relevant self-energy terms

2
to second order in g but all orders in A are:

'4 ¥4

2 _ 2 dzu -Iul2 d2 c4u4 e
g Sy7 8 T © 5. 2 523 1422 2u2F
, c du 1+A7¢cu

[ 1 ¥
gZ S = g2 %dzu e-fuiz d c4u4 d ( c 4u 4
] "9 X
1 ™ cdu 1 +)L2c2u2 c duf 1+?L2c 2u 2

The simplification of these integré.ls rests on the pair of relations,

(24
_ n
i g a%y o " f(lulz) = § S g & £(%)
T nm
0

(s
2
2 f(|u\L2 i S e 1)
)

(1 +an2)(1 +Bu’ 1-age’

N =

and derivatives thereof. Thus we find,as expected, that the integrals
only involve the product cc' =A and not the parameters ¢ and c!

separately, Explicitly,

2 2 (" A4:§4e'§
= € Sgp= 8 \® T 432 | (18)
) 1-2%A%¢

ig.2 o

' oQ
2 2 2.2 4 12 10 8
-_@—33 8 5yp% 8 XdEAEAe{ 422 z 22" 4223]
Fig.3(a) . 1-0AAE (1-x AZE (1-2°88) |

o0

s, - 3.3 -8 8 4 4 1
_Fia_g(b,gsllg SdgAEe { * 133232 " '4223J

1-2%%2 1 a%%%H%  (1-2%A%Y
0 :
(18)
In particular,when we set A = 0 we recover the (p4 perturb-

ation theory results, viz:

4 3
= ! = = = 1
S00 4 A » 820 502 0 . S11 4(ana

We shall return to the ultraviolet properties of these integrals after we

have discussed the question of infinities,

-10-




3, ULTRAVIOLET INFINITIES OF THE E-F SUMS

Physically we are only concerned with S-matrix elements in

13}

momenium sSpace i.e,, the Fourier transforms

Ste) = T { @ ™) stax, ) (20)
On account of the causal character of the propagators A(x) the task
of defining the x-space contours of integration in integrals like (20) is

. 14
not trivial, As is well known ), the light cone singularity of A(x)

is given by the following expression:

2
sy 2900 5 [i?)
2/x

+m[°’iz~ N, (s F)+—}="=;’ K, (u/-x%)
2/

. 2 \ .
) - L5 - & [ o) - 2 10g G f1x)

X

n

- AriA(x; p)

+ O j\x zllog'le) . (21)

The crucial part of Efimov's work is a method of carrying out the
x-space integrals, with the demonstration that one may define them

so as to preserve the unitarity of the S-matrix in the perturbationsense,
i,e., in the eipansion of S{A) in powers of A , Efimov's procedure

consists in concentrating firstly on the Euclidean or Symanzik region

15) 7)

of the external momenta For this region of p-space it may be shown
that x-space contours of integration can be rotated from the Lorentz

into the Euclidean region of x ., For other regions of p-space Efimov
makes suijtably defined continuations from the Symanzik region, In

this paper we are only concerned with the ultravioclet infinities associated
with integrals (20) so for our purpose it is sufficient to remain in the
Symanzik region - or, to make matters simpler, on its edge where all

external momenta p are zero. Thus we examine the infinities

associated with the Fuclidean x-space integrals (x i < 0)

-11-
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S(0) = S rdix S .

where the A assume real values, A naive power count of the over-

a1116) infinities can be made by considering the appropriate proper
diagrams and retaining the most singular parts of all the propagators
A . Setting the lower cut-off xz = M-2 (M2—> Q) to all x-space in-
tegrations it is evident that we can associate a factor M to each J_A_1
that occurs: and since what in fact determines the infinities is the
powers of L{p :\\;./3), we may easily estimate the over-all infinity to be

expected by setting ¢ = M in L{p} and letting M—>cQ .

Consider therefore an n-point function and follow the Dyson

power counting procedure 17). Suppose that Lf{p = M) behaves as

M’ for large M ., The integrand of SIn (A) in (14) contains
10

the term (putting cij = cji = JAij for simplicity}

1
AT Zmi [L(JEu)]N~M'“+N"

where n denotes the number of external lines and N the order of the
graph (number of "vertices'). The singularity produced at

xz = 0 (M—>x) is compensated by 4(N-1) integrations, 4 integrations
being omitted because the integré.nd is independent of the over-all cenire

of mass co-ordinates, Therefore

_ (d x) S(Q) ~ M

S 4 N-1 -4(N-1)  -n+N, (22)

If the integral is to be regular in the limit M— o0

N{4-v)+h> 4

The theory then will be renormalizable in the conventional sense (normal

or supernormal) if v< 4. In particular (up to possible logarithmic

infinities) if v £ 2 even self-mass and self-charge are superficially

finite,

We return to the example above to see that this naive in-
finity count is sensible. The self-energy contributions (19) to second

order in g (but all orders in A ) read in momentum space,

-12-
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S0 = 26" | syo0000 a®x+ 26" [ 5 a0 P (23)

2
Taking p £ 0 (Euclidean region) the integrals reduce to

| I
uK_ (ur) 2 2

2 2 :
i(p) = 47°¢ Sdr-rsszo( 12 )+37rg

’IM 4x r J-p
o0
MK (ur)
S dr. r2 Jl(r -pz) SH(“—-I—Z——) o
dx’r (24)
M

-1
where we cut off the integrations at r = M in order to estimate the
infinity as xz--—> 0 . Since the ultraviolet behaviour of the integral is

independent of the value of p2 we set this equal to 0 ,

iS(0) = 47 g dr+r ‘S —— |+ 8, , |——m .
_ 20 2 11 2
4x r 4x r
|
pK . (ur) 2
i} 1 1
—5— > 5 log Gur) + —5
47 r 8r 47 pr

As r—=0 ,

so the lethal infinities at the lower limit are obtained, using (19), as

lim 41rzg2 jv dree o [520( ; 2) +SM< ; 2)}
M=o 4r°r 4r°r

ifm
2 2 - 3 - =12 8 3g2
=1lim 4r g | dr.r = 24 2|V 33 legM , (25)
M>0 A" 167 r A A

M
i.e., we meet a logarithmic infinity at most, A naive power count (up
to these logarithms) would have agreed with this result since when we

PN
set A= M —

4 v L 2 s (P . 12
Sd x[SzO(A)+Sll(A)] 1 [SZO(M)+SII(M = - 5 - {26)

M A
An interesting feature of the result is the pole 1/)L2 of the 'leading
2 . . . s .
infinity' in the A" -plane, This is not entirely surprising in view of
the fact that for A = 0 we must necessarily recover the conventional

quadratic perturbation infinity.
-13-




4, THEORIES WITH DERIVATIVE COUPLINGS

In this section we extend the summation technigue to cases .

where iint contains derivatives of the ¢ field,

(a7)
imt = gL, 9,9) . 7
It is common knowledge that for such situations the Hamiltonian con-
tains surface dependent terms and formula (1) for the S=matrix holds
only if suitable modifications are made to the definition of time-order-

18)

ing products of BMqJ . More specifically, using a theorem first
proved by Matthews for Lagrangians involving one time derivative
and later extended by Dyson to Lagrangians with two time derivatives,
the S~matrix is covariantly defined if we invert the érder of different-
iation and the time-ordering operation in vacuum expectation values of

the following variety:

<o, ) 0t} > = 8 (x,-x,) =3, Alx;=x,)

1 1

<T*{cpu (xl) ®, (xzﬂ >z A (xl-xz) = 8“ % A(xl-xz)

Hivg * 1732
where (P.U = BIJ % . Given then the modified time-ordering operation

T * we have

s = g {ahap ey T oty 0, Lot i)
{28)

The Wick reduction can be carried through by extending Hori's ex-

ponential operator to include differentiation with respect to the derived

fields (pu as follows:

M _ N( 4 4 282
S =g d z1.”d Zy exp(a'cg A ag) qu)l’wul}"'L{q’N’qJ#N} ¢ ext
=

‘where

-14-
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2l

D>
X

1l
N—-
™1
a«'lw
D>
&l

L4 ~ ~{
’ * o
_ - Z -2,
=2 Z Az 1" g 3¢, " A#L(Z ) ay)’wago
i ]
AL ez —— 4n )
v VLT ] - . ]V Z Z
i bs&,asg,j [ acpma?vj
(30}

In order to give a simple integral representation of this
generalized opera+or we must be prepared to introduce auxiliary
vector variables, To see how this is achieved it is enough to conmder
a pair of points since the extension to the whole series of points is

easily performed by the method outlined in Sec,2, Since

Au(x) = Zx“ ;;— A(x Y= 2x A(x }
A (x)= -4x x I.\”(xz) - 2g A'(xz) G
MY H Vv MY

we need to introduce at most one auxiliary vector and four auxiliary

scalar complex integrations, Showing this in detail,

e"P[ A()acy] F(2;59")

i 2 z 2]
d . P 3 F( e :)2
- e, AN 2 - ax AL, e, 9,9,
i B PE P T
2 d%
‘f-xﬁ-xv A B ZA'
29,99, 34,09,
= -
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1 8 2 2 2 2 2 P 3
= -,:(_8: gd c(f")d cd bld bzdaexp[-lal +aa-é?+aa* 3?,]

exP['lbzlz‘*‘szz 2x 3’ +Bb2 pr]

exp[lb[ +8,b 135? B'b 2x %]
P

exp[] ] +Y1c2‘u@-—+ ch 2xva—q;;]

2 2
exp [-lca\c)\l + \{2 M ag \‘2 v ay; ] F(q),q)J\; cP's(Pk)

1 (8 2 2 3 2 2 2
- 8Sdc dcd bld bya exp Ial +lbll +]b2| +lc} +]c)\c)\|]

] (n)
F(¢+aa+31b1 . q)l-f-?.x B b + th'ylc'+ VoCy ) 32)
o'+ ata* + B'b* o+ ZX)LB br + le'y'lc* Y5

where

1t
aa' = A, ’}’1'}"1 = - A

! ]
= - = = 1 =
BoBoy= BB = -1y = A

(33)

The result cannot depend on the individual « ,8,... but only on the
producis aa' = A , etc, FPor the remainder of this discussion we

choose to make the quasisymmetric split

a =a’=Bl=B;= Ja', Y =Y =V A
V= VY= [-2A" and B, = -B, = & VK. (34)

Now because in the limit xz -0 ,
', 4 2
Ad~1/xt and A 1/x° (35)

one can see that,consistently for all integrations over the shifted

functional, we can ascribe the "singularity factors"

o ~M and q)u ~ M2 (36)

owing to the terms A and (xA'/m + x./A”) occurring respectively

-1g-
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in the shifted arguments. Perhaps the clearest way to appreciate

this conclusion is to réalize that most of the auxiliary integrations

are redundant and that for the simple case treated above only one

auxiliary vector and one auxiliary scalar variable suffice to make the

"exponential shift" defined in Sec,2, Thus,write

) 2
| 5 3 ) 3 dys1 B r_ 9 2
exp [a—“ ] 5&’_] = exp [("m T 2 aqa‘)(cxv Boyy O Bw') * el oag ]

(37)
with .
] 1 = = ! =
ce! + chc)L A, cm\c)L Au . cuAch A,uv . (38)
-i i T 1
exp[a Q ad] F(NJ?J)
e ~d
1 8 2 2
== S d u(md u exp [|u| +Iu>\u}\|]
' | X
Flop + cu + Cu Uy, Py + c/\Pu'u;qa' + cd® + c};u:,cpj'\‘ + c)wuv) . (39)

Again the result can only depend on the products cc'= A; if we make |
the symmetrical choice ¢ = ¢' for simplicity then we show in the

appendix that in the (Euclidean) limit x 0,
c~ 1/x c ~1/x and ¢ ~1/x2
S u

The association (36) of the ultraviolet factors ¢~ M and q)“ ~ M

then hecomes more obvious,
(in preparatiomn)

The accompanying paper by Koller|describes how, in a
particular model, vector integrations can be performed, based on

jdentities like

»*
1 8 X -u 1
— du, ,uu, e M MH==g
7r4 S (’,\) K A .4 KX
L rdBu u uy f{u u*)‘O etc
A VYRl T :
S
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Here we shall only be concerned with a superficial count of the over-all

infinities to be expected in a given S~matrix element,

The procedure is the same as before. Consider a graph with

n,, external scalar and n_, external vector (derived scalar) lines which

0 1
contributes to the n-point function ng, + n, =n. Thus
"
StOtal(Xllll 'lxn) = Z a "'a S# (Xll."lxn)'- (40)
n, =0 ! JlJ‘nl 1"""n1

The degree of the over-all infinity (up to logarithms) derives from the
integral

n n -n -2n Ny - 4(N-1)

4 - aN"0 v
S(d x)N 1(55) (L> 1[I_J(J_S)II\I ~ M OM ! M
(41)

where we ascribe ¢~ M, cpu NMZ and assume L ~M’ . Such a graph
therefore behaves in the limit M- « as

M(v-—4)N+4-n-n1 : n,=90,1, ..., n.

Thus a theory is normal if 4 - v > 0 (supernormal if 4 > v),

5. NON-LINEAR REALIZATIONS OF SU(2) ® SU(2)

The simplest practical applications of our conclusions about
derivative couplings are to be found in the non-linear realizations of
chiral groups. We shall study the case of SU(2) ® SU(2) symmetry
for definiteness as the features which emerge will apply to more

complicated cases as well,

Describe the mesons of the (-;— s %) representation by the
field matrix,
/S=a+iz-gﬂ$2) (42)

where the non-linearity is introduced by imposing the constraint

~-18-




jxf =1 or 0'2 +22 Az(cpz) =1 (43}

The choice of function A ((pz) corresponds to different parametrizations
of the non-linear "co-ordinates' (¢ and @ are "co-ordinates' of the

differential manifold (43)) and with each such choice of A the cor-
19)

responding interpolating field ¢ is different . {However, we shall

use the same symbol in every case,)

2 .
The unique 0) SU(2) ® SU(2) invariant Lagrangian which

contains only two derivatives of the fields is

=1 -2 _1 -2 |
=2 2% Trl0,8)6,48" = 38750 el ¢ &) (44)

where we write

(%u - -4 aﬂ£= g: . (45)

If we substitute for 4 the expression (42) and eliminate ¢ by means

of the constraint equation {43) then we find

1
?IJ =T [A(crc'ilg -9 apcr +A2>< %g) + 2Acg {9 8“95)]
98 9 -
-—-A'r-[ 1-2%9% 8 ¢+~ A2 1o Ay v Ap X8 g (46)
. 1-A%9
and
1 -2 1
int~3 & OTr [ﬁ’u‘j@} -3 6,9 G
1..-2 2
=510 A% - 1] B9)- @) +
(9 8,9)(@- 9,0)
. 2 za” == 12 e am %7 (47)
20 ({1 -A9') |
where A = cIA/dq)2 . The ensuing equations of motion can be con-
veniently remembered in the Sugawara form 21),
= - + i ) -
a“gp 0, a“}v q)% 1[%,%1 0. (48)
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We may now inquire about the "ultraviolet behaviour' of the

22}

interaction Lagrangian with a view to possible renormalizability ',

Begin by supposing that for large ¢ ~ M

2 k _k 2+ 2k Z
M )9 ~M . ocn~fl - M I,
2 2k _ =2
+ : k+
ﬁp”Mk 2[(1_M2+2k)¢+ M (1vrz++211311/)2 .M 1] (49)
(1-M )
and
6
2k 4 M 4k 2k~ 2
o‘fintN(M Sy M+ o (M M) (50)
1-M
+ 2k +
Hence for k> 0 , g' ~1\/'I2k 3 and cf ~ M k+d ’
u int
2k +3 4
-1 <k« ~ ~
for -1 <k<0 , 9;; M and c‘fint M

k+2 :
and for k<-1 , 3/~M and cf ~M4 .
1 int

This shows that non-~linear realizations of chiral groups,for the

preferred meson fields, yield normal (k < 0) or seemingly abnormal

(k > 0) Lagrangians, but noi supernormal ones, The reason for this

; 2k+ 4
is not far to seek, For k<0 , ffa- M so that subtracting off

2 4
cff = (Buq)) ~ M we meet a normal situation,

The question now poses itself: since we can pass from one

set of co-ordinates ¢ to another @ by a point transformation
£ . 20 = = a2
D =o+ircgMe)=0+iT- @ Ao ) {51)

what is the significance of the abnormal parametrizations (k> 0) ?

In the next section we argue that the invariance of the total Lagrangian
(gzu gil) should imply that the S-matrix elements on the mass shell do
not differ from one parametrization fo the next, so that the theory is
normal irrespective of the possibility k> 0 , We list below some

special choices of parametrization,

-20-
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(i) Gasiorowicz~Geffen co-ordinates

A(q)2)=k , a constant (i.e,, k= 0)
= Ar*[cdop-00c+Ap X 3 o]
§u = rrlodg-gaaragxag

with o= (1 - hchz) . Also,

2
2I. - A (?. ap‘cg)(g- Bﬂqn) - M4 .
int 7 32
(1-279")
(ii) Schwinger co-ordinates

2 -
AlpT) = 7\(1+lch2) ¥, X constant (i.e., k = =1) .

Thus o= (i+x%7) 2,

1+ lchz
and
2 (p- 2 o)op- 93 @)
A [ BUCKRR: 4
2 = e (@ 9) (@ 9)+ . .
l5l§.l‘11’. 1+12Cp2 [T 1+ lzq)z
(1ii) Weinberg co-ordinates

A(tpz) = 27L(1+12q:2}-1 : )\ constant (i.e., k = -2)

o= (1 - Achz)(l + leq)z)-l giving

L __2\7 [ 322 2 2 2 i

g/u > 32 (1 Aq))%g+2)t$}<8“‘2+2h (1+lq;);q3(lc£ Butg)]
(1+X9") |

and ,
= . -t il mt

-21-
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(iv) Harmonic co-ordinates

A set of co-ordinates which may prove useful in the vector

problem is defined by the condition

A V1-g2a2=2?

where A is a constant. In these co-ordinates, which we shall call

harmonic, the current operator is given by

In this form the linear term %q; appears multiplied by a constant rather

than by a functionof o .,
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6. FIELD TRANSFORMATIONS

In the previous section,as in the next,we are assuming the
correctness of the basic equivalence theorem which states that if a
local point transforimation of fields is made such that the physical
spectrum associated with these fields is unaltered - and therefore
also the Hilbert spaces of in-and out states remains the same - then
the on-mass-shell (physical) S-matrix elements, computed using
either the original or the transformed Lagrangians, are identical.

23)

and Salam, has been proved to varying degrees of restrictiveness on

This theorem first stated by Chisholm, Kamefuchi, O'Raifeartaigh

field transformations and rigour by the abovementioned authors and
by Borchers., It has latterly been extended 24) by Coleman, Wess and
Zumino who claim to sharpen the result to apply even to diagrams with

equal numbers of closed loops. The weak point when one comes to

applying the theorem in practical cases is the lack of criteria whereby

one may judge what transformations leave unchanged the in and out
limits of the interpolating fields, For practical purposes the only
procedure known to us is the adiabatic switching on and off of charges;

this implies that a point transformation is allowed if

(i) In the limit g -» 0 for a transformation like

— -2
q)(x)%al qj(x) + azq) (x) + e e 2
the a,»0 , i>1 , a, —constant 70

(au1 # 1 implies a wave-function renormalization).

(ii) No derivatives are involved in the transformation,
otherwise the particle spectra associated with the two sets

of fields are likely to differ, For example if we let

— -2 9
$=¢ +u 32¢ , with 82¢.=0,

2.2 2, -
the transformed equation 8 (8 +u )¢ =0 leads toa

different spe‘ctrum for 3_ . (In certain circumstances

-2




first-order derivatives may be allowed as we shall see for

the case of transformations involving vector mesons.)

(iii) The only known procedure for computing S-matrix
elements for given Lagrangians is essentially the Dyson
perturbation procedure which relies on identifying that part
of the Lagrangian which depends bilinearly on field variables
as Sff ~ In the sequel,when making point transformations

we shall separate out all bilinear terms; thus a term like

2
2 ¢) : |
i = & will contribute (qub)z to Ng and

1+ ¢Z £
!2 T j
3 8,9 to =S,
1+¢° H
(iv) A consequence of the split mentioned in (iii) is that
2
(3,9)
in our power-counting theorem cf = 5 does not behave
1+¢
supernormaily like MZ (assuming ¢~ M, 3¢ ruMz) but
2
. 2 4
normally like ~—¢——2- (0¢) ~ M , This may mean that our

1+¢
estimates of singularity behaviour are likely to be over-
estimates and that a future formulation of a new computational

procedure may depress our estimates of likely infinities,

(v) ‘Regarding our discussion of non-linear realizations of
chiral lgroups in Sec, 5 it is important to realize that the inter-
polating fields for two different choices of co-ordinates can

be related to each other; thus writing

2. . 2 =2 -2

rX=cr(cp)+1z-9A(q>)=c(¢)+'1z:,-$A(qJ) (51)

one can express ¢ fields in terms of ¢ fields by comparing
~ ~

terms of the power series inthe ¢ , We have assumed that

the adiabatic limits of both ¢ and ¢ are the same so that

the on-mass-~shell S-matrices are equal and so is the

P T T W TR -w.mmanu;-_&_{‘u [T
o T T [T TP




singularity behaviour of S-matrix elements, It is well
known that this result does not apply to the n-point Green's

functions,

7. MASSIVE VECTOR MESON COUPLINGS
25)

it is a well-known fact that the infinities in vector meson
theories stem from the longitudinal components of the vector field pro-

'pagator, viz, the spin zero projection (e‘w) terms of A,uv;

d () e, (p)

= = L
Ayv <T{U,qu} > 2 2 2
P ~u M
where (55)
_ b !Pv ‘ ) P P]-}
dw (p) = guy = 2 e#\) (p) - 2 ]
p t+ie p +ie€

The vector {d} and scalar (e} parts of A may be associated with the

following non-local transverse 26) and longitudinal split of the field U ,
Ux) = d @)U ), U = e () U (x)
M uy v T 737 v :

The transverse field U1 is normal since its propagator is singular
like 1/x2 as x —0 , while the longitudinal field u? is abnormal
with its more singular propagator like 1 /x4 . It is the coupling of
U0 (being essentially a derivative coupling of a spin zero object X

defined by the relation

u° a’u"x‘ with X z 828U )

U

which gives rise to non-renormalizable infinities, To exhibit these
infinities more transparently one can convert this derivative coupling

of X into a non-derivative coupling by a set of well-known and standard

-25-




12) for the

contact transformations obtaining an equivalence theorem
two theories. The transformed (non-derivative) Lagrangians contain
terms which as a rule are exponential br rational functions of X and
which, although they produce iniractable infinities in a straightforward
perturbation approach, are of just the right form for the summation

techniques of Efimov and Fradkin,

Since the fields (I}\ and X = 8-28vUV are non-local, the

equivalence theorems are stated, in practice, not in terms of the split

Uk = Ui + Ug = Ui + B)LX , but in terms of the local Stiickelberg splitzv)

U, = A, +

where A)L and B are five independent local fields, the replacement
of U by A and B in the Lagrangian being made in such a manner
that the Hilbert spaces generated by incoming and outgoing transverse
components of the field A: coincide with the corresponding spaces
generated by U:‘ . There are numerous formulations to achieve this;
we use in this section a particularly elegant one originally introduced
by Schwinger and latterly used by Veltman and Ghose 9). To illustrate
the essential idea we shall first consider neuiral pseudovector meson

theory and then,by making a non-~trivial extension, consider the theory

of self-interacting massive Yang-Mills mesons,

(i) Neutral axial mesons coupling to a matter field

To the conventional Lagrangian ef(tf) of the vector meson
add a Lagrangian cff(B) for a zero mass free particle B of negative
metric

g

1 1 2 1
- 4+ = - -
190Ut 24 Y, -3 (@ B)@ B)-J U + o‘ff (matter) (56)

where U =20U -0 U and J is a (not necessarily conserved)
Hv H v vV H M
matter-current which does not involve U,u ., DBecause U,u and B

are non-interacting, the completeness relation for in and out states

reads
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ju—y
11

L
=
[ anad
=

::l':
-
-
&1}

. v ® LU
s = LIB><(B] (57

[y
Hi

and the S-matrix in the transverse U-sector alone, defined by

S = Z]Ul ><U].fr1 (58)

ouf
is necessarily unitary,
Let us now make the transformation

1 (59)

= =~ 9
U)L Al + " hB B unchanged,

The transformed Lagrangian equals

L. .

1
“

1 1 2 ’
= + = 2 - 8 '
4A Auv z!u_AvAv +u AvavB Jv(Av + vB) +.—.:ff (matter)

(60)

and no longer contains second derivative terms of the B field. The

B field may be looked upon in Schwinger's language as a Lagrange

multiplier "extended operator', From the equations of motion

. 2 i
+ +—=08 B)-=
a.uANU H (AV oV ) JV ‘z
(61)
2
U9 A =0J [
Vv v v v
we recover
?B=0 , 9A =08U or Al =ul . (62)
wouo wom 1 p

Thus I U:‘ >= \A:‘ > and a unitary S-matrix can be written in the equi-

valent form
_ 1 1 P
5= Z ) Aou’c> <Ain (58)
28)

with B states still making no appearance

Consider now the propagators in the new theory. According

to prescription {i}) of Sec, 5, we take for our free lLagrangian
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1 1 2
= - = 3 -
&Pf 4 MVAJJV 5 T AvAv + ,uAv BVB . {63)

Using the well-known ansatz which gives the propagator matrix A in

terms Gsff)-l, we obtain the momentunrspace propagator 29)
A LA A .B
{ALA,> {A.B>
A(p) =
{B,A,> <B,B)
_ —duv(p)A(p,u) ip, Alp, O)/u |
. (64)

-ip, A(p, 0)/u - Alp, 0)

In x-space note that { T(A“,Av) >l T(B,B)>x 1/x2 are normal
3
propagators whereas <T(Au, B)>#~ 1/ux" is abnormal,

The next step is to convert the derivative coupling J“a“_B
into a non-derivative coupling in preparation for applying the
E-F summation technique by an operator gauge transformation,

Taking the concrete case where

3, = igvv, vy and c:ff(matter) = Pliv2, -m)y (65)

BV B/u
transform ¢ =e ¥ . This gives
I . 27 gBl
= iy 9 -+ i A -

v iy, 9 +igy vy A - me ) ¥
1 1 2

- + = >
4Auv Aw 2;1 AvAv + uAvavB . {(66)

The exponential interaction can be treated by E-F methods as it stands,
One can if desired bring it into a rational form by making a further

change of variables (to Weinberg co-ordinates o):

B . n 8B (67)
u 7

-28-
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The fields @ and B possess the same adiabatic limit 9. " Bin
when the coupling parameter g as a function of time t vanishes

for t >+ 00. Intermsof ¢, A and w' the Lagran.gian reads

I.4. 1
int
i‘F-“'IA A}Wi‘;_p. AvAvﬁ-}LA 0 (fi-y/ iya-m)lp'

e et , . -1
ii’nf: l&WA}LY,ung f()“Avav(f( ) ['+(L)]

+zmjﬁ [l+(‘g§)l]_l ;P—'('%*i" sy
. | 8)

In the next section we prove the result that the singularity limit of

relevant fields is given by the estimates

3
A“~M . ./,'.VM/Z - ¢~M2 and auq;~M3 , (69)

i,e,, the fieids A and wl are normal but @ and aqal are abnormal.
The important pomt however is that notw1thstand1ng this abnormality
of @ , the interaction Lagrangian behaves like M and is perfectly
normal, the denominator 1 + (go/u )2 in (68) providing the necessary

damping of infinities,

(ii) Massive Yang-Mills theory

If gy are the three Yang-Mills fields of an SU(2) gauge group,

the Lagrangian of the massive theory can be summarized in the form

g -1 1 2 |
"3 Tr [~ " quU,uv -f-,u Uv Uy] (70)

where Uv is the matrix Uv ‘T and

= © - + i
qu_.Bqu 2,0, iglu,, U1 . (71)

As is well known, when u = 0 the Lagrangian is invariant for the

operator gauge transformations

w2~




- t
0,- A, i o, £ (72)

where /5(([)) is any unitary matrix of the type discussed in Sec, 5
(with the coupling parameter A =bg-) depending on three independent

fields ¢ , i.e.,

~d

Tr{U U ] = Tr[A A ] .
JTT/ T3 By uv
With this background start by considering a theory of three
Yang-Mills fields gu and three spin zero fields 9 such that the U“
interact among themselves and so do the ¢ but Uu and ¢ do not
interact with each other, The Lagrangian is postulated to be
2

Uossptuu ] - s relp Se 4N (73)
- 2P 2 vy ] "

2-’_;1’; = Tp [' l 17
4 uv o uv
2g

The field ¢ enters with a negative metric as in the neutral theory,

Since Up and ¢ do not interact, the corﬁpleteness relation for in and
out states is 1 =1_®W 1, where

U ¢

EONLDYCH I IEDALITS] (74)

and the S-matrix defined in the U-sector by

_ 1 1
s = 2lu ><u | (15)

is perforce unitary. (Recall that U; are the transverse components

of the field UH )

Let us now make a gauge transformation (72) to recast the

Lagrangian in the form

2
_ 1 1.2 M
o =Trl T A, AL T A gvl (76)

iéﬂ’av/gh--;»gfav/ﬁ. (45)

4y
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The original equations of motion

quU =0 , 8 ﬂ'u = 0 (48)

“allow us to deduce that A satisfies the equation

T -
au(/S ad =0 . | | (77)

in

In the adiabatic limit gt ) — 0 when U, - U;“ . A A

2

,g(q)), -1 , "gl' /Sfaﬂj -> Buq)m , We recover the important result that

the transverse components Ai = Ui for in and out states, Crucial

to this derivation is the requirement that no second-order derivatives

or higher be involved in 8u (51- Au /5) . The U-sector S-matrix can
therefore be re-expressed as

s+ Tial seal ) s

out

and states that if there are no ¢ particles initially there will be none

finally,

Separating out the free part from the gauge-transformed

Lagrangian we arrive finally at cj = cff + jint with
= 2
‘Q‘f,t " F'[_ t(apAV” dy An) (GuAy = avAp) + Ji}* A A+ m ALY, ’:F]

e

2= T | -Lig[ALL A T (04A, - 2, AL) +iq* [An.A 1A, A,]

A P\v(%—l)u (}\,-avg)

(78)
As we show later, c;ff gives the ultraviolet characteristics
2 3 |
A“NM s @ ~M and Bucp-vM (as M= o0 ) (79)
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for the free fields, Clearly, in spite of the abnormal growth of the
scalar fields e, "iint in (78) is R:M4 in the E-F sense with the
conventional parametrizations of g(q)) and 3« and the massive

Yang-Mills is normal,

8. ULTRAVIOLET INFINITIES OF VECTOR MESON THEORIES

We give in this section the explicit defails of the infinities
that are encountered in vector meson Lagrangians., As stated before,
the new point that emerges is the abnormal behaviour of the (unphysical)

scalar {ield which couples to the longitudinal vector component,

(i) Neutral vecior mesons

The free Lagrangian used for estimating the ultraviolet
infinities of the E-F sums,

1 1 2
- = + =
g 8.9) 2 A Auv GH AA +tuA 2o

leads naturally to A-9 mixing as the propagator (64) clearly shows.
The time-ordering operation must therefore include A-¢ cross terms
and,since the interaction Lagrangian involves Ai-t ,c'Lq: and o, Horits
exponential operator must contain all combinations of A“ s cp.u and o .

Accordingly this operator reads, for every pair of points,

d § & Dy ( 9° >° )
—_— = € ———— i - — .
ex?[ og ~ Bq] PP A, IR, v M\ g 0A, aﬂpb«y"}
a?. al
% (BtfaA' aAVa?') T D 2,04

o3, (2 Z ) a

- T 7 ]} +D

L v a‘_-fvéff' dydep, SR J
(80)
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where

_ Y ""2 2
Auv = [ guv o %av] Nx,u)

= = = a
D Alx,0) , Du B.UD . Duv 8” vD

To apply the'exponential shift lemma"' one would, in the most general
situation, introduce four vector and nine scalar {complex) auxiliary
variables of integration. However,as we showed in Sec, 4,most of
these are redundant, In order to demonstrate what ultraviolet in-
finities we may expect in the theory, we shall eliminate a number of
redundant variables and set out the power counting theorem using
30)
only

ally,

. F .
e»«P[B A B]“"“P ¢ -2 +(CA"3‘+CA-A—)<CAV-P—+CA

d¢ ~ 0y

) o d
"r((l ¥ —— 4+ b

,,N }AK A v [} + A
2R, 0%, 2 )( oA}

a 2 -

i SR\, (82)
where
' 2 2 3

a =-~A4A, a“la)‘v =9 a“aVA

avhbk ) Du/'u '’ a,ulb?tv - Duu/“
(83)

= +
bulblv * culc).v D.uv ' Culcl byl

2 —
c +chck+ b)Lbl' D .

bA=D,u

As hefore, we oObtain the identity
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three vector and one scalar variables, Thus write symmetric~




Y a ' i o
65]7[‘5_(; % ‘a';:} F(A/\’ (f, (f,\;A);(Jo) (30;(:",\)

= —5 j d urmo\ Ve d uu(md W e»;p-[lu] UYE R ARY,

F LA awy s an, U, @ron s oy tbyuy, RSN N

!

A
(84)
In the Appendix we prove that in the singular limit xz-—v o,
a~1fx a ~1/x b ~1/ux2 b Nl/,ux3
» v » 7 » Uy Z
| (85)
}

c~1l/x , c, ~1/x2 and € ™ 1/x3

Clearly our parametrization has ensured that the most singular

behaviour associated with A,u as a result of the shift is 1/x (since
both a and Ly 1/x). Likewise for ¢ ~ l/x2 and Bucp ~ l/x3 .
This means that the parametrization adopted has ensured that for the
E-F sums carried out in this manner A ~ M is normal while the

spin zero field ¢ ~ Md behaves abnormallygl) .

(ii) Yang-Mills theory

The pattern here is the same; the isospin complications
being quite inessential to the ultraviolet count - to take account of them
an additional isospin index is acquired by every auxiliary variable of
integration, ¢ — ci . The basic free Lagrangian is otherwise
identical to the neutral case and the power count goes through
similarly: viz,

A,~ M normal , but g ~ M, 2.9 ~ M abnor mal

To investigate the ultraviolet character of the interaction term it is

only the ¢ containing part of the Lagrangian
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int v

L@ = (§,- Eaoa,

which needs to be studied, since the purely A~-dependent part of (;f

is obviously normal, Now whenever zig () ~1 (k£ -1, for example
in the Schwinger and Weinberg parametrizations), 3«“ = 1/€gJr Bué ~M ,
Hence g'VAV "-’M2 and Ofint NM4 is normal, ‘

9. CONCLUSIONS

We have shown in this paper that'a simple power count of
ultraviolet infinite integrals in Efimov-Fradkin sums of perturbation
diagrams suggests that non-linear meson theories have only a few
types of integrals which are infinite, It is likely that these infinities
can be absorbed iﬁto;a renormalization of a few constants. (This part
of the programme not' discussed here we hope to attempt in a separate
paper.) . Likewise we have shown that the same conclusion holds for
vector meson interactions (including,as we hope to show elsewhere,
weak interaction theories mediated by intermediate bosons) and
non-linear gravitational theory of Einstein. An essential

ingredient here was the introduction of non-interacting (or

self-interacting) spin zero fields which by suitable transformations
are made to mix with the redundant longitudinal corﬁponents of the
vector field, The E-F sums of perturbation theory are carried out
at this stage of mixing and this procedure apparently leads to the
normality of the theory, There appears in principle no reason why
this method of introducing non-interacting auxiliary fields could

not be used to renormalizealso theories of higher spins like J= 2,

A number of fundamental problems remain, basic to the
‘whole approach, which are unresolved. There is the difficult problem
of uniqueness of the sums, the renormalization programme, the

problem of contours in the auxiliary variable planes. There is the
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problem of treating zero mass Yang-Mills field recently discussed by
Feynman, de Witt, Fadeev and Popov and Mandelstam32). (Does the
massive Yang-Mills theory of Sec. 7 coincide in the limit y— 0 with
the theory discussed by the above authors? It can be easily checked
that this limit is finite in our theory.) In this paper we have been
conservative with our Lagrangians; there is the whole question of
whether by modifying the starting Lagrangians - for example the mass
term in Yang-Mills case - one may possibly obtain supernormal
theories where self-mass and self-charge are also finite, As Lee 33)
has remarked, the most noticeable feature of the infinities is their
total absence in nature, The pr"esent approach appears to open up

fascinating possibilities in these directions,
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APPENDIX I

We give here proofs of the singular behaviours of the
shifted arguments occurring in (39) for derivative coupling theories.
Our only concern is the (Euclidean) limit x -0 , of eqs, (38) where

Alx) ~ l/x2 . To solve eqs. (38) let

Cuy d}n, (x) ¢ + eMv(x) s

and

c, *X.C

with #ooTR2
- -2 -

d,u.v (x) = Buv = X HuXy = Buv - ew,(x)

and make the symmetrical choice c¢ = ¢' as in the text, Since

- L ' 2 . n
A,“_—- - 24 d/uv' (2A +4x A )e/m)

and

we obtain the equations

cf = -2a" c(z) =2 +2xt A"
= op 2,.2 2_ o
COCZ‘ 28 , ¢+ x ¢, Fa¥

which are solved by ,
c, = [-24'1% ~ 1/x2
' 2 m.t 2
cg = [-2(A +2x"A )2~ i JE’/x
c, = 2A'/co~ PP RER

and c=[A - xzczl_‘i ~ 1/\/ 3x2 .

2

This proves the statement that a correct estimate of the most singular

behaviour is given by

C

v 1/x2 » Cu~1fx and c~ 1/x .,
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APPENDIX II

We perform the same steps as in Appendix I to discuss the
ultraviolet characteristics of vector meson theories, The equations

to be solved are (83), Set

auv(x) = duv(x) a, + e“v(x) a and,similarly ,
by = 4y, Byt e, by b, = x,b,
cpv = d,uvcl + e’wc0 . cu =‘xMc2

Since,near x = 0,

-2 [z 2
9 ~ 9 = -
] uav Alx) uav log v x [d’w(x) e‘w(x)]/x
we have the limiting equations

2
a ~ —1/x2 , al= -agfv l/xz

1
a b, n -:Zf,ux4 a.b wZ/yx4 a b ~ -6/ux?
072 11 7070
2 2 4 2 2 4 4
+ + -b + -
b1 c ~ 2/x" , b0 o™ [x", €4Sy b0b2~ 2/x
c2 + xzcz + xzbg n-l /x2

which solve as

a,~ laj~ da~ 1/x

1. . 3
e N 2 /ux

] 1
ic v 3 Con Copn 2 /ux
but e~ ifx

For the tensorial quantities therefore we obtain, up to proportionality

factors,

=38~
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a“vw 1/}( ’ an 1/X
buvvv 2/ux3 N buy_E/uxz
‘ 3 2
c, ~ 2fux” e, 2/ux” , e~1/x

as stated in the text, The most singular terms of the shifted arguments

in (84) thereby demonstrate the ultraviolet characteristics
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