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REGGEIZATION IN SUPERMULTIPLET THEORIES

I. INTRODUCTION

One of the rather suprising features of the present scene in

particle physics is the increasing evidence of the relevance of SU(6)-

like symmetry ideas in describing hadron spectra on the one hand

and the comparative disregard of such symmetries and the strong

correlations they may he expected to provide among residue functions

- even as a crude guiding principle - by those working in Regge

phenomenology \

One possible reason for this disregard could be that detailed

experimental confirmation {from decay data) of the validity of higher

symmetries for coupling parameters and residues exists for the low-

lying SU(6) states only. A second and more practical reason is

perhaps the non-availability of a simple, consistent and detailed

formalism embodying the marriage of Regge ideas to higher
2)

symmetries . A beginning was made in a series of recent papers

in this direction. Unfortunately, although the discussion was general,

the details of the formalism were given for one specific model of

reggeized higher symmetries, specifically, the model based on a quark

excitation picture for higher resonances, where along a trajectory the

total quark content for physical states increases by integer steps in

the form N, N + 2, N + 4, . . . and it is the quark number N which is

reggeized. It is our purpose in this paper to consider in detail the

rival models based on an orbital excitation picture of two- and three-

quark composites (group-theoretically, models of the type SU(6)<g)OT (3),

with a reggeization of the orbital quantum number L).

As is well known, the quark excitation models predict "exotic"

resonances with high. values of strangeness and isotopic charges,

while in the orbital models only the Us, 8's and 10's of SU(3) make



their appearance. The physical hadron spectrum may in the end

prove to possess features of both models; the present evidence,

however, seems to favour orbital models of lesser or greater

complexity with the known baryon resonances apparently grouping

themselves in multiplets of (5Jj,O, ), (5§>%, )> ^IS'X )» • • • a n ^ meson

resonances in (35, (T), (35,1,"), . . . of SU(6) (x>C>L(3). We wish to

stress that the great virtue of using symmetry ideas is that we do not

require "the physical existence of quarks; we obtain quark model

results, with their correct relativistic kinematics, without actually

believing that such objects exist.

The plan of the paper is as follows. In Sec, II we review the

basis of the reggeization procedures, given any rest symmetry

group for particle multiplets. The most important concept here is

the notion of generalized helicity , This is introduced and we then

define the appropriate rotation functions needed for reggeization.

These functions are a generalization of the familiar d..,(0) rotation

functions of the group OT(3). In Sec. Ill the equivalent M-function

formalism for writing amplitudes using multispinors is introduced

in terms of which actual calculations are made. We wish to stress

with the greatest possible emphasis that this multispinor formalism,

using Bargmann-Wigner equations to describe supermultiplets, is not

3)just a luxury. Insofar as it embodies the correct kinematics , and

(most important) provides a natural formalism into which symmetry

breaking effects (due to mass splittings within a supermultiplet) can

be incorporated, the multispinor N-function formalism for scattering

amplitudes is an important ingredient of the reggeization scheme. One

wishes one could stress this enough so that the unfortunate prejudice

against learning what is basically a very simple and yet extraordinarily

powerful technique could be overcome. Sec. IV deals with the detailed

description of the oscillator excitation model and its application to

reggeized meson-baryon (MB) and baryon-baryon (BB) scattering. In

Sec. V we discuss briefly the kinematic singularity problem and the

tollerization versus reggeization of physical amplitudes to cope with
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such singularities. Sec. VI discusses the situation where the

singularities are moved by Gribov doubling of the meson multiplets.

In a separate note the formalism of this paper is applied to the

problem of charge exchange meson-baryon scattering to see if the

reggeization of SU(6)<x)0(3)-like theories with the drastic decrease

in the number of residues they provide gives a reasonable fit to the
4)

data . There we show that in fact one can correlate all known
processes with a one-parameter formula.

II. THE REGGEIZATION SCHEME FOR HIGHER SYMMETRIES:
GENERAL CONSIDERATIONS

As stated in the Introduction, there are two distinct types of

models of reggeized higher symmetries:

A. Orbital excitation models

Here higher symmetries combine intrinsic spin and unitary

spin as in the original SU (6) proposals emanating from Wigner's

SU(4) (F is the unitary spin index and S is intrinsic spin), while

reggeization proceeds for orbital momentum L__. (J_ = L_ + _^). The

models we shall consider correspond to the following symmetry groups:

A. SU(6)(g>O (3)
J

U{6)®U(6)|F

i) The O(4) orbital models

The U(6) x U(6) intrinsic-spin-unitary-spin symmetry treats

quark and antiquark spins as distinct and independent so that the
* 5)intrinsic spin-group contained in U(6) (g)U{6) is the subgroup

p (2) ^) SUC,_(2), As is well known, this group has the same
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structure as O (4). From this point of view a natural, though by no

means essential, generalization of orbital angular momentum also is

to consider four-dimensional orbital momenta, thereby enlarging

O (3) to ON(4) where N stands for the O(4) Casimir .

ii) The U(3) orbital model

A remarkable feature of the baryon spectrum known at

present appears to be that all known particles seem to belong to

(5fi, LeVen) and (70, L°dd). The fact that there appear to be two

(56, 0 ) multiplets and no (56,1 ) seems to bear out the need for a

radial quantum number N for classification purposes. A suggestion

has been made that possibly the extra orbital degrees of freedom are

associated with a harmonic-oscillator-like potential and the reggeized

quantum number is one of the Casimir operators of the three-dimensional

harmonic oscillator group SU(3) rather than O(4). This oscillator

group SU(3) is the same group familiar from nuclear physics shell-

model spectroscopy. It is discussed in detail further on.

B. Quark-excitation model

In a different category and contrasting with the spin-orbit

coupling models considered above is the quark-excitation model which

was treated in detail in the earlier papers . Here one starts the rest

symmetry U(6)0U(6) and reggeizes one or more of the Casimir

operators of this group. One of the simplest cases was the reggeization

of total quark number N, the physical particles lying along two master
2

trajectories in N vs. (mass) plot and 2N taking the values 3, 5, 7, . . .

for baryons and 2, 4, 6, . . . for mesons.

Reggeization procedure^

Now even though the physical ideas behind the two types of models

A and B are different, the techniques for applying Regge ideas

to the high-energy behaviour of scattering amplitudes are very

similar. So we state these in generality for any particle classification

group G.

- 4 -
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1} Neglecting small deviations from a mean mass, assume that all

hadron states (at rest) can be classified as representations of a (rest)

symmetry group G

G = SU(6) $ O(3) for orbital models of type A

= [U(6) <g) U(6)]® O(4) for orbital models of type A (i)

= [U(6) ® U(6)]® U(3) for orbital models of type A(ii)

= U(6) 0 U(6) for quark excitation models of type B.

2) A significant empirical feature of the spectroscopy is that only

some rather simple representations of these groups appear to be

realized in nature - in general these are representations characterized

by just one quantum number N (Casimir invariant of G) besides

baryon number.

3) For every rest symmetry group G there exists a generalized

helicity subgroup which we shall denote as G - the generalized
9)

helicity being denoted by W.

4) The importance of the generalized helicity subgroup lies in that,

if the symmetry were exact for three-point vertices, W-spin must be

conserved. Labelling physical states with N and W (in analogy with J

and X for G = SUT(2)), we thus have, for the three-point function:
j

<W|T(E) |WW > = ) <fW|W W > T (E) . (1)
1 2 £.. 1 2 W2W2

Here <̂  ?W] W W y denotes the Glebsch-Gordan coefficient which in Gr couples

D * ® D ^ to D . (In general there may be more than one independent

coupling so that we have included a parameter £ to distinguish among

them. )
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5) W-spin is also conserved for collinear scattering processes

(forward scattering). Thus

JS 'W (2)

6) The non-collinear four-point functions exhibit conservation of

coplanar symmetry which for models A, A(i), A(ii) is 311(3),

[U(3)(g)U(3)]g)O(2), [U(3)&U(3))®U(1) and for model B is U(3)®U{3).

7) If we assume only that the subgroup symmetries 1) - 6) hold as

empirical facts {at least to a fair approximation) there is the mathematical

theorem that we may express a non-forward scattering amplitude
Nin terms of a complete set of suitably defined functions d,T,TI..(0) as

1 WW'
follows:

(3)

N 2
W>W(0) = < N W ' l e |NW> (4)

are the generalized rotation functions - the matrix elements of the space
•fly

rotation operator e ^ - for the group G. The expansion theorem used

above relies on the completeness notion which requires that we sum over

a one-parameter family D of representations of G, since we are

dealing with a function T(0) of just one variable 6,

8) We tie back to assumption 1) if we now assume that T (E) exhibits

poles in the complex N Casimir plane, corresponding to supermultiplets

of group G; this reduces eq. (3) to the form
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N
N dWW'M ) N / ™ H W W \

„ w <?W|W n W n > (5).
4 H. -m 1 2

9) We can now pass to a Regge amplitude by making a Sommerfeld-

Watson transformation:

lim <W3W4|T(E ja)JW1W2>

a d W ' W ( 0 ) a
W W sinTra(E) g ? W W W < ? W | W W

o 4 1 2 1

2
where ^(nO = N is the supermultiplet trajectory function.

2
10) The points on a "master" trajectory a (m )̂ represent particles of

differing spin values which the supermultiplet groups together. In

Refs.8 and 11 the mathematical reduction problem of expressing the
N

general rotation functions d (0) in terms of the Legendre polynomials

PL(0) or PJ(0) and their derivatives (dN(0) = Y a T ^ PJ(0)) was

J K
discussed in detail. Physically this means ' that one master

trajectory gives rise to a number of equally spaced satellite trajectories
2

labelled with the parameter K. (in the conventional Regge Re J vs. m

plane) all parallel to the master trajectory in the exact symmetry limit.

(These satellites are not to be confused with the daughter trajectories

of Freedman and Wang and Toller. ) In the O(4) orbital scheme for

mesons, for example, the following schematic picture may hold:

P - - i P + I P - -

N = 0 S = 1 , 0 ; I L - 0 ; J = 0 , 1
!

N = l S P = r , 0 ' } | L = f , 0 + ; ' J P = 2 + , l + , 0 + ; i l + , l " , 0 "

N - 2 S P = l", 0"; ; L = 2 + r 0 + • ! J P = 3" , 2", l", 0" ; J 2+, 1+, 0+ ; ;
i ( |

; i " , o " ; i 2 ~ , i , o "



Ka) Kb)

Fig, 1. Trajectories from O(4) excitations
N

x = unnatural parity, natural parity.

Note the rather obvious but extremely important circumstance that

the leading satellite trajectory with the 0 particles on it is automatically

shifted downwards by one unit of J from the leading vector-tensor

trajectory. The very high-energy behaviour, naturally, is always

dominated by the leading trajectory if the selection rules allow it to

be exchanged.

11) To take account of trajectory shifts due to symmetry breaking we

need mass formulae which, in general, may have the form (with L in

place of J for the orbital models)

M2 = M2 (N, J,F)

(F) (F) (7)

where N = J + K and F denotes SU(3) labels (including I and Y). To

incorporate trajectory shifts due to symmetry breaking in the formalism

one may go back to the formula

bN dN(-e)

t-M2(N)
(8)

write d (-6) = \ aT^T P (-0) and, as an ansatz, replace M (N) by
KJ

M (N, J, F), obtaining
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- u -i»»J t-M2(K,J,F)

The satellite trajectory functions a(K, J, F) are given as solutions of

t = M2(K,J, F).

Unfortunately, no completely reliable theoretical method exists

for computing these trajectory shifts. We must therefore at present

introduce the precise trajectory functions as part of empirical input.

The utility of the supermultiplet reggeization schemes is thus impaired,

except for the hope that the residues are not so strongly affected by

symmetry breaking as the trajectories. This appears to be the case for

meson-baryon scattering (see Fef. 4).

12) The rotation functions were computed in a previous publication

for a number of groups for simple classes of representations. As a
N

general rule a rotation function dww<(0) is a sum of derivatives of the
N

basic function d,., r ., (the function which appears in superscalar

scattering with the exchange of a multiplet labelled with the cpantum

number N). This is analogous to the statement that the d.. ,(0) in

three dimensions can be expressed as sums of derivatives of P ($).
J

We list in the adjoining table these basic rotation functions for

symmetry groups and representations of interest. G is the multiplet

symmetry at rest, G^ the generalized helicity subgroup, £, the

embedding covariant group and N labels the (one-parameter) class of

representationsfmore precisely, we indicate the Young tableaux

to which N refers).

a) G = U(v) ® U(i/) , Gw = U(v) , ^ = U(v,v)

For representations (W W ) corresponding to Young tableaux

(N, 0,0, . . . , 0 ; N,N.N N)

N ^ (10a)



b) G = XJ(lv) , G w = U(v) © U(v) , | = SLfev, c) .

For representations (W ) described by tableaux (N + 1,N, „. ( N)

dN( 6) cc C^~ *(cos0) (10b)

c) G = U(i/) , G w = U(v-l) , | = U(i/,1)

For representations (N) described by tableaux {,N,0, 0, . . .,0)

dN(0) = (cos0)N (10c)

d) G = 0(i/) , G w = 0(i/-1) , | = 0(i/(l)

For representations (N) described by (N, 0, 0, . . . , 0)

dN(G) oe C ^ " 1 (cos6) . (lOd)

Proofs of statements (a), (b) and (d) are already in print; a proof of

(c) is given further on. The reggeized components of models

A, A(i), A(ii) and B are the cases (d) above with v - 3, (d) above

with v - 4, (c) above with v = 3 and (a) above with v ~ 6, respectively.

III. COVARIANT FORMALISM FOR SCATTERING AMPLITUDES AND
THE M-FUNCTIONS

So far we have worked with the helicity formalism. In principle
N

all we need now are general expressions for rotation function dW W l(0)
N ww

in terms of derivations of t L . , , . , of the last section and formulae for

the general Clebsch-Gordan coefficients <( W|W W ) ,e tc . One can

perfectly well proceed by tabulating these things using sophisticated

group theory methods including the spin-orbit coupling coefficients

needed in models A, A(i) and A(ii). It so happens that one of the

simplest ways of making these computations is to work ab initio in

-10-



terms of an M-function approach using a multispinor formalism.

Since this has the additional merit of exhibiting manifest co variance, of

ease when dealing with crossing, of automatically incorporating the
12)threshold and other mass-dependent kinematic factors , from now

on we shall abandon the helicity framework and work consistently

with the M-functions,

Wave functions of par t ic le mult iplets

Consider f i rs t the wave functions of the par t ic le multiplets for

the var ious models :

Mo<M A). Orbital excitations

Represent O(3) multiplets of L = 0 ,1 , 2, . . . by s y m m e t r i c

traceless tensors

with the restrictions

p <f> = 0

= 0

2
p 0
P W

= m (11)

A(i)). Hydrogen-like excitations

"Represent SU(2)$SU(2) zz O(4) multiplets belonging to the
N Nrepresentation (— , —), N = 0,1, 2, . . . , by the multispinorS:

* ' *a ' $ • • • t

symmetric in a's and /3's separately, satisfying a, /3 = 1, 2, 3, 4,

Bargman-Wigner equations

- O

(12)
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A(ii)), Pepresent SU(3) multiplets belonging to the representation

[ N ] , N = 0,1,2, . . . , by the fields

*<p) . * J p ) - f , u (P) . . . -

which are symmetric but not tracdess in their indices. The

equations they satisfy are the same as for the O(3) case:

13)

p •$. r - - V m N (H
r

(13)

So much for the orbi ta l par t of the represen ta t ions in the models

A, A(i) and A(ii). F o r the in t r ins ic spin-uni tary par t , we employ the

U{12) formal i sm for models A(i) and A(ii) using the mul t ispinors

A
* (p) • A , B = 1 12

for mesons (6, (i) of rest symmetry UQ(6) and

f ( A B C ) (p ) = 1, . . . , 1 2

(symmetric A, B, C) for baryons (56,1) and Y, A B ^

[A, B] and satisfying the cyclic condition

antisymmetric in

for the (70,1).

14)
The Bargmann-Wigner equations are

$A ( P + m)B

(p -
A
D (ABC) 'D [AB]C = 0,etc. (14)

-12-



Combining spin-unitary-spin and the orbital degrees of freedom,

the tensors have the final forms:

Model A(i)

A < P r . . P N )

with equation?of motion (12) and (14) stated earlier.

Model A(ii)

f o r ( 7 0 ' 1 ' N )

satisfying eqs. (13) and (14). We shall be concentrating on model A(ii) in

the sequel.

Model B : The quark excitation model

This v/ac dealt with in detail in re ft re, woe 8 ,

To complete the discussion for the case of the U (6) x U (.6) group, the

appropriate multispinor belonging to the fully symmetrical representation

(the so-called Feynman representation) are

T3

. , § / .* ^K , $ / »* A" »" \ , . . . for m e s o n s

* • • • fo r b a r y o n s ,

satisfying eqs. (14). -13-



Three-point couplings

Given three multiplets of G, for any of these models one can

easily write down the Gw invariant couplings in M-function form by

noting that the three-particle momenta transform as Gw scalars. The

rule then is to saturate all indices among themselves and with momentum

tensors; the number of different ways of doing this giving the different

types of couplings one can construct. To illustrate, consider the simple

case of quark (6,1; 0) i antiquark (1, 6; 0)i coupling with the
_ ~2P + Q 2 P + q

(6, 6; N) meson multiplets.

(15 a

*

(15 b)

A,

(15c)

We can cast all models in the differential form

£ = v^CL- M6i)h
J + ^ , ~ - A 1 ^ ( 1 , 1 . ) (16)

where

(n-0
-14-



is the coupling corresponding to scattering of supersinglets for each
A a

of these models. Note the distinction between q^ and qD . For the
A " P

U(12) case q = qfi b, where a,b refer to SU(3) indices and a, j8 to

U(4) indices.

Supermultiplet exchange contributions to four-point couplings and
computation of the rotation functions

Just as the Legendre functions d, ,^(0) can be "calculated" by

considering the exchange of a spin-J particle in an M-function
Nframework, so can the generalized rotation functions d (6) for

each of the models by exchanging a supermultiplet of quantum number

N using the covariant couplings (15) written earlier. The procedures

were illustrated in great detail in Ref. 8 for model Bj here we quickly

go over the methods again for models A(i) and A(ii). The basic
N

functions d, , j-.i (6) ar ise from scattering of supersinglets. Combining

the three-point couplings with the [N] propagators

(18a)

(18b)

we get

(19)

-15-



where

|q] |q '[ COS0 = -q .q '+ q.pq.p'/M2 , (20)

showing that the excitation functions are C (cos(?) and (cos0) for

O(4) and U(3), respectively; both multiplied into a U(6) ® U(6) spin

factor (cos0) = d. '-, , , (cos0) coming from the (6,6) piece .

More complicated functions can be discovered by differentiations;
Nfor example, in quark-antiquark scattering the derived d can be

recovered from

(21)

by contraction over external wave functions. We thus have a complete

M-function substitute for quark-antiquark scattering of the helicity

formulation of the earlier section. More complicated cases of

physical interest are described in the following section for model

IV. THE DETAILS OF ME SON-BAR YON AND BAEYON-BARYON
SCATTERING IN THE OSCILLATOR MODEL

In this section we wish to discuss the harmonic oscillator model

in detail. From the slender evidence available it appears that baryons

group themselves as

(56,0) '
(70,1)

(56,2)
J

with (56,1) apparently missing. It would thus seem that we are

realizing the quantum numbers N = 0; 2j4 t of an SU(3) group,

corresponding to representations

-16-



/ L = 0

L = 0, 2

L = 0,2,4, etc.

N N
Also, we know that d,^ .^ ^ (cos$) for all models in the asymptotic

limit. So we can in any case regard the oscillator model as

representative of all models in the high-energy limit. Of course, to

lower orders the models will differ from one another.

Wave functions

Hereafter we work entirely in the covariant framework provided

by the auxiliary group U(12) ® U(3,l). For M-function purposes we

adopt the fields

B

If we are interested in the Lorentz group components within the super-

multiplets we make in the first step the decompositions

(22)

(23)

(24)

-17-



wherein the (N) excitations of the basic (quark) spin fields
1 + 3"*"

P(0 ) , V(l ), N(- ), D(- ),*.is explicitly exhibited. In the second step

the excitations are reduced under O(3) according to the further

decomposition.

Us)

+ lower orbital momenta;

2 A

d = -g + p p /M and <j> a re traceless in their indices. In the

third step the product of each of these SU(2h irreducible components

with the SU(2)_ components is reduced out into total SU(2), components.

If we take a given orbital excitation L the decomposition reads as
1 3

follows: for fields of (quark) spin 1, — and — —the only cases of physical
interest —

(L*')

(26)
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(27)

Z be

_i jvc".-,
Li-i) 1

If.. f\.

(28)

where ^1"* ' . are Rarita-Schwinger fields of spin N+f and we have

used above the abbreviation for the relativistic spin operator

t n e e x a c t symmetry limit we can summarize

f J-trajectories as depicted in Figs. 2, 3, 4

and 5,where we have assumed exchange degeneracy for ease of drawing

these reductions by sets of J-trajectories as depicted in Figs. 2, 3, 4

-19-



rig. 2

Reggeized SU(3) nonets of mesons
from oscillator model
<6,6;N).

s* / " 7
0 = normal parity. x = abnormal parity

-r Fig. 3

Reggeized SU(3) octets of positive parity
baryons (56,1; 2N) and negative parity
baryons {70,1;2N + 1) from

7 ' oscillator model.
Z i

3.z

z

•f

2.

X
i.

I
Fig. 4

Reggeized SU(3) decuplets of baryons
from oscillator model.
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*1

j

Reggeized SU(3) singlets of baryons from
oscillator model.

Three-point couplings

The great importance of reductions(22) to (28) is apparantwhen

one wishes to compare matrix elements of particular spin components,

primarily in the three-point couplings which are relevant for correlating

various decay parameters or Regge residua. As we mentioned earlier,

these three-point vertices are constructed in a Gw invariant manner
16)

by forming index invariants between fields and momenta . For

hadrons like (6, 6; 0), (6, 6; 1), (56,1,0), (70,1; 1) and a meson super-

mult iplet of excitation N which we later reggeize, we list below the

effective Lagrangians of these hadrons, writing our couplings in a

differential notation

- (6,6,N)t

• v)

(29)

- 2 1 -



(30)

(31)

6,N)

(32)

This set of formulae are some of the most crucial ones occurring in

this paper.

As before, we have used here the abbreviation

V ) ( p , q >

for the fully contracted meson field of excitation N. The supe r sc r ip t s

(+) on the couplings h for meson coupling (with no baryons involved)

re fe r to the even and odd N values of the exchange mesons . Bose

s ta t i s t i cs te l ls us that h = 0 when N is odd and h = 0 when N is

even 1?)
-22-



Meson-baryon (MB) and baryon-baryon (BB) scattering

The two most important cases concern meson-baryon (MB) and

baryon-baryon (BB) scattering. We investigate the pure symmetry

limit (with all masses degenerate).

If we apply the coupling rules embodied by formulae

it is always possible to express the covariant N-functions in the form

T = Dq Dq' A ( N ) ( P * q ' q l ) ( 3 4 )

where D stand for various differential operators whose order is

'governed by the external excitation numbers and where A,._T. is the
& j „ (Nj

fully contracted propagator which occurs in the scattering of super-

singlets:

(cos0.)

P -

cos0t s -q.q1 + q.pq' p/M^ . (20)

N
InfactF(cos9).(cos0) is the direct product of the basic representation

functions d|J'^j (0) d ^ f l ] (6) for [ U(6) ® U(6)I ® U(3) from which

the general d ^ ^ . j (9) d ^ j [ W l ] (0) follow by the differentiations.

Let us list the first few derivatives for later use:

(36a)

(36 b)

- 23 -



(36c)

(36d)

These reggeize through the replacement

(3 7)

It is well known that ( 17 ) gives poles at nonsense N values

( iX = 0,1, 2, . . . ), A recent suggestion to avoid these poles has been

to replace — : j—^ by T(l-a). This corresponds to introducing

the Gell-Mann ghost-killing mechanism. It may be possible to devise

other mechanisms for eliminating nonsense J-values but they would not

fit into the orbital excitation picture so simply.

The above is all the apparatus one needs for studying the physical

amplitudes of interest. We now summarize the formulae for BB and MB

scatteringt

(38)
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— *J

. (|J + ()

-)
&'

(39)

These are the master formulae of this paper. For definitions of

derivatives and wave functions $ ,,see (22) to (28),
13

To illustrate the use of these master formulae, consider the

charge exchange MB processes. For those amplitudes, the couplings

g and h0 are not relevant as they only describe elastic processes.

Thus

(40)

Recall that (±) superscripts refer to even and odd N. As is well known,

after reggeization a signature factor needs to be introduced into the

formalism (the simple argument of reggeization in Sec. II does not

automatically produce this). In the sequel, whenever we write g~ we
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shall assume that N-signature projections 1(1 ± e ) are to be

included. Performing the differentiation and simplifying.

t-

with

r

(41)

(42)

2 2

and t =, p = M at the pole. Let us focus our attention on only those

reactions where the incoming meson is pseudoscalar and the target is

a nucleon, while allowing the final meson and nucleon to be any other

member of the (6, 6) and (56,1) multiplets . Breaking up the outgoing

mesons in formula (41) into vector and pseudoscalar parts and

separating out SU(3) components, the reggeized amplitude reads-

T,

- i
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We have distinguished between the two possible trajectories a_ and a

associated with the two signatures. The (q. q') • or (q. q1) ~

oscillator factors are characteristic orbital effects. Making a further

decomposition into octet (N) and decuplet (D) pieces of the 56 one gets

with M = t.

(44)

r* (45a)

(45b)

having the usual SU(3) connotations,

(46)

Y T

J

L > (47)
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These are the amplitudes in the exact symmetry limit with all masses

degenerate. The following significant features may be noted:

a) Barring differences due to signature, there is a common

residue and trajectory function occurring in the characteristic

combination;

(48)

b) The signature factors (1 + e * multiplied into f(l- a+)

mean that the even a-signature amplitudes vanish for a = -I, -3 , . . ,

and odd or-signature amplitudes vanish for a = 0, -2, . . . . Hence

the vector ( - ) trajectory gives amplitude zeros for a ~ 0,-2, . . .

and the tensor ( + ) trajectory for a = -1, -3 , . . . ; this applies to

all the Regge amplitudes and not just the spin flip components. We

may therefore expect dijgs in the cross-sections at these places.

This is indeed borne out experimentally. Such dips are well known for

T-N charge exchange processes; the important remark from our

point of view is that TTN -* \\ N also appears to show such dips at even

signature positions.

c) In the forward direction we expect to reproduce the predictions
18)

of Carter et al. , since SU(6),T, is conserved in this limit. Thusw
PN—•> PD vanish owing to the M nature of the coupling to DN of the

vector and also the tensor trajectory.

V. TOLLERIZATION OF AMPLITUDES AND KINEMATIC
SINGULARITIES

Before we compare our r e su l t s with exper iment we must consider

the t -#• 0 l imit where kinematic s ingular i t ies rcake thei r appearance

whenever spins a r e involved. This is shown quite c lear ly in the
r—y

characteristic product (1 + 7==*) (1 + — —; (3(t) which is not an analytic
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function of t, near t = 0, As is well known, two types of mechanism

have been proposed to remove these singularities; one is evasion -

the statement that /3(t) must have a compensating zero; the second is

the addition of conspiring trajectories. The most elegant formulation

of conspiracies is the one proposed by Toller where one expands

scattering amplitudes not in terms of a complete set of rotation

functions of the rest group G but in terms of the covariant embedding

group L (in Toller's case G = O(3) and £- O(3,l)). A tollerization

procedure then replaces reggeization; this^as is well known, leads to

the parent and daughter phenomena.

For the quark excitation model tollerization was studied in

detail in Ref. 8. The rotation functions of the embedding groups for

models studied here are the following:

Embedding non-compact group Rotation functions

A . > O(3,1) c j (ch?)

A(i) ->

<chf)N

B —"•- -•--•> U(6,6)

(49)

An alternative solution - and one not as general as Toller's -
19)

is to introduce conspiring trajectories following Gribov . This is

the solution most suited to the multispinor formalism for hadrons. It

arises from the natural possibility of doubling afforded by quarks and

pseudoquarks within a multispinor framework (this is the doubling

first introduced by Gribov).

For mesons, for example, one is led to consider two trajectories

coinciding at M = t = 0 with identical residues but otherwise distinct,

which correspond to (6, 6) and (6, 6)', the primes indicating the pseudo-

quark composites.

In accordance with these ideas we must therefore add to the

amplitudes (43) extra terms with the sign of M reversed corresponding

to (6, 6} -> (6, 6)'.
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For the MB scattering amplitudes then we typically meet the

combination

w* (1 + ̂  m)

Taking a(0) = a'(0), 0(0) = j3'(0)f the M = VT singularity disappears.

In fact if we suppose that for moderately small spacelike t, a1 (t) =
20)

= a(t) and |3 »•/31 ;-- constant,the combination of terms could sum

t o 2 1 )

(1 + H) p VO-a) S""1

Before applying our formalism to elastic processes one has to

make up one's mind about the Pomeron. In the absence of any

fundamental understanding of vacuum exchange it is probably fair to

regard the Pomeron as a (fixed, SU(3) scalar?) pole with a{0) = 1

which occurs in elastic processes to describe the background effects

of inelastic channels via unitarity.

The remaining problem is symmetry-breaking. We know it to

be very important as far as trajectory shifts, which govern high-energy

behaviours,are concerned. Failing a reliable theory of mass splitting

between members of a super multiple^ the only course open at present

is to take the positions of the trajectories as empirical input (most

significantly for the pion). With regard to the residues, one may hope

that they do not change drastically and this is what seems to be borne

out by our preliminary analysis of data (Ref. 4). If this had not worked

our first prescription would have been to use physical masses in place

of mean masses in kinematic factors.
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VI. REGGEIZED MESON-BARYON SCATTERING AND COMPARISON
WITH EXPERIMENT

We now list the final formulae and their main features for charge

exchange scattering processes that are dominated by the vector

(C = -1) and tensor (C = +1) leading trajectories; namely, those in

which both the initial and final meson are pseudoscalar. We shall here

make an assumption outside the supermultiplet schemes proper -

that of exchange degeneracy, i. e., a+ = a , J3+ = 0 . The final

expressions are

PN->PN

Flip amplitude is

(51a)

and the non-flip amplitude is

A' « A + -

(51b)

which enter in the differential cross-section as

Jk

and give

t --
a,.^ I'' £n?

(52)

L
(53)
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the F and D suffixes carrying the normal SU(3) meanings.

TPN -*- PD

The baryon vertex is of the expected M(ty_pe all along the

trajectory, as may be seen in the amplitude

(54)

Here m is the meson of octet (N) and decuplet (D) masses . When

this is substituted into the cross-section,

one gets

To make comparison with experiment for the / = 0 charge exchange

processes

0 i>" w° "
7 r p - > f l " n , K p - ^ i c n , ir p ->iin

T p —> 7T N , K' p _»1TN , T p ->>\N*

for which considerable data exists, we have used mean masses

<ju> - 0.45 GeV/c and<m> =; 1.15 GeV/c, < m > « l . 3 GeV/c in the

kinematic factors and the exchange degeneracy approximation
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2
a+ ~ a- r̂ 06 ^ 0 . 5 + t, in units of (GeV/c) ; we also took a constant

residue /3. Considering these very rough approximations, the agreement

with the data is quite encouraging (Ref. 4).

In summary, the model has the following characteristics:

1) It is based on the excitation scheme [U{6) © U(6)] „<$ U(3L

though for Regge exchange of meson trajectories only the leading

orbital excitation L = N = a - 1 is significant.

2) The relativistic kinematics is provided by the embedding

group U(12)g ® U(3,l) and producessignificant kinematic factors in

the Clebsch-Gordan coefficients.

3) From the quark-antiquark nature of the mesons, /^kinematic
Y t

factors are encountered. A Gribov doubling of the exchanged trajectory

(6, 6) and (6, 61) has been employed to eliminate these l / ' /F

singularities.

4) At nonsense J-values we have used the Gell-Mann mechanism

for eliminating ghosts. Perhaps other mechanisms could be

constructed but they do not appear to fit so naturally into the

•excitation picture. Our model predicts zeros in the ir charge

exchange reactions at a - 0, 2, . . . ; zeros in ir -) n reactions at

a - -1 , - 3 , . . . and no significant dips in the K charge exchange

reactions. This last fact is due to cancellations of the signature

factors in the Gell-Mann mechanism.

5) The assumed exchange degeneracy can be relaxed by using

separate a , j3 and a , fi for the even and odd signature pieces in

place of the assumed common a = 0. 5 + t and /3 .

6) Inasmuch as we have neglected possible t-dependence of /3,

our simplified model admits no parameters except the one constant, /3.

When /3 is fixed by the high-energy data and the Regge formula is
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extrapolated to the vector meson mass one finds (g ) = 2(g )
6p3TT expt VBp7r7r frieory

This is a failure of the model and we have no explanation for it.

7) A turnover effect at small t is predicted by the model

because of the largeness of the spin flip relative to the flipless

amplitude; — (~—) = - — (1 + —) » -6. Moreover,the opposite
9. c* TY\f^ o fJt

relative sign of the two and the fact that a' is a polynomial in t

means that an extension of the model to elastic scattering cross-section

differences will give rise to a crossover effect. However,the positions

of turnover and crossover points are incorrectly given by the model

(which uses mean masses) at t ^ 0. 05 and 0. 5 GeV/c. It is possible

that mass shifts play an important role in altering these points.

8) Density matrix calculations, which have not been discussed,

constitute important tests of the model. Observe too that in its

present form the simple pole picture used in this section is unable to

explain polarization effects as it deals with a single Regge amplitude.

9) Reactions dominated by pion exchange, e .g . , ^xyvr V"W

T —?which will form the subject of a separate note, show

interesting new features owing to the singular character of the pion

residue and its nearness to the scattering region. For instance in

nucleon-nucleon charge exchange scattering the TT and p contributions

together give terms of the form

• j f - fs** r<i-«) i2 + [ s V a - ^ i i 2 (55)

so that for small t and moderately large s the pion dominates and

gives the observed sharp forward peak, but at larger values of t the

p takes over. The reason why the pion gives finite non-zero cross-

section even in the forward limit t -> 0 is because the amplitude

U U"V Yc U 4 m "• Ye U U Vc U

' "S 3 • *> 3 carr ies a desirable singular
P2

T
 fc 22)

residue y even though there is Gribov doubling '. The actual detailed

analysis of pion exchange reactions will be treated elsewhere.
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