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NON-LINEAR REALIZATIONS - I:
THE ROLE OF GOLDSTONE BOSONS

1, INTRODUCTION

The equations of physics are usually expre ssed in a form show-
ing manifest covariance under the transformations of the space-iime
and internal symmetry groups. Recently, however, some attention
has been paid to the possibility of expressing internal symmetries of
the chiral type in a fashion which is not manifestly covariant, some of
the transformations of these groups being realized non-linearly 1? In
the present paper the non-linear method is shown to provide an economic-
al framework within which to treat the problems of spontaneously broken
symmetries 22 i, e., symmetries which are present in the Lagrangian
but not in the ground state, Beyond this, the view will be presented
that the non-linear method, as a method embodying dynamics rather
than pure group theory, is applicable only to situations in which the
symmetry is broken spontaneously. Much of the following discussion
will be in the nature of a review, However, one purpose of this is to
present the notational developments that emerge through a consistent
use of the language of Wigner boosts which, it seems to us, greatly
clarifies the subject of non-linear realizations, We shall need this

development in particular in the second paper where we consider non-

linear realizations of the conformal group in space-time,

Central to the method of non-linear realizations is the notion of

a preferred field which provides a bridge to representations which are

linear but constrained. There is in fact a complete duality between
sets of fields, on the one hand, which transtorm linearly while being
subject to certain non-linear consiraints and, on the other hand, equi-
valent sets of unconstrained fields which transform according to non-
linear realizations, The preferred field is used in the formation of
covariant equations of constraint upon the set of fields which trans-
forms linearly. If these constraints are then used to eliminate all

dependent components there results what is commonly called a non-




linear realization. More specifically, the realization will be linear
with respect to all but the preferred field itself which generally enters
non-linearly., The structure of the realizations arrived at in this way
must of course depend critically upon the particular set of fields
which are chosen to play the preferred role. This choice depends in
turn upon the nature of the vacuum symmetry since, as will be seen in
the following, the preferred fields are neither more nor less than the

3)

field of the Goldstone bosons .

A rather trivial and very familiar example of the procedure just
outlined is provided in the case of chira13) SU(2) x SU(2), Let the
chiral 4-vector T, play the role of preferred field and let it be em-
ployed in the formulation of a set of algebraic constraints upon the

fields ¢a and Far , a chiral 4-vector and 6-tensor, respectively,

B
For the equations of constraint one might take, for example,
xattrB-a'B ¢a=fFaB
WQFQB-f(ﬁB:O (1.1)

where f denotes a numerical constant, The question of how such
constraints could arise within the context of a dynamical model is not,

for the present, at issue. It follows from (1.1) that, in particular,

r ¢ =0 (1. 2)

so that the sixteen various components can -be expressed in terms of
six independent ones; say x and ¢ . The linear transformation

laws appropriate to the chiral 4-vectors T, and d:a are exemplified

by

x — X

1,2 1,2

¥, —> T, COSW - 7, SinWw
3 3 4

inw +
T, ~> 7g sinw " COoSW (1. 3)

-9.

. T e B B Ok S & W s T T T

u“l




corresponding to a purely chiral transformation, It remains only to

eliminate the dependent components x, and 1#4 by means of the con-

4
straints (1.2). The independent components 7 and ¢ then transform

according to non-linear realizations which are exemplified by

r - T

1,2 1,2
g 7y cosw - sz - 1:*_2 sinw (1.4)
and
¢1'2 ¢1,2
$-x
. ~> ¢_ cosw + ==, Sinw (1.5)
3 3 2.,

and one sees that only the preferred field 7 enters non-linearly. As
is well known, the form of this result depends very much on the manner
in which L is parametrized. An alternative scheme would present

x in the form
o

(1.6)

X, =
4 v1+ o /f
where the 3-vector P, is independent., Corresponding to the purely

chiral transformations (1. 3) one finds for qu the transformation law

. )
1,2 cosw + (q)3/f) sinw

q>3cosw - f sirw

P37 Cosm+ (cp3/f) sinw (1.7)
and, for éi ,

1,27 4,2

¢, — @éjcosw+ lfjgg sinw (1.8)
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which replace (1. 4) and (1. 5) respectively, The realization (1. 8) was
adopted by Schwinger 42 We have reproduced it here because it lends
itself readily to ‘''proving' the non-invariance of the vacuum. Thus,
for infinitesimal « the transformation (1, 7) gives, in particular,

2
o)

o, = wf (1) (1.9)
f

the vacuum expectation value of which cannot possibly vanish 5) since
the right-hand side is positive-definite. The realization (1. 6) is pos-

sible only if the vacuum breaks chiral symmetry., Notice that this

argument does not depend on the existence or non-existence of a

Lagrangian,

For alternative parametrizations, such as (1.4), it is not
possible to make such a categorical statement, However, for practical
purposes where the non-linearities are always interpreted by power
series expansions in x/f, the implication is the same, Non-linear
constraints can be dealt with by power series methods only in theories
with intrinsic symmetry breaking. The particles associated with the
preferred fields are in fact the Goidstone'boons. One way to see
this is to remark that nowhere in a chiral invariant Lagrangian does the
field x appear without being accompanied by apgr_ as well, It follows
that the fields # must describe massless (spin zero) particles, Thus
a vacuum state is indistinguishable from a state with two zero-frequency
pions, four zero-frequency pions, etc.,, provided the pions together
fofm an I =0 multiplet of the subgroup SU(2). Since the pions form an
incomplete multiplet of SU(2) x SU{2) it is clear that these physically
indistinguishable states of lowest energy are not, in general, chiral

invariant,

So far we have said that if non-linear realizations are intro-
duced by considering linear realizations of the preferred fields together
with a constraint, the constraint implies that the vacuum state in the
theory must be a non-invariant stéte,_ and the symmetry a spontaneously

broken one, with the independent ones among the preferred fields playing

. - T - W T CIE LA TOPRRA - - LTI Ry »»i .
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the role of Goldstone bosons. Consider now the converse problem:
given a theory with a chiral invariant Lagrangian it may happen that
the ground state is not chiral invariant, In this case there must appear
Goldstone bosons corresponding to the components of the symmetry
which are absent from the vacuum, ©One }nay introduce into the theory
a set of spin-zero fields describing these bosons, The problem one is
'presented with is how to couple such mesons with other particles so
that the consequences of the vacuum asymmetry are made explicit,
These effects must include, for example, the guarantee that these
particles remain massless even after interacting with other particles,
The formalism must also give a correct account of the perturbations of
masses and coupling constants on account of symmetry breaking., Our

soluiion to the problem is to supgpest that the appropriate formalism is

the one where a non-linear realization is employed with these spin-zero

fields playing the role of the preferred fields.

The problem of making explicit the Goldstone bosons can be
solved in various ways 6). Suppose, for simplicity, that the L.agrangian

contains a zero-spin chiral 4-vector, @a: then it is possible to eliminate

®4 in favour of X = cbacba . The kinetic energy then takes the form
1 ' 2 1 2, 1
=(3 - ==(@ X3 X - m2X°)+=D ¢-D & 1,10
2(u¢aau¢a m (pa@a) Z(u p m ) D, e D¢ ( )
where D}AQ denotes the so-called covariant derivative of @ ., It is
given by
1 (9) e (9‘
= = =l - - x0 |z 1.11
XDHE auX X *u X} (1.11)
and belongs to the non-linear realization (1,5). The second term in

(1.10) contains the term (1/2)(%5@)2 together with an infinite number

of interaction terms which arise from the expansion of 1/X in powers,

i.e,,
1 1 _ol X x'2
X <X>+ X! <X> > 2 <X>3
which is meaningful provided <X> # 0 , The non-vanishing of <X>

must be thought of as a consequence of the supposed vacuum asymmetry




The particle which is characterized by the isoscalar field X
is of no particular importance in the theory. It arose as a byproduct
of the effort to set up an effective Lagrangian with Goldstone bosons,

Having got the effective Lagrangian one is at liberty to set X' = 0 ,

It is only the numerical part <X> which must be kept,

An important exception to the theorem which requires the
presence of massless bosons in situations where a symmetry is broken
intrinsically occurs when long-range vector fields are also present. 8)

If the currents of the sgpontaneously broken symmetries are coupled to a
gauge field of the Yang-Mills type then the symmetry breaking manifests
itself not through the appearance of Goldstone bosons but rather in the
acquiring of mass by some of the components of the gauge field. This
phenomenon,which was discovered by Anderson and developed by Higgs
and Kibble,will be presented in the non-linear notation in Sec, 2 where it
will be shown that the preferred field disappears from the Lagrangian if
the symmetry group is gauged, In addition - and this is where we im-
prove on Higgs and Kibble - the residual quantized objects like X' ,
whose existence is required in their models, can be set equal to zero

without doing any violence to the elegant formulation afforded by the non-

linear formalism,

Turning back to the formulation of the non-linear method,it
will be remarked that, in egs. (1,1}, the field L plays a role which is
formally similar to that taken by the 4-momentum P, in the formulation
of relativistically covariant free field equations, The analogy can be
extended to interaction terms as well. The involvement of orbital
angular momentum in the relativistic coupling of particles with spin is
accounted for by the presence of terms like éa/axa in the Lagrangian,
Likewise, the involvement of soft pions in the chiral invariant coupling
of particles with isospin is brought about through terms like
I‘a#a =7, + Yy1- X

We are not advocating the exploitation of this analogy as a
practical way to make chiral invariant Lagrangians. The existing

method which uses non-linear realizations directly is a simpler one to
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apply. However, there is another aspect of the analogy between ’Tfa

and P, which leads to a formal development of some power. This

%) that the

lies in the notion of the boost, It was Wigner's discovery
momentum 4-vector P, could with great advantage be represented in
the form

P = (Lpym (1.12)

where m denotes the rest mass, /p? and (Lp)aB a 4 x 4 matrix
belonging to the Lorentz group. The mass-shell consiraint PPy = m2
is accounted for automatically in the representation (1,12) by the
(pseudo) orthogonality of the matrix Lp . The power of this represeni-
~ ation lies in that it leads to the realization of the Lorentz group in terms
of 3'x 3 orthogonal matrices (or 2 x 2 unitary and unimodular ones).

Thus, corresponding to the Lorentz transformation

f =
Py ™ Pa =P sPg (1.13)
one has the realization
..1 ’
A—=R(pAMN=L. AL 1.14
(p, &) Ap b | ( )

where R{p,AA) is, in effect, an ordinary space-rotation. This real-
ization is of course essentially the same as the non-linear one (1. 5)
obtained in this instance by setting Py = J _92 + m2 . It is perhaps
worth noticing that, insofar as finite-dimensional realizations are in-
volved, the distinction between the compact group SU(2) x SU(2) and its

non-compact relative SL(2, C) is a minor one.

We propose to adopt the method of Wigner for dealing with non-

linear realizations. That is, we shall express the preferred field in
the form

ro=(L) ,f (1.15)
where (Lw)aB denotes a 4 x 4 matrix whose components are dynamical
variables, These variables are not all independent. They are subject

to the constraints




z (L)og T = g
B

det (Lw) =1 (1.186)

or, in other words, L7r belongs to SO(4). Included among the con-

. . L 2
straints (1,16) is of course the principal one, L f .

The main advantage to be gained by replacing the preferred
field L with the matrix (LW)QB is the ease with which such a matrix
can be used to effect a passage between linear and non-linear realizations,
Moreover, it enables one to discover the general features of a class of
non-linear realizations without the complication of having to commit one-
self to a particular parametrization, It is this formal power which
makes the boost approach useful for generalizing beyond the chiral
groups, However, to avoid semantic confusion we shall invent a new

name, redycing matrix, for the matrix L,,- and its generalizations,

since the word boost has already a rather precise meaning within the

context of the inhomogeneous L.orentz group and its representations.

The realizations of a continuous group G which become linear
when restricted to some specified subgroup H are treated by means of
the reducing matrix in Sec, 2, These realizations are then gauged in
the Yang-Mills manner. Sec.3 contains some general remarks about
symmetry breaking both spontaneous and explicit, The formal techniques
are illustrated in Se¢. 4 on a model which could have practical interest,
the non-linear realizations of SU{3) which become linear with respect

to SU(Z)I X U(l)Y .




2, NON-LINEAR REALIZATIONS

Consider the problem of constructing non-linear realizations
of a continuous group G which become both linear and irreducible
under some specified subgroup H ., One may suppose that the linear

irreducible representations of G

Y- Dglt, geG (2.1)

and their decomposition into linear irreducible representations of H
are known, It will prove convenient to assume that the basis has been
chosen so as to render the matrices, D(h) where h € H , block dia-

gonal in form,

The first stage in solving the realization problem is the de-
finition of a matrix, (Ltﬁ)aﬁ , the elements of which are field variables.

This matrix, which we shall call the reducing matrix, will be subject to

a number of algebraic constiraints and will be endowed with a peculiar
transformation behaviour under the operations of the group G . The

basic requirements are:

() The matrix qu is constrained to belong to the group G , 1i.e.,
to its self-representation. This is in order that, for any finite~
dimensional representation g — D(g) , the functional D(L¢) shall be
well defined., The number of independent fields, an , needed to para-

metrize L¢ is therefore equal to or less than the dimensionality of G .

(b) Under the operations of the group G the fields which make up

the reducing matrix transform according to

] -1
Lé-—>gL¢h (¢, g) (2.2)

where g€ G and h{$,g) € H. In other words, the columns of the
reducing matrix must be arranged into sets which transform among

themselves according to some representation of the subgroup H

(c) Under the operations of the subgroup H the reducing matrix

transtorms in the ordinary way,




-1
L¢—th¢h . (2.3)

It follows from (2, 2) that the functionals D(L,) , which are

¢
defined for any finite-dimensional representation, transtorm according
to 1
D(L,) > D(gL,h
(L) (gLyh )
-1
= D(g) D(Ly) D(h ) . (2. 4)

It is this property which enables one to project non-linear realizations

out of linear ones like (2. 1) by the operation

o= D(L;bl) v . (2. 5)

A comparison of (2.1) and (2. 4) yields for ¢ the transformation law
¢ —> D(h) ¢ (2.86)

where h = h{¢, g) is in general a non-linear structure which depends

upon the pretferred fields an which parametrize L¢

The detailed form of the matrix h(¢, g) is dependent upon the
parametrization scheme, i.e., upon which combinations of the com-

ponents (L¢) are taken as independent variables, Perhaps the

Ve
10
simplest scheme is the one adopted by Coleman, Wess and Zumino )
and, earlier, by Kibble 6),
¢ A
L, = e
¢

where Aa denotes the set of infinitesimal generators of G which are
not contained in the algebra of H . Whatever the scheme chosen,one
can discover the matrix h(¢, g) by referring the eq. (2. 4) to a represent-
ation of G which contains a singlet of H ., In such a representation

there exists at least one column, X , for which (2. 4) takes the form

DL X =~ D({Ly,)X = D(g) DX . (2. 7)

)
¢
i.e., for which D{(h) is represented by the identity. If the chosen

parameters ¢a are expressed in terms of the components of the column

_10_




which transforms according to (2. 7) then it is straightforward to com-

pute the transformation law of these parameters. Having done this,

one can compute the matrix h by comparison with (2. 2), i.e.,

h($, g) = ;;}gL¢ : (2. 8)

The method will be illustrated in the accompanying paper for the case

of the conformal group.u)

Consider now the problem of defining a covariant derivative
operator for the non-linear realization (2.6). It is evident that the

ordinary derivative is not covariant,
2 D)o y+9 Dih
y ¥ > D(h) uwl A (h) ¢

In order to be able to make covariant field equations it is essential that
one defines a covariant operator resembling the derivative, This ean

be done in the following way.

Let us imbed ¢ in some linear representation D(g)
¢ = DLy
¢
and define, relative to it, the operator A” ,
A y=DL1Yo v (2.9)
u ¢ u '

which is clearly covariant, However, one should not adopt Au as the
desired covariant derivative since it depends updn the imbedding re-
presentation D(g). In order to remove this dependence it.is necessary

to analyse (2. 9) more closely., Write
-1
A = 90 + DL ¢ D{(L . 2,10
uw ”w ( é ) A ( ¢)¢/ ( )

-1
The mairix D ap D can be simplified if use is made of the constraint

L,€G forall x ., In particular it follows that the mairix

¢

-1 _ -
L¢ (x) L¢(x+6x) = 1+5qu¢ BHL¢+...

-11-




is an infinitesimal transformation of G . In other words, the matrices
-1

ch Bu qu belong to the infinitesimal algebra of G . They can there-
fore be expanded in the form 11)
Llo L =i(L'1a L,). s (2.11)
¢ ©u ¢ ¢ u i '
where the matrices 8, constitute a basis of the algebra and the co-
efficients of the expansion are denoted by (Lq-bl au qu)i . In the re-

presentation D(g) where the infinitesimal generators Si are represent-

ed by Si , the expansion (2,11) takes the form

-1 Ll
D(Ly )3, D(Ly) = i(Ly 9, LS, . (2.12)

¢ ¢'i i

The transformation behaviour of the coefficients in (2.11) is
complicated by the presence of the derivative operator. From (2. 2)
one finds

-1 -1 -1

L¢ 8“_l L¢

-1
- h(L¢ Bu L¢) h +h8#h . (2.13)

That is, there is present, in general, an inhomogeneous term in the
transformation law, Clearly, however, the inhomogeneity belongs to
the algebra of H , This point is of crucial importance because it

means that the fields (qu Bu L¢)i can be divided into two sets, one of

which transforms covariantly while the other contains the inhomogeneity.

Let us suppose that the algebraic basis s, has been chosen in

i

such a way that it can split into two components 12) , m, and na ,
which transform independently under H . Suppose, moreover, that
the my constitute a basis for the subalgebra H . In this basis the
expansion (2. 11) takes the form

1 -1 .

=L, 9L, =T m +AD ¢ n (2.14)

i7d ue pa o g a a

which is to be looked upon as the definition of the field quantities I“m
and Du ¢a . The inhomogeneous term in the transformation (2,13)
affects only the F.uaf' and the fields DU ¢a therefore belong to a bona-

fide non-linear realization of the group G . They are to be inter-

preted as the covariant derivatives of the preferred fields q’;a in terms

of which the reducing matrix is parametrized. The real parameter

-192-
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A- will be fixed by normalizing the kinetic energy term associated with

¢

a
Corresponding to the expansion (2. 14) one has, in the re-

presentation D(g) ,

l -1 -
. D(Lq5 )3, DLy =T, Ma+>\Du o N, (2.15)

which can be substituted into the expression (2, 10) for A,u .
=9 + i A+ 1A
Auw u\b 1Fua Maw i Du ¢a Na v o (2.18)

Since the left-hand side of (2.16) transforms covariantly, as does the
third term on the right, therefore the sum of the remaining two terms
must also be covariant, The latter part, denoted Duw , has in
addition the required property of being independent of the imbedding

representation, Thus, the covariant derivative of ¢ is given by
D =9 y+il’ M ¢. 2,17
L v=9 v o Vg ¥ ( }

Finally, consider the problems which arise when the transform-
ations of the group G are made space-time dependent, i.e., when G

is turned into a gauge group of the Yang-Mills type
¥(x) - D{g) ¥(x) , g=gx)eG . (2.18)

There is no need to alter the prescription (2. 5) for extracting the non-
linear realizations from ¥ . Indeed, the non-linear transformation
law {2, 6} is formally unchanged since the matrix h(¢, g} is defined fox
arbitrary g(x) € G . The modifications are of course needed in the

definition of covariant derivatives,

Now it is well known that the ordinary derlvative is not covariant

under space-time dependent transformations
o, ¥(x) > D(g) 3 ¥(x)+ 9, Dle) ¥(x) . (2.19)

With the basis Si defined above one can write

-13-




1 -1
= o
g (28,8 );s; (2. 20)
. -1
since the matrices g Bu g belong to the algebra of G . Therefore,

(2.19) can be expressed in the form
-1
o 9+ i )] 2
u‘i’(x) - D(g) (u ilg 8 )i Si) Y(x) . (2.21)

In order to replace this with a covariant formula one must introduce a

set of gauge fields

A = A s, (2.22)
# pui i
which transform according to the law

-1 1 -1
A A +- go . 2,23
y 88,8 i 89,8 (2.23)

The covariant derivative, for linear representations, is then defined by
™V =@ +ifA (S)¥ . 2,24
HY =6, i Sy (2. 24)

In the usual fashion the covariant derivative of the gauge field itself is

contained in the antisymmetric tensor

F =3 A -3 A +it[A ,A ] . (2.25)
My povoov oW O

From the expressions (2. 24) and (2. 25) which are covariant in the linear

sense, one can project out the generalized non-linear covariant derivatives.

Firstly, if ¢ is defined by (2. 5) its covariant derivative must be con-

tained in the operator

-1
A = D(L 9 +ifA S)VY
¥ ( s ) (u ui 1)
which can be simplified to the form
= 4 1
Au v (a’u if BMi si) W {(2.26)

where B,ui is a modified gauge field defined by

1 1 -1
+ - .
A# Ld’ 5 L, o L . (2.27)

By~ L ¢ u ¢

[V

~14-
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It transforms under a general gauge transformation g(x) according to

1, -t
B -hB h +-—=ho h . .
M H if h M (2.28)

The most important feature of this transformation law is the fact that
the inhomogeneous term belongs to the algebra of H , This means

that the operator A!’1 of (2. 26) can be separated covariantly into two

pieces,

Ay =D y+iX(D é)N ¢

which defines the generalized covariant derivatives

D ¥

2 +if B M 2.2
" (u i e a)x!/ (2, 29)

IiB . (2.30)
a Ha

b Du ¢
These expressions are covariant against gauge transformations of the
second kind. It remains only to find the covariant derivatives of the
fields B’m and Bua . These are contained in the antisymmetric
tensor
-1

B =L F oL
Iy ¢ “uv o

.which, in view of the definition (2, 27), goes into the form

B =3 B -8 B +if [B,B ] . (2, 31)
[ ' A T BV

The realizations discussed in this section can be used in the
cénstruction of Lagrangians which are invariant with respect to the
transformations of G . Firstly, a Lagrangian which is manifestly
invariant with respect to the subgroup H can be modified so as to be-

come invariant with respect to the space-time independent transform-

ations of the larger group G . It is necessary only to replace the
ordmary derivatives 6 ¢ by their covariant form D Y as given in
(2.17) and to take account of the new zero-spin boson field ¢ , whose

existence this implies, by adding a covariant kinetic energy term,

1 *
5D, 8) (D, )

-15-




and, possibly, other derivative coupling terms using DIJ d:a . It is
not possible 10 construct any covariant object which contains a term
like dv: an and it therefore follows that the new bosons must be without

mass,

The invariance of the Lagrangian can be further enlarged to
include the space-time dependent transformations of G by introducing
a gauge field B” , which transforms according to the reducible non-
linear realization (2. 28)J. The covariant derivatives Dui,l/ and DM ¢a
are given the new forms (2. 29) and (2, 30), respectively, while, for the
gauge field, it is necessary to adjoin the kinetic energy term

B ‘B
uv [Ny

W [

where B#V is given by {2.31). The upshot of these final modifications
is that the preferred field qﬁa and its massless quanta have disappeared
from the Lagrangian. They have been absorbed by a redefinition (2. 27)
of the gauge field, Not only has the multiplet of massless bosons qba
disappeared: part of the gauge field, B.ua’ has acquired a well-defined
mass, f/A . The other part, B,ua , which enters the covariant deriva-

tives, remains without mass.

This phenomenon, whereby the introduction of a gauge multi-
plet of vector particles causes the disappearance of the massless zero-
spin particles, has been discussed by a number of authors 8) in the con-
text of spontaneous symmetry breaking, In Sec.3 we show that this is
precisely the context in which non-linear realizations have meaning.

The massless zero-spin particles are indeed the Goldstone bosons,

i < b s 1 e ek e ERERREIE i R S T



3. SPONTANEOUS SYMMETRY BREAKING

A, The purpose of this section is to demonstrate that the formal-
ism of non-linear realizations and effective Lagrangians provides a
natural framework for treating intrinsically broken symmetries., The

6)

argiments given here parallel those of Kibble .

To discuss a system with spontaneous symmetry breaking one
must have in mind a .‘Lagrangian which is invariant with respect to the
transformations of some continuous group G . Secondly, one must
assume that the ground state or vacuum is not an invariant of G but
only of some subgroup H . This property of the ground state is
signalled by the non-vanishing expectation values of fields or combin-
ations of fields which belong to non-trivial representations of G , Its
consequences include symmetry breaking perturbations of the masses
and couplings of physical particles and, in particular, the appearance

of spin~zero massless bosons.

B. Consider a system of fields, fermions and bosons, denoted
collectively by ¥ and,in addition,a spin-zero multiplet M (some com-
ponents, Ma', of which will correspond to Goldstone particleS) which

transform according to the reducible linear representations

¥ — D(g)V¥
(3.1)

M- Di(g M
where g denotes an element of G and D, ID are the matrices
appropriate to the representations concerned. The Lagrangian of this

system is supposed to be invariant under these transformations,

L(¢¥,9 ¥,M,2 M)=L(DY¥,Ds ¥, DM, Do M). (3. 2)
¥ 1 M 4

This means that the system is classified into complete multiplets of G
with the various couplings which are allowed by this symmetry. Ii may
therefore be quite unlike the physical reality which reflects the ground
state asymmetry. The mass splittings of the physical multiplets can
be large and in fact so large that some of the multiplets may be

regarded as incomplete., Likewise for the couplings,
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In such a system it is known that Goldstone bosons must be
present, Being massless, these particles cause a re-adjustment of
the stable states of the system. In particular, the physical vacuum
should contain an admixture of zero-energy Goldstone particles {(which
is just a way of saying that it is degenerate). This property of the
Goldstone particles can be put formally by saying that they effect a re-
definition of the "bare'' masses and coupling constants which takes
account of the ground state asymmetry. We wish to introduce a set
of fields ¢a (x) to represent the Goldstone particles and to put the

Lagrangian {3, 2) into a form which, though still invariant under the

transformations of G , shows explicitly, in its bare masses and

coupling constants, the effects of the underlying asymmetry. As stated
in the introduction,the method of non-linear realizations, with the fields
¢a(x) as the preferred fields, appears to be just the right construct to

solve this problem,

The subset Ma of M referred to earlier transtorms under
the subgroup H like the set of those generators n_ (cf. (2.14)) which
correspond to the spontaneously broken symmetries of G . The

remaining components of M which are not included among the set Ma

will be labelled as MA ,
Ma )
M =
MA /
In such a case it is possible to invent a transformation

L¢(x) € G which transforms away the components Ma in the sense

that one can represent M in the form

M = ID(L¢)m (3. 3)

a a2 ’

The components of the matrix L¢ - obtained as non-linear functions
of M by solving (3.4) - must satisfy various constraint conditions in

order that L¢ belong to G but can be expressed in ferms of a set of

-18-
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suitably chosen independent parameters ¢a equal in number to the

ma of (3,4}, In principle, therefore, one can solve for these para-
meters ¢a {the preferred fields) in terms of the original set of fields
M. (The number of ma’s being set equal to zero equals the number
of éa‘s introduced..) Since the latter fields transform according to
the given linear rule {3.1) one can determine the transformation law of
the preferred set an . This law is quite generally non-linear and, if
the non-linearities are expanded in powers, inhomogeneous. It there-
fore follows, as has been emphasised in Sec. 1, that the representation

(3. 3) can be used only in theories with non-invariant vacua,

C. It may be that some of the fields ¥ and in particular MA in

(3. 2) do not represent physical particles ~ or they represent particles
which are so far removed in mass from their partners in the set M

as to be irrelevant dynamically (the analogy of 1\/[a is with T (a=1,2,3)
and of MA with ¢ in the chiral model). The chief problem there-
fore is to exhibit the formalism in such a way that these can be removed
from consideration; we do this by following the standard non-linear
prescription of imposing constraints and the details of the method are

as follows,

In the Lagrangian (3. 2) substitute the expression (3.3) for the

fields M and its analogue for ¥ to give

L(¥,3,%, M, M) = L(D(L,), 3 D(Lg,D(Ly)m, 3 D (Ly)m)

-1 -1
L(:,b,D(Ld’ )2, D(L Y, m, D(Ly )BMID(L¢)m) (3. 5)

where the validity of the second step depends upon the invariance of this
Lagrangian under the transformations of G . The derivative terms in

(3.5) involve the operator Ay defined in Sec, 2,
-1
D(L 9 D(L = A =D +iA D N 3.6
(¢)u (¢)¢ u‘// ”_nb i uéa aw, (3. 6)

where Du Y and D“ ¢a denote the covariani derivatives defined by
(2.14) and (2.17). Similar relations hold for m ., The fields ¥ and

m defined by (3. 3) and (3. 4) belong to a reducible non-linear realization
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of G which becomes linear with respect to the subgroup H . The
number of componenis ¢, ¢a and my is equal to the number of
original field components ¥ and M , However, it is clear that any
subset of the fields ¢ and m, which spans a {linear) representation
of H can be set equal to zero without doing violence to the invariance
of L. . Such a disappearance of some of the components of ¥ is
balanced by the appearance of algebraic constraints on ¥ ., This can
be seen by inverting the formulae (3, 3) and (3. 4) and expressing the

components ¥ and m, as non~linear functions 14) of ¥ and M.

Thus one can express the Lagrangian (3, 2) in terms of the

non-linear variables

L(‘i’,au‘P,M,BuM) = L((b,Auxp,mA,AumA) (3.7)

and feed in the realistic bare masses and coupling constants, Unwanted

15)

components' of ¢ and m, can now be set equal to zero ! the only rule
to be observed is the manifest invariance of the right-hand side of (3. 7)

under the transformationsof the subgroup H

D, Contained in the Lagrangian (3. 7) there will in general be the
term

L D ¢ D qb*‘ 18 ¢ 0 ¢*+ interaction t s

- - = 1

2P % D% 759 %% % er erm

The first term on the right-hand side of this is to be interpreted as the
kinetic energy of the Goldstone bosons, These are massless bosons
because, although an appears elsewhere in the Lagrangian (in the
covariant derivatives of ), it is always accompanied by Bu (ba . There
is no mass term, That they are the Goldstone bogons is clear since

they appear only when the symmetry is broken spontaneously by the

imposition of constraints, It is clear from the above discussion that
these particles could not -even be defined if the vacuum were symmetric,
On the other hand, if the Lagrangian were not symmetric they would
acquire a mass since the matrix D(qu) would, in such a case, fail to

be eliminated completely out of the right-hand side in (3, 5).
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E. It is of interest to see what happens if a long-range gauge field
is present, Let us therefore replace the Lagrangian (3. 2) by one which

is invariant under iransformations of the second kind. This means

introducing a set of gauge fields, i.e.,

i
= 2 it +=F
L{¥, “‘i' +if Aui Si ¥)

4 pvi Fuvi (3.8)

L(Y,IL\I’) - Ll

in the notation of Sec. 2., If the expression (3.3) for ¥ in terms of the

non-linear realization ¥ is substituted in (3. 8) one finds

1
L, =L 0 +if S + =
1 W, uw ! B.ui i 2 4 Buv:i Buvi (3.9)

where B‘_1 is defined in terms of the gauge fields A“ and the reducing
matrix qu by (2.27), It transforms according to the non-linear rule
(2.28). The covariant derivative of B,u is contained in the expression
(2,31} for B.uv . The Goldstone particles, represented by L¢, have
been absorbed in the redefined gauge fields B,u . They no longer exist
as independent particles. The fields éa still appear implicitly in the
"non-linear' transformation laws of ¢ and B,u , but they no longer
have any dynamical significance, Moreover, the Lagrangian L1 ,

being independent of the ¢a , is not of the non-linear variety.

Since the gauge fields B,ua transform inhomogeneously (2, 25)
it is essential for the preservation of gauge invariance of the second kind
that there should be no mass term szia . However, it is possible
to maintain gauge invariance of the first kind in the presence of a term

like
1 2 1, -1
g ™ (Bua -3 Ly

2
3, Lo (3. 10)
or, in other words, if the Goldstone particles are revived. This means
that intrinsic symmetry breaking in the presence of a gauge field of

finite range requires the presence of Goldstone particles.

. We conclude this section with the remark that the Goldsione
fields QSa will become massive if and only if there is introduced in (3. 2)
an explicit symmetry breaker, If that is done, it is clear that the

reducing matrix’ L¢ must appear explicitly in the transformed Lagrangian
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(3. 5) and not merely in the covariant derivatives. This means that

an is no longer everywhere accompanied by auqsa and so, by expanding
L¢ in powers of ¢ , one can always find a term proportional to ¢

For example, one could add to the Lagrangian (3. 5) an explicit sym-
metry breaker of the form

nz )] (L

" (3.11)

¢)
where D(g) denotes some chosen (self-cohjugate) irreducible represent-

ation of G and Il)ll(g) indicates a matrix element of ID(g) between

states which are singlets of H , i,e.,

JDH(hg) = IDll(gh) = D (g) . (3.12)

11

The presence of a term like (3.11) in the Lagrangian therefore does not

violate the symmetry under H

1
This is the approach advocated by Weinberg 6). A still more

satisfactory Lagrangian, fully invariant under G but still producing a

mass for the ¢-particles, could be

1
L= (L —%mzqﬁz) +§m2¢2

where m2 is computed self-consistently by setting up an interaction
representation and computing the self-mass of the ¢-particle which is
then put equal to the physical mass, i.e., its bare mass is zero,
Whether this self-consistency procedure will introduce other Goldstone

particles into the theory is an open question,
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4, A SIMPLE EXAMPLE

In order to illustrate the techniques presented in Sec. 2 we
consider here the non-linear realizations of SU(3) which become linear
with respect to the subgroup SU(Z)I X U(I)Y . This example is
sufficiently complicated to exhibit the main features of the non-linear
formalism and, moreover, it has some physical relevance in that the
breaking of SU(3) symmetry may well be, at least in part, intrinsic, In
addition, as can easily be seen, only very little effort will be needed to

extend the formulae given here to the case of chiral SU(3} x SU(3} broken

spontaneously to chiral SU(2) x SU(2),

The first stage in establishing the non-linear realizations is the
construction of a reducing matrix (LK)E € SU(3) . This matrix must

transform according to

-1
LK‘"* g LK h (K, g) (4.1)

where g € SU(3) and h € SU(2) x U(1) . Since SU(2) x U(l) is a four-
parameter group while SU(3) has eight parameters one expects that there
should be a set of four preferred fields, K and K with which to para-

metrize L These fields correspond to the hypercharge changing

K
transiormations of SU(3}. Out of all the possible parametrizations we
shall pick one that does not involve square roots (and is therefore the

nearest in spirit to Weinberg's treatment of chiral SU(2) x SU(2)), It

is given by r -
. KK , L- APKK KK 2K
KK 1+ AZEK KK 1+ AzﬁK
Ly -~ ~ . (4. 2)
2K 1-AKK
1+ 2°RK 1+ A2KK
L 4

where XA denotes a real parameter to be fixed later. The field K is
a two~-component column vector and K denotes its hermitian adjoint,

a two-component row vector,

It is necessary to demonsirate that the parametrization {4. 2) is

consistent with the transformation requirements (4,1). This can be
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