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FUNDAMENTAL THEORY OF MATTERj A SURVEY OF RESULTS AMD METHODS

INTRODUCTION

Our sys temat ic knowledge of s t ab l e and semi-s tab le forms *)

( p a r t i c l e s and resonances , l i f e t i m e s "?/ 1O~ ^ s e e s ) in whioh mat te r

seems to exist, extends at present to forms oreated in laboratory

oollision experiments vith proton beams of energies less than 30 BeV.

A like situation holds in respect of the fundamental forces which

govern the behaviour of these forms of matter; our systematic

empirical knowledge extends no further than these same relatively low

energies. I wish to give a rapid survey of what we believe are some

of the "truths" and "insights" about fundamental laws of physics which,

though abstracted from this low-energy data, may, hopefully, survive

in a future theory.

The oourse that theory of matter would take in future centuries

- i t s particle aspect and the hierarchy of forces between particles -

was forecast in a remarkable prediction made by Isaao Newton:

"Now the smallest partioles of matter may cohere by the strongest

attractions, and compose bigger particles of weaker virtue; and many of

these may cohere and compose bigger particles whose virtue is s t i l l

weaker, and so on for divers successions, until the progression end

in the biggest partioles on which the operations in chemistry and

the colours of natural bodies depend, and which by cohering compose

bodies of a sensible magnitude.

"There are, therefore, agents in nature able to make the partioles

of bodies stick together by very strong attractions. And i t is the

business of experimental philosophy to find them out."

In Newton's day, the only virtue which particles of matter were

known to possess was gravitational. Subsequently, we have learnt

that there are at least three other virtues. These are: l ) strong;

2) electromagnetic! 3) weak; and^posaibly, 4) super-weak.

..6.6x 10-22KeV sees _ _. ,Q-24*) Lifetime r * 6,6x10 Key sees ^ T h u a 1 Q

width P width in KeV

lifetime corresponds to resonances of width ^100 KeV.
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There are two important points to be made about these fundamental

forces:

1. They have vastly different strengths; typically the ratios are,*/

strong : E .T.f • s weak i super-weak ; gravitat ional

1 : 10~2 : 10~5 : 10~8 : 1O"34

2, Even more important; there is a sharp selectivity about the other

forces in oontrast to the universality of gravitation. Thus,

(a) strong forces divide matter sharply into hadrons (strongly inter-

acting matter) aad leptone (with no strong forces);

(b) E.E. forces divide natter into electrically charged and

uncharged j

(c) weak forces divide matter into "left-spinning" and "right-

spinning". They act selectively between "left-spinning" matter

in a sense I shall define more precisely later.

As in the familiar case of electrodynamics, i t turns out that

this- selectivity is best expressed by assigning to different

varieties of matter a number of fully or approximately conserved

charges (strong charges, EJT. charge, weak charges). The assign-

ment of charges serves two roles:

1. Kinematic; since the charges defined are (fully or partially)

conserved, they serve to classify single particle states.

*) These are ratios (of squares) of the well-known dimensionless

coupling constants, normalized (where necessary) with proton mass.

There has been the conjecture (due, I believe, to Dirac) that the

strengths of these forces and presumably also their relative ratios

may have varied with the age of the universe (G. Gamow, Phys. Hev.

Letters _19_, 759 (1967)). Evidence to show that this is not likely

for some of the constants,has been adduced recently (P.J. Dyson,

Phys. Rev. Letters, 1£» 1291 (1967); A. Peres, ibid. _!£, 1293 (1967);

J.N, Bahoall and K. Schmidt, ibid. ]£, 1294 (1967); and SJf. Chitre

andT. Pal, ibid. 20, 278 (1968)).
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2o Dynamiot as for the case of the Coulomb fbroe the long-range part

of physical forces is determined "by the magnitudes of the correspond-

ing charges.

Since the concept of strong, weak and 3 ,K. charges is so crucial

to particle physios, nearly half of my talk will "be devoted to it.

Indeed, if I were asked to list the major recent "truths"

in particle physios, the list would be somewhat like this:

1. A clearer comprehension of the charge concept, both for

classifying particles and for the dynamioal role it plays. In

particular, the discovery that there is a unifying principle running

through strong, weak and EJ-I. foroes, in that these forces share the

same basic charges and their corresponding currents (scaled differently,

of course,in strength).

2. Recognition of the essential correctness of basic laws of

relativistic quantum mechanics (RON: ) up to the energies available at

present. Quantum mechanics was invented for systems of typical
Q

dimensions ~10*" cm, typical energies measured in eV, Non-relativistic
quantum mechanics continued to work in the nuclear domain with typical

—12
lengths ^10 cm and I'eV energies - a vast extrapolation from the

situation i t was invented for,*) Relat ivist ic quantum theory - and the

strongly operative word i s r e l a t i v i s t i c - seems to hold down to 10 cm

and BeV energies, With quantum theory,we appear to have bui l t our-
no

selves a house with no doors and/windows and with walls so high that

(in Jos t ' s phrase) i t i s hard to know if i t i s a house or a prison we

have inherited. I t will be clear as I go on how tight and res t r ic t ive

the structure of r e l a t i v i s t i c quantum mechanics i s ; for example, i t

does not appear to permit an easy mixing of space-time degrees of

freedom with the "internal" degrees of freedom represented by the

charges.

3 . Renormalized quantum electrodynamics (Dirac-I'axwell theory of
to

electrons and muons) which accords/the highest experimental
accuracy achieved at present. Since Professor P, Low will review

nineteen-
*) There never was a conference held in the (thirties, where some of the

founders of quantum theory did not express doubts about this extra-

polation. The fundamental length at which quantum mechanics was
has

expected to break down/continually diminished in size as time has

gone on.
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i t in the next hour, I shall not discuss this most beautiful of theories

which makes every one of us purr with elation.

4. Developments in weak interaction theory, initiated by the discovery

of their extraordinary space-time reflection properties, which were first

correlated through the recognition of the crucial role of the two-

coinponent (left-handed) nature of the neutrino, and through i ts later

generalization, to the concept of chirality (handedneas) for all matter.

Prof. T.D. Lee will be covering this soon after this lecture and I shall

not discuss this beautifully connected development.

The plan of my lecture will be as follows. First we go over the

Roaenfeld table (Appendix A) of stable and semi-stable particles and.

resonances, introducing at the same time the various classifying charges;

next describe the theoretical apparatus used, setting down also the

canons of relativistic quantum mechanics (RQT)i finally, turn back to the

charges in their dynamical role and oonsider other dynamical symmetries

not associated - to our present knowledge - with charges, lie end with

speculations whether these symmetries foreshadow discovery of newer forms

of matter interacting with super—at rong forces.
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PAST I

CLASSIFICATION OP PARTICLES ATJD CHARGES

A. POINCARE DESCRIPTION

Throughout we make the assumption t h a t laws of physics are

t r a n s l a t i o n - and space-time r o t a t i o n symmetric. This assumed

Poinoare symmetry of Bpace-time implies in turn conservat ion of

energy^momentum (Pi,) and angular momentum ( j j , v ) *), respec t ive ly?* '

*) Conservation law of angular momentum is verified empirically,

for example,in 0 —*0 internal conversion in electro—transitions
22

in Ge ; Sunyar (G. Feinberg and If. Goldhaber, Proc. Nat. Academy,

£>, 1301 (1959)) found a ratio ^/e~ < l/lOOO . Since y-rate for

a 1 —> 0 transition would "be ^10" faster than e~ rate for

0 —• 0 transition, one concludes that the amplitude for the

admixture of spin 1 state with spin zero state is less than 1 part

in 10-4 .

**) The argument connecting symmetries and conservation laws, though

well known, is worth repeating. A symmetry in quantum theory is

represented by a unitary transformation U relating a given state of

the system to the one obtained by the symmetry operation,

Infinitesimally, let

U - 1 + id X (J hermitian)

A symmetry ia exact if U commutes with the full Hamiltonian of the

system; it is a partial symmetry if it commutes with only a part

(hopefully the dominant part) of the Hamiltonian. Thus for an exact

symmetry,

[u , H] - o -[xe , H] ,
dX

i.e., " 0
dt

so that X is a time-independent operator; i ts eigenvalues do not
Q "

change with time and serve to classify one particle states.

If the symmetry is only part ial , i . e . , if the Hamiltonian con-

sists of two pieces, \ n V + eH
n o n_ i n v . » dXQ/dt / 0 ; i . e . , Xe

i s time^Lependent, i t s time r a t e of change being propor t ional to the

symmetry breaking parameter g .
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I t is our aim in the sequel to specify a set of quantum operators
whose eigenvalues serve to classify single-particle s ta tes . A
complete characterization of those involving the Poincare operators
VJJ and J^v (jJ. => 0,1,2,3), was given "by Wigner as follows:

Consider the rest frame of the partiole P. = 0 , i ^ 1,2,3.
Single-particle states are labelled aocording to:

( i ) Rest mass (eigenvalues of the operator ?0)«

( i i ) Spin, The three spin operators v J. corresponding tto space
rotations close on the algebra of SU(2);

Thus from standard group theory, quantum mechanical states (in the
rest frame) can be labelled with the spin eigenvalues J and J,
of the two (Casimir) invariants of SU(2) - i . e . , of the operators

J? - J(J+l) and

where **)
0,

*) J , J-, J, are the same as J ., J^,, J-,2
 of

**) If the precise value of J., is not specified, the spin label

J denotes collectively a (2J+l) dimensional spin multiplet of

particles. In subsequent work,spin J will be speoified by in-

dicating the multiplicity: thus multiplicities 1, 3f 5» ••• will in

indioate spins 0, -̂, 1, .... , respectively.
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( i i l ) Particle-antiparticle duality

One of the gifts of local relativiatic quantum theory and Poincare

symmetry ie the assertion that all particles possess antipartioles *)

(with the same mass, same lifetime and opposite charge). If experiment

shows that this symmetry does not hold, either the Lorentz-invariance or

the looality of the theory must be abandoned.**)

Summarizing, the Poinoare classification of physical states proceeds

Kith the following ingredientsi ***) (Table 2)

*) The reason for this is Bubtlej real Poinoare invariance in a local

theory (defined more precisely in Part IIB) implies - i t so happens -

full complex Poincare invariance (U • 1 + i°̂ *y> J a« > ^ complex).

Now a part of the complex Poincare group oonnected to real Poincare

is spaoe-time reflection x_—* -x (parity or P—operation) and t—»-t

(time refleotion, T). This, together with C (conjugation of particles

with antiparticles), defines the CTP symmetry which converts incoming

particle states to the corresponding outgoing antiparticle states.

CTP symmetry is thus an in-built part of a Poincare-Lorentz-symmetric

looal relativistio quantum mechanics.

**) Present limits on mass and lifetime equalities of TT+ and IT" , for

example, set (not too stringent) limits on the experimental validity of

~ - - 1 - .064 ± .069

***)The impatient reader will get a reasonable notion of the concepts

in the subject by reading only the tables.



TABLE 1

Invariance or symmetry
represented by

U »

X. observables

If symmetry is

[U,H]

then
d

dt
I f

d
dt

unitary

1 + ic^J

ft

exact,

- 0 - [)

y e ( t ) .

xt(t)\

symmetry ia "broken.

transformation

** TT 1
i a m XX 1

0 .

0

TABLE 2

Poinoare

l ) Rest mass

2) Spin

Spin algebra

J

Multiplets

of *

dimensionality

3) Particle S5

description

SU.( 2 ) =>

" i € i i k Jk

- o, h i,

- 0 , - t - * , ^ , . . . .

If £, 3,

antipartiole duality.
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B. CLASSIFICATION CHARGES

The spin operators J. (and thei r group-theoretic properties)

provide prototypes for other classif icat ion charges. We now go over

these.

1. Electric charge

Empirically the electric charge Q ,

(a) is conserved Q • 0 \ -r (electron) > 2 x 10 yrs.j

(b) possesses (like J , ) the eigenvalues 0, +1, +2, . . . in

units of electron's charge. (in algebraic language

Q is the generator of an internal symmetry group U(l).)

All known charges exist in units of electron's charge;

(c) the most remarkable manifestation of this is the charge

equality of electron and proton verified to batter than

1 part in 1020 .

2. Strong (hadronio) charges

Unlike the electric case with but one type of charge known,*/'

there exist a variety of strong charges which manifest themselves

for strongly interacting particles, the so-called hadrons. These

are baryon charge (B) , hypercharge (Y), isotopic charges (ij) and

unitary charges (?).

(a) Baryon charge B

Like electric charge, baryon charge B carried by protons,

neutrons, etc, (see Table 4 for more baryons),

( i ) is absolutely conserved **)

rfree proton> ^ y P S "

23
T, , . > 4 3c 10 yrs. ,

bound protons

*) There could, for example, exist par t ic les with magnetic charges

(monopoles) but at present there i s no evidence for these.

**) These are estimates of Reines, Cowan and Goldhaber (see G. Feiberg

and K* Goldhaber, i b id . ) who looked for possible proton decays in large

hydrogeneous sc in t i l l a t ion counters C ÎIn .
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( i i ) possesses (like J . ) eigenvalues

°» i 1 * ±2» ••*
in units of proton's baryonic charge.

A remarkable ("but not understood) empirical relation

seems to exist connecting spinj and baryon charge B ;

empirically (J- £B) takes integer but not half-

integer values.*)

(b) Hypercharge Y

The discovery of hyperoharge Y for strongly interacting particles

is the outstanding post-war discovery of experimental hadron physics.

Like Q and B , Y is associated with the algebra of group

structure U(l) (eigenvalues Y - 0, 4-1, +2, . . . ) . Unlike Q and

B , particles of large Y value have not so far been reported; the

largest firmly-established value of Y is -2 for XT. Whereas Q

and B are (tb all intents and purposes) absolutely conserved, with

Y we enter the domain of partially-conserved charges Y k 0 .

A K -meson with Y =* +1 decays in 1O~ sees into a pair of

ir-mesons with Y •=» 0 , i . e . , a unit of hypercharge disappears (into

the vacuum) in 10r sees. Since the characteristic times involved

in strong interactions are of the order of 10"" - 10~ 4 sees

(AE «* several hundred KeVs), i t is dear that this relatively slow

hypercharge violation (tr ~ 10"* sees) is irrelevant (to one part

*) This empirical relation has led to a certain confusion of termin-

ology. To clarify: All strongly interacting particles are called

hadrons. Among these are half-integer (Fermi) as well as integer-

spin (Bose ) particles. Empirically all baryona interact strongly and

are therefore ha&rons- From the relation J - -̂B • integer, clearly

zero baryon charge B » 0 implies integer (including zero) spin.

Such particles are called mesons. A deuteron (J - 1, B • 2) is a

hadron, a boson, a baryon, but not a meson. When a particle is

called baryon without qualification,the normal implication is baryon

charge B =• 1 and (from J - i s - integer) half-integer spin.

-10-



in a tr i l l ion) in strong interaction physics.**)

(c) Isotopic charges

The concept of the three isotopic charges I . (which generate,

like the spin-operators J. , the algebra SU(2)) has been familiar

since the 1930*s:

0

( i ) Like spin, multiplets of isotopic charge are labelled with

two numberst

I l l - 0, i, 1, | , . . .

~" 2,
with dimensionalities 1, 2, 3, At *••

(ii) Like hypercharge, isotopic charge is not conserved

i* °
if forces other than the strong forces are taken into

account. As is well known from nuclear physics, the

isotopic symmetry is broken by electromagnetism. Thus,

*) The lack of hypercharge conservation proceeds from that part of

the Hamiltonian which corresponds to weak forces;

This is qualitatively clear since the ratio of hyperoharge-violating

decay times (K°—* 2-IT) to the hyperoharge-conserving decays

sweak '̂̂ strong ~ 1 0 ~

**) This is perhaps an appropriate place to make the essentially semantic

distinction between semi-stable partioles and resonances. Vfhen a

hadron decays through B.M. or weak forces (like K°^2ir) ; we have

called i t a (semi-stable) particle, the word resonance being reserved

for hadrons decaying through strong forces themselves (like p —>2TT).

-11-



A quantitative measure of I £ I non-conservation is the

mass difference among members of the same I-multiplet;

typically for I - 1 ,

Mass (KeV) I ,

T. 1189 1

H° 1192 0

E " 1197 -1

so that Am .< 1 part in 102 ( ^ ~ ~ ^ - ) .

"strong

(iii) For hadron physios there exists the empirical relation*-* which

expresses electric charge Q as a linear sum of hyper- and one

of the isotopic charges
Q - I, + % Y .

This is the f i rs t example of charges shared "bet-ween two

different types of interactions, strong and E .M.

(d) Unitary charges

A remarkable synthesis of isotopio oharges and hypercharge was

achieved when i t was recognized,between 1959 and 1961, that these

four charges were part of a larger set of eight, the so-called unitary

charges P. ( i - 1, 2, 3, , . , , 8 ) -which close on the algebra of the

3U(3) group

provided one identifies F-, F_, F- with I.,, I-* 1^ and T with

2/\f~~b FQ . The charge-snaring relation for hadrons, mentioned above,

now reads

^ F8 •

The multiplets of unitary charge correspond to the representations of

the SU(3) algebra; these typioally possess dimensionalities 1, 3, 3,

8, 10, 27, 35i ...
*^" ^m%^ ^ s » _ . .

numerical
*) In all such(sharing relations,and throughout this lecture, the

charges are specified after scaling in their "natural'1 units.
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3 in oft the algebras of the hyper charge (tJL(l)) end iaotopio oharg*
(SCT (2)) are contained in the alge"bra of SU(3), . each 3U(3) multiplet
contains in a specified manner a number of lL.(l) and 3U(2) multi-
p le ts . Listed below are some of the known 8's and 10's of

SU(3) - the existence of the la t ter ^ being splendidly confirmed "by the
discovery of the Si". The fundamental t r iplet represent-
ations 3 and 3 of 3U(3) from which, according to standard
group theory, al l other representations can "be made**) by repeated
multiplications,have been named quark and antiquark representations.
Their isotopic, hypercharge and charge content (based on the empirical

formula Q - I , + ) would be as follows:

I 3

Quark 3, - |

_ l

0

Antiquark 3 - ~n

1
2

0

TABLE 3

y Q

1
I
1
3

2
" 3

1
""3

1
" 3

2
3

- I3 + &

2
3

_ I

1
" 3

2
" 3

1
3

1
3

*) A puzzle on par with the puzzle of non-existence of particles

with I Y 1 > 2 is the non-appearance in particle spectrum of higher

SU(3) raultiplets 27, 35, . . .

**) e.g. , 3 x 3 - 8 + 1
^ ^ * - ^ - y S l « - ' • * - '

3 x 3 x 3 - 1 + 8 + 8 + 10 .
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Note the fractional charges one may expect quarks and anti-quarks to

possess; no physical particles with these charges are known to exist

to date. The accompanying chart (Table 4) summarizes some of the

"better-known hadrons in Hosenfeld's table.

The well-identified SU(3) multiplets with their spins J and

parities P ,are:

( i ) Boson octets J • 0~, 1~", 1 , 2 ,

( i i ) baryon octet J^ » i + ,

( i i i ) baryon 10-fold J1* - 3/2+ .

Pig.2 is an important plot of s t i l l higher spin particles, some

already identified, others conjectured on the assumption that all

hadrons form SU(3) multiplets of £ and 10's (octets and decuplets).

The plots give spin versus (mass)^. Notice the important empirical

result: these plots (known aa Regge trajectory plots) are essentially

straight lines and are continually rising. One of the roost important

unknowns in hadron physics is how far in the mass scale may one expect

the rising of these trajectories, how high values of spin J are

obtained in the particle spectrum; is there an ionization limit as

there indeed is if we make a like Bohr plot of J versus I, for

the hydrogen atom levels.

Returning to unitary symmetry, SU(3) (like the isotopic 3U(2)) is

a broken symmetry; unitary charge is only partially conserved. A

measure of dP/dt is provided by the mass difference among members

of the same multiplet; e.g., Table 4 l i s t s the mass differences of

successive members of the 10-fold. There is a (nearly constant)*^

mass increase of -145 MeV (equal-spacing rule) when we go from Y • 1

to Y « -2 . A rough estimate of dF/dt is provided by Am/m ~ l/lO

*) We shall not have time here to consider this SU(3) symmetry

breaking medium-strong force in any detail . An important clue to-

wards i t s group-theoretic specification is provided by the equal-

spacing rule for masses mentioned above, which is most simply explained

if we assume that the part of the Hamiltonian breaking SU(3) trans-

forms like hypercharge. A certain amount of group theory is involved

in deriving this result which is not immediate.
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TABLE 4

I

I

I

I

J*

- 1 Y

- 4 T

- OY

» 0

- 1

=« - 1

- 0

?

K°

f

l'eeons

0 "

,"V
K°

I "

Eight-folda

B = 0

1"

+ 0 -
e 9 P

*

AJ,AJ,A-

^ K A

^' K I
D

Baryons B * 1

P n

| fl , , _

A

Y^ Y ° Y

I I -

Ten-fold

B - 1

3 +

2

* A » A~

I
*-

Mass (I'eV)

1236

1385

1530

1672

Electric charges indicated as superscripts; J =• spiira * ̂ .

Summary of Rosenfeld's table for hadrons



this rather large number giving a measure of the (medium-Btrong)

coupling strength of StJ(3)-br©aking forces relative to the otrongeat

SU(3)-symraetric forces. The nature of these symmetry "breaking forces

(unlike the case of isotopio symmetry where we know that the symmetry

is broken "by electromagnetiBm) is one of the important unresolved

problems.

To summarize, we recognize a succession - a hierarchy - of strong

charges and associated symmetries; SU(3) unitary charges, SU(2) iso-

topio charges, hypercharge and (in a category by i tself) baryon charge.

If a l l but the strongest forces in nature are neglected, these charges

are fully conserved. Their lack of exaot conservation is a reflection

of the existence of medium-strong, electromagnetic and weak forces,

respectively.

(e) Left and right unitary charges

Even if SU(3) triplets (quarks) do not exist, in so far as they

constitute the fundamental representation of SU(3), all other re-

presentations, as stated before, can be made as mathematical composites

from them.

To construct both fermions as well as bosons as composites, quarks

must carry spin •£• This circumstance makes i t possible to extend the

notion of unitary charge in a most fruitful direction. A spin-i

particle has two polarization directions for a particle in motion,

spin along and opposite to i ts direction of motion; the so-called

left spin and right spin.

For a particle of rest mass zero (particles travelling at the speed

of light) these two polarization states are completely independent

states.- There is no rest frame for a massless particle in which a

rotation may transform right-spinning particles to left-spinning ones.

There are thus not just three, but six zero mass quarks; three spinning

rightj three spinning left . Corresponding toeach spin polarization,

there are two distinct types of unitary charges defining two independ-

ent algebras, SU(3), «+ and SU(3),,. , . . The symmetry represented by

J-61T rxgut

3U(3)L x SU(3)R is of course a badly broken one, because it holds

only in the idealized limit of zero mass for the fundamental represent-

ation (the quark). ¥e shall see later that this symmetry (also

called chiral symmetry) is not a good kinematical symmetry for clas-

sifying particle states; surprisingly, however, it turns out to be an

excellent symmetry in its dynamical aspects, at least for low-frequency

phenomena (Part III).
*£) The archetypal example is the neutrino (see under leptons). Left (spinning) neutrinos exist; right

(spinning) neutrinos do not. This (two-component) aspect of the neutrino gave rise to the concept
of left and right (chiral) charges, - / £ -



(f) Nature of the internal symmetries (TTQ(1), UB(l),B(

StJF(3))

The spin quantum numbers have their origin in Poincare-Lorentz
symmetry of space and time. The other charges Q, B, Y, I , F, in
so far as they are dissociated from space-time structure, presumably
represent, in some sense,symmetries associated with internal degrees
of freedom. But are these charges really that dissociated from
space-time? I shall come back to this problem in Part IIE of the
lecture.

TABLE 5

Summary of classifying

Charges

Electrio

Baryonic

Q

B

Hyperoharge Y

Isotopio

Unitary ]

Left &
Right
Unitary

Sharing

Algebra

U(l)

u(D

u(U

SU(2)

SU(3)

su(3) x SU(3)
L R

of charges Q -

b

3,

(3

h

charges for

Typical
multiplets

£' h •••
8, 10, . . .

, 3 ) + (3 ,3 )

+ & » F3 +

hadrohs

«
Q

B

Y

*
I

F

• > ' • •

1

71

- 0

- o

ewaak

. 2
^electromagnetic

^ 2
"medium-strong

3. Leptons

So far we have dealt with hadrons. Consider now leptons —

particles without strong interactions. The known lepton spectrum

-17-
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is meagre in contrast to the riohness of the hadron spectrum,*) There

appear to "be but four leptons differentiated from eaoh other "by two

types of charge. These are:

(a) p~ , v^ ,

(b) e~ , ve .

Both ̂  and v are left-spinning objects} jJT »"̂ u each carry unit

muonic charge; e~ , v each oarry unit "electronic" charge. Both these

leptonio varieties of charge are (individually) conserved. Leptons

exhibit E,KM weak and gravitational interactions. One of the ununderstood

empirioal faots is the remarkable identity of muonic and electronic inter-

actions - roughly speaking, the equality of the two types of leptonic

charges - notwithstanding the different masses **) of these particles.

This is somewhat analogous to the surprising numerical equality of the

electron's and proton's electric charges mentioned earlier.

4. Weak charges

Both hadrone and leptons interact weakly. In analogy to strong charges,

there are weak charges, defined more precisely in Part I I I , where we shall

see that (apart from scale) these are related,for leptons,to the (left)

leptonic charges introduced above and,for hadrons,to oertain combinations

of SUL(3) oharges.

*) Recent systematic search at Stanford has failed to reveal any other

leptons with masses less than a BeV with fairly low production cross-

sections. (A. Barna et a l . , Phys. Rev. Letters JL8, 360 (1967).)

**) The large muonic mass (nearly as large as that of the pion) has

always led to the suspioion that muons may possess strong charges as

well as weak ones,
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C, DISTINGUISHED PABTICLBS AND ELEMEirTABITY

It has been Remarked that all hadrons could be oonsidered aa

(mathematical) composites of three quarks^ together with the four

leptons above, one could say that this set of seven objects - the last

remnants of the elementarity idea - constitutes in some sense a dis-

tinguished set (of particles or fields) from which all other particles

could be made.

If one wished to substitute for the unobserved quarks a set of

partioles observed physically, numerous other choices are possible.

One economical set would be the Sakata set p, n,A - but the SU(3)

symmetry would be harder to build in with this as the basic set. To

build in Stl(3) credibly the best hadron set is still the familiar old

favourite, the octet of baryons IT,A, 13, Z , of whioh the nucleon is

a member. This, however, would be only one of the many choioes

possible.

The arbitrariness of such a choice brings us back full cycle to the

dilemma of elementarity. The historical tradition of physics - and

the view found profitable when dealing with leptons - lies along an

identification of a distinguished - an aristocratic - set of particles

(as few in number as possible) of which all others are made. The

other viewpoint could be that there is no distinguished set at all,

at least not for hadrons, that there is full democracy in hadron

physics and that it is more profitable to consider all hadrons as

composites of each other. We shall consider these two contrasting

views of elementarity - aristocratic vs. democratic - in more detail

in Part II.
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PART II

RELATIVISTIC QUANTUM MECHANICS

In this part of-the lecture we discuss the structure of

relativistic (quantum mechanics (RQM), The ideas I shall be

wrestling with are some of the prettiest( also some of the

profoundest, in the whole range of physics. I have tried very

hard to achieve a clear exposition "but the sheer number of

concepts makes the task nearly impossible. Perhaps an initial

listing here of the topics may help*

Sec. A; discuss relativistic kinematics,

Sec. B: ingredients of two approaches to RQM, field

theory and S-raatrix theory.

Sec. C: set down the accepted canons of RQM as abstracted

from the two approaches.

Sec. D; list some far-reaching consequences of the canons.

Sec. E; describe the attempts to reproduce the hadron-

• spectrum within the framework of RQM.

A, KITOMATICAL CONSIDERATIONS

In Part I, we introduced the personnae of the cast, the

particles and resonances (see in particular, Appendix A). All

members of this cast (except protons, neutrons and electrons of

which normal matter is composed)were created and discovered in

cosmic rays or accelerator—beam collisions* Appendix B is a note

which Dr. G.H, Stafford of the Rutherford Laboratory, Harwell,

has kindly prepared for mej this lists typical beams and bean

intensities of the present generation of accelerators. Since

collision experiments using these beams are our sole systematic

means of the study of serai-stable particles, resonances, their

masses, their decay -widths, as well as the details of the

interaction processes, it is important to familiarize oneself with

the kinematical and theoretical constructs employed. This
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(Sec. AJis perhaps the dullest part of the lecture; I need however,

the notation we introduce here. Anyone fainiliar with it may read

just the summary at the end of the section and pass on.

1. The masses of semj-stablj^particles and resonances

One of the major - and in oontrast to non-relativistic

quantum mechanics — essentially unsolved problems of particle

theory is the prediction of the particle spectrum - the masses,

spins, paritites and other charges of semi-stable particles and

resonances. The problem has been attacked both from the

"aristocrat ic*' and "democratic" points of view of Part IC and

we return to it in IIB. ^

2, Decay widthst coupling constants and form factors

The second task of the theory is to give a description

of decay widths. The kinematical tool for two-body decays is the

so-called three-point function or the vertex function F(p. ,p-n,pc),

Internal symmetries disccused in Part I simplify the

problem to the extent that if one member of a multiplet

is discovered, and if we have some idea of the symmetry

breaking forces, we can make a reasonable guess at the

masses of the other members of the multiplet.
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D»nota the four rwmenta of the tbr«« objects A,B,C involved *B

PA»PB»PC# From energy momentum conservation pj = p. + p c. The

general vertex function is a function of the spins and momenta of

the three objects A,B,C which interact. Prom Lorentz-invariance

it can be written in the form of a product of spin factors >' X

and the so-called invariant factors F1. The invariant functions

1) contain no spin,

2) are functions of the Lorentz-soalars -which can be
formed from the momenta PA»PT>>PO« ^ 6 spin factors
X are kinematical objects} the dynamics i s

expressed by the functions P .

E i i p P P

/ (spins) F (PA,PB,PC)

Consider the following special cases;

(i) A,B,C represent three stable physical particles of

masses m. ,tQ-n,rn_,

,22 2 2 2 2,
tpA = raA PB = mB PG = V • •

The limiting values F (m. tnu,,!̂ ) of the invariant

function F are known as the coupling constants.

2 ?

(ii) If m« y (nig + m ^ ) , the particle A is unstable.

the vertex function in this case directly gives

the decay amplitude v A —> B + C.

*) If A,B and C all belong to SU(2) (or SU(3)) multiplets, it is

clear that the amplitude above is related by simple group
an

theoretic Clebsoh-Gordan factors toiamplitude A' —> B1 + C•,

where primed objects are other members of the multiplets. It

is the experimental verification of this type of kinematic

relation which, in general, gives the empirical SU(2) (or

SU(3)) assignments of particles.
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*J 'j *j

(lii) When A and B are the same particle , p. = p B =» m

and C is a (virtual) photon (i.e., electromagnetic

field frequency), the F 's are functions of just one

variable, the momentum transfer t = (p̂ ,) = (~PA + P-g)'

and give the so-called electromagnetic form factors.

3* The scattering amplitude

Th£ kinematical construct here is the so-called four-point

funotion, (Fig,4) Consider four interacting objects with momenta
PA*PB*PC '**!)• ^ r o m energy-momentum conservation

PA + PB + Pc + Pj, - 0.

Like the vertex function, the four-point funotion T(p, ,p-q,p«»p-n)

oan be written in the form

T(pA, ... ) - £ X1 (spins) F1(pA,pJ,p^,p^, s,t)
i *

where

a =* (pA + PB)

f \Zt = (pA + pcJ

The Fourier transforms of these functions in configuration space

represent the spatial extension of charge, magnetic and other E.M,

moment densities, for the particle A. One of the most beautiful

of recent experimental results is (Fig, 2) that apart from a

scale change, the magnetic and electric charge form factors of the

proton and the magnetic form factor of the neutron - and thus

the spatial charge and magnetic moment densities - are identical

when plotted as functions of momentum transfer up to | (p. - pB)

around (4BeV) . We shall see later (Part IV) how this identity

of charge and magnetic densities finds its readiest explanation

in terms of dynamical symmetries (like U(l2)) higher still in

heirarchy than the ones considered in Part I.
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The F X | B ara th% invariant funotlona of the &i.x independent Lorentes

scalars which can be formed from the momentum vectors p.,jP-rpP̂ p-p,

(of which "but three are independent, since p^ = -(p» + v-a + Pp)»

We shall mainly - though not exclusively --tie interested in

the situations where the four objects are physical particles on_
2 2 2 2 2 2 2 2

their mass shells , i . e . , when p = m. , p-g = m-g, PQ = nip, p_ = m̂  ,
Consider the following special cases, a l l represented by Fig,4:

o o o
a) Three body decaysi if p. n m. ) (m_ + mc + m_̂ ) , A is

unstable and the amplitude represents its three-body decay

A -+ B + C + D i

b) Scattering

Channel 1. Let momenta p. and p^ be incoming} p,, and pj,

outgoing. The variables s and t on which F (s,t) depend are well-
*)known physical variables} thus

(pA + P B )
2 - E^ = 4(k^ + m2)

(pA + P B )
2 = "2k^ (1 - cosfij ,

i.e., s equals the square of c m . energy (Fc ) and t is the momentum

transfer. It is important to note that scattering occurs only when

in the (s,t) plane,

s ^ (mA + mB) > 0

and
t ^ 0

Channel II. The same Fig,4 could represent a second

physical situation, where p A and pc are incoming momenta and p^

and Pj. outgoing. In this case

n p 0

( c m . energy) = t = (pA + pQ) yy (mA + mc) > 0

momentum t r a n s f e r = s ^ 0

v Assume for simplicity all particles have equal masses

(m = mB = mc = m^).
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The role of s and t are reversed i for the two channels.

One could go on to the five-point and higher functions

'C

E

which represent production processes. In the study of these

processes one has tended to make a two-stage approximation* For

example, most work on the five-point function assumes that it is

dominated "by the sequence of processes:

E

B

E

Here C is an intermediate resonance which is f irst formed

decaying subsequently C—» E + F, This approximation has "been

surprisingly successful in analysis of data.

*) TTote that Channel I and Channel II can "be distinguished either

by specifying which particles are incoming and which outgoing,

or by specifying the regions in the (s , t ) plane where s > 0

and t < 0 and vice-versa.
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Summarizing:The theoretical problems investigated at present

in particle physics are the following:

1) The mass spectrum of the particles, their spins,

parities and internal charges - a problem towards

whose theoretical understanding we have had the

least success.

2) A coherent description of three-body coupling

constants, decay constants and momentum transfer

dependence of form factors.

3) The variation of scattering amplitudes F1(s,t) as

functions of energy s and momentum transfer t in

Channel I (with the role* of s and t reversed in

Channel II). By and large we have been more successful

in describing decay constants and the "behaviour of

scattering amplitudes than of particle spectra.

B. INGREDIENTS OF THE THEORY *)

Historically, relativistic quantum mechanics (RQM) was

more or less contemporaneous with the epic days of Einstein's

field theory of gravitation,which itself had "before it the great

model of another field theory - the electrodynamics of Maxwell

and Faraday. Inevitably, the first realization of HQM was

carried through in terms of a local field concept,with the following

ingredients:

This section describes rather complicated ideas, perhaps not

too well. The harassed reader may pass directly on to Sec. G,

(Postulated canons of relativistic quantum mechanics.)
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1. Local fields

*>
Associate with each particle a local field operator

A(i) defined at all space-time points x| the electromagnetic

fields E.(x) and H(x) are the archetypal examples.

2. Elementctrity vs . conrpositenesa

If A is composite of B and C, the field A(x) equals a

polynomial product of B(x), C(x) and their derivates.

3» Sc&tterinp; amplitudes

The amplitude for scattering of A + B—>C + 2),and in

particular the invariant functions F (s,t)**)which descrihe

scattering (see IIA), can he written in terms of matrix elements of

produots of field operators assooiated with A,B, etc., and their

derivatives*

*/ By locality we mean the commutation relation postulate that

[A(x) , A(y)] « 0 (C.R.I)

whenever x and y are space-like to each other* This relation -

called the causality relation - guarantees, in a vague manner,

that field influences do not propagate with velocities greater than

light. If ever a fundamental length X needs to be introduced,

the hest place for it may possibly be through a modification of

C.R.I, for example,to a form,

[A(x) , A(y)] = 0

when (x-y)2 ^ A2. The fact that A= 0 in (C,R.I) is (vaguely)

an indication of no fundamental length in RQM.

**s What are the consequences of locality? First, as we noted in

Part I, locality plus real Lorentz symmetry imply complex Lorentz

symmetry and,in particular, CTP symmetry. Thus CTP operation and

particle-antiparticle duality is the first gift of locality.

Second, one can show that the causality postulate

[A(x) , B(y)] - 0 ,

(cont.)
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• (Footnote cont.)

is powerful enough to guarantee that the amplitudes for a

scattering process - a function like

F (s,t) - is an analytic function of complex s and t, in a certain

domain of s and t. This is an astonishingly powerful result.

What this domain in (s,t) space is, we shall discuss later. The

important feature to note here is that no detailed dynamics, no

precise law of force, no compositeness or structure relation like

(c(x) => A(x) B ( X ) ) ,etc, has gone into the deduction of analyticity

of P1(s,t).

It is indeed no exaggeration to say that the local

relativistic field concept is one of the most fruitful concepts

invented "by man. It is not just that the concept is an ideal vehicle

for implementing RQM; it would "be truer to say that the concept,

once formulated, came to acquire a life of its own; it led inexorably

to the creation of a canon of RQM, Years later, attempts were

made "by a process of abstraction to state these canons independently

of the local field concept. The emphasis shifted to the quantities

of direct physical interest - the elements of the scattering matrix

themselves - the invariant functions F (s,t) of the last section.

Something had then to "be substituted for the locality postulate

of the field idea. Since the two major deductions from the locality

postulate were (see preceding footnote),

1) CTP-symmetry,

2) analyticity of F1(s,t) f

i t was but natural to propose that these two (in a s t i l l stronger

version) may be elevated to the status of basic canons of RQM -

rather than enter through the back door via the field-theoretic

version of RQM. This is the second - the so-called scattering-

matrix, (S^matrix_) - approach to relativistio quantum mechanics.

To summarize, then, there are at present two theoretical

constructs - two methodologies - embodying RQM,
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1) the historic method of lopal field theory,

2) the (maximally) analytio S-matrix method.*-)

We now describe these approaches in somewhat greater

detail.

B.I. Field theories

There are two distinot olasses of field theories

corresponding to the two notions of elementarity - aristocratic

(class I) or democratic (class II) - discussed in Part I.

Class I - theories of distinguished fields

Accept from the outset the existence of a set of

distinguished fields of which all other fields dan he constructed

compositively. An example is quantum electrodynamics of leptons

and photons, wheret

a) To each lepton and to the photon, a separate field is

assigned, for example the Dirao field Tj/(x) for electrons and

Maxwell field A^(x) for photons.

*) Whereas field theory patiently deduces what the analyticity

domain of Pi(a,t) should he in any given configuration of scattering

particles using(C.R.l) as its main tool; the S-raatrix approach

starts with the postulate that P1(s,t) is as analytio as it

possibly can be, with singularities only at those values of a and t

which can/associated with the physical particle spectrum. We shall

define this maximal analyticity ooncept more precisely laterj note

here the amazing circumstance that the postulated domains of the

S-matrix approach have found confirmation - if anything - from the

detailed (and very involved) calculations within the field-theoretic

frameuorkj at least on the so-called physical Eiemann sheet of the

complex (s,t) surface. When differences - so far minor - do arise,

one may take one's choice if to believe in the firm and connected

- though sometimes heavy - logioal development from field theory-

or in the attractive simplicity of what one may consider is reasonable.
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"b) A distinguished form of Hamiltonian is written down)

its interaction part equals

where j^x) = ilj/(x)yw'Y(i) is the electron current. This
Hamiltonian is distinguished,not just "because Maxwell postulated

it, "but, more perhaps, since it satisfies a number of additional

dynamical constraints (gauge invariance) with important physical

significance. The current j«(x) is conserved (~— j«(x) = °)»

e is the coupling strength.**/

This is the prototype of all Class I theories. Though

the one ""bound state" in this theory, positronium, may "be

represented by a separate field, there is no need to postulate

field equations for it. At any rate,the field equations for the

distinguished electron and photon fields form a closed

set} they do not contain any piece depending on the positronium

field. Clearly this theory was specially favoured for the

following reasons:

*) The Hamiltonian completely determines the field equations and

equal-time commutation relations of fields. As is well known,

matrix elements of (appropriate) products of field operators

define Green's functions of the theory;while operator field

equations provide infinite sets of interconnecting relations

among them.

**/ As is well known, the smallness of the coupling parameter e

allows for a complete perturbation solution (the Feynman

solution). As is also well known, some of the integrals in the

/

"°dx— . The

famous renormalization theorem of Ityson demonstrated that

these infinities affect only self-mass and self-charge (making

it impossible,within the theory,to compute niQ/m and ©Q/S ~ the

ratios of "bare" to "physical" constants).
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a) Th« number of particles the theory describes 1B small*

b) The theory inherited from Maxwell a distinguished nearly

unique Hamiltonian with a small coupling parameter e.

In hadron physios with its multitudes of particles, a

repetition of any of these fortunate circumstances could not "be

ejepected to recur. Field theories of Class II are thus the

more appropriate.

Class II theories

(a*) Associate with each particle a local field operator and

assume that all particles are composites of each other.

(bl) To proceed with detailed dynamics we need field equations.

By the compositeness assumption,every particle interacts locally

with every other. It is thus profitless to try to conjecture unique

(infinite) sets of equations of motionj there is just too much

arbitrariness.

(c') A part of the dynamics,however, can be specified by postulating

specific equal-time commutation relations*'^.R.2) of the form:

,t) , B(x',t)] = C(x,t) 6(z-x') . (C.R.2)

*) Equal-time commutation relation between a field and i ts time

derivative

[(/(*,t) , fe>t)] = i <*(£-£') (CR.3)

(analagous to the relation (q(t) , p(t)] = i between the position

operator q(t) and its conjugate momentum p(t))are special cases of

(C.R.2J. In a theory where distinguished sets of fields ezist, and

one knows the composition^a single relation like (C.R,3) would

suffice to give the entire set of relations (C.R.2).
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For several classes of operators A and B,and in particular when A and

B represent current operators associated with internal symmetry groups

of Part I, plausible conjectures are possible fron the structure of
*)the symmetry algebrasj we shall study examples in part III, '

*) A commutation relation through its very structure cries out

for saturation procedures to "be applied. By this we mean the

following: If ( n ̂  denotes a quantum mechanical state» the

completeness relation asserts that £_, I n ̂  K. n I = 1« A
•n

commutation relation like

[A f Ej » C ,

on saturation,gives rise to the sum rule:

(of|C|{3) = £ Qot|A|n) (n|B|(S) - («|B|n) (n[A|

It is this class of sum rules obtained from Glass II field theories

which we shall study mainly in Part III for cases when A,B and C

are charge operators corresponding to the internal symmetries

considered in Part I, The important point to emphasise in such

cases is that equal—time commutation relations and presumably

the sum rules obtained from them are exact statements even when

the symmetry is broken.
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B.2.

The next table (Table 6) summarizes the theoretical approaches,

SUMMARY OP THEORETICAL METHODS

I > Field, theoretic approaches

Class, I|t Assume the existence of a distinguished set

of fields of which other fields are made compositely.

Assume a distinguished form of Harailtonian for these

special fields. A complete pertubration solution to the

scattering matrix may be constructed if the coupling

parameter is smallj the only undetermined parameters

in the theory are the masses and coupling constants of the

distinguished fields. All other parameters - like masses

of "bound states if any are in principle obtainable from

(a non-perturbative) expression for the scattering matrix.

Class II. Associate each particle democratically with
a local field. If we aasume that all particles are

composites of each other, no local field equations can be

written with profit. The locality postulate,however«

determines the analytic structure of the scattering

amplitudes. A part of the dynamics is specified "by

postulating equal-time commutation relations .which in turn

give rise to testable sum rules,

II, The analytic, S-matrix method

Give up the field concept. Postulate maximum

analyticity of scattering amplitudes in place of locality

of fields. Assume that any singularities of the scattering

matrix are intimately related to and are determined by the

spectrum of the physically observed particles. In its

democratic approach to all particles, this approach is

more akin in spirit to field theories of Glass II.

TABLE 6
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C. POSTULATED CAJTOITS OF RELATIVISTIC QUANTUM MECHANICS

In this section we set down what one has come to accept

as the canons of relativistic quantum mechanics. As stated

earlier, some of these were inexorable consequences of a local

field theoretic formulation of RQMj others were postulated more

readily and plausibly from the logic of the S-matrix approach.

The most astonishing aspect of these latter postulates has been

that in no important case has a deeper study from the field-

theoretic method uncovered situations where they are contradicted.

a) Unitarit.Y of the S-matrixi or the law, of conservation
of probabilities

This basic law - a non-linear statement -

) (aif> in i fn|3t| b) ' = 6 .
n

constitutes one of the most powerful constraints on physical

theory that we know of. *> In hadron physics,if there is one

principle which it is criminal to approximate too drastically,

it is this. One of the most useful relations arising from

unitarity is the so-called optical theorem connecting the total

two-body collision cross-section to the imaginary part of the

elastic forward scattering amplitude

Im F(s, 9 = 0) a k cr™
C X

b) Crossing symmetry or substitution law

Recall that in Part IA we stated that locality (of field
the

theory) plus Lorentz invariance.implies/ existence of a CTP

operation which converts an incoming particles to an outgoing

antiparticle and vice-versa. Following and generalizing from

this, the crossing property of RQM states that, given a reaction

** In electrodynamics, in a perturbation expan-ion, it becomes

essentially a linear relationship and considerably loses its

restraining power.
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A + B -» C + D

and the scattering amplitudes F (s , t ) for i t , the same function

F (si t) also describes the amplitude for the process where., we.

interchange one of te incoming particles with an outfloin/e; anti-

particle . In detail,the same set of funotions Fx(s , t)

describes "both

A + B —* C + D

and

A + C —* B +'D ,

where C and B are antiparticles of C and B, respectively* Likewise

for

A + B -» B + C

Note, as remarked earlier, that when we speak of the same funotions

F (s,t) describing reactions in

Channel I A + B - > C + D

. _ \
Channel II A + C - » B + D ,

we »re considering different regions of the (s,t) plane, since

for Channel I the physical region is s > 0, t < Qf while for

Channel II, it is s < 0, t > 0, An analytic continuation must

therefore be carried through before we can read off from the

knoweldge of F(s,t) for Channel I, the values of the amplitude

for Channel II. We consider this continuation further on; remark

here, however, the economy brought about the crossing relationsJ

there exists just one master function for all related channels.

These relations give RQM a power that non-relativistic theory

never possessed*
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G&SOSS OF RELATIVISTIC QUANTUM MECHANICS

la Crossing
CTF

incoming particle > outgoing antipartiole

I. A + B — ) C + D

II. A + C - * B + D

III. A + ID —~.> B + C N Reactions I,II ,111 described
"by the same master function

F(s,t).

2. Unitarity =*> optical theorem

Im F(s,O) = k crtotal

3, Analyticity

of F(s,t) for complex s and t, 'except for singularities

(poles, branch points) determined "by the physical

particle spectrum,

TABLE 7

c) Singularities of the S-matrix

Before any analytic continuation from Channel I "to n

can be carried out^we need to know the singularity structure of

the S-matrix.
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SINGULARITIES OF THE S-MATRIX

l ) Yukawa poles

2

t -

i • 1 + ?,
t — 4m

(Ciin, energy)

momenijura transfer

t

3

t

Exchange
spin J

2) Resonance poles

F(s,1

s — ra-
Exchange spin J

cos© = 1 +s
s - 4m'

3) Branch points

at two-particle, three particle, *•* thresholds in all

the relevant channels

4- ...

TABLE 8
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i) Poles

One of the "basic postulates of S-matrix theory (shared lay

local field theory) is that the poles of the S-matrix correspond.

to physical particles exchanged in a reaction and conversely.

There are two well-known types of poles:

l) The Yukawa poles

Poles in *' (complex) momentum-transfer (t)-plane; their

contribution to the scattering matrix equals

gBBE

2
t - mg

Here m̂ , is the mass of the Yukawa particle exchanged and

the coupling constants at the two vertices.

2) The Breit-Wigner poles

These are poles in complex energy (s)-plane

'B

2
s — m_

$ The Yukawa pole contributions (also called the Born terms in

potential scattering) determine in configuration space the "potential'"

produced by the exchanged particle. Thus,every particle E that is

exchanged^produces its share of "force" "between the interacting

particles A and B. The strength of this force depends,of course,on

the coupling parameters 8*JJ? a n i Sggj; an(i ^ 5 range on the mass mE

of the particle exchanged (the smaller the mass,the longer the range),In

hadron physics,where every coupling constant is (nearly) equal to

every other, the ooncepi of a "fundamental force" produced by a

"fundamental exchange" becomes nebulous * This is another way to

restate the dilemma of Bl(b').
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3) Oaaa of spin

It is easy to show that if the exchanged particles E or E1

carry spin, the pole contributions modify to the formsi

ggf • 2 COS^t " X + 7 ~ T ^
t - m_ t - 4m

J s 2t
SSX o c o s ^ - 1 +

3-13- s - 4m

Note the crossing symmetry typified by interchange of 3 and t.

To determine the other singularities of the scattering

matrix, unitarity proves to "be the crucial tool.

ii) Branch points

It is impossible in a general lecture like this to go

over details of how the pole structure, together with the quadratic

unitarity relation SS a 1, forces the branch point singularity

structure of the scattering amplitudes. This will be covered in more

detail in Professor J. Eden's lecture, I shall simply state the

postulated result from maximum analyticity for the four-point

function (demonstrated to varying degrees of rigour using field

theory)« The scattering matrix possesses branchpoint singularities

at two-particle * threes-particle, .,, thresholds in all channels;

the singularities lying along real and positive s-axis in the

s-plane, along the real and positive t-axis (for the channel where

t is the energy) and likewise for the third channel. Note the

elegance,as well as the simplicity, of this conjectured singularity

structure related as it so intimately is to physical particle

spectrum.

D. PBPUCTIONS FROM CANONS OF RQJ.l

So much for the basic principles. In this section we

list some of the important deductions that have been made from

these principles and which provide the practical working tools

of hadron theory.
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a) Dispersion relations (consequences of the assumed
analyticity of the S-matrix)

If one knows the singularity structure of the scattering

amplitudes, (in particular that the singularities lie along the

real axes in complex s and t planes) one may write integral

representations - the so-called dispersion relations - connecting

real and imaginary parts of the scattering amplitudes. For

example,from Cauchy's theorem, infer,

c
with the contour C as shown in Fig.4-. To evaluate the integral

along the large circle, we need to know the behaviour of P(s,t)

as |s| -} 00 . T-C F(sft) falls sufficiently fast (and we consider

this in more detail in the next subsection), we may expect the

following to hold*

A. f

plus pole term contribution• Rewrite in the Hilbert form:

2

$ >J_ , ds'
0

This is the typical structure of a typical dispersion relation;

one may exhibit the pole and the integral contributions

diagrammatically (for 7rp scattering) thus:

n

Since Re P(s , t ) and Ira P(s , t ) are both experimentally accessible

quantities, the dispersion equation provides a determination of
2

the pion-nucleon coupling parameter g ,
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b) High-energy "behaviour of F(s,t) (consequences of combined
unitarity and analyticity)

Combining analyticity with unitarity, it has been possible

to obtain restrictions governing the growth of physical amplitudes

for large s or t. These again have no counterpart in non-

relativistic theory. It is impossible to show how these results

are derived either in field theory or in the S-rmatrix dispersion

approach. We shall simply exemplify by stating one of the out-

standing results.

Limitation growth of forward scattering amplitude

|F(S, t = 0)| < C B log2 (s/sQ) .

Using the optical theorem, this implies that total cross-sections

in physics can only grow less fast than v

crT < o log2 (s/s0)

Experimentally,up to 30 BeV (and if cosmic ray data is believed

up to 1000 or more BeV), total cross-sections appear to approach

constant limits asymptotically. Contrast this with the theoretical

prediction above; clearly we are still far from gleaning from

theory the best possible bound. The fact,however, that such bounds

exist at all (and are after all not outrageously weak) makes the

physicist in this field feel truly arrogant at the power of RQM,

c) Regge trajectory exchanges

Perhaps the most powerful deduction from crossing and high-

energy bounds has been the demonstration that hadrons must lie on

Regge trajectories. The argument goes like this; (for more detail,

see Professor Van Hove's lecture):

*) The constant C can actually be evaluated from field theory;

for example, one finds the theoretical estimate

12
C ^ —p for trlT scattering

V
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Consider In a scattering problem the exchange of a spin J particlej

the pole approximation to the amplitude gives:

J t'

t-ra' t-mf:

for large s.

If J > 1 , this will violate the bound derived above from RQM.

Either there are no particles with spins > 1, or there is some

physical mechaniam which smears out the s contribution.

Remarkably, with the hadron spectrum known at present, one

does not have far to seek for such a mechanism. As pointed out in

Part I and specifically in Fig,2, hadrons appear to occur in Regge

families with their masses increasing with spin. Each exchanged

hadron of mass nij will contribute a term of the above typej the

total pole contribution to the amplitude equals

2 _J

J

This sum can be approximated to by an integral, if the number of

particles involved is fairly large. Thus,

4
22To evaluate the integral, solve t - m- « 0 in the form,

J = «{t) .

Thus
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The high-energy "behaviour of the amplitude is controlled not "by the

spin of any of the particles exchanged but "by an effective spin

J = <x(t) dependent on momentum transfer _t, And since in the scattering

region t ^ 0, one must make a contination of J from the positive values

of t (given by Rosenfeld's tables) to negative t .

7/2- /

5/2- y

3/2. ' /"

y known particles
l/2 7 y marked with x

t < 0 /\ t = (Mass)2 > 0

Consider new,for this continuation,one specific trajectory;

for example, the nucleon trajectory in Fig. 1. Extrapolate (as a

plausible continuation) the known linear plot of the trajectory in

the first quadrant backwards to negative •t-values. Clearly empirically

ctf{t) ̂ 1 for the scattering region. No contradiction with high-energy

theorems could thus possibly arise whenever the nucleon trajectory

is exchanged in a scattering process (for example, in <rr + M —* HT + TT ).

Likewise for all known trajectories} the extrapolated values of

J = od(t) always empirically satisfy the rule Of(t) ̂  1 (T ̂  0),

What is the moral of this for hadron spectrum - perhaps (l)

all hadrons lie on Regge trajectoriesj ' (2) for all trajectories,

0(.(t) must lie lower than unity when continued to negative t. There

are fewer places in particle theory where the power of RCJM has

evidenced itself to greater effect than in this beautiful Regge

synthesis of known hadron spectra (t > 0) with asymptotics of

scattering amplitudes (t < 0).

*) We shall hear,in Professor M. Toller's lecture;that Regge

trajectories (possibly) occur in tribes and families as a further

consequence of some unexplored aspect of Lorenta symmetry and

analytiaity at t = 0.
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B. HADRON SPECTRUM AMD.THE S-MATRIX PROGRAMME

We have now surveyed the structure of RQIlj we can see

that in dispersion theory and in the Regge trajectory exchange

models of high-energy scattering there is tremendous amount

of predictive power. The chief problem however remains. Where

in all this is the analogue of the familiar non-relativistic

Schrodinger theory, to yield the particle spectrum?

The closest in spirit to the traditional Schrodinger method

are field theories of Class I, Except for the masses associated

with the distinguished fields and their coupling parameters, the

parameters of all bound states oould,in principle,!^ read off from

the scattering matrix, computed using the given field equations. In

Part IV we shall see that it may yet be that aristocratic fields do

exist and that the future of particle physics lies along this

traditional path. The milieu of OUT age, however, is somehow

against this.

What could substitute for field equations in field theories

of Class II or in the S-matrix approach? Since for both approaches

the basic assumption is that all particles are equally elementary

or equally oomposite, there is but one way to attack the problem -

rely on 3elf-consistenc.y of any assumed spectrum in satisfying the

relations provided "by the theory* Among those relations one. has

worked with are (l) relations in Glass Hfield theories provided

by equal-time commutation rules (one can test if they are self™

consistently saturated by an assumed spectrum) or (2) the so-

called ̂ superconvergence relations" *•*)

*/ These are dispersion relations for amplitudes which fall so

fast in s that the relation reduces to / Ira A(s',t) ds' = 0),

This happens,, for example, when incoming and outgoing particles

carry spin; one can show from RQJ4 that, for a general amplitude,

(cont.)
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(Footnote cont , )

V V V A4

where X= ^ - A , // = A - > and the A's are the spin-

polarizations of the incoming and outgoing pa r t i c l e s . This important

dependence of high-energy "behaviour on spin means large spin-f l ip

amplitudes fa l l fast for large s . For such amplitudes (and for

appropriate values ofJM and \JU | ),the normal dispersion re la t ion

A i J. \ 1 C Im A (s ' , t ) ds'
A f s . t ) m -jr— i t-r-7 •

v ' ' 2nr J s'-s+if

reduces to its superconvergent form / Im A(s',t) ds' = 0. To see

how such relations work, take the example of tf-0 scattering.

Saturating the appropriate relation with U) and ^ resonances only,

one converts the integral j Im A ds1 = 0 into an algebraic

consistency formula which reads:

p o p p P P P
(m - m - ini ) + g (m - m - m ) + . . . = 0 .

Empirically^we know that the masses of w , 0 and tf mesons satisfy

2 2 2

while ?

( ?i —1> o -f. Tr decay is nearly suppressed). The relation is thus

(miraculously) satisfied showing either (i) that RQM is a wonderful

theory7 or (Li) that the existence of GO (and the hypothesis of saturation

of the superconvergence relation with a few resonances) implies

that ^ must also exist. One may take one's choice.

One cannot say that such "bootstrapping self-consistency

ideas have had more than marginal success in the past,though with

the greater use of the superconvergence relations the situation may

improve *
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The boostrap idea is attractive. Part of its attraction

lies in the possibility that the internal symmetries themselves

may possibly arise as necessary preconditions for the existence of

a particle theory satisfying the very stringent restrictions of

crossing, analyticity and unitarity of RQM. We may yet find that we

are living (with Voltaire) not only in the "best of all possible

worlds but indeed in the only possible world.

SUMMARY

DEDUCTIONS FROM GENERAL PRINCIPLES OF RQM

1) Examples of bounds from uni tar i ty and analyt io i ty

|F(s,t = 0 ) | < C s log2 (s /s0)

°total < C' 1 O s 2 (s/s0>

2) A typical dispersion relation

He ,(,,.0) , A + i f I m ^' -° ) d8.
* ' ' s~sn J s

c
3-) Regfle trajectory's contribution to a scattering amplitude

A trajectory contributes

P

> J t -m 2 ( j ) V

0
for l a r^e s , where <X(t) = J < " > t - m (J ) = 0.

4) Some achievements of the S-matrix approach

1) Accurate determination from dispersion relations of

2) Bootstrap generation of certain resonances in pion-

nucleon sector.

3) Regge analysis of high-energy scattering data.

TABLE 9
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PART I I I

THE DYNAMICAL ROLE OF CHARGES AMD SHARING OF CURRENTS

BETWEEN STRONG, WEAK AND E.M. INTERACTIONS

In Par t I I we spoke of a b s t r a c t i n g from f i e l d theory the

general canons of r e l a t i v i s t i o quantum mechanics, I now wish t o

speak of the aeoond important idea , again an abs t r ac t i on from f i e l d

theory , but t h i s time from one s p e c i a l theory - the quantized *)

tfaxwell-Dirac field theory of electrons interacting with photons.

This is the notion of field-theoretic currents associated

with the charges introduced in Part I , the dynamical role of charges

and currents - particularly for low-energy phenomena and the sharing

of the currents between strong, weak and E.M. interactions.

A. DYNAl'ICAL ROLE OF CHARGE

The dynamical role of e l e c t r i c charge i s famil iar from

Coulomb foroe law, where the sign and magnitude of charge determines

f el°2 \ 'the long-range Coulomb force / ~ - • . Likewise for the
V r /

gravitational force which is proportional to the product of

gravitational charges (mass)f ~ g ) .

V r /
Less familiar,but equally well established,is th* role of

hyper—, isotopic and other charges in the same context; the long-

range parts of the relevant forces are proportional to the charge

strengths; for example,

1. Hypercharge

\
N/ \N

*) We shall need familiarity with field-theoretio notation in this

part of the lecture.
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The long-range part of K"̂  foroe i s attractive, while for K+N
this force is repulsive. This corresponds to the sign of the produot

of hyperoharges YgY^ which is -1 for the K~N and +1 for the
K If ca se .

2« Isotopic charge

arget \ target

The scattering length for pions (isotopic charge T ,̂) interacting
with a target of isotopic charge I . is experimentally found pro-
portional to the scalar product of the two isotopic charges

The conserved charges thus do appear to play a dynamical role
similar to the electric charge for low-frequency phenomena. For the
E.M. case, one knows one can go further. In Fart II we saw that the
Maxwell-Dirac Hamiltonian uses currents 3u(x) associated with the
electric charge* Could this analogy he taken over for the other
charges as well?

B. DYNAMICAL ROLE OP CUEEBKTS

Given a charge Q(t) , it is well known that one can construct

a looal four-veotor current operator Ju(x) associated with it,

Q(t)

where - J"J0(£,t) d3x

If the current is conservedt i . e . , dp Jjn • 0 • thenjthe charge is a
constant of motion (Q(t) ~ Q),and vice-versa.

For spin-half oharged particles (electrons or muons, for
example), one can go further; we may define left and right currents
corresponding to left and right charges in the ziero mass idealization.
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The sums and differences of these are the vector and axial-vector

currentsj

Likewise for right and left hypercharges, isotopic and unitary charges.

Now, one of the important experimental discoveries is

that these ourrents - and also their divergences - if considered as

fields, appear to possess particles associated with them. (Table 10)

Also, one of the recent insights of local field theory is that

all operators representing a particle are equivalent 30 long as they

possess the requisite quantum numbers. One may therefore express

this association of particles and currents by writing a set of
isotopic .

(approximate) field-current identities. Considering / Su,(2) x SUR(2),

for example, one may writej

2 2
» ID,

The last relation is called the PCAC (short for partially-conserved-

axial-current hypothesis) relation.

ITow where does dynamics come into this?

Ideally;one might hope that since for every current, a cor-
responding particle exists, by analogy with the two well-known
classical Hamiltonians:

(a) Gravitational

(b) E.K. e 5 ^

which are simple products of currents x associated particle fields
(fytiJ " s ' t r e s s tensor, Ĝ v • graviton, Â  • photon), the strong and
weak Hamiltonians may also be written in the form, e.g.,*/

*) We have written H in the form current x intermediate boson

mediating weak interactions. No such intermediate boson has yet been

experimentally discovered. Present experiments test only the effective

1interaction H e f f
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Strong

Strong

Chiral
Strong

Weak

AY-0

CURRENTS AND ASSOCIATED ]

Charge

Gravitational

Electromagnetic

Saryon

30(3)

ISUL(3)xSUR(3)

Weak currents

jj(weak), t

Conserved status
of current

dM J y - 0

% fy m o
if neglect medium
strong symmetry
breaking

^ T (̂we<Lk) « 0

^ jjj(weak) ^ 0

PAETICLES

Associated particle

9V => 2+ (graviton?)

*J JJ — < 1 ( C O )
/"

J^ r^ l " octet (p,^,K*,K*)

3 , 4 ^ 0 - octet(,r>7,K,K)

Tweak T . . . .JH —^ Intermediate
vector
bosons (?)

Sharing of (hadronic) currents "between strong, S.F. and weak forces.

-pCi Jfl • T J X

J^AY'O) - j j 1• ($??*
1 to SU(3) currents)

form isotopic SU(2), \
> ]

are ieotopic lowering and /
raising currents. /

i

TABLB 10
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uweak weak T ..weak
H " e J W

where V and A1 are the strongly interact ing 1~ and 1+ ootets of

par t io les j W are the -weak intermediate vector mesons of Table 10.

This i s an a t t rac t ive hypothesis.**) Prom th i s point of view, i t

would he easy to understand why,for example/the long-range part of
K~"—N")

K+-Uj f o r o e i B a t * r a o ' f c i T e o r r e p u l s i v e . One would e x p e c t t h e l o n g -

range part of the interaction to be (dominantly) produced by a Yukawa

exchange

N

of the (f) -meson just like the Coulomb case where the potential i s

a consequence of a single photon exchange.

*) For exaot SU(3) x SU(3), gA - i gy . See Table 11 for the
theoret ical prediction when brokenness of the SU(3) x S0(3) symmetry

K
is taken into account (expressed by »p- A 0 in contrast to

-£.. o ).

**/ One great virtue of such a strong Hamiltonian i s that the
dilemma presented by whether nature prefers f ield theories of Class I I
(democratic) or Class I ( a r i s toc ra t i c ) no longer a r i s e s . The currents
jw(x) could be made up e i ther of just the distinguished f i e ld s , or of
a l l f ie lds democratically. A s l ight ly different version i s the one
very recently proposed

strong « t-ei-ri ^ rAi-rAix
£1 • ,* \**W **jU *̂ M Xt /

m r

where even the aristocracy of the 1~ and 1 octet par t ic les VJJ and

Au i s ended.
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Unfortunately thiB argument is no more than suggestive, sinoe, for a

strong interaction theory, the largeness of the coupling parameter

g makes i t next to impossible, in practice, to decide on one

"fundamental" Hamiltonian in contrast to another. (See Part IIC(i),

footnote.) To show that the currents defined in Table 10 do play

a role in strong dynamics, we use a different technique, as discussed

in Part HID. Before going over this,, however, we must understand the

second aspect of these currents; their property of being shared

between disparate forces.

C. UNIVERSALITY OF CURRENTS

1, For the e l e c t r i c charge of hadrons we noted the remarkable

relation

Qhadron + * T - F3 +-± F8 .

A similar relation would naturally exist for the corresponding hadron

currents

J3L'( hadrons) T3, \ 1 T8, v

•J Q

where Ju(x) is the (neutral) isotopic and Jy(x) is the hyper-

charge current. This relation is remarkable enough. Even more

remarkable ie the postulate that the two remaining isotopio left
1 2 ———

c u r r e n t s J..T and J.., ( o r r a t h e r t h e i r combinations

are precisely the weak hadron currents responsible for

•D —+n I " t r a n s ^ '* ' i o n s i n ft -decay. In other words, nature believes

in an economy of charges and currents $ once the isotopic and hyper -

or more generally, SU(3) x SU(3) - set of charges and currents were

invented, i t was decreed that they would serve not only as strong

charges and strong currents but also as E.K. charges and E.r. currents
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(with a change of Bcale, of course) as well as for weak charges and
weak ourrents (again with another ohange of soale) whenever hadron
matter was involved.

2. The statement that -the same currents make the i r appearance in
strong, weak and E.M, interactions of hadrons, has "been confirmed in
numerous situations} to take just one representative example:

Consider the decay ir —» IT + (e+ + V)

compared with v )

If the ideas outlined are correct, the ratio of the two hadronio

n -* v I •)
transitions

TrT •} should be proportional to the isotopic charges

of pions and nucleons. This indeed is the case experimentally. If

the concept of isotopic charge for hadrons had not already emerged

from strong interaction physics, it would surely have been invented

from the weak hadronio phenomena alone.

3. Eleotric charge and weak oharges are more universal in oharaoter

than strong charges. Bleotrio charge (as well as weak charges) is

shared properties of leptons as well as hadrons. Thus the total

eleotrio charge equals

Q
lepton

Qhadron

and the equality Q h a d r o n . I + y/2 naturally holds only for its

*)
0Kore preoisely,since ir+—* TTU + (e + v ) proceeds purely through

the vector current, for comparison one must consider only the vector

(the so-called Penni) part of neutron /?-decay.
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hadronic part. Likewise for the weak charges and weak currents,*/

Now one of 4;he remarkable features (noted in Part I ) of electric

charge is the exaot equality of electron and proton charges (in other

words, Q l e p t o n s and Q^ 1 0 1 1 8 - and therefore also J^ep tona(E JI.)

and J^adrons(EJH.) - possess the same scale). Is this also true of

ns) and

Before we can answer this question, recall that weak forces

affect left-spinning matter onlyi more precisely, (primitive ) weak

currents are left-currents J,lT * which are equal mixtures of vector

and axial currents (J - J „ - J . ) "both for leptons and hadrons.

And of these two types only the vector ones are conserved, with the

consequence that only the "vector" weak charges are time-independent.

We can now answer the question posed. The weak vector lepton

charge does indeed equal in magnitude the weak vector hadron oharge;

one of the striking confirming pieces of evidenoe is the well-verified

equality of the vector (Fermi) deoay constant n—»p + (e~ + v@)

with the constant**) determining yU-deeay /4~—# v^ + (e~ + T>e).

The full weak current is made up of three left-spinning parts

J^(weak) - J± (leptonic) + J—T (hadronic AY » 0)
p Jj jM JJ

+ J—T( hadronic AY =» +

The last piece ji(AY - +l) is that part of the weak current which

induces transitions of the type ^ ? | where hypercharge changes by

one unit (AY - ^+1). The currents involved here are once again

made up of SUT(3) currents. The fact that one is dealing with left

currents only in weak interactions implies that weak force^are not

left-right symmetric; that they do not preserve space-reflection

(parity) symmetry. This fascinating aspect of weak interactions we

must unfortunately omit.

**) The axial oonstants do not display this equality} this corresponds

to the lack of JT7 conservation 6
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LOtf-FKEQOBNCY DCTAHICS

Turn back t o s t rong i n t e r a c t i o n s . We sa id , though the form of

. and weak Hamiltonian e j j** 5 ' A and 8 ^ ^ ^ ^ could lie t e s t ed

- since the coupling constants e and ff , are rather small -

(and these have indeed been found to be in accord with experiment),

no immediate tests of the form of the strong Hamiltonian are possible

on aooount of the large'coupling con^ant involved. How could one

then be Bure that the StT(3) x 3tJ(3) currents do play a role in strong

interaction physics? Fortunately a powerful set of tests are

available. This is the set of low-energy theorems which exist when-

ever a symmetry does. And when, in addition, the Currents have physical

particles associated with them (field-partiole identity of Table 10),

the experimental verification of these low-energy theorems becomes

not too diffioult. The theorems are of the following variety:

Theorem I

Whenever a symmetry e x i s t s , broken or exact , and a corresponding

charge and therefore current J^fp) exists (J^(p) is the Fourier

transform of Jy(x))» one can derive relations connecting the processes

' A —» B

soft JM-emission

J (0) are the zero-frequency components of

B + J

B + J^(0) + Jv(0)

We shall specify the detailed structure of the relation in a few

examples later .

Theorem II

If the current is not conserved but c^ JM • "X. , then similar

relations hold for the sequences of processes

A —* B

A —* B + X(0)

A — B + X(0) + X(0)
soft X -emission

• -••rr.'^t- :£ £ r



Examples

1« Electrodynamics

The theorem s ta tes that the vertex ft'

photon photon

is related to
(b) —

, - ' soft
•ohoton

(a) (b)

Write F((o) for the "Compton" scat ter ing of photons on nuoleons r e -

presented in (b ) . Then, aooording to the theorem, the kinematic

structure of F(to) at low frequencies i s specified completely by para-

meters of the vertex ( a ) . In de t a i l ,

F(w) - F.(O) €» • € + w F.(0) i T • (e« x £)

f Qfc a - «T - i/137

are the two parameters re la t ing to the process ( a ) . Here € , £ ( are
the polarizations of the photons, cr i s the spin of the nuoleon, eQ is
i t s charge and Ke/2m i t s anomalous magnetic moment.*)

*' This low-energy theorem, a generalization of the well-known

Thomson limit theorem in c lass ica l electrodynamics can be used as a

boundary condition on a dispersion relation one may postulate for

F(w)i thus

2m 4?r J
0

Here <T and <r are the photon-nuoleon cross-aections with photon polar-
ization para l le l and ant ipara l le l to nucleon spin. The relation appears
experimentally sa t i s f ied . This combination of a (postulated) d i s -
persion relat ion and a low-energy theorem i l l u s t r a t e s the theoretioal
methodology that has come to be employed more and more in par t ic le
physics.
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2. Batio of nuoleon-yeotqr and nuoleon-axial-veotor ooupling constants

from loy~fiyq.uenoy teohniqueB

One of the most oeletrated low-energy relations is the one which
y

connects the nuoleon-Jy,-vertex to soft pion-nucleon scattering and com-

putes thereby the physically important ratio of the (effective) ooupling
constants % - g ^ and g^- ^ ( g ^ and smA are the zero-

frequency limiting values of the appropriate vertex functions* see IIA.2).

The derivation of the relation is sketohed in Table 11j i ts most

important aspect is the purposeful use one must make of "both strong and

weak data to verify i t - once again confirming;(a) that the same currents

are operative in both interactions, so far as hadrons are concerned,

(b) that these currents - or rather their charges - define the algebra of

SU(3) x SU(3), (c) that the techniques of RQK - as formulated through

field theories of Class II - and dispersion theory, are marvellously

effective in capable hands.

3. Soft-pion processes

A host of low-frequency relations have been derived in strong,

weak and E.K. physics, connecting amplitudes like A—>B with ampli-

tudes for soft-pi on emission A—* B + T ( 0 ) , A—>B + TT(O) + ir(O) , . . .

I shall merely mention that these relations exist and are well verifiedi

Quite reoently, a new technique (using non-linear representations of

the ohiral group SU,(3) x 3DR(3)) has been perfected, which makes their

derivation a relatively painless taak. We shall be hearing more on

this from Professors Weinberg and Zumino during the Conference.
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RATIO OP VECTOR AND AXIAL-VECTOR COUPLING PARAMETERS

DERIVED USING LOW-EBERGT THEOREMS

(1 ) PCAC

From ¥eak interactions, estimate (p|J(Jn), to obtain

c~ -

( 2 ) Use the equal-time commutation relation

(IT | V |U) - (N | [A , A] I H)

and techniques of field theories of Clasa I I to relate

i t r

N

deriving thereby,

1 - c ^m
/

da)
-

Use c.,,. above to predict

Experiment

- 1.19

-1.18 .

TABLE 1 1
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D. PABTICIiB SPECTRUM AITO THE SOTTETRY ALGEBRA PROGR-AMltE

The c o r r e l a t i o n of low-frequency da ta aohieved by the use of the

field theoretic method (the essential ingredient "being the equal-time

commutation rules of SU(3) x SU(3) algebra) was impressive enough that

one felt tempted - just aa the S-matrix theorist had been sorely tempted

earlier with dispersion and superconvergence relations - to consider

taking the SU(3) x S[J(3) algebra as substitute for a complete

dynamical theory. The hope was that one may possibly derive the

hadron spectrum by attempting to saturate the identities provided by

the SU(3) x SU(3) commutation rules (see Bart IIB(c)).

Like the S-matrix theorist's attempt to derive the full particle

spectrum by bootstrap procedures, the symmetry algebraist's attempt

has also met with scant success. The symmetry algebras play an

important role in low-frequency dynamics) apparently they do not

constitute the complete theory•
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PAHP IV

THE STRUCTURE OF HADRONS,

STILL HIGHER DYNAMICAL SYMMETRIES

In Part III we have been concerned with the low-frequency

dynamics which the existence of any given symmetry (isotopic,

unitary, etc.) implies. Specifically, we saw that one can derive

relations between processes involving bosons associated with the

(symmetry) currents (0 , 1 , 1 + octets). But these bosons by no

means exhaust the full spectrum of hadrons. What about the

multitude of other objects the hadron spectrum consists of, and in

particular higher spin baryons? Is it conceivable that there are

new dynamical symmetries still to be discovered for an elucidation

of the rest of the particle spectrum, particularly as SU(3) x 3U(3)

appears to be undistinguished for classifying particles?

What exactly do we mean by a dynamical symmetry?

To answer this, consider the familiar case of atomic

physics. The relativistic Maxwell-Dirac quantized electrodynamics

may indeed be the fundamental theory of charged particle

interactions, but to obtain the hydrogen spectrum,one still goes

back to the non-relativistic Schrodinger equation with just the

static Coulomb potential. And, as is well known, this equation

possesses a completely unsuspected 0(4) symmetry,first studied by

Fock. The emergence of the 0(4) is purely "accidental" in that it

arises from the particular form of the (Coulomb) Schrodinger equation.

However, it is this dynamical symmetry, rather than the fundamental

Dirac-Maxwell form of the Hamiltonian, which dominates the hydrogen
*>

spectrum.

*) Table 12 shows how the symmetry arises and the classification

of the hydrogen levels using 0(4).
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Hamiltonian

Define

Operators

and

Since

Verify

Since

obtain

where

A tower of
corresponds

E =

L =.

M •-

I -
K =

L'M

- 4E

In
E

n

THE HYDROQEN

i p 2 -

£ * E

* (k +

* (k-

= 0

^ I -X

= (2i

1
r

(Li

M)

«)

so

+ -2

* 0

1

2n2

+ 1)

ATOM

E - £ : 'k)
] generate

| 0 x

i l l

1) + k

- (21

°3~

»

(k H

...

C + ]

r

independent

0' rotations

IE.I .

(i,k generate

3

-) •

levels, (i,k) « (0,0) j (!•»•§•) i (l,l),«,.
to a single representation of the non-

compact group 0 %

TABLE 12

The same thing seems to be happening in particle physics

where we appear to find a dynamical symmetry STJ(6) more successful

than SU(3) x SU(3) for particle classification and for a description

of vertex functions.

The development of ideas I shall now sketch started with

Wigner and his postulated supermultiplet symmetry SU(4) of nuclear

physics. Starting with the notion of spin and isotopic charge

independence of nuclear forces, Wigner came upon the dynamical

group SU(4) as a natural completion of the isotopic SU-j-(2) and

the spin SUj(2) groups; (SU(4) C SUj(2) x SUj(2)). For

particle physics, replace isotopic by the unitary symmetry; the

simplest completion group, which includes both the unitaiy STJp (3)

and the spin SUj(2),is SU(6), Assume that SU(6) (like the 0(4)
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for the hydrogen atom case) is the dynamical symmetry responsible

for the hadron spectrum. Each representation of SU(6) would

combine within it, particles of different spins and unitary charges.

The fundamental representation of SU(6) is 6_ dimensional.

This would correspond to three quarks of spin up and three quarks of

spin down. Other representations are

35 , 56 , 70 , 405 , ... with content

SU(6) -* SUp(3) x SUj(2)

35 = 1 x 3 + 8 x 3 + 8 x 1

(i.e., a spin 1 nonet + a spin zero octet)

56 = 1 0 x 4 + 8 x 2

(i.e., a 3/2 decuplet + l/2 octet) .

A glance at the Rosenfeld table, where the lowest mass

"boson entries are just the 1 nonet + the 0 octet (constituting

together a 35 of SU(6)) and the lowest mass baryons are precisely

the 3/2+ decuplet + l/2+ octet (together constituting the 56

of SU(6)) convinces one that SU(6) makes very good sense.

I shall' not descrihe here the extension of 311(6) to

U(6) x U(6) symmetry which distinguishes the fundamental quark

representation 6 from the antiquark 6 - nor its formulation U(l2)

needed to give correctly the relativistic kinematics of vertex

functions. Professor F, Guraey will "be dealing with the subject

in detail. In Tables 14-17 are given some of the large variety of

predictions - all reasonably well substantiated.The most noteworthy

are the predictions of the ratio of magnetic moments of protons

and neutrons - obtained essentially as a kinematic prediction of

the theory • and the immediate explanation of the scaling law of

E#M, form factors mentioned in Part H A ,
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Predictions from SU(6) , U(l2),

u
(l) -p- a -3/2 (see Table 16) .

(2) Host of coupling oonstant relations (see Table 17)

(3) Scaling law for form factors (see Table 17) •

(4) Mass formulae (see Tables 13 and 14)

U2 = MQ + a J(J + 1) + b(?2 - ̂ Y2) + cY .

The problem which immediately arises with the undoubted

successes of SU(6) and U(l2) symmetries for the

multiplet and vertex structures of the well-known mesons and

baryOTtS 'is how to reconcile this with, for example, SU(3) x SU(3)-

What is the nature of charges associated with STJ(6)? Are they

conserved? What, if any, are the currents? Does spin act as

charge, and anyway what is the precise definition of spin used

in SU(6)? Or is it that we are perhaps trying to force totally

unrelated and distinct ideas into the same mould? A number of

answers to these challenging problems have been advanced. Nobody,

seems to know for sure. In the meanwhile, however, a

different approach - the aristocratic approach to hadron dynamics -

has emerged - an approach which frankly negates all one's notions

about relativistic quantum mechanics - but one which is amazingly

simple and fruitful. Treat known mesons and baryons as composites

of basic quarks in an unashamed non-relativistic sense; the

composites are listed belows

qq —* 6 x 6 = 35 + 1

qqq -> 6 1 6 1 6 = 56 + 70 + 70 + 20
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SU(3)

Mass formula

M = a +

Baryon octet

Predict M

Experiment

Decuplet

Predict equal

Theory My *

h
Experiment

Electromagnetic mass

Theory T~

Experiment

for

t>Y +

S +

4539

MASS FORMULAE

SU(3) multipletsj

c [l (I + 1) -i T2J

.7 ~ 4512.8 MeV •

spacing rule

-

149 ~ 145 ~ 142 MeV

differences

- 2

6.6

"*• - n + p = T - •T 0

± 0.1 MeV = 6.5 ± 1.0 MeV

TABLE 13
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MASS FORMULAE

Baryon 56

M = MQ0 + 1̂  j(j + l) + M2T + î  £l (i + l) _ -J Y2J

An average value of MQ0-vlO65 MeV gives the masses of SU(3)

octet and decuplet correctly

Meson 35

SU(6) reproduces SU(3) result

4K2 - 7T2 = 3r j 2

and gives in addition

2 ~2 _ v*2 V2

Experiment O.57I MeV rv O.553 MeV

Electromagnetic mass differences

Theory n - p = 1/3 ( A ~ - A + + ) "

Egpt. 1.3 MeV ^ 2.7 + 1.3 MeV

TABLE 14
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ELECTROMAGNETIC MASS DIFFERENCE

Baryons

N ° - N ^

N*~ - H*4"4"

-*_ *+
Y l " Y l

BoBons

TT + -. 7 T -

K° - K +

OF HADRONS IN STATIC

QUARKS

THEORY

MeT

6.3 ± 0.3

3.1 + 0.3

0.7 + 0.6

3.6 + 0.6

4.4 + 0.5

4.2 + 0.4

-0 .9 + 0.2

SU(6) MODEL USING

EXPERIMENT

MeV

6.5 + 1

6 +3

0.4 + 0.8

0 . 6 + 5

4 .3 + 2

4.6 + 0.007

4 . 2 + 0 . 5

TABLE 15
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su(3)

SU(6)

MAGNETIC MOMENTS

THEORY

yU. -0 .96

a +
 2*78

N*-> N+y 3 f

EXPERIMBFT

-0.73 + 0.16 ( — j

2-5 ± 0.7

-1.46

(1.28 + 0.02) 2&JUL

TABLE 16
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COUPLING OONSTANT RELATIONS FROM U(l2)

i

F ' are Sachs EM form factors.

2) ,up - 1 + 2M/m, Mn - -| (1 + 2M/m)

is
mfmean mass of 1 multiplet and M nucleon mass.

3) Meson baryon vertex

(V o l" nonet i D = -|+ decuplet)*

Predict

oh Mag ch
' Syiro * ^TTD ' SPND ' %¥!) * gPDD ' %I>

Also predict

N-ir a J t1 + "nT^

Taking < m > =. 700 MeV < M> =. 1300 MeV,

Predict f\T*w_ ~ 110 MeV

Experiment ~ 100 MeV

TABLE 17
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Assume a soft (oscillator) potential for the constituent quarks.

The baryon multiplet £6 represents a three-body symmetric wave

function, the meson 35 is a two-body quark-antiquark composite. The

model goes on to describe scattering and production phenomena in

meson—baryon scattering. The fundamental assumption made is that

there are just two independent amplitudes for q-q and q-q scattering,

all amplitudes for composite particles being obtained by simple

additivity. The only ingredient of RQM the <piark model needs,ia the

superposition principle.

As I said earlier, the model seems to negate the S-matrix

notion that hadrons are made up of each other. Since within its

lights it succeeds, it poses one of the many mysteries of our

subject. If physical quarks were discovered (and so far the

search has not been successful - their massiveness presumably

makes their production with present accelerator energies impossible),

one would really have to come to grips with the new (dynamical)

problem of reconciling the aristocratic with the democratic approach.*)

*/ To take an example of the type of problem poaed, consider Regge

trajectories, treated characteristically differently in S-matrix

theory, in the higher symmetry schemes and in the quark model. The

quark model explanation is the simplest; the particles on a boson

Regge trajectory, for example, are orbital angular momentum

•^-excitations of a bound qq system. The higher symmetry schemes

employ a description - as an abstraction from the dynamics -

associated with infinite-dimensional unitary representations of non-

compact groups like U(6,6) or U(6,6) x 0(3).For analogy, one may

draw once again on the hydrogen spectrum, where the hydrogen levels

(in 0(4) language) are given by the representations,

(0,0), (i,|), (1,1), ...

This set constitutes one _single unitary irreducible representation of

the non-compact group 0(4,1). The exploitation of these notions

together with infinite-component field equations,first discussed

by Majorana ;will be the subject of later lectures (particularly

of Professor C, Pronsdal).
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SUMMARY

This concludes our "brief survey of what has been aohievod

in theoretical understanding in particle physics. To recapitulate,

up to the energies for .which systematic experimentation has been

possible, the highly restrictive and tight structure of RQM seems

to hold* We believe we know what some of the internal symmetries

of physical particles arej we know that hadronic matter exhibits

the same internal symmetries whether acting strongly, weakly or

electromagnetically, andv/e know that these symmetries not only

serve to classify particle, "but also dominate low-frequency

dynamics.

So much for the ideas and principles that have reasonably

succeeded, We have been less successful in understanding the

architecture of matter itself. The mathematically intractable,,

though aesthetically attractive, S-matrix bootstrap idea which

considers all hadrons as oomposites of each- other, appears at present

irreconciliable with the simpler additive aristocratic quark model.

The attractive (dynamical) higher symmetries of hadrons like SU(6),

TJ.(6) x U(6)» U(l2), ... which bypass these difficulties (essentially

treating quarks as mathematical entities and giving quark-model-

like results without quarks) still need to be reconciled with

symmetries like SUL(3) x SITR(3),

Notwithstanding some notable successes in weak interaction

theory (the demonstration of the two-component nature of the neutrino,

the sharing of SU, (3) (left, V-A) currents between hadronic strong

and weak forces, the well-verified postulate of a suppression of

AY = ±1 weak effects relative to weak AY = 0 - important topics

which I have had no time to discuss) there is much that is dark) the

reoently discovered superweak CP violation and the possible existence

of exotic typedof yet undiscovered matter (A-matter of T,D, Lee>

introduced specifically to explain CP-violation, magnetic monopole3

of Dirac to explain why electric charge must be quantized), the behaviour

of weak forces at higher energies? all these are question marks
A n d i/ifovj

needing much experiment and deep thought•/As I said in the very
A

beginning of my lecture, the energies to which our systematic

experimentation extends are painfully low on the cosmic scale. There

could be nothing more pretentious than the (unqualified) title of

this lecture -*A fundamental theory of matter - but such, fortunately

indeed, is the encompassing conceit of the human mindI
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Then there are the really deep problemst the origin of

different types of forces - strong, weak, E.M. gravitational -

their outrageously different couplings, the selective division

they impose on matter into leptonic and hadronic, into charged and

uncharged, into left and right-spinning varieties. Considering what

we have already achieved, one feels proud of the work of our

generation* Considering what still remains to comprehend, one

feels truly humble.

SOME UNRESOLVED PROBLEMS

(1) Origin and reconciling of dynamical symmetries

like SU(6) with SUL(3) x SUR(3).

(2) Nature of internal symmetries} do the postulates

of RQjM, together with hadron democracy idea, imply

the existence of these symmetries?

(3) Theory of CP violationj behaviour of weak

interactions at high energies. Origin of the

suppression of 4T a ±1 weak forces relative to

AY = 0 forces.

(4) The large numbers like — , ^t~1 , (g2 )~l t ...

(5) Exotic forms of matterj quarks, magnetic monopoles,

I should like to end with a quotation from J.R. Oppenheimer,

who helped in the planning of this Symposium and whose warmth,

whose insight and inspiration I personally miss so deeply to-day:

"We are so engulfed by the changes in the current scene in physics:

by their ferocity, their brashness, their virtuosity, their diffusion,

that we don't understand them very well, and it may not be possible

for us to understand them. ..... The future will be only more

radical and not less, only more strange and not more familiar,

and it will have its own new insights for the inquiring mind."
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APPENDIX B

Take two machines as typioaXi (a) CERW PS {strong focusing)

(b) Nimrod (weak focusing)

flERN PS

Maximum energy

Protons per pulse

Pulse repetition rate

28.5

"^lO12 internal

12 per minute

Remarksi There is an agreed improvement programme which will

double the repetition rate and increase the

circulating beam to »* 10 protons per pulse.

Secondary beams are available both from internal

targets and external targets. It is usually

possible to have several experiments running on

the machine at any one time.

Nimrod

Maximum energy

Protons per pulse

Pulse repetition rate

7 GeV

1.5 x 10 internal

23 per minute

Typical beams

The number of useable particles can vary enormously because

usually it is necessary to make many compromises to fit in all the

experimental teams. Here are some actual Nlmrod beam figures. Yields

are obtained at the end of the beam line so decay has been taken into

account„

Particle

n

+
n

K"

Beam -

2 tank
separated
beam

Yield per-pulse with
1.5 x 1012 protons
circulating with
A P/P = 1% FWHH

1.5 x 106

2.5 x 106

2.5 x 105

1.5 x 10^

Momentum
GeV/c

1.5

1.5

1.5

1.5
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The following table gives some similar GSM figures:

Particle

Tl

Tt

Tl

Tt

K"

• P"

K"

P"

Beam

Unseparated

Yield per IO12

protons with.
A P/P = 1% FWHR

~ 2 x 1O6

~ 3 * 1O6

~ 2 x IO6

1.2 x IO5

5 x IO4

(A P/P unknown)

1.5 x IO5

102

Momentum
GeV/.o

1.5

1.5

2.5

2.5

1.5

1.5

3-0

12.7

lEhese are typical "beams as actually used in counter

experiments. Buttle chamber beams usually only require /v 10-100

particles per pulse, "but have a high decree of separation and so

may use 10 - 50$ of the circulating "beam depending on the energy.

Obviously the higher the energy the greater the fraction of beam

required. Neutrino experiments,' of course, need the full beam and,

generally speaking, no other experiment can be run at the same time.

The following table gives some absolute yield figures for the CPS.

CERN" yields from one interaction length of lead at 18.8 GeV/c per

.1210 protons per pulse and 20 pulses per minute
-1 -1.(Ster GeV/c ).

GeV/c

n+ (x

Tt" (X

K+ (x

K" (X

IO 1 1)

IO 1 1)

IO9)

IO9)

3.

3.

6̂

.5

9

8

2

3.

3.

5̂

3.

7

2

3

'i.O

2.8

48

27

3-2

1.9

'rO

16

6

3.2

1.2

27

7

8

2

0.6

22

3

G.H.

10

0.7

0.3

_

0.6

Stafford

12

0.1

6.

0.2
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REOQE TRAJECTORT ASSIGNMENTS OF KNOWN PARTICLES

IN 8 and 1 0 ' a OF SU(3)

13/2

11/2

9/2

) .
-»7/2

5/2

3/2

1/2

Octet Recurrences

o

-T(M2) - 0.15

Symbols:
— — • Known partiel* or ruononc*

• Prtdicted recurrence
M(Y-I , I » 1/2)
A(Y-O, I -O)
KY-O. ! • I)
B(Y-- I , I - 1/2)
• (•vyn, prlty, «v«« ilgnaturt)

OecupieT Recurrences

— Symbol*:
Known rtsonanee
Pridictad risononct

A ! Y - I . I" 3/2)
Z (Y'O, I - ))
H(Y--I, I« 1/2)

(V--2, ! • O)
(«vtn parity, odd signature)

» -0 ,39 + 1.01 Mc

F i g . 1
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Fig, 2

Fig.4
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