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FUNDAMENTAL THSORY OF MATTER; A SURVEY OF RESULTS AND METHODS

INTRODUCTION

Our systematic knowledge of stable and semi~stable forms *)
(particles and resonances, lifetimes 3’10-24 secs) in which matter
seems to exist,extends at present to forms oreated in laboratory
collision experiments with proton beams of energies less than 30 BeV,
A like situation holds in respect of the fundamental forces which
govern the behaviour of these forms of matter; our systematic
empirical knowledge extends no further than these smame relatively low
energies, I wish to give a rapid survey of what we believe are some
of the "truths" and "insighte" about fundamental laws of physics which,
though abstraocted from this low-energy data, may, hopefully, survive
in a future theory.

The course that theory of matter would take in future centuries
= its particle aspect and the hierarchy of forces beiween particles -

was Torecast in a remarkable prediction made by Isaaoc Newton:

"Now the smallest particles of matter may cohere by the strongest
attractions, and compose bigger particles of weaker virtue; and many of
these may cohere and compose bigger particles whose virtue is still
weaker, and 8o on for divers successions, until the progression end
in the biggest particles on which the operations in chemistry and
the colours of natural bodies depend, and which by cohering compose

bodies of a sensible magnitude.

"Thexre are, therefore, agents in nature able to make the particles
of bodies stick together by very strong atiractions. And it is the

busineas of experimental philosophy to find them out."

In Newlon's day, the only virtue which particles of natter were
known to possess was gravitational, Subsequently, we have learnt
that there are at least three other virtues. These are: 1) strong;

2) electromagnetic: 3) weakj and, possibly, 4) super-weak.

: —-22
¥ Lifetime T~ i ~ £:6x 10 MoV escs . Thus 10""'24 secs

widthrf width in MeV

lifetime oorresponds to resonances of width ~100 MeV.

-1-



There are iwo important points to be made about theme fundamental

forces:

1. They have vastly different strengths; typically the ratios are,*)

strong : E.,., ¢ weak 1 super-weak : gravitgtional
1 s 1072 5 1070, 1078 : 10™34
2, Even more important; there is a sharp selectivity about the other

forcea in contrast to the universality of gravitation. Thusg,

(a) strong forces divide matter sharply into hadrons (strongly inter-

acting matter) and leptone {with no strong forces );

(b) EJ!. forces divide matter into electrically charged and

uncharged ;

(¢) weak forces divide matter into "left-spinning" and "right-
spinning". They act selectively between '"left-spinning" matter

in a sense I shall define more precisely iater,

As in the familiar case of electrodynamics, it turns out that
this selectivity is best expiessed by assigning to different
varieties of matter a number of fully or approximately conserved
charges (strong charges, E.M. charge, weak charges). The assigm-

nent of charges serves two roles:

1. Kinematic; since the charges defined are (fully or partially}

conserved, they serve to classify single particle states.

%) Phese are ratios (of squares) of the well-imown dimensionless
coupling constants, normalized (where necessary ) with proton mass,
There has been the conjecture (due, I believe, to Dirac) that the
gtrengths of these forces and presumably also their relative ratios
may have varied with the age of the universe (G. Gamow, Phys. Rev,
letters 19, 759 (1967)). Evidence to show that this is not likely
for some of the constants,has been adduced recently (IF.J. Dyson,
Phys. Rev. Letters, 19, 1291 (1967); A. Peres, ibid. 19, 1293 (1967);
J.N. Bahoall and M. Schmidt, ibid. 19, 1294 (1967); and S.¥. Chitre
and Y. Pal, ibid. 20, 278 (1968)).
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2, Dynamio; am for the case of the Coulomb oroe the long-range part

of physical forces is determined by the magnitudes of the corrospond-

ing charges.

Since the concept of strong, weak and E.¥., charges is so crueial
to particle physios, nearly half of my talk will be devoted to it,
Indeed, if I ﬁere asked to list the major recent "truths"
in particle physios, the list would be somewhat like this:

1. A clearer comprehension of the charge concept, both for
classifying particles and for the dynamioal role it plays. In
particular, the discovery that there is a uwnifying principle running
through strong, weak and E J. foroces, in that these forces share the

same basic charges and their corresponding currents (scaled differently,

of course,in strength).

2. Recognition of the essential correciness of basic laws of

relativigtic quantum mechanies (RQ¥ ) up to the cnergies available at

present. Quantum mechanics was invented for systems of typical
dimensions 1210""8 cm, typical energies measured in eV, Non-relativistic
quantum mechanice continued to work in the nuclear domain with typical
lengths =10712

situation it was invented for.*a Relativistic quantum theory ~ and the
=14
c

e and YeV energies - a vast extrapolation from the

strongly operative word is relativistic - seems to hold down to 10 m

and BeV energieas. With quantum theory,we appear to have built our-
selves a house with no doors angiwindows and with walls so high that
@n Joat's phrase) it is hard to know if it is a house or a prison we
have inherited. It will be clear as I go on how tight and resirictive
the etructure of relativistic quantum mechanics'is; for example, it
dooss not appear to permit an easy mixing of space-~time degrees of
freedom with the "internal" degrees of freedom represented by the

charges.

3. Renormalized quantum electrodynamics (Dirac-Maxwell theory of

to
electrons and muons ) which accordsﬁfhe highest experimental
accuracy achieved at present, Since Professor F. Low will review

nineteen-
Q'There never was a conference held in theA;hirties, vhere some of the

founders of quantum theory did not express doubis about this extra-
polation. The fundamegtal length at which quantum mechanics was

as
expected to break downxcontinually diminished in size as time has

gone on.



it in the nex% hour,I shall not discuss this most beautiful of theories
which makes every one of us purr with elatiom.

| 4. Developménts in weak interaction theory, initiated by the discovery
of their extraordinary space~time reflection properties, which were first
correlated through the recognition of the crucial role of the two-

component (left-handed) nature of the neutrino, and through its later

generalization, to the concept of chirality (handedneas) for all matter.
Prof. T.D. Iee will be covering this soon after this lecture and I shall

not discuss this beautifully connected development.

The plan of my lecture will be as follows. First we go over the
Rosenfeld table (Appendix A) of stable and semi-stable particles and
resonances, introducing at the same time the various classifying charges;
next degcribe the theoretical apparatus used, setting down also the
canons of relativistic quantum mechanies (R’ ); finally, turn back to the
charges in their dynamical role and consider other dynamical symmetries
not associated - to our present knowledge - with charges. We end with
speculations whether these symmetries foreshadow discovery of newer forms

of matter interacting with super-strong forces,




PART I

CLASSIFICATION OF PARTICIES AND CHARGES

A. POINCARE DESCRIPTION

Throughout we make the assumption that laws of physics are
translation~ and space-time rotation symmetric. This assumed
Poincaré symmetry of space~time implies in turn conservation of

energy, momenium (gﬂ) and angular momentum ({Hv) gh respectively?*)

*) Conservation law of angular momentum is verified empirically,
for example, in 0*— 0% internal conversion in electro—transitions
22; Sunyar (G. Feinberg and M. Goldhaber, Proc. Nat. Academy,
45, 1301 (1959)) found a Tatio af/e" <1/1000 . since y-rate for
a 1*— 0" transition would be =10%® faster than e~ rate for
ot— ot transition, one oconcludes that the amplitude for the

in Ge

admixture of spin 1 state with spin zero state is less than 1 part
in 10~4 .,

**)  Dhe argument connecting symmetries and conservation laws, though
well known, is worth repeating., A symmetry in quantum theory is
represented by a unitary transformation U relating a given state of
the system to the one obtained by the aymmetry operation,
Infinitesimalily, let

U=1l+ ilee (Je hermit?an) .
A gymmetry is exact if U commutes with the full Hamiltonian of the
system; it is a partial symmetry if it commutes with only a part
(hopefully the dominant part) of the Hamiltonian. Thus for an exact

symme tTy,
uv,s5] =o=lx ,& ,

dxe
ile.’ —_— O

dt

so that xe is a ftime-~independent operator; its eipgenvalues do not

change with time and serve to classify one particle states.

If the symmetry is only partial, i.e., if the Hamiltonian con-

sists of two pieces, H + gH ' dXé/dt £ O ; 1049 X

inv. non-inv, e
is time-dependent, its time rate of change being proportional to the

symmetry breaking parameter g .
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It is our aim in the sequel to specify a set of quantum operators
whose eigenvalues serve to classify single-particle states. A
complete characterization of those involving the Poincaré operators

P, and J,y (M=0,1,2,3), was given by Wigner as follows:

Congider the resat frame of the particle Pi =0 ,1i«1,2,3,
Single=particle states are labelled according to:

(i) Rest mass (eigenvalues of the operator PO).

(ii) Spin. The three spin operators %) 3y corresponding to space

rotations olose on the algebra of SU(2);

r . .
LJi,Jj] -l T i=1,2,3.

Thus from standard group theory, quantum mechanical states (in the

rest frame) can be labelled with the eapin eigenvalues J and J3

of the two (Casimir) invarianis of SU(2) - i.e., of the operators

2 2 .2 .2
I =J’1+J2+J’3-J(J+1) and Ty
Where **)

J‘-’"O, '%‘, 1 § s0asne

+1
JB.O, i'% ,""0 g sssssse

*
) Jl' J2, J3 are the samelas J23, J31, J12 of the pet {uv.

**)  Tf the precise value of J3 is not specified, the spin label

J denotes collectively a (2J+1) dimensional spin multiplet of
particles, In subsequent work,spin J will be specified by in-
dicating the multiplicity; thus multiplieities 1, 3, 2, ees Will in
indicate apins O, %, 1, «... , Tespectively.




(iii) Particle-antiparticle duality

One of the gifts of local relativistic quantum theory and Poincaré
symmetry is the assertion that all particles posseass antiparticles *)
(with the same mass, same lifetime and opposite charge ). If experiment
shows that this symmetry does not hold, either the Lorentz-invariance or
the locality of the theory must be abandoned ,**)

Summarizing, the Poinocaré clasgification of physical states proceeds
with the following ingredients; ***) (Table 2)

%) The reason for this is subtlej real Poincar® invariance in a local
theory (defined more precisely in Part IIB) implies — it so happens —
full gcomplex Poincaré invariance (U = 1 + io,X, 50, 0 Xy complex ).
Now a part of the complex Poincaré group connected to real Poincare

is space-time reflection x— —x (parity or P—operation) and t— =t
{time refleoction, T). This, together with C (conjugation of particles
with antiparticles), defines the CTP symmetry which converts incoming
particle states to the corresponding outgoing antiparticle states.

CTP symmetry is thus an in-built part of a Poincaré-Lorentz-symmetric

looal relativistic quantum mechanics,

*%) Progent limits on mass and lifetime equalities of m* and ™~ , for

example, set (not too stringent ) 1imits on the experimental validity of

InJ
cTP T - 1= ,064 + L0669 )
-

***)The impatient reader will get a reasonable notion of the concepis

in the subject by reading only the tables.

Y |




TABLE 1

Invariance or symmetry

represented by unitary transformation

UT=1+ iule";

X£ observablea,
If symmetry is exact,

[U:H] =0 = [XL!H]

then

d

'a-.i;' x‘e(t)-o .
If

% X£(t) % O

symmetry is broken.

TABIE 2

Poincaré description

1) Rest mass
2) Spin

Spin algebra SU(2) =

J ‘0’ %"’ l, svsesss

J -0, i%,i%, asee

3
Multiplets
of — 3;, 3’ 3, sreeae
dimensionality

3) Particle & antiparticle duality.
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B, CLASSIFICATION CHARGES

The spin operators J, (and their group-theoretic properties)
provide prototypes for other classification charges. We now go over
these.

1. Electric charee (Q)

Empiriecally the electric charge Q,

(a) is conserved § = O ; 1a@1eotroﬁ}> 2 x 10°1 YT}

(b) possesges (like J3) the eigenvalues O, +1, +2, ... in
units of electron's charge, (In algebraic language
Q is the generator of an intermal symmetry group U(1).)
All known charges exist in units of electron's charges

(c) the most remarkable manifestation of this is the charge
equality of electron and proton verified to better than

1 part in 10°° .,

2. Strong (hadronic) charges

Unlike the elsctric case with but one type of charge known,@
there exist a variety of strong charges which manifest themselves
for strongly interacting particles, the so-called hadrons., Theage
are baryon charge (B) , hypercharge (Y ), isotopic charges (I) and
wnitary charges (F).

(a) Baryon gharge B

Like electric charge, baryon charge B carried by protons,

neutrons, etc, {mee Table 4 for more baryons),

(i) is absolutely conserved *¥)

> 1021 Y84y

> 4 X 1023 yrs.,

Teree proton

Thound protons

) There could, for example, exist particles with magnetic charges

(monopoles) but at present there is no evidence for these,

*%)  Dhese are eatimates of Reines, Cowan and Goldhaber (see G, Feiberg
and ¥, Goldhaber, ibid.) who looked for possible proton decays in large

hydrogeneous scintiliation counters CTHB .



(11) possesses (like JB) eigenvalues
O, .'tl, ie, eea

in units of proton's baryonic charge.
A remarkable (but not understood } empirical relation

seems to exist connecting spinJ and baryon charge B
empirically (3~ £B) takes integer but not half=~

integer values.”

(b) Hypercharge Y

The discovery of hypercharge Y for strongly interacting particles
is the oulstanding post-war discovery of experimental hadron physics.
Like Q and B , Y is associated with the algebra of group
structure U(1) (eigenvalues Y = 0, +1, +2, ...). Unlike Q and
B , particles of large Y value have not so far been reported; the
largest firmly-established value of Y is -2 for S0, Whereas @
and B ave (tb6 all intents and purposes) absolutely conserved, with
Y we enter the domain of partially-conserved charges Y %0,

A KO-meson with Y = +1 decays in 10710 gecs into a pair of
r-mesons with ¥ = 0, i.e., a unit of hypercharge disappears_(in‘to
the vacuum) in 10710 geos. Since the characteristic times involved
in strong interactions are of the order of 10723 _ 10724 secs
(AE = several huhdred MeVs), it is olear that this relatively slow

hypercharge violation (T ~ 10710 secs) is irrelevant (to one part

%) This empirical relation has led to a certain confusion of termin-
ology. o clarify:; All strongly interacting particles are called
hadrons. Among these are half-integer (Fermi) as well as integer-
spin (Bose ) particles. Empirically all baryons interact strongly and
are therefore hadrons. From the relation J — 2B = integer, clearly
'2eT0 baryon charge B = O implies integer (including zero ) spin.

Such particles are called mesons. A deuteron (J = 1, B = 2) is a
hadron, a boson, a baryon, buil not a meson. TWhen a particle is
called baryon without qualification,the normal implication is baryon
charge B = 1 and (from J - 4B = integer) half-inieger spin.

=-10-




»)
in a trillion) in strong interaction physics.*%

(c) Isotopic charges

The concept of the three isotopic charges I, (which generate,
like the spin-operators J. , the algebra SU(2)) has been familiar
since the 1930's:

(1,(¢) Ij(tI] - i€ g T () .

(i) Like spin, multiplets of imotopic charge are labelled with
two numbersa:

l:-E‘ = 0, ':‘1.3’9 1, %: LR

3

13 -0’ ;t%_’ %}112’
+i_ ’ * & a8

. -

with dimensionalities 1, 2, 3, 4y «us
(ii) Like hypercharge, isotopic charge is not conserved
IkoO
if forces other than the strong forces are taken into

account, As is well kmown from nuclear physics, the

isotopic symmetry is broken by electromagnetism. Thus,

2

g
at 1Ll cagy, -

*) The lack of hypercharge conservation proceeds from that part of
the Hamiltonian which corresponds to weak forces;

. 2
T = €reak y
Thie is qualitatively clear since the ratio of hypercharge-—violating
decay times (XKY— 27n) tothe hypercharge-conserving decays (po—~> 2
-11
0

2 2 2
is (apart from phase space factors) \gwe a.k/ g trong‘ ~1

*%) Thig is perhaps an appropriate place to make the essentially semantlic
distinction between semi-stable particles and resonances. When a
hadron decays through E.M. or weak forces (like K®— 27), we have

called it a (_semi-stable) particle, the word resonance being reserved

for hadrons decaying through strong forces themselves (like e —27)

-]1-
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A quantitative measure of | I | non-conservation is the
mass difference among members of the same I~-multiplet;
typically for I =1 ,

Mass (MeV) I,
+
z 1189 1
)
Z 1192 0
z 1197 -1
82
so that Am {1 part in 10° (LB~ Tl )
gstrong

(iii) For hadron physics there exists the empirical relation® which

expresses electric charge Q as a linear sum of hyper- and one
of the isotopic charges

Q = I.+%Y .

3
Thig is the first example of charges shared between two

different types of interactions, strong and T .M.

(d) Unitary charges

A remarkable synthesis of igotopic charges and hyperchargs was
achieved when it was recognized,between 1959 and 1961, that these
four charges were part of a larger set of eight, the smo-called unitary
charges F, { i =1, 2y 3, «uuy 8) which close on the algebra of the
SU(3) group

O - i
[F(l),Fr:t)J] 12 A (t)
provided one identifies Fl’ Fz, F3 with Il’ IE’ '.[3 and Y with
2/\/—_3 F8 . The charge-sharing relation for hadrons, mentioned above,

now reads
1
Q = F3 + ﬁ FB .
The multiplets of wnitary charge correspond to the representations of

the SU(3) algebra; these typically possess dimensionalities 1, 3 3,
8, 10, 27, 35, ...

numerical .
*)  In all such jsharing relations,and throughout this lecture, the

charges are specified after scaling in their "™atural! units,

"




Sinoe the algebras of the hypercharge (UY(l)) end isotopic charge
(SUI(2)) are contained in the algebra of SU(3), each SU{3) multiplet
contains in a specified manner a number of UY(I) and SUI(2) malti-
pPlets. Listed below are some of the known 8's and 10t of
SU(3) - the existence of the latter ¥ being splendidly confirmed by the
discovery of the S0, The fundamental triplet represent-
ations 3 and 3 of SU(3) from which, according to standard
group th:ory, allhother representations can be made " *) by repeated
multiplications,have been named quark and antiquark representations,
Their isotopic, hypercharge and charge content (based on the empirical
formula Q = I, + 27 ) would be as follows:

3
TABIE 3
I3 Y Q= I3 +
Quark 3 -%- 3 %
_ 4L 1 _ L
2 3 3
2 1
° -3 -3
Antiquark i -% -%— --%
1 -1 1
2 3 3
2 1
© 3 3

») A puzzle on par with the puzzle of non-existence of particles
with |Y| > 2 4is the non-appearance in particle spectrum of higher
SU(}) multlplets '_2:(’ -}\‘5’ ven

**)  e.g.,

3x3=8+1
3x3ix é -1 + §’+ 8 + %9 .

13—




Note the fractional charges one may expect quarks and anti-quarks to
pogsess; no physical particlée with these charges are known to exist
to date. The accodpanying chart (Table 4) summarizes some of the
better-known hadrons in Rogenfeld's table.

The well-identified SU(3) multiplets with their spins J and

~parities P ,are:

(1) Boson octets 7 - o-, 17, 1%, 2%,

(ii) baryon octet 7 oa i+

(iii) Dbaryon 10-fold JI° = 3/2% .

Fig.2 is an important plot of still higher spin particles, asome
already identified, others conjectured on the assumption that all
hadrons form SU(3) multiplets of 8 and 10's (octets and decuplets).
The plota give spin versus (mass)z. Notice the important empirical
result: these plots (known as Regge itrajectory plots) are essentially

straight lines and are continually rieing. One of the most important

unknowns in hadron physics is how far in the mass scale may one expect
the rieing of these trajectories, how high values of spin J are
obtained in the particle spectrum; is there an“ionization limit’ as
there indeed is if we make a like Bohr plot of J versus ¥2 for

the hydrogen atom levels.

Returning to unitary symmetry, SU(3) (like the isotopic SU{2)) is
a broken symmeiry; unitary charge is only partially conserved. A
meagure of dF/dt is provided by the mass difference among members
of the same multiplet; e.g., Table 4 lists the mass differences of

successive members of the 10-fold. There is a (nearly c0nstant)9

mass increase of ~145 MeV {equal-spacing rule ) when we go from ¥ = 1
to ¥ = -2, 4 rough estimate of dF/dt is provided by le/m ~ 1/10

%) We shall not have time here to consider this SU(3) symmetry
breaking medium-strong force in any detail., An important clue to-~
wards its group-theoretic specification is provided by the equal-
spacing rule for masses mentioned above, which is most simply explained
if we assume that the part of the Hamiltonian breaking SU(3) irans—
forms like hypercharge. A certain amount of group theory is involved

in deriving this result which is not immediate.

~1l4-




TABIE 4

Eight-folds Ten-fold
Yegsong B = 0 baryons Bal B=1
+
- - + + 3
7 ° 1 1 E 2 ¥ass (IevV)
+ 0 - + 0 - + ,0 - + .0 -~ 4 + 0 -
I =1Y a0 7 ,m,T P?P Al,Al,Al z:‘zz A a N DN A 1236
+ 0 x4+ %0 + 0 + .0 -~
I=3Y=1 KK KK Xys K, Pn Y] Y Y] 1385
- - —% *_ - ) = e, S
I«3Y=-1 80K £ 0g Eg, Ky =0 = o0 = 1530
I=0Y=0 ¢ D A ok 1672

Electric charges indicated as superscripts; i+ . spinparlty.

Summary of Rosenfeld's table for hadrons

=15-



this rather large number giving a measure of the (medium-strong)

coupling strength of SU(3)~breaking forces relative to the strongest
SU(3 )=symmetric forces., The nature of these symmetry bresking forces

(unlike the case of isotdpic gymmetry where we know that the symmetxy
is broken by electromagnetism) is one of the important unresolved

problems.

To summarize, we recognize & succession = a hierarchy - of strong

charges and associated symmetries; SU(3) unitary charges, SU(2) iso-
topic charges, hypercharge and (in a category by itself ) baryon charge.
If all but the strongest forces in nature are neglected, these charges
are fully conserved. Their lack of exaot conservation is a reflection
of the existence of medium-gtrong, electromagnetic and weak forces,

regpectively.

(e) Left and right unitary charges

Even if SU(3) triplets (quarks) do not exist, in so far as they
constitute the fundamental representation of SU(B), all other re-~

presentations, as stated befors, can be made as mathematical composites

from them.

To construct both fermions as well as bosons as composites, quarks
nust carry spin 4. This oircumstance makes it possible to extend the
notion of unitary charge in a moat fruitful direction. 4 spin-%
particle has two polarization directions for a particle in motion,
apin along and opposite to its direction of motion; the so-called
left spin and right spin.

For a particle of rest mass zero (particles travelling at the speed

of light) these two polarization states are completely independent
states.j There is no rest frame for a massless particle in which a
rotation may transform right-spinning particles to lefi-spinning ones.
There are thus not Just three, but six zero mass quarks; three spinning
rights three spinning left. Corresponding toeach spin polarization,
there are two distinct types of wnitary charges defining two independ-

ent algebras, SU(3) and SU(3) The symmetry represented by

left
SU(B)L x SU(B)R is of course a badly broken one, because it holds

right*

only in the idealized limit of zero mams for the fundamental represent-
ation (the quark), We shall see later that this symmetry (also

called chiral symmetry) is not a good kinematical symmetry for clas—
s8ifying particle states; surprisingly, however, it turns out to be an
excellent symmetry in its dynamical aspects, at least for low-frequency

phenomena (Part III).

%) The archetypal example is the neutrino (see under leptons). Left (spinning) neutrinos exist; right
(spinning) neutrinos do not . This (two-component) aspect of the neutrino gave rise to the concept

of left and right (chiral) charges. -




(£) Nature of the internal symmetries (UQ('.L), UB(l), UY(I), SUI(2),
SUL(3))

The spin quantum numbers have their origin in Poincaré-Lorentsz
symmeiry of space and time, The other charges @, B, Y, I, Fy in
so far as they are dissociated from space-time structure, presumably
represent, in some sense,symmetries associated with internal degrees
of freedom, But are these charges really that dissociated from
space-time? I shall come back to this problem in Part IIE of the
lecture,

TABLE 5
Summary of clasdifying charges for hadrons
Charges Algebra Typical
multiplets
Electric Q U(1) Q=0
Baryonic B (1) Bxo0
Hypercharge Y u({1) Y o< gfreak
Ieotopic T su(2) 1, 2y 3y «es I Belectromagnetic
i - 2
ﬂUnitary F 5U(3) 21 ﬁ» ];.9' cee F o< gmedium-stmng
Left & _ _
Right SUL(3) x SU(3)  (3,3) + (3,3),.
Unitary R
. 3 1 8
Sharing of charges Q = 13 + % = F o+ 73- r,

3. leptons

So far we have dealt with hadrons. Congider now lsptons —

particles without strong interactions. The known lepton spectrum

-17-
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is meagre in contrast to the richness of the hadron spectrum.f) There

appear to be but four leptons differentiated from each othar by two
types of charge. Thege are:

(a) /U- 14 v/u ?

(b)) e~ , v, .

BothV, and v, are left-spinning objectsj M~ ,V, each carry unit
muonic charge; e ,'ve each carry uwnit "electironic'" charge. Both these

leptonic varieties of charge are (individually) congerved, Leaptons

exhibit E.M., weak and gravitational interactions. One of the ununderstood
empirical faots is the remarkable identity of muonic and electronic inter-
actions -~ roughly speaking, the equality of the two iypes of leptonic
charges — notwithstanding the different masséa **)of these particles,
This is somewhat analogous to the surprising numerical equality of the

eleotron's and proton's electric charges mentioned earlier,

4. Weak charges

Both hadronsand leptons interact weakly., 1In analogy to strong charges,
there are weak charges, defined more precisely in Part III, where we shall
see that (apart from scale ) these are related,for leptons,to the (left)
leptonic oharges introduced above and,for hadrons,to certain combinations
of SUL(3) charges.

'9 Recent systematic search at Stanford has failed to reveal any other
leptons with masses less than a BeV with fairly low production cross-
sections. (A. Barna et al., Phys. Rev, letters 18, 360 (1967).)

*%)  Dhae large muonic mass (nearly as large as that of the pion) has
always led 1o the suspiocion that muons may possess strong charpes as

well as weak ones.

=18~




C. DISTINGUISHED PARTICLES AND ELEMENTARITY

It has been remarked that all hadrons could be considered as
(mathematical) composites of three quarks; together with the four
leptons above, one could say that this set of seven objects = the lasi
remnants of the elementarity idea - constitutes in some sense a dis-
tinguished set (of particles or fields) from which all other particles
could be made.

If one wished to substitute for the unobserved quarks a set of
particles observed physically, numerous other choices are possible.
One economical set would be the Sakata set p, n, A - but the SU(3)
symmetry would be hardér to build in with this as the basioc set. To
build in SU(3) credibly, the best hadron set is still the familiar old
favourite, the octet of baryons N,/A,X,=, of which the nucleon is
a member. This, however, would be only one of the many choices

poasible.

The arbitrariness of such a choice brings us back full cycle to the
dilemma of elementarity. The historical tradition of physics - and
the view found profitable when dealing with leptons - lies along an

identification of a distinguished - an aristocratic - set of particles

(as few in number ag possible) of which all others ars made, The

other viewpoint could be that there is no distinguished set at all,
at least not for hadrona, that there is full democracy in hadron

physics and that it is more profitable t¢ consider all hadrons as

compogites of each other. We shall consider these two contrasting

views of elementarity ~ aristooratic vs. democratic - in more detail
in Part IT.
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PART 1T

RELATIVISTIC QUANTUM MECHANICS

In this part of -the lecture we discuss the structure of
relativistic quantum mechenics (RQM)}., The ideas I shall be
wrestling with are some of the pretiiest, also some of the
profoundest, in the whole range of physics. I have tried very
hard to achieve a clear exposition but the sheer number of
concepts makes the task nearly impossible. Perhaps an initial

listing here of the topics may help,

Sec., A: discuss relativistic kinematics,

Sec. B: ingredients of two approaches to RQM, field
theory and S-matrix theory.

Sec.-C: set down the accepted canons of RQM as abstracted

from the two approaches,

Sec. Dt . list some far-reaching consequences of the canons,

Sec. E: describe the attempts to reproduce the hadron-—

- gpectrum within the framework of R,

A, KINEMATICAL CCNSIDSRATIONS

In Part I, we introduced the personnae of the cast, the
particles and resonances (see in particular, Appendix A), A1
nembers of this cast {(except protons, neutrons and elecirons of
«hich normal matter is composed)were created and discoverel in
cosmic rays or accelerator—beam collisions., Appendix B is a note
which Dr. G.H, Stafford of the Rutherford Laboratory, Harwell,
has kindly prepared for mej; this lists typical beams and bean
intensities of the present geneiation of accelerators. Since
collision experiments using thegse beams are our sole systematic
means of the study of semi-stable particles, resonances, their
masses, their decay widths, as well as the details of the
interaction processes, it ia important to familiarize cneself with

the kinematical and theoretical constructs employed, This




(Seo. AJis perhaps the dullest part of the lecture; I need however,
the notation we introduce here. Anyone familiar with it may read

just the summary at the end of the section and pass on,

1. The masges of semi-stable particles and resonances

One of the major = and in oontrast to non-relativistic
gquantum mechanics = essentially unsolved problems of particle
theory is the prediction of the particle spectrum =~ the masses,
#pins, paritites and other charges of semi-atable particles and
resonances, The problem has been attacked both from the
"aristocratic! and "democratic" points of view of Part IC and

we return to it in IIB.”

2. Decay widths, coupling,constants and form factors

- The second task of the theory is to give a description
of decay widths. The kinematical tool for two=-body decays is the
so=called three-point function or the vertex function F(pA,pB,pc),

v Pg
3
5
Ve
Py Py
@ Internal symmetries disccusged in Part T simplify the

problem to the extent that if one member of a multiplet
is discovered, and if we have some idea of the symmetry
breaking forces, we can make a reasonable guess at the

masges of the other members of the multiplet.

-] -
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PART II

RELATIVISTIC QUANTUM MECHANICS

In this part of -the lecture we discuss the structure of
relativistic quantum mechanics (RQM). The ideas I shall be
wrestling with are some of the prettiest, also some of the
profoundest,iﬁ the whole range of physics, I have tried very
hard to achieve a clear exposition but the sheer number of
concepts makes the tagsk nearly impossible. Perhaps an initial

listing hexre of the topics may help,

Sec, A: discuss relativistic kinematics,

Sec. B. 1ingredients of two approaches to RQM, field
theory and S=matrix theory.

Sec,-C: set down the accepted canons of AU as abstracted

' from the two approaches,

Sec., D  1list some far-reaching consequences of the canons,

Sec, E: describe the attempts to reproduce the hadrone

“zpectrum within the framework of RQI,

A KINEMATICAL, CONSIDERATIONS

In Part I, we introduced the personnae of the cast, the
particles and resonances (see in particular, Appendix &), M1
nembers of this cast {except protons, neutrons and elecirons of
which normal matter is composed)were created and discovered in
cosmic rays or accelerator-beam colligions, Appendix I is & note
wnich Ir. G,H, 3tafford of the Rutherford Laboratory, Harwell,
has kindly prepared for mejy this lists typical beams and bean
intensities of the present genefation of accelerators., Since
collision experiments using these beams are our sole systematic
means of the study of semi-stable particles, resonances, their
masses, their decay widths, as well as the details of the
interaction processes, it is important to familiarize oneself with

the kinematical and theoretical constructs employed. This




(Sec. A)is perhaps the dullest part of the lecture; I need however,
the notation we introduce here. Anyone familiar with it may resd

Jjust the summary at the end of the section and pass on,

1, The masses of gemi-stable particles and resonances

One of the major — and in oontrast to non-relativistic
quantum mechanics ~ essentially unsolved problems of particle
theory is the prediction of the particle spectrum - the masses,
spins, paritites and other charges of semi-gtable particles and
resonances, The problem has been attacked both from the
"aristocratio“ and "democratic" points of wview of Part IC and

we return to it in IIB.*J

2. Decay widths, coupling constants and form factors

The second task of the theory is to give a description
of decay widths., The kinematical toecl for two-~body decays is the
so=called three-point function or the vertex function F(pA,pB,pc),

9 Internal symmetries discecused in Part I simplify the
problem to the extent that if one member of a multiplet
ig discovered, and if we have some idea of the symmetry
breaking forces, we can make a reasonable guess at the

masses of the other members of the multiplet.
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PART II

RELATIVISTIC QUANTUM MECHANICS

In this parlt Jf -the lecture we discuss the structure of
relativistic quantum mechanics (RQM), The ideas I shall be
wrestling with are some of the prettiest, also some of the
profoundest, in the whole range of physics., I have tried very
hard to achieve a clear exposition but the sheer number of
concepts makes the task nearly impossible, Perhaps an initial

liating here of the topics may help.

Sec, A: discuss relativimtic kinematics.

Sec. Bt ingredients of two approaches to RQM, field
theory and Se-matrix theory.

Sec. C: set down the accepted canons of 3QM as abstracted
from the twe approaches,

Sec., D; 1list some far-reaching consequences of the canons,

Sec, E: describe the attempts to reproduce the hadron-
- gpectrum within the framework of RQI,
A KINEMATICAL CONSIDERATIONS

In Part I, we introduced the personnae of the cast, the
particles and resonances (see in particular, Appendix A), 41l
members of this cast (except protons, neutrons and electiroas nf
which normal matter is composed)were created and discovered in
cosmic rays or accelerator-beam collisions., Appendix I iz a note
which Dr, G.H, Stafiord of the Rutherford Laboratory, Harwell,
has kindly prepared for mej; this lists typical beams and bean
intensities of the present geneiation of accelerators. Since
collision experiments using these beams are our sole systematic
means of the study of semi-gtable particles, Tresonances, their

masses, their decay widthe, as well as the details of the

interaction processes, it is important to familiarize oneself with

the kinematical and theoretical construcis employed. This
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(Seo. AJis perhaps the dullest part of the lecture; I need however,
the notation we introduce here. Anyone familiar with it may read

just the summary at the end of the section and pass on.

1. The masses of semi-gtable particles and resonances

One of the major = and in oontrast to non=relativistic
guantum mechanics =~ essentially unsolved problems of particle
theory is the prediction of the particle spectrum -~ the masses,
eping, paritites and other charges of semi=stable particles and
resgonances, The problem has been attacked both from the
"aristocratic” and "democratic" points of view of Part IC and

we Teturn to it in IIB.Y

2 Decay widths, coupling constants and form factors

~ The second task of the theory is to give a description
of decay widtha, The kinematical tool for two~body decays is the
so=-called three-point function or the vertex function F(pA,pB,pC),

9 Internal symmetries disccused in Part I simplify the
problem to the extent that if one member of a multiplet
is discovered, and if we have some idea of the symmetry
breaking forces, we can make a reasonable guess at the

masses of the other members of the muliiplet.




Denote the Tour momenta of the three objects A,B,C involved as

P,1PgpePpe From energy momentum conservation Py = Py + ppe The

general vertex function is a function of the spins and momenta of

the three objects A,B,C which interact. From Lorentz=invariance

it can be written in the form of & product of spin factors Y1

and the so=called invariant factors Fl. The invariant‘functions

1) contain no spin,

2) are functions of the Lorentz=~scalars which can be
_formed from the momenta PpsPRsPoe The spin factors
X dre kinematical ob;ects; the dynamiocs is
expressst by the funotions F,

L s i 2 2 2
v =2, /4 (spins) F* (pysp5e75)
1

Consider the following special cages:
(i) A,B,C represent three stable physical particles of
MASSES My yMpyMy,y

( 2 2 2 2 2 mz)
Py =My Py =T3 Pg =M, .

The limiting values Fl(mi,mg,mg) of the invariant

function F' are known as the coupling constants,

(11) If mA > (mg + mC) s the particle A is unstable.
the vertex function in this case dlrectlv gives

the decay amplitude ¥ A8 4+ 0,

If A,B and C all belong to SU(2) {(or SU(3)) multiplets, it is
clear that the amplitude above is relasted by simple group
theoretic Clebsoh-Gordan factors tgfamplitude A" — BY 4+ OO0,
where primed objects are other members of the multiplets, It
is the experimental verification of this type of kinematic
relation which, in general, gives the empirical SU{2) (or

SU(3)) assignments of particles.
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(1i1) When A and B are the same particle , pi = pg - m2

and C is & {(virtual) photon (i.e., electromagnetic
field frequency), the F ' are functions of just one

)2

variable, the momentum transfer t = (pc)2 = (--pA +p

y

and give the so~called eleciromagznetic form factors.”

3, The scattering amplitude

Theé kinematical constiruct here is the so=-called four-point
function, (Fig.4) Consider four interacting objects with momenta

Py oPpsPesPhe From energy-momentum conservation

Py +Pg+Pg+pPp = O,

Like the vertex function, the four-point function T(pA’pB’pC’pD)
can be written in the form
' . i, 2 2 2 2
T(pyy 200 ) = E;; X' (spins) F(p,,p5sPgoPps 5st)
1 . '

where

2
8 = (PA + PB)

2
t = (p, +1pg)

®  The Fourier transforms of these functioms in configuration space
represgsent the spatial extension of charge, magnetic and other E.M,
moment densities, for the particle A, One of the most beautiful
of recent experimental results is (Fig.Z) that apart from a
scale change, the magnetic and electric charge form factors of the
proton and the magnetic form factor of the neutron -~ and thus
the spatial charge and magnetic moment dengities -~ are identical
when plotted as functions of momentum transfer up to | (pA - PB)zl
around (4Bev)2. We shall see later (Part IV) how this identity
of charge and megnetic densitiesg finds its readiest explanation
in terms of dynamical symmetries (like U(12)) higher still in

heirarchy than the ones considered in Part I.
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The ¥ 's are the invariant funotions of the cix independent lLorente
scalars which can be formed from the momentum vectors Py sPgiPasPy

(of which but three are independent, since Py = --(pA + pg + pC).

We shall mainly = though not exclusively -.be interested in

the pituations where the four objects are physical particles on

their mass_shells, i.e., when pi = mi, pg = mg, pg = mg, p% = mg .

Congider the following special cases, all represented by Fig.4:

a) Three body decayss if pi = mi >(mB +my + mD)Z, A is
unegtable and the amplitude represents lts three~body decay
A—B+C+ 0D,

b) Scattering
Channel I, Let momenta Py and Pg be incoming; Pg and Py

outgoing., The variables s and t on which Fl(s,t) depend are well-

_ *
known physical variables; thus )

2 2 2 2

8 = (pA+pB) = B, = 4(kc+m)
2 2

t = (py +25)° = =% (1 -cosb) ,

i.e., = eguals the square of c,.,m, energy (Fc) and 1t is the momentun

transfer, It is important to note that scattering occurs only when

in the (s,t) plane,
5 ‘
5 ) (m, + mB) >0

and
t \< O .

Channel II., The same Fig,4 could represent a second
vhysical situation, where Py and Dy are incoming momenta and Py
and Pp outgoing. In this case

2 2 2
(coms erergy)” = t = (py +p)° » (my +my)" >0

momentum transfer = s £ 0

% Asgume for simplicity all particles have equal masses

(mA = ['l'l.‘B &= mC = mD).




The Tole of s and t are reversed ¥ for the two channels,

4,

One could go on to the five-point and higher functions

A c
D
B
E

which represent production processes. In the study of these
processes one has tended to make a two=-stage approximation., For
example, most work on the five=point function éssumes that it is

dominated by the sequence of processes:

D

A + B ->C + D
L"‘“’ E + F

Here C is an intermedliate resonance which im first formed
decaying subsequently C— E + F, This approximaetion has been
surprisingly successful in analysis of data.

'9 Note that Channel I and Channel II can be distinguished either
by specifying which particles are incoming and which outgoing,
or by specifying the regions in the (s,t) plane where s > O

and t ¢ O and vice=versa.,



Summarizing The theoreticel problems investigated at present

in psrticle physics are the following:

1) The mass spectrum of the particles, their spins,
parities and internal charges = a problem towards
whose theoretical understanding we have had the

least success.

2) A coherent description of three=body coupling
constants, decay constants and momentum transfer

dependence of form factors,

3) The veriation of scattering amplitudes Fi(s,t) as
functions of energy & and momentum 4ransfer t in
Channel I (with the rolesof = and t reversed in
Channel II), By and large we have been more successful
in describing decay constants and the behaviour of

scattering amplitudes than of particle spectra,

B, INGREDIENTS OF THE THEORY *)

Historically, relativistic quantum mechanics (ROM) was
more or less contemporaneous with the epic days of Einstein's
field theory of gravitation,which itself had béfore it the great
model of another field theory = the electirodynamics of Maxwell
and Faradaj. Inevitably, the first realization of RQM was

carried through in terms of a local field concept,with the following

ingredients:

¥  This section desoribes rather complicated ideas, perhaps not
too well, The harassed reader may pass direétly on to Sec. C,

(Postulated canons of relativistic quantum mechanics,)




1,  Local fields

»
Associate with each particle a local field coperator

A(x) defined at all space-time points x; the electromagnetic
fields E(x) and H(x) are the archetypal examples.

2, - Elementdrity vs, compositeness

If A is composite of B and C, the field A(x) equals a
polynomial product of B(x), C(x) and their derivates,

3. Scattering ampliiudes

The amplitude for scattering of A + B—C + D,and in
particular the invariant functions Fi(s,t)*ﬁ)which describe
scattering (see IIA),can be written in terms of matrix elements of
produots of field operators asmooiated with A,B, etc., and their

derivatives,

% By locality #e mean the commtation relation postulate that
d 10cality

[a(z) , A(¥)] =0 (C.R.1)
whenever x and y are space~like to each other. This relation =~
called the causality relation - guarantees, in a vague manner,
that field influences do not propagate with veiocities greater than
light., If ever a fundamentel 1ength.3 needs to be introduced,
the best place for it may possibly be through a modification of

C.R.,1, for example,to a form,
[A(x) , a(y)]1 =0

when (x-y)2 5;.12. The fact that A= 0 in{C.R.1) is (vaguely)
en indication of no fundamentel length in RQM,

%% Yhat are the consequences of locality? First, as we noted in
Part I, locality plus real Lorentz symmetry imply complex Lorentz
symmetry and, in pariicular, CTP symmetry. Thus CTP operation and
particle-antiparticle duality is the first gift of locality.

Second, one can show that the causality postulate

[a(x) , BGN =0 , (x¥)° < 0

(cont,)
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- (Footnote cont.)
is powerful enough to guarantee that the amplitudes for a
scattering process - a function like
Fi(s,t) = is an analytic function of complex s and t, in a certain
domain of & and t. Thig is an astonishingly powerful result.
What this domair in (s,t) space is, we shall discuss later. The
important feature to note here is that no detailed dynamics, no
precise law of force, no compositeness or structure relation like
(c(x) = A(x) B(x)) ,etc., has gone into the deduction of analyticity
of Fi(s,t).

It is indeed no exaggeration to say that the local
relativistic field concept is one of the most fruitful concepts
invented by man., It is not Just that the concept is an ideal vehicle
for implementing RQM; it would be truer to say that the concept,
once formulated,came to acquire & life of its own; it led inexorably
to the creation of a canon of RQM, Years later, attempts were
made by a process of abstraction to state these canons independently
of the local field concept, The emphasis shifted to the guantities
of direct physical interest = the elements of the scattering matrix
themselves = the invariant functions Fi(s,t) of the last section.
Something had then to be substituted for the locality postulate
of the field idea. Since the two major deductions from the locality

postulate were (see preceding footnote),

1) CTP-symmetry,
2) analyticity of F (s,t) P

it was but naturel to propose that these two (in a still stronger

version) may be elevated to the status of basic canons of ROM =

rather than enter through the back door via the field-theoretic
version of RQM. This is the second = the so-called scattering-

matrix, (S=matrix) - approach to relativistic quantum mechanics.,

To summarize, then, there are at present two theoretical

constructs = two methodologies = embodying RQMI

-8




1) +the historic method of local field theory,
2) +the (maximally) analytio S-matrix method.®

We now describe these approaches in somewhat greater
detail,

B;lo Field theories

There are two distinot classes of field theories
corresponding to the two notions of elementarity ~ aristocratic
(class I) or democratic (Class II) = discussed in Part I.

Class I ~ theories of distinguished fields

Accept from the ocutset the existence of a get of
distinguished fields of which all other fields can be constructed
compositively., An example is quantum electrodynamics of leptons

and photons, wheret

a) To each lepton and to the photon, a separate field is
assigned, for example the Dirac field Tp(x) for electrons and
Maxwell field A#(x) for photons.,

%)  Whereas field theory patiently deduces what the analyticity
domain of Fi(s,t) should be in any given configuration of scattering
particles using(C.R.l)as ite main tool, +the S-matrix approach
ptarts with the postulate that Fi(a,t) is as analytic as it

poasibly can be, with singularities only at those values of & and t
which qan}ﬁssociated with the physical particle spectrum. We shall
define this maximal analyticity concept more precisely latery note
bere the amazing circumstance that the postulated domains of the
S~matrix approach have found confirmation = if anything = from the
detailed (and very involved) calculations within the field~theoretic
fremework, at least on the so-called physical Riemann sheet of the
complex (s,t) surface, When differences - so far minor ~ do arise,
one may take one's choice if to believe in the firm and commected

= though sometimes heavy = logical development from field theory.

or in the attractive simplicity of what one may consider is reasonable,

=ed-
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: e
b) A distinguished form of Hamiltonian = is written downg

ites interaction part equals
e j;Jx) A%Kx)

where qux = 1@! X“ VY(x) is the electron current, This
Hamiltonien is distinguished,mot just because Maxwell postulated
it, but, more perhaps, since it satisfies a number of additional
dynamical constraints {gauge invariance) with imgortant physical
significance. The current %”(x) is conserved (a qﬂ(x) = 0);

e is the coupling strength.*¥

This is the prototype of all Class I theories, Though
the one "bound state" in this theory, positronium, may be
represented by a separate field, therse is no need to postulate
field equations for it, At any rate,the field equations for the
distinguished electiron " and photon fields form a closed
sety they do not contain any piece depending on the positronium
field., Clearly this theory was specially favoured for the

following reasons:

¥ The Hamiltonian completely determines the field equationsand
equal-time commitation relations of fields. As is wéll known,
matrix elements of (appropriate) products of field operators
define Gresen's functions of the theory’while operator field
equations provide infinite sets of interconnecting relations

among them,

*%) As is well known, the smallness of the coupling parameter e
allows for a complete perturbation solution (the Feymman
golution). As is also well known, some of the integrals in the
solution turn ocut to bhe infinite = of the form ‘m%?-. The
famous renormalization theorem of Dyson demonsirated that

these infinities affect only self-mass and self-charge (making
it impossible,within the theory,to compute mo/m and eo/e = the

ratios of "bare" to "physicalM constants).




8) The numbsr of particles the theory deseribes is small,

b) The theory inherited from Maxwell a distinguished nearly

unique Hamiltonian with a small coupling parameter e.

In hadron physice with its multitudes of particles, a
repetition of any of these fortunate circumstances could not bhe
expected to recur. Field theories of Clase II are thus the

more appropriate.

Class Il theories

(a" Associate with each particle a local field operator and

assume that all particles are composites of each other,

(v% To proceed with detailed dynamics we neéd field equationms.
By the compositeness assumption,every particle interacts locally
with every other, It is thus profitless to try to conjecture unique
(infinite) sets of equations of motiony there is just‘too much

arbitrariness,

(c? A part of the dynamics,however,can be specified by postulating

specific equal-time commutation relationsﬂ(C.R.Z) of the form:

[A(zst) » Blx'yt]) = C(x,t) dlzx') . (C.R.2)

*) Equal-time commutation relation between a field and its time

derivative

Wxst)  x'st)] = id(z=x') (C.R.3)
(analagous to the relation [q(t) , p(t)] = i between the position
operator q(t) and its conjugate momentum p(t))are special cases of
C.Re2. 1In a theory where distinguished sets of fields exist, and
Wy
one knows the composition)a single relation like (C.R.3) would

suffice to give the entire set of relations (C.R.2).




For several classes of operators 4 and B,and in particular when A ang
B represent current operatérs associated with internal symmetry grouns
of Part I, plausible conjectures are possible from the structure of

the symmetry algebrasy we shall study examples inpart III, *

H 4 commitation relation through its very structure cries out
for saturation procedures to be applied. By this we mean the
following: If |n ) denotes a gquantum mechanical state, the
completeness relation asserts that%} fn>{n| =1. &

commitation relation like

A,

it
<2

on saturation, gives rise to the sum rule:

@lctp) = ). [@aln) (islp) = (21BIn) (la1®)] .
n

It is this class of sum rules obtained from Class I1 field theories
which we shall study mainly in Part IIT for cases when A,B and C
are charge operators corresponding to the internal symmetries
considered in Part I. The important point to emphasige in such
cases is that equal—-time commutation relations and presumably

the sum rules obtained from them are exact statements even when

the symmetry is broken.




B, 2.

The next table (Table 6) summarizes the theoretical approaches,

L.

IT.

SUMMARY OF THEORETICAL METHODS

Field theoretic approaches

Class I, Agzume the existence of a distinguished set
of fields of which other fields are made compositely,
Assume a distinguished form of Hamiltonian for these
special fields. A complete pertubration solution to the
scattering matrix may be constructed if the coupling
parameter is smally the only undetermined parameters

in the theory are the masses and coupling constants of the
distinguished fields., All other parameters = like masses
of bound states if any are in principle obtainable from

(a non-perturbative) expression for the scattering matrix,

Class 1I, Associate each particle democratically with
a local field., If we assume that all particles are
composites of each other, no local field equations can be

written with profit, The locality postulate,however,

determines the analytic structure of the scattering
amplitudes, A part of the dynamics is specified by

postulating equal-time commutation relations,which in turn

give rise to testable sum rules,

The analytic S-matrix method

Give up the field concept. Pastulate maximum

analyticity of scattering amplitudes in place of locality
of fields. Assume that any singularities of the scattering
matrix are intimately related to and are determined by the
spectrum of the physically observed particles. TIn its
democratic approach to all particles, this approach is

more akin in gpirit to field theories of Class II.

TABLE 4
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C. POSTULATED CANONS OF RELATIVISTIC QUANTUM MECHANTICS

In this section we set down what‘one has come to accept
ag the canons of relativistic quantum mechanics, As stated
earlier, some of these were inexorable consequences of a local
field theoretic formulation of RQMy; others were postulated more
readily and plausibly from the logic of the S-matrix approach.
The most astonishing aspect of these latter postulates has been
that in no important case hag a deeper study from the field-

theoretic method uncovered situations where they are contradicted,

a) Unitarity of the S-matrixgy or the law of conservation
of probabilities

This basgic law = a non~linear statement -

Z_‘ (aisn) fnlSTIb}' = d;b
n

constitutes one of the most powerful constraints on physical
theory that we know of, ® In hadron physics,if there is one
principle which it is criminal to approximate too drastically,
it is this., One of the most useful relations arising from
unitarity is the so-called optical theorem connecting the total
two=body collision cross-section to the imaginary part of the

elastic forward scattering amplitude

Im F(s, =0 = k, Op
b) Crossing symme¥ry or substitution law

Recall that in Part IA we stata?efhat locality (of field
theory) plus Lorentz invariance,implies|existence of a CTP
operation which converts an incoming particles to an outgoing
antiparticle and vice-versa, Following and generalizing from

this, the crossging property of RQM states that,given a reaction

® In electrodynamicsg, in a pérturbation expanzion, it becomes
essentially a linear relationship and considerably loses its

restraining power.
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A4+B —>5C+2D

and the scattering amplitudes F*(s,t) for it, the same function

Fils,t[ also describeg the amplitude for the process where we

interchange one of e incoming particles with an outgoing anti-
particle . In detail,the same set of funotions F*(s,t)

desoribes both

A+B-—+C4+ D

and
A+ —>3B+D |,

where C and B are antiparticles of C and B, respeotively. Likewies
-for
A+ B+

Note, as remarked earlier, that when we speak of the game functions

Fi(s,t) descTibing reactions in

Channel I A +B—-0C4+D

atid

- Y

Channel II A+C—B+0D,

we are congidering different regions of the (s,t) plane, since

for Channel I the physical region is s > O, t < 0, while for
Channel II, it is 8 ¢ 0, t+ » O, An analytic continuation must
therefore be carried through before we can read off from the
knoweldge of F(s,t) for Channel I, the values of the amplitude

for Channel 11, We oonsider this continuation further onj remark
here, however, the economy brought about the crossing relations;
there exists just one master function for all related channels.
These relations give RQM a power that non-relativistic theory

never posseased,
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CANONS OF RELATIVISTIC QUANTUM MECHANICS

Crossing
' CTP

incoming particle -————3 outgoing antiparticle

I, A+B —C+D

l

11, A+ + D

(=s])

III., A+D - B+ ¢ ==) Reactions I,II,ITII described

by the same master function
F(S,t).

Unitarity -—> optical theorem

n F(8,0) = K Gy

Analyticit

of F(s,t) for complex s and t, ‘except for singularities
(poles, branch points) determined by the physical

prarticle spectrum,

c)

TABLE 7

Singularities of the S-matrix

Before any analytic contimuation from Channel I to II

can be carried out,we need to know the singularity structure of

the S-matrix.




1)

3)

SINGULARITIES OF THE S=MATRIX

Yukawa;ﬁoles

2
(c.m. energy) =8

momentum transfer = %

P_(8.) t
F(s,t) = g° 9o L
t - my
Exchange
e 8 — {s8pin J
cos@% =1 + 5 )
t ~ 4m

Resonance poles

) -
3 \\\\Eféhange spin i//////
J 8 —
24 ////// ﬁ\\\\\\
cosQS =1 + 5

s = 4m

F(s,t) = g'°

Branch points

at two-particle, three particle, ... thresholds in all

the rele%ant channels

N

™~

-+ + LY
i )
+ ‘; LN ]
+ s
|
TABLE 8§




i) Poles

One of the basio postulates of S=matrixz theory (shared by
‘local field theory) is that the poles of the S-matrix correspond

to physical particleg exchanged in a reaction and conversely.

There are two well~known itypes of poles:

1) The Yukawa poles

Poles in *)(complex) momentum=transfer (t)-plane; their

N

contritmtion to the scattering matrix equals

VN

Here Bo is the mass of the Yukawa particle exchanged and 8AcE angd

8RDE the coupling constants at the two vertices.

2) The Breit-Wigner voles

These are poles in complex energy (s)-plane

~._A .
N E*_m
Eam'B Smigd | @t

E

#  The Yukawa pole contributions (also called the Born terms in
potential scattering) determine in configuration space the "potential"
produced by the exchanged particle. Thus,every particle E that is
exchanged,produces its share of "“force" between the interacting
particles A and B, The strength of this force depends,of course,on
the coupling parameters €% and €gax and its range on the mass Mg

of the particle exchanged (the smaller the mass,the longer the range).Ir
hadron physics,where every coupling constant is (nearly) equal to
every other, the goncept of a"“fund amental forcé’prodnced by a
tfundamental exchange" becomes nebulous. This is another way to
restate the dilemma of BI(b').
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3) Cass of spin

It is easy to show that if the exchangedparticles E or E!

carry aspin, the pole contributions modify to the forms:

PJ(gt) 25
g ——5 cosﬁt =14 s
t - mE ) t - 4m
P
g ] —‘-]-._(93_) 00”9 - 1 -+ 21: .
g 2 Ve T 2
g = mE g = 4dm

Note the crossing symmetry typified by interchange of s and t.

To determine the other singulariiies of the scattering

matrix, unitarity proves 1o be the crucial tool.

ii) Branch points

It ia impossible in a general lecture like this to go
over detalls of how the pole structure, together with the quadratic

unitarity relation sst = 1, forces the branch point singularity

structure of the scattering amplitudes, This will be covered in mors
detail in Professor J, Eden's lecture, I shall simply state the
postulated result from maximum analytiéity for the four-noint
function (demonatrated to wvarying degrees of rigour using field‘

theory). The scattering matrix possesses branch—point sinmilarities

at two-particle, three-particle, .., thresholds in all channels;
the singularities lying along real and nositive s—axis in the

gs=-plane, along the real and positive t-axis (for the channel where
t is the energy) and likewise for the third channel, Note the

elegance,as well as the simplicity, of this conjectured singularity

structure related as it so intimately is to physical particle
spectrum,
D. DEDUCTIONS FROM CANONS OF RQM

30 much for the basic principles. In this section we
list some of the important deductions that have been made from
these principles and which provide the practical working tools

of hadron theory.

e ARA Ren W bl e dbre e s o et .. N -
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a) Dispersion relations (consequences of the assumed
analyticity of the S=matrix)

If one knows the singularity structure of the scattering
amplitudes, (in particular that the singularities lie along the
real axes in complex s and t planes) one may write integral
representations = the so-called dispepsion relations = comnecting
real and imaginary parts of the scattering amplitudes., For

example,from Cauchy's theorem, infer,

1 F(s',t)
F(s,t) = 21 f ds! gl=g=i¢c
C

with the contour C as shown in Fig.4, To evaluate the integral
along the larze circle, we need to know the behaviour of F(s,t)
88 |5| -» oc. TT F(s,t) falls sufficiently fast (and we consider
this in more detail in the next subsection), we may expect the
following to holds |

Flsyt) = = f (1(5_:11 - L(_s_,t_)> ds

g'=g+i€ glea=ig
plus pole term contribution, Rewrite in the Hilbert form:
° 1 " Im P(s',t)
Re F(s,t) = === + = Pj LA L ds*
8-84 @ s'=g

This is the typical structure of a typical dispersion relation;
one may exhibit the pole and the integral contributions

diagrammatically (for mp scattering) thus:

Since Re P(s,t) and Im F(s,t) are both experimentally accessible
quantities, the dispersion equation provides a determination of

the pion-nucleon coupling parameter gz.
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b) High—energy behaviour of F(s,t) (consequences of combined
unitarity and analyticity)

Combining analyticity with unitarity, it has been possible
to obtain restrictions governing the growth of physical amplitudes
for large s or t. These again have no counterpart in non=-
relativistic theory. It is impossible to show how these results
are derived either in field theory or in the S-matrix dispersion
approach., We shall simply exemplify by stating one of the out-

standing results.

Limitation growth of forward scattering amplitude

|F(s, t = 0)] { Cs log2 (S/SO)

Using the optical theorem, this implies that total cross=sections

in physics can only grow less fast than *)
o < €' log® (s/sy)
T & 188 g

Experimentally,up to 30 BeV (and if cosmic ray data is believed

up to 1000 or more BeV), total cross-sections appear to approach
constant limits asymptotically. Contrast this with the theoretical
prediction above; clearly we are still far from gleaning from
theory the best possible bound. The fact,however, that such bounds
exist at all (and are after all not outrageously week) makes the
physicist in this field feel truly arrogant at the power of RQM,

c) Repee trajectory exchanges

Perhaps the most powerful deduction from crossing and high-
energy bounds has been the demonstration that hadrons musgt lie on
Regge trajectories. The argument goes like this, {for more detail,

see Professor Van Hove's lecture):

*) The constant C' can actually be evaluated from field theory;

for example, one finds the theoretical estimate

i2

cr 5 for wN scattering ,
T
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Consider in a scattering problem the exchange of a apin J particle;

the pole approximation to the amplitude gives:

P_(cosd,)

o (cos8,)
_ﬁ g D a——

for large =.

If J >»1, this will violate the bound derived above from RQM,
Either there are no particles with spins » 1, or thers is some

physical mechaniam which smears out the sJ contribution,

Remarkably, with the hadron spectrum known at present, one
does not have far to seek for such a mechanism. As pointed out in
Part I and specifically in Fig.2, hadrons appear to occur in Regge

families with their masses increasing with apin, Each exchanged

hadron of mass my will contribute a term of the above type; the

total pole contribution to the amplitude equals

2 J
F(s,t) = Z 82, .
-

t-mJ

This sum can be approximated to by an integral, if the number of

particles involved is fairly large. Thus,

J
—~ 2 8 dJd
F(s,t) = Jﬁ €r  sinnd i - m2 ¢
J

To evaluate the inftegral, solve t = m§ = 0 in the form,

J = at)

Thus o

J
s ds dJ
N g &, &
Flsyt) = f singd  t = m] dt

a'(t) 2 alt)

~ g 5
sinmy () (%) .
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The high~energy behaviour of the amplitude is controlled not by the

spin of any of the particles exchanged but by an effective spin

J = x(t) dependént on momentum iransfer t, And since in the scattering

region t £ 0, one must make a contination of J from the positive values

of t (given by Rosenfeld's tables) to negative t.

JI //
1/2- e

5/2= e
3/2- e

j known particles
1/2T marked with =x
!
e
<l

-
-
-

1< 0 - t o= (Mass)2 >0

Consider now, for this continuation,one specific trajectory;

for example, the nucleon trajectory in Fig.l., Extrapolate (as a
plausible continuation) the known linear plot of the trajectory in

the first quadrant}backwards to negative ‘t=values, Clearly empirically

d(t) 1 for the scattering region., No contradiction with high=energy
theorems could thus possibly arise whenever the nucleon trajectory

is exrhanged in a scattering process (for example,in w+ M — N +q Y.
Likewise for all known trajectories; the extrapolated values of

J = ot) always empirically satisfy the rule ot) $ 1 (T é 0).

What is the moral of this for hadron spectrum - perhaps (l)
all hadrons lie on Regge trajectories; *)(2) for all trajectories,
o(t) must lie lower than unity when continued to negative t. There
are fewer places in particle theory where the power of RGM has
evidenced itself to greater effect than in this beautiful Regge
synthesis of known hadron spectra (t > O) with asymptotics of
scattering amplitudes (t < 0).

*) Ve shall hear,in Professor M. Toller's lecture,that Regge
trajectories (possibly) occur in tribes and families as a further
consequence of some unexplored aspect of Lorentz symmetry and

analytisity at t = O,
—r) Yo
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B. HADRON SPECTRUM AND THE S~MATRIX PROGRAMME

We have now surveyed the structure of RQM; we can see
that in dispefsion theory and in the Regge trajectory exchange
models of high~energy scattering there is tremendous amount
‘of predictive power. The chief problem however remains. Where
in all this is the analogue of the familiar non=relativistic

'SchrSdinger theory, to yield the particle spectrum?

The closest in spirit to the traditional Schrédinger method
are field theories of Class I, Except for the masses associated
with the distinguished fields and their coupling parameters,; the
parameters of all bound states oould,in principle,be read off from
the scattering matrix, computed using the given field equations., 1In
Part IV we shall see that it may yet be that aristocratic fields do
exist and that the future of particle physics lies along this
traditional path. The milieu of our age, however, is somehow

against this,

What could substitute for field equations in field theories
of Class II or in the S-matrix approach? 3Since for both approaches
the basic assumpiion is that all particles are egually elementary
or equally oomposite, there isbut one way to attack the problem =

rely on self=consistency of any assumed spectrum in satisfying the

relations provided by the theory. Among those relations one has

worked with are (1) relations in Class Ii field theories provided
by equal-time commutation rules (one can test if they are self=
consistently saturated by an assumed spectrum) or (2) the so~

called ‘superconvergence relations’ *)

¥) These are dispersion relations for amplitudes which fall so
fast in s that the relation reduces to Jr Im A(s',t) ds' = 0),

This happens, for example,when incoming and outgoing particles

carry spin; one can show from RQM that, for a general amplitude,
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(Footnote cont,)

|Fos ags 20, ()] <057 mex([A1s11)
ll’ 2’ 3’ 4

= bd = - )\' 4 -
where A ?\l ?\2, M A3 ?4 and the A's are the spin
polarizations of the incoming and outgoing particles, This important
dependence of high=energy behaviour on spin means large spin-flip
amplitudes fall fast for large s. For such amplitudes (and for

appropriate values of]?\land ,/4[ ),the normal dispersion relation

~ Im A(s',t) ds!
Alsyt) = '2‘77' f s'-p+i€

reduces to its superconvergent-form fIm A{s',t) ds' = O, To see
how such relations work, take the example of ~@ scattering,
Saturating the appropriate relation with w and ¢ resonances only,
one converts the integral f Im A ds' = O into an algebraic

congistency formula which reads:

2 2 2 2 2 2
g (mw m?-m)+g (m> -me-mqf)+... = 0,

W Pew i wod

Empirically,we know that the masses of w, @ and ar mesons satisfy

2
mw m m’n’ = 0 I
while 5
2 = O II
mpd |
(¢ —» e+ decay is nearly suppressed). The relation is thus

(miraculously) satisfied showing either (i) that RGM is a wonderful
theory, or {ii)} that the existence of w (and the hypothesis of saturation
of the superconvergence relation with a few resonances) implies

that ¢ must also exist. One may take one's choice.

One cannoit say that such bootstrapping self=consistency
ideas have had more than marginal success in the past,though with
the greater use of the superconvergence relations the situation may

improve.



The boostrap ides is attractive, Part of its attraction
lies in the possibility that the internal symmetries themselves
may possibly arise as necessary preconditions for the existence of

a particle theory satisfying the very stringent restrictions of
crossing, analyticity and unitarity of RQM. We may yet find that we

are living (with Voltaire) not only in the hest of all possible
worlds but indeed in the only possible world.

SUMMARY

DEDUCTIONS FROM GENERAL PRINCIFLES OF RQM

1) Examples of bounds from uniterity and analytioity

lF(s,t = 0)} { Cs log2 (s/sb)

2
O-tota.l < C' log (S/SO)

2) A typical dispersion relation
Re F(s,0) = £ .1 In P(s',0) 4o
S B 885, o s'=g s
C
3) Regre trajectory's contribution to a scatieringe amplitude
A trajectory contributes
— 4 P;(cost, ) ) o (4)
S I L s
4 t=m“(J)

J
for large s, where X{t) = J <> t - me(J) = 0,

4) Some achievements of the S-matrix approach

1) Accurate determination from dispersion relations of

E * Exwar oY

2) Bootstrap generation of certain resonances in pion-

nucleon sector.

3) Regge analysis of high—energy scattering data.




PART IIT

THE DYNAMICAL ROLE OF CHARGES AND SHARING OF CURRENTS
BETWEEN STRONG, WEAK AND B .M, INTERACTIONS

In Part II we spoke of abatracting from field theory the
general canons of relativistic quantum mechanice., I now wish to
speak of the second important idea, again an abstraction from field
theory, but this time from one special theory = the quantiged %
Faxwell-Dirac field theory of electrons interacting with photons,
This is the notion of field-theoretic currents associated

with the charges introduced in Part I, the dynamical role of cklnrges

and currents - particulariy for low-energy phenomena and the sharing

of the ocurrents between strong, weak and E.M. interactions,

A, DYNAVICAL ROLE OF CHARGE

The dynamical role of electric charge is familiar from

Coulomb forece law, whers the sign and magnitude of charge determines
©1% 1\

the long-range Coulomb force (lt-—ji- . Likewisne for the
Ir

. gravitational force which is proportionzl to the product of

M2
gravitational charges (mass) (:: ) .

2
r

Less familiar,but equally well established,is the role of
hyper-, isotopic and other charges in the same context; the long-
range parts of the relevant forces are proporticnal to the charge

strengthe; for example,

1. Hypexrcharpe

%' e phall need familiarity with field-theoretic notation in this

part of the lecture,
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The long-rangs part of X N force is atirastive, while for X'V

this force is repulsive, This corresponds to the sign of the produoct

of hypercharges Y Y, which is =1 for the KN and +1 for the

, 'ty cage,

2. Isotopic charge

target target

The scattering length for pions (isotopic charge f}) interacting
with a target of isotopic charge f} is experimentally found pro-
portional to the scalar product of the two isotopic charges

T, T, =% [(i’,,+i’t}2-i'$,-i,f] :

The ocongerved charges +thus do appear to play a dynamical rols
gimilar to the electric charge for low-frequency phenomena, For the
E.M. case, one knows one can go further, In Part Il we saw that the
Maxwell-Dirac Hamiltonian uses currents jﬂ(x) associated with the
alectrio charge. Could thie analogy be taken over for the other
charges as well?

B, DYNAMICAL ROLE OF CURRENTS

Given a charge Q(t) , it is well lmown that one can construct

a looal four-veotor current operator J,(x) associated with it,

Q(t) => Ju(x)
whgre

act) - To(zst) a’x .
!

If the current is conserved, i.e., ay Ju = 0, then the charge is a

‘constant of motion (Q(t) = 0),and vice-versa.

For spin-half charped particles (electrons or muons, for
example ), one can go further; we may define left and right currents

corresponding to left and right chargee in the zero mass idealization,
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The sums and differences of those are the vector and axial-vector

currents:

Yﬁ(x) q;(x) - {a(x) + {E(x)

gﬂ(x) {ﬁ(x) = -{g(x) + {E(x) .

Likewise for right and left hypercharges, isotopic and unitary charges.

Now, one of the important experimental discoveries is

that these ocurrents - and also their divergences - if considered as

fields, appear to possess particles associated with them, (Table 10)

Also, one of the recent insights of local field theory is that
all operators representing a particle are equivalent so long as they
posgess the requisite quantum numbers. One may therefore express
thie associatioﬁ of particles and currents by writipg‘a set of
(approximate ) field—current identities. Considariizﬁfo ;?2) x SUR(2);

for example, one may write:

2 2
m imn
v _lp Al p
3}4 -gP ﬁj“b s00 ’-3}'{ gA A-},("' LI ]
o7t
M =y
5‘;; = C,‘TTr'f' LN ]

The last relation is called the PCAC (short for partially-conserved-

axial-current hypothesis) relation.
Now where does dynamics come into this?

Ideally,one might hope that since for every current, a cor-
fesponding partiocle exists, by analogy with the two well-known

classical Hamiltonians:
(a) Gravitational gQﬂvGﬂv

. o
(v) Ba. ikl W

which are simple products of currents x associated particle fields
(qu = stress tensor, G,y = graviton, A, = photon), the strong and

weak Hamiltonians may also be written in the form, e.g.,g

‘9 | We have written Hweak in the form current x intermediate boson
mediating weak interactions. No auch intermediate bomon has yet been

experimentally discovered. FPresent experiments test only the effective

weak JweakT

/“ L]
49—
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CURHENTS AND ASSOCIATED PARTICLES

Charge Conserved status Associated particle
of current
Gravitational 9}, 6}“, = 0 6;“) = 2% (graviton?)
Electromagnetic J, Jy = O Tu = 17(y)
Strong | Baryon aﬂ Jy = 0 ‘ Ju = 1 (w)
v - -~
Strong | SU(3) 3}, Ju =0 Ju=>1 octet (psyK*, %)
if neglect medium
strong symmetry
breaking
+ -
LChiral lsuL(3)x SUR(3) % :r,’} X0 .r}f} =31 octet(Al,D,KA,KA)
Strong
a}u Jﬁ ::> 0- Octet("f,'?gK,-f(_)
weak .
Weak Weak currents .T/u —> Intermediate
AYw0 y vector
- v % bosons (7
Jﬂ(wea.k), 'd)u T (weak) = 0 (7)
A
Tj(wealk )y 4 Ty(weak) 4 ©

Sharing of (hadronic) currents betiween strong, E.. and weak forces.

JE'M' + Tl_;- Jﬁ ( s J/u refer to SU(3) currents)
1.2 .3 . .
774y 2 0) = 1,2 Ju1JusT; form isotopic su{2),
M - ML 1 . -2 . . .
J‘/u + i Jy are isotopic lowering and

raising currents.

TABLE 10
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weak we ak waak
H g Jup, Ya ’

where V* and A® are the strongly interacting 1~ and 1* ootets of
particles; Wmaak are the weak intermediate vector mesons of Table 10.

This is an attractive hypotheais.**) From this point of view, it

would be easy to understand why,for example,the long-range part of
§+:g force is attractive or rTepulsive. One would expect the long-
range part of the interaction to be (dominantly) produced by a Yukawa
exchange

K

of the ¢ —meson just like the Coulomb case where the potential is

a conssquence of a single photon exchange.

7*) For exaot SU(3) x SU(3), gy = + & + See Table 11 for the
theoretical prediction when brokemness of the SU(3) x SU(3) symmetry

9J
is taken into account (expressed by 7—— + QO in contrast to
v K '
DJ)
— = 0 ),
ax},

**)  One great virtue of such a strong Hamiltonian is that the
dilemma presenied by whether nature prefers field theories of Class II
(demooratic) or Class I (ariatocratic) no longer arises. The currents
jp(x) could be made up either of just the distinguished fields, or of
all fields democratically. 4 slightly d@fferent version is the one
very recently proposed

atrong

H (qu{” qﬁigfi)

where even the arimtocracy of the 1° and 1+ octet particles Yﬂ and

i
Aﬂ is ended.
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Unfortunately this argument is no more than suggestive, sinoe,for a
gtrong interaction theory, the largeness of the coupling parameter

g makes it next to impossible, in practice, to decide on one
nfundamental" Hamiltonian in contrast to another. (See Part IIC(i),
footnote.) To show that the rcurrents defined in Table 10 do play

a role in strong dynamics, we use a different technique, as discussed
in Part IIID. Before going over this, however, we musi understand the
second aspect of these currents; their property of being shared

between disparate forces.

C. UNIVERSALITY OF CURHENTS

1. For the electric charge of hadrons we noted the remarkable

relation
‘hadron A 301 .8
Q I+ 2Y = F° + % o
A pimilar relation would naturally exist for the corresponding hadron
currentg
*( hadrone 1 .8
g (treme) w Pe) + £ gle)

where Jj(x) is the (neutral) isotopic and J/E(x) is the hyper-
charge current. This relation is remarkables enough. Even more
romarkable is the postulate that the two remaining isotopic left

currents Jl and .]'2

L L (or rather their combinations

%L(x) - JjL-_I- iJ° (x) )

are procisely the weak hadron currents responsible for

g:ﬁ] transitions in (J-decay. In other words, nature helieves
in an economy of charges and currents; once the isotopic and hyper -
or more generally, SU(3) x SU(3) - set of charges and currents were
invented; it was deoreed that they would serve not only as strong

charges and strong ocurrents but also as EM. charges and E.M. currents
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(with a change of scale, of course) as well as for weak charges and
weak ocurrents (agaj.n with another change of soale) whenever hadron

matter was involved,

2. The statement that the same currents make their appearance in
strong, weak and E.M, interactions of hadrons, has been confirmed in
numerous situationsj to take just one representative example:

Consider the decay m —> P 4 (et +v)

compared with n—p + (e +3)

If the ideas outlined are correct, the ratio of the two hadronic

transitions T::'-—-:‘riﬂ} K should be proportional to the isotopic charges
of pione and nucleons, This indeed is the case experimentally. If
the concept of imotopic charge for hadrona had not already emerged

from pgirong interaction physice, it would surely have been invented

from the weak hadronic phenomena alone,

3. Electric charge and weak charges are more universal in character
than strong charges. Electric charge (as well as weak charges) is
shared properties of leptons as well as hadrons. Thus the total

alectric charge equals
Qlepton + Qha.dron

Q
. hadren .
and the equality Q - I3 + Y/2 naturally holds only for its
*) More precisely,since T — " 4 (e + v) proceeds purely through

the vector current, for comparison one must conpider only the vector
(the so-called Fermi) part of neutron fS-decay.
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hadronic part., likewise for the weak charges and weak currents.*)

Now one of ‘the remarkable featuree (noted in Part I) of electric

charge is the exact equality of electren and proton charges (in other

Qlept ons .4 Qhadrona leptona

words, - and therefore also J, (EM.)

and Jjadrons(E.M.) - posgess the same scale, Is this also true of
wealk weak "
I (leptons) and 3, (hadrons )?

Before we can answer this question, recall that weak forces
affect left-spinning matter only; more precisely, (primitive ) weak

currents are left-currents JﬂL’ which aré equal mixtures of vector

i g
MV
And of these two types only the vector ones are conserved, with the

and axial currents (J)uL - JﬂA) both for lepitons and hadrons.

consequence that only the 'vector" weak charges are time-independent.

We oan now answer the question posed. The weak vector lepton

charge does indeed equal in magnitude the weak vector hadron charge;

one of the striking confirming pieces of evidence is the well-verified
equality of the vector (Fermi) decay constant n—p + (e +§e)
with the constant*™) determining u-decay m~ — v, + (7 +7% ).

*) The full weak current is made up of three left-spinning parts

F(weak) = J}i"-L(leptonic) + J-E-I(hadronic AY = 0)
7 )

+ J/'-E-L(hadronic AY = +1)

The last piece J%(AY = +1) is that part of the weak current which
A —

n —

induces transitions of the type X} where hypercharge changes by
one wnit (AY = +1), The currents involved here are once again

made up of SUL(B) currents. The fact that one is dealing with left

currents only in weak interactions implies that weak forces are not

left=-right symmetric; that they do not preserve space~reflection

(parity) symmetry. This fascinating aspect of weak interactions we

must unfortunately omit,

*¥) The axial constants do not display this equalityj; this corresponds
to the lack of J'/ﬁ conservation.
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D, LOW-FREQUENCY DYNAMICS

Turn back to strong interactions., We said, though the form of
E.M. and weak Hamiltonian eJﬁM' A}‘| and gﬂeakaLWM could be tested
- gince the coupling constants e and Buonk 2T rather amall -
(and these have indeed been found to be in accord with experiment ),
no immediate tests of the form of the strong Hamiltonian are possible
on acoount of the large coupling consant involved. How could one
then be sure that the SU(3) x 3U(3) currents do play a role in strong
interaction physics? Fortunately a powerful set of tests are

available, Thieg is the set of low—energy theorems which exist when-

ever a symmetry does. And when, in addition, the currents have physical

particles associated with them (field-particle identity of Table 10),
the éxperimental verification of these low-energy theorems becomes
not too diffioult., The theorems are of the following variety:

Theorem I

Whenever a symmetry exists, broken or exact, and a corresponding
charge and therefore current Jﬂ(p) exists - (J,u (p) is the Fourier
transform of J,(x)), one can derive relations oonnecting the processes

A — B

A — B + J/u(O)
soft Jy-emission
A~ B+ J,(0) + 7,(0)

.{u(O) are the zero~-frequency components of Jﬂ(p).
Tu(0)

A{;(iB-—m? A{\'%///P -

We shall specify the detailed structure of the relation’'in a few

examples later,
Theorem 11

If the current is not conserved but Ju Tu = X, then similar

relations hold for the sequences of processes

A — B

A — B+ X(0)
soft X -emission’

A — B+ X(0)+ X(0}
N . . o _55_




Examples

1. Electrodynamics

The theorem states that the vertex o
photon -

photon
,“ - uof‘t
is related to photon
N N
(a) (®)

Write F(w) for the "Compton" gcatiering of photons on nucleons re-

presehted in (b), Then, according to the theorem, the kinematio

ptructure of F(w) -at low frequencies is specified completely by para-

meters of the vertex (a), In detail,

Pw) = F]‘(O) E.' * €+ sz(O) i (¢! xE)

wWhe s
bV

l\ s

B

G~ o w e’ w3137

I
F2(O) T 2m K

are the two parameters relating to the process (a). Here €, €' are

the polarizations of the photons, ¢ is the spin of the nucleon, eQ is
jts charge and Ke/2m its anomalous magnetic moment . ¥

* This low-energy theorem, a generalization of the well-known
w .

Thomson limit theorem in clagsical electrodynamics can be used as &

boundary condition on a dispersion relation one may postulate for
F(w); thus

EL_
2m

] B

j L2 (5. (0) = o)) -
0 -

Here Ob and cA are the photon-nucleon cross-sections with phoion polar-

ization parallel and antiparallel to nucleon spin., The relation appears

experimentally satisfied. This combination of a (postulated ) dis—

persion relation and a low-energy theorem illusirates the theoretical

methodology that has come to be employed more and more in particle

ies,
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2. Ratio of nucleon-vector and nucleon-axiasl-vector coupling conatants
from low-freguenoy teohnigues

One of the most celebrated low-energy relations ism the one which
connects the nucleon—JX-vertex to soft pion-nucleon ascattering and com-
putes thereby the physiocally important ratio of the (effective) coupling
constants gy = g and  gp = &y (gqyy and &y 8Te the zero-
frequency limiting values of the appropriate vertex functions, see IIA2),
The derivation of the relation is sketoched in Table 11lj its most
important aspect is the purposeful use one must make of both gstrong and
wesk ddata to verify it — once again confirming:(a) that the same currents
are operative in both interactions, so far as hadrons are concerned,

(b) that these currents - or rather theircharges - define the algebra of
SU(3) x sU(3), (c) that the teohniques of RQM - as formulated through
field theories of Class II -~ and dispersion theory,are marvellously

effactive in oapable handa.

3. Soft-pion procesmes

A host of low=frequency relations have been derived in strong,
weak and E.M. physics, connecting amplitudes like A—B with ampli-
tudes for goft-pion emission A—B + m(0) , A—3B + w(0) + w(0) ,...
I shall merely mention that these relations exist and are well verified:
Quite recently, a new technique (using non-linear representations of
the chiral group SUL(3) x WR(B)) has been perfected, which makes their
derivation a relatively painless task. We shall be hearing more on

this from Professors Weinberg and Zumino during the Conference.

5T
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(1)

(2)

RATIO OF VECTOR AND AXTAL-VECTOR COUPLING PARAMETERS
DERIVED USING LOW-ENERGY TIEOREMS

3},?)‘? - m.’ﬁ, Co. ¥ PCAC

From weak interactions, estimate (p|Jﬁ|n), to obtain

y Ty
o P T

Uge the equal-time commutation relation

(v|vix) = (v|[a, alln)

and techniques of field theories of Class II to relate

v

deriving thereby,

2
g
2 NN dw + -
l'cw{-fé—.-’-f_w (0"-0').

Use c. above to predict

|gA/gv‘ - 1,19 .

ExpeTriment -1,18 ,

TABLE 11
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D, PARTICLE SPECTRUM AND THE SYMMETRY ALOEBRA PROGRAMMNE

The correlation of low-frequency data achieved by the use of the
field theoretic method (the essential ingredient being the equal-time
commutation rules of SU(3) x SU(3) algebra) was impressive enough that
one felt tempted -~ just as the S-matrix theoriast had been sorely tempted
earlier with dispersion and superconvergence relations -~ to consider
taking the SU(3) x SU(3) algebra as substitute for a complete
dynamical theory. The hope was that one may possibly derive the
hadron spectrum by attempting to saturate the identities provided by
the SU(3) x SU(3) commutation rules (see Part IIB(c)).

Like the S-matrix theorist’s attempt to derive the full particle
spectrum by bootatrap procedures, the symmetry algebraist's attempt
has also met with scant success, The symmetyry algebras play an
important role in low-frequency dynamicsj apparently they do not
constitute the complete theory.

=59~
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PART IV

THE STRUCTURE OF HADRONS,

STILL HIGEER DYNAMICAL S3YMMETRIES

In Part III we have been concerned with the low=frequency
dynamics which the existence of any given symmetry (isotopic,
unitary, etc,) implies. Specifically, we saw that one can derive
relations between processes involving bosone associated with the
(symmetry) ocurrents (0, 1, 1% octets). But these bosons by no
means exhaust the full gpectrum of hadrons, What aboul the
multitude of other objects the bhadron spectrum congists of, and in
particular higher spin baryons? Is it conceivable that there are

new dynamical symmetries still to be discovered for an elucidation

of the rest of the particle spectrum, particularly as SU(3) x SU(3)

appears to be undistinguished for classifying particles?

What exactly do we mean by a dynamical symmetry?

To answer this, consider the familiar case of atomic
physics., The relativistic Maxwell-Dirac quantized electrodynamics
may indeed be the fundamental theory of charged particle
interactions, but to obtain the hydrogen spectrum,one still goes
back to the non-reiativistic Schrdédinger equation with just the
gstatic Coulomb potential., And, as is well known, this equation
possesses a completely unsuspected 0(4) symmetry, firet studied by
Fock. The emergence of the 0(4) is purely "accidental" in that it
arises from the particular form of the (Counlomb) Schrddinger egquation.
However, it is this dynamical symmetxry, rather than the fundamental
Dirac=Maxwell form of the Hamiltonian, which dominates the hydrogen

»*)
spectrum,

® Table 12 shows how the symmetry arises and the classification

of the hydrogen levels using 0(4).
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THE HYDROGEN ATOM
Hamiltoni = 2.1
onisn E £ D -
Define L = rxp
T
M = V-8B (Lxp-pxL)+=
Operaters I = 4 (L + M) generate independent
and K = ¢ (L -X) 0, x 0.~ 0, rotations
= == 3% 7370
Since L*'M = O so |I] = |K|I .
Verify - 4E = [g? + g? + %]-1
= [+ (4 +1) +k (x +1) + %]-1.
Since [I] = (K] =0,%, 1, «s. (I,k generate
0,)
obtain E = = —15 ’ 3
2n
where n = (2 +1) = (2k + 1)
A tower of 19'9’9'18, (i,k) = (0 0) 4 (%,%') H (l 1),000
oorresponds to a single representation of the non-
"compact group O
4+ 1
it
TABLE 12

The same thing seems to be happening in particle vphysics
where we appear to find a dynamical symmetty SU(6) more successful
than SU(3) x SU(3) for particle classification and for a description

of wvertex functions,

The development of ideas I shall now sketch started with
Wigner and his postulated supermultiplet symmetry SU{4) of nuclear
physics., Starting with the notion of spin and isotopic charge
independence of nuclear forces, Wigner came upon the dynamical
group SU(4) as a natural completion of the isotopic SUI(2) and
the spin SU;(2) groups; (SU(4) C SUI(‘Z) x SU;(2)), For
particle physics, replace isotopic by the unitary symmetry; the
simplest completion group,which includes both the unitary SUF(B)
and the spin SUJ(2),is SU(6), Assume that SU(6) (like the 0(4)




for the hydrogen atom casa) is the dynamicel symmetry responsible

for the hadron spectrum, Each representation of SU(G) would

combine within it, partioles of different spins and unitary charges.

The fundamental representation of SU(6) is 6 dimensional.
This would correspond to three quarks of spin up and three quarks of

spin down, Other representations are
3% , 5 , T0 , 405 4, +4. with content
SU(6) — SUR(3) x SUL(2)

3% = 1 x3+8=x 3 0+ §_x 1

~
L

(1,649 & spin 1 nonet + a spin zero octet)

56 = 10 x 4 + §_x 2

—— et ~ b

(i.e., a 3/2 decuplet + 1/2 octet) .

A glance at the Rosenfeld table, where the lowest mass
boson entries are just the 1~ nonet + the 0 octet (constituting
together a 35 of SU(6)) and the lowest masz baryons are precisely
the 3/2% de;;plet + 1/2% octet (together constituting the 56
of SU(6))convinces one that SU(6) makes very good sense,

I shall not describe here the extension of 3U(6) %o
U(6) x U(6) symmetry which distinguishes the fundamental quark
representation 6 from the antiquark 6 - nor its formulation U(12)
needed to give correctly the relativistic kinematics of vertex
functions, Professor F, Qirsey will be dealing with the subject
in detail, In Tables 14~17 are given some of the large variety of
predictions ~ all reasonably well substantiasted.The most noteworthy
are the predictions of the ratio of magnetic moments of nprotons
and nesutrons ~ obtained essentially as a kinematic prediction of
the theory -~ and the immediate explanation of the scaling law of
E.M, form factors mentioned in Part IIA,



Predictions from SU(6) , U(12).

(1) ;”— a =3/2 (see Table 16) .
n ‘

(2) Host of coupling oonstant relations (see Table 17)-
(3) Scaling law for form factors (see Table 17 ) «

(4) Mass formulae (see Tables 13 and 14)

Mo M+ 8 J(T +1) 4 b(E% -3Y%) 4 ev

The problem which immediately arises with the undoubted
successes of SU(6) and U(12) symmetries for the
miltiplet and vertex structures of the well=knowvm mesons and
baryons - is how to reconcile this with, for example, SU(3) x sU(3).
What is the nature of charges associated with SU(6)7 Are they
congerved? What, if any, are the currents? Does spin act as
charge, and anyway what is the precise definition of spin used
in SU(6)? Or is it that we are perhaps tTying to force totally
unreleted and distinct ideas into the same mould? A number of
answers to these challenging problems have been advanced. Nobody,

seems to know for sure, In  the meanwhile, however, a

different approach = the aristocratic approach to hadron dynamicg =
has emerged = an approach which frankly negates all one's notions
about relativistic quantum mechanics = but one which is amazingly
gimple and fruitful., Treat known mesons and baryons as composites
of basic cuarks in an unashamed non-relativistic sense; the

composites are listed helow:

2
}
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MASS FORMULAE

SU(3)

Mass formuls for SU(3) multiplets:

M=a+bdl +o [I(I+1)--}Y2]

Baryon octet

Predict MZ + M, = E(MN + ME)

Experiment  4539,7 ~ 4512.8 MeV

Decuplet

Predict egual spacing rule

Theory MYl* - M‘N* = ME‘.* - MY]_* = M_nﬁ = MYl*

Experiment 149 ~ 145 ~ 142 MeV

Flectromagnetic mags differences

Theory 5. =52%Y =~n+pa= E‘_“-Eo

Experiment 6.6 + 0,1 MeV = 6,5 + 1.0 MeV

TABLE 13




MASS FORMULAE

su(6)

Baryon ’5\§
Theozy M =My + 1 I + 1) + MY+ [T(T+1) -4 12 7.

An average value of MOO ~1065 MeV gives the masses of SU(3)

octet and decuplet correctly
Meson .'}é
SU(6) reproduces SU(3) result
4% - 7° = 3N 2
and gives in addition
92 _ ,nz = k2. g2
Experiment O0.571 MeV A~ 0.553 MeV
Electromagnetioc mass differences

Theory n-p=1/3 (A~ -~ A"

Expt. 1.3 MeV av 2.7 + 1.3 MeV

TABLE 14



ELECTROMAGNETIC MASS DIFFERENCE OF HADRONS IN STATIC SU(6) MODEL USING

QUARKS
THEORY EXPERIMENT
Baryonﬂ MaV MeV
- 0 *
- . T 6.3 + 0.3 6.5 + 1
k- 20
— = 3.1 + 0.3 6 +3
§o oyt 0.7 + 0.6 0.4 + 0.8
N -t 3.6 + 0.6 0.6 +5
oty 4.4 + 0.5 4.3 + 2
1 1
Bogonse
L1 4.2 + 0.4 4.6 + 0,007
0 +
- K 0.9 + 0.2 4.2 + 0.5
TABLE 15
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MAGNETIC MOMENTS

su(3)
THEORY EXPERIMENT
M -0.96 -0.73 + 0,16 (_ej_ )
A znnPc
. . 0.
/u):*‘ 2.78 2.5 + 0.7
su(6)
H
_ 2/2 M (1.28 + 0.02) -233@—}1?
N > N+y 3 0F
TABLE 16




COUPLING OONSTANT RELATIONS FROM T(12)

) PR ~ 1+ L

G, M

F are Sachs EM form factors.

2)  py =1+ 2Mn, u = --23— (1 + 2M/m)

is
m*mean mags of 1 multiplet and M nucleon mass,

3) Meson baryon vertex

(V=1 nonet 1 D = %+ decuplet )z

Predict

ch Mag - . : ; ch
€own ' Synn ' &vwp | Spwp ! Svwp * Eppp ! SvDp

2
2M m 2M . 2M
= (l + —IE[—*)3D+2F: (l - ZI\F) t (1 + Tn_)3D+2F' (1 + E—-)

-Almo predict

* 3 2M .
BN Nwr =5 (1+5) Ennr

Taking <m > = 700 MeV < M> a 1300 MeV,

Predict FN*NH_ ~ 110 MeV
Experiment ~ 100 MeV
TABLE 17




Assume a soft (oscillator) potential for the constituent quarks.

The baryon multiplet §§ represents a three-—body symmetric wave
function, the mesgon %; is a two=body quark-antiquark composite, The
model goes on to describe scatiering and production phenomena in
megon-baryon stattering. The fundamental assumption made is that
there are just two independent amplitudes for q—q and ¢q~g scattering,
all amplitudes for composite particles being obtained by simple
additivity. The only ingredient of RQM the quark model needs,is the

superpogition principle.

As I said earlier, the model seems to negate the S-matrix
notion that hadrons are made up of each other., 3Since within its
lights it succeeds, it poses one of the many mysteries of our
subject. If physical quarks were discovered {and so far the
search has not been successful - their massiveness presumably
makes their production with present accelerator energies impossible),
one ﬁould really have to come to grips with the new {dynamical)

problem of reconciling the aristocratic with the democratic approach.%

¥} To take an example of the type of problem posed, consider Regge
trajectories, treated characteristically differently in Sematrix
theory, in the higher symmetry schemes and in the guark model. The
quark model explanation is the simplest; the particles on a boson
Regge trajectory, for example, are orbital angular momentum
f—excitationé of a bound qf system. The higher symmeiry schemes
employ a description - as an abstraction from the dynamics -
apgociated with infinite-dimensional unitary representations of non~
compact groups like U(6,6) or U(6,6) x 0(3).For analogy, one may
draw once again on the hydrogen spectrum, where the hydrogen levels

(in 0(4) language) are given by the representations,

(0,0), (£,3), (1,1), ...

This set constitutes one single unitary irreducible representation of

the non-compact group 0(4,1), The exploitation of these notions
together with infinite~component field equations,first discussed
by Majorana will be the subject of later lectures (particularly
of Professor C, Fronsdal),

-
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SUMMARY

This concludes our brief survey of what has been achieved
in theoretical understanding in particle physics. To recapifulate,
up to the energies for which systematic experimentation has been
possible, the highly restrictive and tight structure of RQM seems
to hold. We believe we know what some of the internal symmetries
of physical particles arej we know that hadronic matter exhibits
the same internal symmetries whether acting strongly, weakly or
electromagnetically, andwe know that thesé symmetries not only
gerve to classify particle, but also dominate low-frequency

dynamics,

So much for the ideas and principles that have reasonably
succeeded., We have been less successful in understanding the
architecture of matter itself, The mathematically intractable,
though aesthetically atiractive, S—matrix bootstrap idea which
considers all hadrons as oomposites of each other, appears at present
irreconciliable with the simpler additive aristocratic quark model.
The attractive (dynamical) higher symmetries of hadrons like SU(6),
U(6) x U(6), T(12), +.. which bypass these difficulties (essentially
treating quarks as mathematical entities and giving quark-model-
like results without quarks) still need to be reconciled with

gymmetries like SUL(3) x SUR(3).

Notwithstanding some notable successes in weak interaction

theory (the demonstration of the two—component nature of the neutrino,
the sharing of SU (3) (left, V-A) currents between hadronic strong
and weak forces, the well-verified postulate of a suppression of

AY = 11 weak effects relative to weak AY = O = imporitant topics

which I have had no time to discuss) there is much that is dark; the
recently discovered superwesk CP violation and the possible existence
of exotic typedof yet undiscovered matier (A-matter of T.D, Les,
introduced specifically to explain CP=violation, magnetic monopoles
of Dirac to explain why electric charge must be éuantized), the behaviour
of weak forces at higher energles, all thei%&:fe question marks
needing muich experiment and deep thought. AAﬁ I sald in the very
beginning of my lecture, the energies to which our syshematic

experimentation extends are painfully low on the cosmic scale, There

could be nothing more pretentious than the (unqualified) title of
this lecture = A fundamental theory of matter - but such, fortunately

indeed, is the encompassing conceit of the human mind}
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Then there are the really deep problemss the origin of
different types of forces = strong, weak, E.M. gravitational =
their outrageously different couplings, the selective division
they impose on matter into leptonlic and hadronic, into charged and
uncharged, into left and right-sgpinning varieties, Considering what
we have already achieved, one feels proud of the work of our
generation, Considering what still remains to comprehend, one

feels truly humble,

SOME UNRESOLVED PROBLEMS

(1) Origin and reconciling of dynamical symmetries
~like SU(6) with 85U (3) x SUL(3).

(2) TNature of internal symmetries; do the postulates
- of RQM, together with hadron democracy idea, imply

the existence of these symmetries?

(3) Theory of CP violation; behaviour of weak
interactions at high energies. Origin of the
suppression of AY = 1 weak forces relative to

AY = O forcas,

Loom -1 2 =1
(4) The large numbers like Ff’ Xy (Eeae) 2 oo

(5) Exotic forms of matter; quarks, magnetic monopoles.

I should like to end with a quotation from J.R. Oppenheimer,
who helped in the planning of this SympoSium and whose warmth,
vwhose insight and inspiration I personally miss so deeply to=day:
"We are so enpgulfed by the changes in the current scene in physics:
by their ferocity, their brashness, their virtubsity, their diffusion,
that we don't understand them very well, and it may not be possible

for us to understand them. +44.. The future will be only more

radical and not less, only more strange and not more familiar,

and it will have its own new insights for the inquiring mind,"
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® 5 - Scale factor = ¥y /(N-1) where N number of axpariments. § should be » f. If § > 1, we have enlarged the error of the mean, 5% L ¢., §x—5 bx.
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d. See note in dsta card listings, @, uhia vrlas, wwt leted in the Jata cdrda, @39 abtalnel’ by, 3. Confarte {AcLy thea, Aead, Huefar, 27, 15 1967’;?5
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APPENDIX B

Take two machines as typical: (a) CERN PS5 (strong foousing)
(b) Nimrod {weak focusing)

OERN P3
Maximum energy 28,5 GeV
Protone per pulse ) '\/1012 internal
Pulge repetition rate 12 per minute
‘Remarkst There is an agreed improvement programme which will
double the repetition rate and increase the )
oirculating beam to ﬁ41013 protons per pulse,
Secondary beams are available both from internal
targetd and external targets. It is usually
possible to have several experiments running on
the machine at any one time,
Nimrod
Maximum energy T GeV
Protons per pulse 1.5 x 1012 internal
Pulre repetition rate 23 per minute

Typical beams

The number of useable particles can vary enormously because
usually it is necessary 0 make many compromises to fit in all the
experimental teams. Here are some actual Wimrod beam figures. Yields

are obtained at the end of the beam line so decay has been taken into

account,
g B e ——— "
Yield pgiépulse with
. ) i.5x1 protons Momentum
Particle Beam circulating with GeV/c
A P/P = 1% FwHH
- 6
n 1.5 x 10 1.5
" 2 tank 2.5 x 10° 1.5
separated]
beam
K 2.5 x 10° 1.5
K 1.5 x 10 1.5

-75—-



The following table gives some similar CERN figures:

i
E ‘ Yield per 1012 M
Particle Beam protons with. gmsntum
A P/P = 1% FWHH eV/c
T Unseparated ~2 x 106 1.5
+ b
n ~3% x 10 1.5
+ 6 -
n ~3 x 10 2.5
w ~2 % 10° 2.5
K™ 5 % 10" 1.5
g _ 10% 3.0
(& P/P unknown)
K™ 1.5 x 10° 7.5
b , 10° 12.7
s T

These are typical beams as actually used in counter

axperiments.

particles per pulse, but have a high degree of separation and so
nay use 10 - 50% of the circulating beam depending on the energy.

Obviously the higher the energy the greater the fraction of beam

Bubble chamber bears usually only require ~10-100

required, Neutrino ezperimentsy of course, need the full beam and,

generally speaking,no other experiment can be run at the same time,

The following table gives some absolute yield figures for the CPS,

CERN yields from one interaction length of lead at 18.8 GeV/c per

102
(Ster™t GeV/o 1),

Momentun

GeV/c

5 (x 1011)
n (x 101})
x* (x 107)

K™ (x 107)

3.7
3.2
L5
4

5 4
U 3.2
2.8 1.9
L8 "o
27 16

3.2

1..2

27

protons per pulse and 20 pulses per minute

8 10
2 0.7
0.6 0.3
22 -
3 0.6

G,H, Stafford

O

0.2



REGOE TRAJECTORY ASSIGNMENTS OF KNOWN PARTICLES

IN 8 and 10's OF SU(3)

-T(Mz) = 0,15 + 0,90 M

IMY) = =0,39 + 1,01 M

QOctei- Recurrences
13/21
e 4 p
/2] = = — — —_
i
=3 21
34 A Symbols:
5724 ™ = - e — — = Known particle or resonance
= Predicted recurrence
3721 N{Y=i, I=1/2)
AlYs0, Is0)
IZ(Y=0, I )
1729 ==~ HB(Yea—i, Is 172}
. . ~{evyn _perity, even signature)
[ 2 3 L) 5 &
M*[Bevt] —
Decupiet  Recurrences N
. o
13/21
{————————
e
+
trlem — == ';— — Symbols:
- @ Known resonance
o Predicted rasonance
/21 AlYsl, s 3/2)
: Z(Y=Q, I= i}
372 — Hiv==i I= 172}
Glye=2,100)
72 B {even parity, odd signature)
e 7 2 3 4 % & 7 3 10 I
M [Bev?] -

Fig, 1
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