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ABSTRACT

We review work done on realization of broken symmetry under
the conformal group of space-time in the framework of finite-component
field theory. Topics discussed include: Most general transformation
law of fields over Minkowski space, Consistent formulation of an
orderly broken conformal symmetry in the framework of Lagrangian
field theory; algebra of currents and their divergences. Manifestly

conformally covariant fields and their couplings.
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FINITE~-CCMPONENT FIELD-REPRESENTATIONS OF THE CONFORMAL GROUP

I, TINTRODUCTION

The conformal symmetry of space~time as & possible generalization
of Poincardé symmetry has provided a recurrent theme in particle physicef)
The problems associated with conformal symmetry are i) its physical
inferpratation”and ii} the problems arising from its broken character

and the precise manner of descent to Poincaré invariance.

In ths paper we wish to concentrate on ii) and review work
done on realization of conformal symmeiry - and particularly of the
algebra assocists’ with the group — using field operators which satisfy
Lagrangian esquationg of motion, The fields muay be defined over the
Minkowski space~time manifold X, or over a projeciive glx=dimensional
manifold qA ralated to Xy o We telieve this approach to conformal
symmetry offers the best hope of expleiting the symmetry physically in
contrast to approaches based on a group theoretic treatment of state-
vector spaces associated with the group.S) This is essentially because
in such an approach it is extremely difficult to ses how to break the

symnetry down to Peincaré invariance,

The plan of the paper is as follows: In Sec.II we give the most
general transformation law of fields (defined over Minkowski space x}L)
for confermal symmetry, using the theory of induced representations,
and also exhibit the field realizations of the generators of conformal
slgebra, In Sec.III we enumerate the Lagrangians (for particles of
spin L 1) which are conformally invariant and desoribe some modes of
symmetry breaking = in particular the physically interesting case of
conformal symmetry breaking to the extent of bresking dilatation
invariance only. (An explicit modei is discussed in the Appendix. )
Bven where the formalism of Secs. II and III is conformally covariant
it is not manifestly so. In Sec.IV we treat the menifestly covariant
formulation of wave equations for guantized fields defined over a six-
dimensional projective space. Sping higher than one can be mors
easily treated using thie formalism. In Sec,V we review an atitempt to
understand V=-A or V+A wesak interaction theory as a conformslly invariant
theory of fundamental interactions, Not considered in this paper are

representations of the conformal group which give rise to infinite

component fields. They will be dealt with elsewhere.

—l-




II, TRANSFORMATION LaW OPF FIELDS

The conformol group of space time consists of coordinate transforma-

tions as follows:

l.Dilatations x& = pxu , P20

2.5pecizl conformal transformations
-] 2
o (x)x ~c x7)
TR Sy
2.2
x

(1T.1)
*u

where o(x) = 1=2¢x+ ¢

3. Inhomogeneocus Lorentz transformations

Its generators D of dilatations, Ku of special conformal transfor-

mations, and P Muv of the Poincaré group admit of the following

w?
commutation relations (C,R,):

[D,Pu] = iP [D,Muv = 0
[D,Ku] = -iK [Ku,KU] =0 (11.2)
[Ku,PU]= 21(guvD-Mﬁv) KoM = 1(gpqu- gouK,)

plus 'hose of Lhe Peoincaré algebra., PFarity mus! satisf:

-4 - -
i = " =t ™ 1 = *
Trl)TT D Y nKu K}L ' i]_l, J.u (II.3)

vhere the + sign stands for wu=0, »nd Lhe - sign for p=l,”,5.

The C,il, (l1.2) can be brought into » form which exhibits !he
a
0(2,4) structure of the conformsl group explicitly by defining? for

u’\-’=00903 3

J = M = D = 1 P — = 1 {
T TS v s =3 (=K e = 3 (BU+ )
Then .

[Fkn I = 10Ty * 8 kn ~ Sxd 1w = Bl (11.4)
where gAAZ (+---,-+) ' A=O;1v2!315v6

Note that the special conformal transformations do not take mo-
mentum eigenstates into momentum eigenstates, as [Ku‘Pv] does not

commute wi*h the momenta Pp . We also notice the relation

eiaD P2 e-iaD = e—(I P2

Becnuse of this relation, exact dilatation symuetry (+ith an inte-

grable generator D that takes one-particle states into one-particle

states) implies that the mass spectrum is either continuous or a1l

masses are zero, 5 This clearly implies that exact

dilatation symmeiry ie physically unacceptable and one will
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therefors have te make azsumptions on the dynamios whioh
specify how the conformal symmetry is broken, A theory of this type,

which is in a sense snalogous to the SU{3)xSU(3) current algebra

with PCAC will be presented in tine next section.

First we have to define , however, what we mean by an(infinitesi~
mal) dilatation or special conformal trznsformation, &8 we want it
to transform a physical system into another one that is realizahble
ir nature (and not,e.g.,a proton with mass m into some nonexistent

particle with mass p-lm, for arbitrary p > 0),

7,8}
To do this we postulate that there exist interpolating fields to

every particle which transform according to a representation of the

conformal algebra, i.e.

. ) -1
(j(g) m)a(x) = Saﬁ(g,x) wB(g x) (I1.5)
for infinitesimal g € 0(2,4)
where g acts on the coordinates x as indicated in eq. (JJ.1)

It follows from eq.{l.5) and the multiplication law for the re-

Presentation matrices T(g) that

S(g,0) must be a rcpresentation of the stability subgroup of

x=0.

It is seen from eq{Il.1) that this subgroup (the little group in
physicnal usage) - hich leaves x= 0 invarisant is given by specinl
conform 1l transformations, dilatations and homogeneous Lorents
transformations. From the C.F. eq,(II.2)one finds that the Lie «1-
gebra of this subgroup s isomorphic to a Poincaré algebra + dil-ta-~

tions, i.e. we have

(80(3,1) ®{p}) d T, - (11.6)

The L-dimension:1 translation subgroup Tq corresponds to the spe-
cisl contormal transformations, and S0(3,1} is the spin part of the

Lorentz group.

Given any representation S(g,0) of the little group(II.s) we
can now determine,in accordance with Lhe standard theory of indu~
. 9% . .
ced representatlonsitne complete action of the generators of the

conformal group on the field 9(x) as follows:

Let Euv, S,kr be the infinitesimal generators of the little

group ([[.6)} corresponding to Lorentz transformations, dilatations,

o




and special conformal transformations, respectively. They satisfy

P“’Kd o, [E,ﬁJ = -ik

[*plzpv] = i(gpuk\, = gpvw-p_) ¥ (II.?)

[zpc,zw] = il Loy = Bou Eqy = Boy Ly * 8oy Ey)

thoose the basis in index space in such a way that

space time translations do not act on the indices, i.e.

P g (x) = -i ;ﬁ; 0, (x) (1I.8)

1t follows that for every element X of the conformal algebrn

. v
X o(x) = exp(+iPuxu) X »(0) where
'’ Lo LM o LM

X = exp(—anx )X exp(+1Pux ) (11.9)

b . \I v v
=Z(-nll) xlooo xn [PV ’['.‘[PV ,X]ooc]] .
n:o 1 n
The important point is that the sum on the RHS, of eq.(I.9) is

actually finite. From the C.R. eq.(II.2) it is found by inspection
30)

that there are at most threenon=vanishing terms in this sum.

Evaluating the finite multiple commutators,e.g.,for X = KP-’ we get

_iP ¥Y) K ip xV) = - v _ Vo 2.
exp(-1i o ) " exp(+i JX ) Ku 2x (guvD Muv) + exux P -x Pu‘
From this we now deduce the action of X , D, Muv on ¢(x), since the
action on ©(0) is known by hypothesis; e.g. %»m(o) = Ruw(O). The

final results are

P (p(x) = =id W(X)
n i
M oox) ={itx o -x o)+ I Job) (11.10)
nv VAR v o nv
D o(x) ={-ix 3 +8}olx)
v
Ku plx) = {-i(axuxua” ~ anu + 2ix“[guvs - Epv])-rﬁh}w(x)

-4
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where the matrices ;FV’ 5,"@“satisfy the C.R, (2.7).

We have thus shown that all field theoretically admissible represent-

ations of the conformal algebre are induced by & representation of the

algebra of the little group (I,6). Since this algebra has two non=-
trivial ideals (= invariant subalgebra) {D} ®T4DT
following types of representations:

there arise the

4

I, finite-dimensional representations of the little group
3) RM’ 0
b) w}h,é O ‘but nilpotent

II. infinite-dimensional representations of the little group.

Regarding these representations and their physical uses, the following

£

remarks are in order:

1) For case Ia) 0 = i1 by Schurs lemma if the Z;N form an irreduc—

ible representation of the homogeneous Lerentz algebra.

2} In Sec.III it will be shown that the notion of a (broken) con=-
formal symmetry admits of a perfectly consistent formulation in the
framework of ordinary Lagrangian field theory. This theory malkes use
of finite-dimensional representations of the little group (IL6), with

.= O (type Ia). All generators will be hermitian,

3} For case Ib) the conclusion that all the ¥, must be nilpotent
follows from the well=kmnown fact that in any finite-dimensional re-
»regsentation of the Poincar®d algebra the generators of translations

41)

are nilpotent.

4) The possibility of using representations of type Ib) for physical
purposes ie interesting hecause it can give rise to spin multiplets.
The representations induced in this way are not fully reducible
however (and therefore not unitary representations; ¢f., theorem 1 of
Sec.IV.2), Further discussion on this possibility will be given in
section V, yhere Hepner's wnrﬁzgn the use of these representationa

will be reviewed.

5) The posaible use of infinite-dimensional representations of the
little &roupr will not be discussed in this paper. This would lead
to the consideration of infinite-component field theories which will

be discussed elaewhere,




III, LAGRANGIAN ¥LELD THEORY; APPLICATION TC BTRONG AND
ELECTROMAGNETIC INTERACTION

In the present section we shall show that the idea of an
orderly broken symmeiry under the conformal group of space time
admits of a perfectly consistent formulation in the framework of
ordinary Lagrangian field theory. The considerations presented
here are an extension of an unpublished notewby one of the present authors.
For simplicity we assume fields with spin . €1 and minimal couplingsj3)
We shall gshow that:

i) There exist local conformal currents k‘yi and a
dilatation current jbﬂ guch that the corresponding
generators K,UL and D are hermitian and hawve C.R,

with the particle fields as given in eq.([[.10) with
§= 201, x =0 (type Ia), This is true
irdopendently of whether the action &Id'*x is

. . )
invariant or not.

2) The kinetic energy term without mass is conformal
invariant:” The mame is true of all non—derivative
couplings with dimensionless coupling cagstants and all
couplings arising from (Yang-Mills type) gauge field
theories, This includes electromagnetism. Tt also
ingludes weak interactions mediated by an intermediate boson,
if this boson is associated with a gauge field associated
with some internal group (e.g., for hadrons, the
Cabbibo SU(2) subgroupns%f one of the SU(3) ideals of

chiral SU(3) @ SU(3),or for the U(2) @ U(2) group
17)

considered for leptons by Ward and Salam ,

whiech includes both EM and weak interactions.)

3) Besides the exact symmetry limit corresponding to mass-
less pariticles only, the possibility also exists
of a spontaneous breakdown of conformal symmetry. There,
all particles can be massive except for I = 0, I?=0+
massless Goldstone boson. An example of a corresponding
Lagrangien (the ¢ model of Gell=Mann and Lévy18)) is

discussed in the Appendix,



Abstreacting from lLsgrangian field theory, & current algebra type
scheme may be set up. It is composed of the C.R., of the currents with
the particle fields, eqs&.(III,1) and (III.G), and the relation(III.17)
between the divergences of the currents. In addition, an algebraic re-
lation between the divergence of the dilatation current and the axinsl
vector currents of chiral SU(3)xSU(3) has been proposed elsewhvrgvand
is given in egs.(A.4) and (4,5) of the Appendix. Bq.(I1I.17) expresses
the idea that the breaking of conformal symmetry is minims1l in the sense
that there is only as much breaking of the conformal symmetry as is in-

duced by the breaking of dilatation symmetry alone.

Le The conformal currents

According to eq.(I1.10) we want to transform the interpolating

fields as follows

Dei{x) = 4 (4 -xvav)@(x? (a)
K pl0) = -a (-2t Ko 1,/,,,3‘ - x* LR E/Mv)(P(x) (b)
Mo g0 = & (%2 - x, 2 = w2 )¢ 00 (¢) (IIL.1;

If ¢ is the electromagnetic vector potentizl, we may postulate this
transformation law only up to a gauge transformation., lig.(III.1) is
to be understood in this sense in the following. The well knownﬂg)
reason Jor this is that, for a massless particle, the vector potential

is not a manifestly Lorentz covarinnt field in the ordinary sense.




Through the last egquation, 7

v is defined in terms of the spin
X

of the particles

when acting on a spin O field 2;" =0
when scting on a spin 4 field Siuv = % [5*,Y;]
when acting on a spin 1 field (Z;w A)e== 4($P? A, - %veﬁﬁ)

The present theory does not lead to multiplets of particles with
different spin., We fix the values of [ 1o be

o j - L4 .
f = -1 for scalar and LE T for spin 3 fields

vector fields
(IT1.2)

This choice %g necessary in order to obtain acceptable currents
en
because only the canonical equal time commutation relations of the

20)
fields are invariant under dilatations. The values of { in (ITI,2) agree
withﬁrﬁaigg%sion of length of the fields in question. Note that
(III.lc) is of the form  ¢'(x) = ?ec;(€4*) under X, > ¢ X, ;
so that the fields transform under dilatations according to their actual

P-4+ e

dimension of length.

21)
We can now write down the following local currenta:

- 2x® T - Xt T - (__?f + ;x? -
Ry, (0w 2xPx To -t T, 5. ¢ (22, %, +2 ::Mw*)
+
;r-{—?o ty 4 ¢ (111.3)
Fields
G
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The angular momentum current has the usual form, The energy

momentum tensor is defined by

, K
T () = - av? £ #“Z —m: %? t.p*

M1 -

It is convenient to choose the kinetic energy term in the Lagrangian

ags

a (111,4)

and moua

Sincethe zeroth components of the currents, 0}‘, :ﬁ
are all hermitian, the corresponding generators, formally

defined as the space integrals of the zeroth component of these

currents,are also hermitian.

One checks by using the canonical equal time

C.R, of the fields

1 ] .
[+(K)) W(x')]t - 4.33 (5-5) FM ,(ﬂ=-,<° (III 5)
that
Dex) = ‘[ d’ [%o(xw, @(x)]%"
vy R
K ¢ (1) = J ol:-t O x')' ‘?H)]x,'*a
(111.6)

satisfy eqs.(III.1). This is independent of whether the Lagrangianis

conformal invariant or not, (The integration in (III.4) goes over

some volume v including x = x'.)




2e Divergence of the currents

We now turn to the discussion of the properties of the
divergence of the dilaztation current Sbv and special conformal
currents qul « The dynamical information of a symmetry (exact
or broken) defined by the transformation law of the fields, lies

in tbe properties of the divergence of the corresponding currents,

From eq, (III.3) it is seen that the dilatation current
ﬂbv(x) depends on x explicitly and can therefore not be coupled to

the field ofzﬁector particle. However, using energy momentum

conservation avT}”3 = 0, we find for its divergence
3
v L =L
%vﬁv(x} « T %v{ § - 3%, . v } (111.7)

From this we see that:

The_divergence of the dilatation current i a local
I -0 ,7T" = 0" field.

Uging the Buler Lagranpge equation of motion, (ITI,7)

¢an be rewritten in the formzz)

R4 Pk 4 2
v . = - ,e* m—
22, 0« -ux - L o

-
-+

o, + L -1)

r\
?,
xR ) (T11.8)

From eq.(II1.8) it is seen that all pieces of the Lagrangizn that

nonzero
do not involve constants with Lk dimension of length give zero

contribution, To see this, notice that the RHS of eq.(III.8)

vanishes since it is simply the Euler equation for a homogenous

)
function (all terms having the same dimensionality). Tris establishes

that the kinetic energy term without mass is dilatation invariant |

and so are all couplings with a dimensionless coupling constent,

Next we turn to the divergence of the conformal currenis.

Using energy momentum conservation we find from eq.(II1.3)



v y 0
3. E (K) = 2x)n (T v - .Bv { Z 1"' (Pv ]) B (III.9)

¥ ,
_Z{u.,mq«*+zt§£?’ .6, } Z'a(qu’)+

.lfnn o

. -2
+ le{ T/"‘P - T"A + 2 ?v (2;, X 2:,,, ‘P,) }

The last line is equal to 2xp6v?nvup and vanishes by angular momentum
conservation, Hence

TR, = 2 V2, + V. (111.10)

where V. is a local vector field defined by the second line on the RHS
of eq.(I11,9), From eq.{III.4) one checks by explicit calculation that
the kinetic energy term without mass gives zero contribution to Vu._
Since it gives no contribution to a“%‘, either, we see that the kinetic
energy term without mass is fully conformal invariant. Furthermore, from
(II1,10) the condition that an interaction Lagrangean £, be fully con-
formal invariant is found to be the following

1) It is dilatation invariant, i.e., has a dimensionless

coupling constant

YL N EL _
d! = + A X T . < . .
)L (2 e, T 30,0 @, )= 03 prons (ITL11)

Condition 2) is independent from condition 1) as is seen from the ex-
ample ¥z = gA" n(d o) which satisfies 1) but not 2). An example vhich
satisfies neither 1) nor 2) is the derivative pion nucleon coupling
N¥_y No"n , For nonderivative couplings, condition 2) is trivially

Su
satisfied.

3, Yang-Mills theory

Let us now turn to the question of the conformal invariance
of the coupling of vector gauge fields in a Yang-Mills type gauge field:
theory?)Let A be the internal n- parameter symite try nlgebra, and Bu
a=1l...n , the corresponding gauge vector fields, Under an infini-
tesimal transformation with constant infinitesimal parameter ™, all

fields transform according io

~11-



LN 34, o 3 c T b (117.12)

where the matricesTa form a hermitian representation of the algsdbra

A. Hermiticity reads

2 -+ A
(vaa ) = Tas (I1T1.13)
A 15,23) a
8 ;s well known y 2ll couplings of the vector fields 3#- are

completely determined from the postulates of a Yeng-Mills type theory
and are obtained by the substitution

a 4) N T 3 o (.._

» Pa P 7 3 Tan B 9, i11.14)

Here, g 1is & dimensionless real coupling constant., To test for con-

formal invariance we see that condition 1) above is always fulfilled,
while condition 2) is also satisfied because the only derivative
couplings are the couplings of mesons, which have the form

. 3 C A . .
£ = -ty |l ()" (T, ) b, - BFEIT L #e } <.

(1TT,15)

for spin O fields %k , and

o

. 3 o
£ %y [ (argv)™ (Toa ) (9,3 - %up By ) - ke } (I11.16)

v
for spin 1 fields ¢, . Inserting into eq.(III,11) and making use
of eqs.{I¥T.13) and (III.2) one finds that condition 2) is indeed
satisfied,

It is now tempting to speculate that in physics there is only as
much breaking of conformal symmetry &s is induced by the breaking of
dilatation symmetry. In other words there should be a remainder of
conformal symmetry in the sense that all couplings satisfy condition
2) above, This is equivalent to the algebraic condition

VE, - 2%, 32 (I11,17)
V/M- v




The wvirtue of this restriotion is that it still allows for a breaking
of the symmetry by the masa terms In the Lagrengian,

IV, MANIFESTLY 0(2,4) COVARIANY FIELD TRANSFORMATION LAW

Gensaral sxperience from the history of elementary particle
vhyeice may lead one to the opinion the "the only good covariance is a
manifest covarience”, This is the motivation for the present section,
It is mainly pedagogical in character and much of the material
presented may be found in the literature for special cases, but is
presented here in a unified way. Manifestly conformal invariant free
field equations were first discussed by Diracf“ Invariant

15}
intersotions were given by Kastrup.s

The problems to be solved are the following:
1) Write down manifestly conformal invariant

trangformation laws for fields,

2) Determine the relation between the old fields ., (%.
ocourring in the transformation law eq,(II,10) and
the new fiselds whickh are transformed manifestly co-

variantly.

3) Write down manifestly invariant free field equations

and intersctions.

The new fields will be multispinor funotions on the four-
dimensional surface in a five=dimensional projective space rather
than Minkowski space, Their physiecal interpretation will nevertheless
be guaranteed by correspondencs with ordinary fields gﬂf(x) ovar
Minkowski space discussed in Sec.ll, This correspondence also allows
one to oconsider questions of unitarity and quantization by reference

to Minkowskl spaoce.

13-




1. Manifestly covariant trangformation law for fields

A menifestly 0(2,4) covariant trensformation law may be
written down for muliispinor functions )(P () defined on the five=

dimensional hypersurfaces of RO given by

(1Iv.1)

and satisfying Yot = Xy ).
Summation over B is overfl,2,3,5,6 with metric (+ =--; =+), There

are three essentially different surfaces, corresponding to
L® = % 1,0,

Suppose that % YA_B is any representation of the algebra
of 0(2,4) ( &£ SU(2,2)) acting on the indices of XG (q) only. Then a
manifestly covariant transformation law includinxg an orbital part is
given by (of. eq.(II.4))

e X () = (Lag v i %) XUy

(Iv.2)
where
)
byg = ¢ ( 74 % 73 % ) Ry q®
Clearly L,, and 4 Y, commute with each other and satisfy the C.R. of

AB AB
0(2,4) separately, It is important to notice that L,p is a well

defined operator when ac';:ing on functions that are only defined on
24

the hypersurface (IV.1).  This is so because L, corresponds to an

infinitesimal coordinate transformation which is a pseudorotation of

the hypersurface (V.1) into itself,

B 1V,
The cmer g 7> = 0 (Iv.3)
is also left invariant by the coordinate transformation n B--‘* M“E’ A0
Moreover,this transformation commutes with the 0(2,4) rotations,
Therefore we may require the fields to be homogeneous functions on

the came (IV.3)

X (Aq) - A x (L dae. ?333 xlg) ~ = x ()
(1v.4)




Therse homogeneous functions then depend arbitrarily only on

4 of the 5 coordinates which cetermine & point on tke cone (V,3),
16)

l.es, just as many zs there are coordinates in Minkowski space. We

shall restrict our attention to this ocase in the following.



24 Mathematiocsl preliminaries

Before proceeding we need to know & few mathematical

lemmas.

Lemma 1: A set of commuting, nilpotent finite-
dimensional matrices K’M gan simultaneously be brought to tri-
angular form with zeros on the diagonai by a suitable choice
of baais,ﬂej

for all M simultaneously

) o, (1v.5)

This is a coroliary of Engel's theorem which may be found in
28)
standard textbooks, Recall that nilpotency of a matrix 'Kyt means

that there exists a positive integer m such that
=
(k) (1V.6)

Suprose that we are given a representation of the form
(I1.10) induced by a finite-dimensional representation Kpr Tavs &
of the zlgebrea of the 1little group (I1.6). As we have seen in
(11.10)f, there arise in this way two types of induced representations,
Xy= 0 (type Ia), and xpf 0 but nilpotent (type Ib). By virtue of
lemma 1 we may assume in the latter case that the four matrices W

are all of the triangular form (IV.5) without loss of generality.

Lemr-a 2: Induced representations of type Ib have an
' i
invariant non-empty subspace ?L on which an induced
representation of type Ia is realized, This invariant subspace is

spanned by those components of the field 9(}() which satisfy

K'!“ ¢ (x) = 0 fJor alt /"'o'“:" (1Iv.7)

There is,however, no invariant complement to this

invariant subspace.

The fact that the subspace defined by (IV.7) is non=empty

follows from (IV.5) because the top row of all the matrices KILL is

~16=

3




identically zero. The subspace (IV,7) is invariant by virtue of eq.(II.10)
and the C.R, (II,7). Finaliy, let ¢ (x) be such that, for some tixed u,

x, @ (x) # 0 but %k, @ (x) = 0 for all v. Such a ¢ exists by virtue
of (IV,5). Clearly ¢ #§ 1'. Consider now K; = exp(-iPuxu) K, exp(iPuxu).
This is an element of the conformal algebra for arbitrary x (cf. Sec.II).
We have K p {(x) = = ¢ (x) 5?(2 Hence there cannop exist an invariant

1!
complement of Mt

Theorem 1, The induced representations of type Ib as des-

ribed in section II are not fully reducible,

At a heuristic level this is a corollary of the last statement

in lemma 2.

We =lsc need gome properties of the finite dimensional represen-

tations of the algebra of 0(2.4),

| Theorem 2. All finite dimensional representations of the

algebra of 0(2,4) without parity can be obtained by reducing out ten-
sor products of the two inequivalent four-dimensional representations
A% ang A" given by matrices '13'“ as follovs:
[$+) y - 21y ¥l ¥ A ¥ s
i ’JAW v /H\ v 3 ﬂs
l
;o= =%
ES‘ - Y 3 V/..z. A
=) ot ] . -
S T A T R S
\6'56 » + ‘6'5 ¥ Yf,\é " + E}A
. . + .
A1l matrices satisfy Y Yo ¥o  an (Iv.8)
. (+) (- . 29) )
Parity transforms A into A and vice versa «» ¥, are Dirac
/
matrices and LA A ¥, %, ¥,

For a proof of this theorem see, e.g., ref. % ., The theorenm
essentially states that all finite dimensional representations can be
constructed out of fundamental representations. In the above, '‘wo fun-
damental representations are used, one corresponding to right-handed

spinors and the other te left handed spinors.
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The simplest non~triviel representation of 0(2,4) with

parity is eight dimensional and unique up %o a choice of basis, It
A(*)
ig given by A = ( P

o
A )e It is however,convenient to make &
bagis transformetion so that

»s Ll
T ) Vg = T,
L 4

(IV.9)

Parity is represented by YD here, T4 are Pauli matrices. In

this form the eight-=dimensional representation has been given by

Murai, 0 For this representation a Clifford algebra BA exists
such thatﬂ"zﬂ

S0p el Tae 0 Up el = 29, (1V.10)

These matrices (f, transform as a 6~vector under £Y,;. This is

important for constructing invariant couplings. Explicitly, the (SA
maey be given by

Prm T 0 Pt AT (1v,11)

25)
There exists also a conformal pseudoscalaer \@7

fr * " Lefala s PP 7t T

5 3 ; Wﬂ"w=—ﬂ'f
A1l matrices (V.9) satisfy

+ .
A YABA = YAB . '}D\" A= YT’

(Iv.12)

Finally we need the following corcollary of theorem 2,

Corollary: Let Zwv be any finite-dimensional irreducible

representation of the algebra of SL{2,C) extended to a representation
of the algebra (II,7) by choosing 3+ <€ a X, = 0




Then there exists a finite-dimensional representation %;XAB of
the algebra of 0(2,4) with the following property: There exists a

subspace ?{' of the representation space on which

e = L &8 (a) 5 ilfs‘e‘ (8 +im) 2 ()

;:};&\V ,-l“
v Ly c ke m o (o) (Iv.13)
P (g " Vs de = ' ¢

} [
for all € éjﬁi and some suitable real m.

This corollary gusranteez that every finite-dimensional
representation of the algebra (II.7) with Ky = O can be extended to
a representation of ithe 0{i,a) algebra ﬁg enlarging the representation
space. Note that a true enlargement ie always necessary, unless
Z;Lv = 0, since no generater K, of a2 simple Lie algebra can be
represented by 0 in a non-trivial representation.

Our representation %—YAB(whose existence is guaranteed by
the corollary)can be constructed @s follows: As is well known, all

finite-dimensional representations of SL{2,C) can be consiructed from

left=handed and right-handed spinors. Let the representation spacs
of Z;uvbe congtructed in terms of Lorentz two~component spinors,

Then one obtains the degired repﬁpsentation_fpace for %XAB simply by
- comnponrn

substituting oconformally transforminglspinors for the Lorentz apinors.
The desired subspace is as defined by (IV.13c).




3. Relation betwesn manifestly ocovariant fields and fields

over Minkowski gpace.

Suppose we are given a field with indices, X(7), over the come
(IV.3) which satisfies the homogeneity condition (IV.4) and transforms
according to eq.(IV.2), with i*hB being a finitedimensional
representation of the 0(2,4) algebra.

We want to obtzin from this
a field w(x) over Minkowski space which transforms according to eq.
(II.10), As we have seen, X(3) depends arbitrarily on & coordinates,
i.e. as many as there are space-time coordinates xu. We will proceed

in three steps:
l. coordinateiransformation q > X.

2. x~dependent basis transformation in index space to transform
away the intrinsic part of the translation operator, i.e.

ensure eq.(n.S).

3. Project out unphysicszl components if necessary.

By step 3 we mean the folloving:

After having carried out steps 1 snd 2 we ghallalready have arriy
ed at a field over Minkowski space which transforms according to
eq.QI.IO). If we start with a finitedimensional representation
$7,p # 0 this will be a representation with %, = 3 (€ =V ) £ 0, I8
we want a representation with wp = 0 (i.e. type Ia) we must project
ento the invariant subspace on which this is true, i.e. we keep as

physical components only those which satisfy

%, ¢ (x) =0 for p=0...3 , with wu ES

p (Yo=Te) V18

h
2 w5

This subspace is nonempty and invariant by lemma 2 of section IV.2,
Eq.ﬂv}lh) may also be read as a subsidiary condition which makes the
unphysicel components equal to zero, It may be necessary to emphasize
the conformal invariance of eq.(IV.14). It does not break down the

necessary
symmetry but is aAcondition for the irreducibility of the represers

ation ° -

Step 1 has been described in great deteil by Diraczu{ For the

spin % case, step 2 has also been carried out by Dirac, and later

described 1in ‘greafer detasil by Hepner,") We will give a unified

treatment for general spin.




Step 1. Define

~ \ - 7
wa(x) = (25*'76) n xafnj vhere X, = ;;:#;E (1v.15)

The function 5& defined in this way does indeed only depend on X,
and not on Y+ f.,by virtue of the homogeneity condition (V.4),
2g- "5 is not an independent parameter anyway beoause of eq. (V. 3).

A conformal transformation (IV.2) of X induces on ' a transforma-

tion of the form

Iag p(x) = (LABi'?vhB) (%)

where iuu - i(xuév _ xuau)
£u6"iu5 = -i(uanxp + quxvﬁv - xaau) (1v.16)
L Lys = -ioy
iﬁ6 = i{n - xvdu)
In particular we have then
Pu o(x) = (-iﬂu4-T:g) 0{x) where €f§ %(Yu6+ fus)
Step 2. Define "%
o (x) = Vo, Fplx) where V = exp(ix"¥'") (IV.17)
The malrix V exists beoc: use we assumed 'he YAB finite dimen-
gional toreover, V is always

s . . . )
a !inite polynomis1 1in x hecause Lhe YP

are also nilpotent. It
could therefore be worked out explicitly in each case. In practice
such streightforvard but sometimes tedinus calculations can usually

be avoided by using translation invariunce and the fact that V = 1

at x=0,
Because all chommute, V has an inverse given by
-1 Y L]
v = -
exp(~-ix Yv ) (1v.18)
urthermore
. -1 , )
V{-ic )V = ~-id =¥
p B (IV.19)

Using egs.(V.19) and the C.R., of 'he matrices thB ns given by

4
x
eq.(I].”+) one may check that the components of ‘he field $ in the

new basis do indeed transform according to eq,(1l.,10) with




n is given by eq.{(V.4), The remaining matrices have disappeared
from the transformetion law,

Summing up, the sought-for relation between the fields o(x)
and X(7) is given by eqs.(V.15) and (V,17)., This establishes our
claim that, after havingcarried out steps 1 and 2, we arrive at
a field which transforms according to eq.([.10), with wu;!o unless

VAB=(L

As explained above we may then, as our step 3, proceed to dropp-

ing the unphysical components which do not satisfy eq.(V.14)
The "dimension of length" arising in eg,{II.1) is related to the
degree of homogeneity n by

4 = n -tx(eigenvalue of %’56 in the subspace (AV.14)). (vV.21)
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4, Invariant wave ejuations and interactions.

With manifestly covariznt fields it is straightforard to vrite
down manifestly invariant wave egquations and interactions. The follow-
ing examples are due to Kastrup.ZS) KAB is finite dimensional
~nd all fields osre to correspond to fields over Minkowski space which
transform according to eq.(ll.10) with up::O ; &8 do the fields employ-

ed 1in section ITI.

The spin O field (scalar or pseudoscalar) corresponds to a con-

formal scalar A{w) with degree of homogeneity n=-1, i.e.
B
n 0gAln)= -Aly), Y, pAle) =0 (Iv.22)
The free wave equation is

B
U6A(7) =0 where O = 0705 (1v.23)
*%) {his is 2 well defined equation for A(g)
) and only if
defined on the cone w~ =0 only, if [ n=~1 as we assume. By eq(iV.12),

As discussed by Dirac ,

£=n =-~1 in agreement with the discussion in sectionIII.

The scalar field in Minkowsi space is then given by

alx) = (15+76>*1A<-¢> (IV.24)

and satisfies Guéua(x)= 0o . (1v.25)

The spin % field is an 8-component spinor X(i) of degree of
homogeneity n = =2

1BéB X(q) = -2 X(q), YAB given by eq.(V.9) (IV.26)
The adjoint is defined by
X =X¥m (1v.27)
cf. eq.(V.12)
The corresponding 8-spinor over Minkowski space is again given
by eqs, @V.15) and (V.17) ~hich reads

¥(x) = (75+76)+2 (TL_-!-ix”Lh."}L tT)X(y)  where t'= $(r +it,) (IV.28)

Its physical components are given by eq.(V.14) which takes the

simple form

(1+ -c3) ¥(x) =0 (Iv.29)
In the basis where T3 has the usual diagonzl form, these are just



the lowsst four components., From eqs.{[V.9) and (V.21) one

finds d=n+% = -3, as was assumed in sectionlll because of

unitarity requirements.

The free wave equation is

(AP, s B X () = 0 bye = (0% - 2% ) (17.30)

This amounts to diagonalizing the second-order Casimir operator
¥2,30) :
iJABJAB (Hepner and Murai), '

The spin 1 gauge fields are 6-vectors Ay(y) of degree of homo-

geneity n=-1 .

B q
1 98 Ac(1) = ~ag(0) ¢ (¥p M= 1lgyg Ap - gy 4y) (zv.31)

satisfying the subsidiary condition %Az () = 0. (IV.32)
If we impose in addition the generalized Lorentz condition

G
3 Ac(q)m 0

then the admissible gauge transformations are, for the electromag-

netic potential,
Acy) > A (g) + 8, S(x) | (1v.33)

where the gauge function S must be specified on a whole neighbtour-

hood of the cone qf:(), and satisfy there

qBaB 5{(%) = 0 3 e S(y) = 0

The free field equation is then
Qg Ag(n) = 0 (IV.34)
Again, the choice of n=-l1 makes this into 2 well-defined equation
for A.(y) defined on the cone n“=0 only.
The corresponding field ap(x) is again given by egs.(IV.15) and

(IW,17). For the first four components this takes the explicit Torm

au(x) = (75+%)+1!Au(7) - xu{As('l) - A6(‘7)}] 2=0,..,3

, . (1v.35)
and the subsidiary condition eq.(IV.32) reads
ag{x) - a5(x) =0 (Iv.36)
This can be seaen in the following way: For x. = 0, we have

qu==0 and us = 74 - Therefore eq.{IV.2¢) is clearly true =t this point.
Now eq.{V¥,32) is conformal invarirnt and therefore,in particular,

translation invarisnt., However, by coﬂstruction,all aB(x) transform
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under translations according to eq.((],10).Thus |, by translation in-
variance the validity of eq.(IV. 36) for arbitrary xn follows from its

-validity at xu:O.

The first four components of aB(x) are the physical ones as they

satisfy eq.(V.14) by virtue of the subsidiary condition eq.(V.3¢),
Namely

(Kha)v(x) = %(qu - Yus) a, = i guv(a6-a5) = 0 v=0,,,3 (IV.37)

Invariant couplings:

‘ conformal invariant
Following Kastrup, it is éasy to see that a A\coupling between

a pscudoscalar field A(%) and the spin § field X(y) is given by the

Lo |

following wave equation;

C -
06 A o) xBCB7X

AP L k) X

#

(Iv.38)

. C
] BCB,?X. A

and the coupling of the electromagnetic field to the spin % field is

given by

AB . . .
'S [-;A(aB-iq Ag) ~ g, ~iq 4,) -hifX= 0

Og A = a 3o (2) (1v.39)

B =
7 X¥peX

1]

where jc(?)

The B-matrices are given by eqgs.(IV,10) and (V,11).

As is seen, the electromagnetic coupling is obtsined by msking
the gauge-invariant substitution ac-»cc- iqAC . In this form it can
be immediately generalized to arbitrary sets of gauge fields Aca(q).
Let Ta‘be the representation matrices of the relevent group as dis-

cussed in sectionIIXjthen the general rule is to substitute

g AR (Iv.40)
ac_-a-ac- 1ch Ta.

in the free field equations. Summation over a is understood., In this way
one obtains couplings which are both conformal invariant and gauge

invariant,

Finally there also exists a quadrilinear conformrl invariant spin O

boson coupling. A corresponding vave equation vould be,e.g.,
3
o, A(q) = g [a(y)] (IV.41)

Of course all couplings mentioned above can occur simultaneously.
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A point we want to atress is the following: Not all monifestly

covariant looking couplings are physically acceptable, They must s=~

iafy the‘following additional requirements:

1). The field equations must have solutions which are homogeneous
functions. This requires that all terms in a certmin field equation
must have the same degree of homogeneity. The degree of homogeneity
of sucha term is calculated by coﬁnting each explicit ceordinate ¥y
with‘+l, each derivative 6/61 with -1, and each field with the ap-
jropriate number n (e.g. -1 for bosons and -2 for fermions in the

cases discussed above),

2). The interaction terms must not couple unphysical field components

to physiocal ones., This turns out to be & strong restriction in practice.

The couplings given above do satisfy this condition, vhile,e.pg., 8

coupling XX A would not.

There is an easy way to check vhether condition 2 is satisfied
wilhout going through the tedious transformntions of section IV.,3.
Because of translation invariance, it is sufficient to rheck that
‘he condition is satisfied at xu=(). This corresponds ro " ¢
ond w, = ¢¢. At this point the boost operator V in ege. (IV.17) is simp-

1y unity: vaB = Saﬁ + Therefore we have in general

¢, (0) = (75+76)'nxa(9) (IV.42)
where the abbreviation X(Q) = X( 2,3(3’7:‘7‘) has been used. The

physical components of a field at this point are then simply those

satisfying

x, X (Q) = %.Wus‘ Vus) X(@)=0 , (IV.43)
i.e. for a spin }1- field (1+ 13) X({Q) =0 (IV.44)

and for the electromagnetic field the four components Apﬁo),
w=0,.,3,

It is now easy to check whether there is a coupling of physicsl
to unphysical components or not., For example, in the case of the

_Pseudoscaler coupling (V. 38) we find from egs.(V.9)...({V.12)
Cxe _ q + -
7 XBCB7XA = 4 (754-?6)1 V’o(l- rB)TBXA at q, =0

Thus we see that the pseudoscalar field A is only coupled to the
physical components of X{(Q) +hich satisfy eq.(IV.4%#), The one and

-D6m

e = —
-'*-ruzrw”\#w',i OB e i e

A



only component of A(O) is clearly physicclp it satisfies eg,(V.43)
trivially. One can also check in this way, from eqgs.(IV,42)

and AV, »%) , that the wave equations (V.38) and (V.39) do indeed cor-
respond to the Dirac -y Klein~Gordon and Maxwell equations for the phys-
ical field components in Minkowski space, with minimsl electromagnetic
interaction ~ and nonderivative pseudoscalar pion-nucleon inter-

action.

In sectionlll an alterﬁative characterization of all {physicali-
ly scceptable) conformol invari=nt couplings for spin<€1 has been
given. If all vector mesons are assumed to be gauge fields, then
the m.nifestly conformal invariant couplings given above, and their
obvious generalization to the case of several fields of the same
spin, exhrust all possibilities for spin £1. This may be checked’
by enumerating all possibilities, as there are only =
few types of couplings with dimensionless coupling constant, and

the gauge field couplings are fixed in their form,



V. REPRESENTATIONS INDUCED BY FINITE-DIMENSIONAL REPRESENTATIONS OF
THE LITTLE OROUP (IL.7)WITH K, 4 O .

As has been mentioned at the end of Sec.II, these representations
are interesting in principle because thejcwuld give rise to spin multi-~
plets, but they are not fully reducible (and therefore not unitary re-
presentations) The only author who hag recognized the power of re-
presentations of this type is Hepner who usez conformal invariance to
generate uniqualy“)the V-4 (or V+4) weak interaction.m Asgume we are
working with a four—component spinor ¥ (quark, Mor e=field)}. If we
poatulate that a four-Fermi interaction be conformal invariant, then

there exist two posaible interactions
eV ¥y
g (f X&T)V'z)(f@ X‘u(_)"f@) (v.1)

corresponding to X XXX ana V‘AX)[AB:Y IICXXCBX in the six-dimension-
al language of Sec,IV,

- . .
Here 1 LA -x/,=e1ther~§“{ll(1+-‘fg) or ‘iz}h AV )
depending on which of the two ineguivalent L-dimrnsional repre-
sentations A(n of the ~lgebra of the index-0(2,4) is chosen (cf,
Sec. IV  eq.(IV.8)). We will set w = 1 numerically. This can al-
ways be achieved bya basis transformation with the matrix exp(ia‘fs),
for suitsble ®.The exprescion (V.1) is just the familiar V-4 or V+A

coupling.

An invariant wave equation would be
. (S} ) ) - -
(-..Y/“ o *“"(E-”\JS*M)\P"}XF”""YF - (V.2)
The quantity n appearing here and in eq.(W.20) must be a solution

of n3- n+2 =0 in order that (V.2) be invariant. {(This is related

to the homogeneity requirement discussed at the end of Sec.IV.)
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We now break the oonformal symmetry end descend to Poincard in-
variance by adding the symmetry.breaking term i§f“3”‘-;(?-t)vs 1

eq.(Vnz) goes over into the usual Dirac equation with weak interactions.,

The point of view regarding weak interactions taken here ig
different from that of Sec.III. The theory of Sec.III has the
adventage that the kinetic energy term without mass does not break the
conformal invariance so that the canonical equal time C.R., of the fields

are conformal invariant and one can write down hermitian generators,

-2G~



APPENDIX
THE ¢ ~MODEL AS AN ILLUSTRATION OF IDEAS IN SEC,III

Consider the Lagrangian of the o-model of Gell-ilann and Lévy’s)

2= ﬁ(iﬁ-M)N + igI\_TKBTNfc + -(6 né’"!r-p. 7))
(4.1)

* :i(a)"-oaﬁd - {111‘*' %}02 ) - 7‘({11"4-01} - f‘ d{ﬂ:z+cyl} ¥

Here N is the nucleon field, n is the pion field, and ¢ is the field
of a I=0, JP=(f'meson. f-g/BM. Let us choose the free parameter A to

be _ gx.}&._.
Ly
Reexpressing the Lagrangian in terms of ithe field o' = g- (Zf)-l
and calculating the dilatation current and conformal currents
from eq,(l.3), one finds for their divergenceslu)
o, = v = 2V
g‘ Mm a(x) (a) g O FW = 2x1l ¢ gv (b) (A.Z)

The last equation follows directly from eg.(ll.10)ff =ince %the pre-
sent Lagrangian does not involve any derivative couplings. m_ is

the (bare) eo-mass., We see that in the 1imit of a massless boson ~

both currents are conserved, and we have a cpontaneous breakdown

of conformal symumetry.

With the usual definition of the axial vector currcnt mju for

this model, one finds that generally, also for mﬁﬁfO

. . 2 =2 ..
[1-"3..5(,1{0),01L Oljp'(x)] = =i sij% (op'%p - 24%87%) ror i,j=1,2,3

x

z A'
where Fi5= Sde mi°. (4.3)

Elgewhare it has been proposed to generalize this formula to
chiral SU(3) x SU(3) in the following form:
B =
9 911 = aouo(x) + a8u8(x) - (Oj{aouo + a8u8}|0) (A.4)

_ 3
with @ +'ﬁ 8 '3{;.

d?/yﬂ is & measure of the breaking of the eightfold way. The u,

must satisfy the C,R. of (integrated) scalar densities with vector
33)
and axial vector currents as proposed by Gell-Mann (i,j,k = 0...8)




5 o
[Fi . vj(X)]eq.t. = 1 dijk uk(x)

[Fi5’ v

i
i
1

(x)] = -id,, vk(x) (3-5)é

J eq.t. ijk

with

v.(x)

5 a¥ apJ (x) for j=1,2,3.

The matrix elements of u, + f%us are known in current algebra calculations

as'o-terms: A method to calculate them on the basis of eq.(A.4) and eq.
(III.1) has been outlined in Ref, 7.
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‘ 4
() , 4 (x;)]+ .t = {’V‘
] <

+

+
" (

[4 A -4
ST AT Al S B W T P SR
PR ATA S dr-gy

_oal+3 A
Y QX -y
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‘Note that the &-""meson'' plays two different réles here.

Firstly it is a manifestation of the breaking of dilatation sym-
metry, eq. (A.2a). Secondly, it provides an attractive »N
force which is necessary to cancel some of the big s-wave
repulsion inherent in the non-derivative #N coupling which
is not observed experimentally. Recall that requirement of
validity of eq. (A.2b) does not allow for a derivative «N

coupling. {Sec.IIl,)
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