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ABSTRACT

The relation between electromagnetic mass shifts (or splittings)

to order a and equal time commutators is analysed. If the invariants
-2 2

in the forward spin averaged Compton amplitude go as k for k ->• oo,
it is possible to relate the quadratic and logarithmic divergences in

2
6m to certain Lorentz scalars formed from the commutators„ These

results are illustrated by models with currents bilinear or linear in

canonical fields. The Jost-Lehmann representation is then used to

analyse more general behaviour. It is shown that the spectral function

may generate a higher rank tensor character of the amplitude than that

expected from its kinematic factors. The relation is then more com-

plicated even if the commutators still exist. Finally, detailed criteria

for the existence of equal time commutators are developed; they imply

that the Jost-Lehmann representation for the amplitude must be

unsubtracted.
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EQUAL TIME COMMUTATORS

AND ELECTROMAGNETIC MASS SPLITTINGS

I. INTRODUCTION AND SUMMARY

We analyse here the following two problems: 1) The relation

between divergences in electromagnetic mass shifts {and splittings) to

order a of a particle and equal time current commutators. In part-

icular, we shall isolate the quantities governing the divergences, de-

termine the general circumstances under which these quantities are

related to equal time commutators involving the currents and their

time derivatives and apply the results to a number of models of interest,

2) The requirements on the behaviour of the forward Compton amplitude

for the corresponding equal time commutator matrix elements to exist;

the analysis of which is based on the Jost- Lehmann representation of

this amplitude. The successive results are summarized below.

We begin, in Sec. II, with the case in which the relevant in-

variant amplitudes in the forward spin averaged Compton amplitude

M (k, p) are sufficiently well behaved that the BJORKEN prescription

for the asymptotic behaviour of the amplitude is justified. In that case,

the quadratic and logarithmic divergences are seen to be related to the

matrix elements of the equal time commutators

j°(£/0J

respectively. The relation is actually more involved in that it is not

the matrix elements of these commutators, but rather those of certain

related Lorentz scalar operators, which are the coefficients of the

divergences. The mass shift,being a scalar, must be determined by

such scalars, which are to be identified from the general forms of C,

and
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Within this framework, the remainder of the section deals with

a number of explicit models in which the currents are either bilinear

in charged fields of various spins or linear in canonical fields. It is

shown there that most of these models can be expected to lead to

divergent shifts (or splittings).

In Sec. Ill we investigate the behaviour of the amplitudes in a
2)

more general framework by use of the JOST-LEHMANN represent-

ation, first developed for retarded commutators; we shall see that is is

valid also for our time-ordered product as a result of the spectral

conditions of the problem. The mass shift is now calculated in terras of

of the corresponding Jost-Lehmann spectral functions. If we assume

that the amplitude as a whole is unsubtracted (otherwise there is a

quartic divergence) and, for the moment, that the spectral functions

are well behaved asymptotically as a function of the representation's

mass variable, the quadratic mass shift takes a simple form. The

latter is precisely that associated with the relevant scalar in the
0 H

[j , j J commutation, so that the Bjorken analysis result is still

essentially valid. If the quadratic divergence then vanishes, the

logarithmic one becomes relevant. A somewhat stronger assumption

on the behaviour of the spectral functions then enables us to show that

the corresponding relation between the "scalar" part of [3 j -3 j , j ]

and the logarithmic divergence also holds.

In Sec, IV we lift the assumptions on the Jost-Lehmann spectral

functions and look for the conditions under which the divergences of

mass shifts are still related to the equal time commutators. The first

part of the question is then, of course, to find when the latter are well

defined. In this general context, we define the unequal time com-

mutators as the boundary values of analytic functions, in the spirit of

WIGHTMAN ;; if the limit at equal times of this distribution in x ̂  is

also a distribution in _r , the equal time-commutators exist. The

conditions for the commutators to exist are found in general; the

asymptotic behaviour of the invariant functions must be a sum of terms

of the form (1/k ) {v /k ) . To get the explicit forms it is

necessary to know the number of subtractions in the Jost-Lehmann
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form; if there is at most one, it then follows that the existence of equal

time commutators depends on a single condition. The latter also

guarantees that the commutators transform as components of a Lorentz

tensor, of arbitrarily high rank, however. This complication, that

the Lorentz transformation properties are not dictated by the explicit

tensor structures in < p [j^{x), j (0)1 j p > alone (i. e., by the transform-

ation character of the j ) means that a higher rank tensor behaviour

may be generated by the spectral functions themselves. In that case

the commutators still determine the divergences, but in a more com-

plicated fashion, whereas the earlier direct relation holds if there are

no higher tensor properties.

The final section studies the implications of the above com-

mutator existence conditions on the asymptotic behaviour of the Jost-

Lehmann representation.lt is shown that the Jost-Lehmann representation
for the time-ordered product needs no subtractions; the existence condition
precisely removes an apparent logarithmic divergence in the representation.

Returning to the mass shift question, there is, in general, a

possible quartic divergence. For theories in which such terms are

absent (and only these can be analysed meaningfully) the coefficients
- 2 - 4

of k and k in the amplitude are determined in terms of the
k kl

Lorentz scalars in the C and C equal time commutators. Thus,

wherever these equal time commutators exist they do indeed determine,

but in a generally complicated way through their associated Lorentz

scalars, the quadratic and logarithmic divergences. The quite general

possible Lorentz structure of the commutators which was obtained

also uncovers the complexity that may exist within these ostensibly

simple "kinematical" relations. The underlying reason resides in the

fundamental model dependence of the small distance properties of both

equal time commutators and mass shifts.
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II. MASS SHIFT DIVERGENCES IN SPECIFIC MODELS

In this section we investigate the mass splittings in a number

of general models under the assumption that the BJORKEN limit

holds 4 \

A critical discussion of the validity of this limit and of mass

splittings in more general circumstances is given in subsequent

sections. We recall Bjorken's argument: if the invariant functions in

the forward spin averaged Compton amplitude "M (k, p) obey un-

subtracted dispersion relations in v s - pk/m , then the asymptotic

behaviour of the k integral is determined by the limit k -?• oo , k

fixed.

The invariant functions free of kinematic singularities are

defined by

where T represents the conserved Lorentz covariant current cor-

relation function with the disconnected graphs removed. The single-

particle states are covariantly normalized so that < p\ p > =
3 0 "** ~

= (2TT) 2p Sfp-jgi1) and we use the metric (-1,1,1,1) throughout
(p2 + m2 = 0).

The mass shift 6m may then be written in terms of JVt as

(II. 2)
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where the conservation of the T product has been used to retain only

the g part of the photon propagator.

The quadratic and logarithmic divergences of the mass shift
2 4

calculation are determined by the coefficients of 1/k and l/k
2

respectively as k -> oo in the M. . In order to make such an
assertion, one must assume that M. goes to zero at least as fast as

2 1

l/k ; if that is not the case, the situation is much more complicated

and the mass shift is more than quadratically divergent. We shall

discuss this case in later sections.
2 21

The limit as k -> od, | k [ >> \ pkj is then, under the assumption
2

that M.^fl/k )m. , m. constant,

- 1

(II. 3)

where the terms which go as O(l) are just the Schwinger terms

necessary to preserve the covariance of the amplitude. Consistent

with the general structure of the current correlation function M ,

these occur only in the space-space components * .The l/k terms
0 k

yield the equal time commutators. The m gives only a [ j , j ]
k /

commutator, while m yields a [j , j ] commutator as well. We
O k

recall that while the Schwinger terms occur in the [j , j ] commutators,

these terms require that space-space parts be added to the time-ordered

product for Lorentz covariance.

On the other hand, the asymptotic behaviour which we have

assumed implies that the dominant term in the mass shift calculation

is
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(II. 4)

61where the integral has been transformed to Euclidean space and the

angular integration performed.

The quadratic divergence is thus determined by m1 and m
O kwhich are in turn determined by the matrix element of the [ j , j ]

commutator. The c-number parts of the commutator do not, of course,

contribute since they are always subtracted along with the disconnected

graphs.

The logarithmic divergences become interesting if, as in some

models, the quadratic divergence vanishes. In that case, we assume

that M. '"m./k and the asymptotic behaviour as k -* oj is

which is unrelated to any [j (r), j (0)]. However, if we consider the

curl of j ,K =9 j -9 j , this will introduce an additional factor of

k , restoring the l/k behaviour characteristic of equal time com-

mutators. Then

(II. 6)

Note that there is no constant part this time, hence no non-covariant
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terms. The commutator is a delta-function with an operator coefficient

whose matrix element is given by the expression in curly brackets in

the above equation. The only non-vanishing term is the commutator

(II. 7)

The previous commutator < pi [j , j j | p > has the analogous form

c

(II. 8)

The commutator coefficients are just components of the fourth

rank tensors C , C of the general form

c

(ii. y)

Note that the ot and )3 coefficients have vanishing (Ook!) components.

The most general fourth-rank tensor with the above symmetries

contains an additional term of the form p p p p ; we omit it since it

is absent in the models to be discussed. It is shown that terms of the

form rru may occur and that the mass shift is determined by

m + — m + — m , but independent of a and |8 , as is the com-
1 4 1 2i 2*

mutator (though such terms can and do arise in C itself, while a

p p^p p*7 term would contribute both to the commutator and the mass

shift). We now find the appropriate Lorentz scalar part of C
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which determines this combination from the two independent double

traces

(11.10)

Thus the coefficients of the quadratic and logarithmic mass shifts are

given by, respectively,

and (11.11)

We now investigate the possibility of finite radiative corrections

to mass shifts in some models. Internal symmetry as well as parity

indices will be omitted throughout. The arguments then apply to mass

shifts or splits; depending on which isospin parts are considered.

1} Bilinear current models (with charged Bose fields)

Here the current is constructed bilinearly from charged fields

which may be scalar, spinor or vector. Then

(11.12)

When there are no derivative couplings,the fields obey the canonical

(anti) commutation relations:



and

Ur -

where J is the source of Is

(11.14)

We also assume

Explicit calculation yields

Here the absence of fermion terms just reflects the well-known in-

consistency in naive calculations of the equal time commutator of

fermion currents. We shall assume that this missing Schwinger term

is a c-number and so will not contribute to the matrix elements in

which we are interested. In a model where it is an operator it will,in

general,contribute a quadratic divergence. In this connection we recall

that the presence of other interactions may well affect a commutator's
8)operator properties . As an example, consider the perturbation

theory model of a neutral pseudoscalar meson interacting with charged

nucleons through an interaction term of the form gcp̂ 0 . The lowest

order diagrams for the current correlation function between meson

states are of the forms shown in Fig. 1.

• - +
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0 k

The matrix element of the [j , j ] commutator can then be calculated

and it does not vanish. Hence, the interactions have changed the com-

mutator relations and the neutral meson will have quadratically
2

divergent 6 m in O(a) . This will in turn entail a quadratic

divergence in the nucleon mass through the O(a) term shown in the

diagram of Fig, 2.

\

0 k
Although the above boson [j , j ] commutator is positive definite,

the quantity which determines the mass shift is the difference between

the diagonal matrix element and the vacuum expectation value, so there

are no positive definite conditions on the mass shift. While it is

conceivable that just the diagonal matrix elements but not the operator

vanish, thereby removing the quadratic divergence from the mass shifts,

we know of no such local operator, except where kinematic constraints

force it. This is clearly not the case here; thus we conclude that the

general mass shift will be quadratically divergent in this model and

must be absorbed into an explicit renormalization. It should perhaps

be emphasised that, while most or all mass shifts will be divergent,

this does not imply that there are an infinite number of independent

renormalizations, but only that a shift of any mass will, in general,

cause a shift of all other masses; hence a divergent mass shift of one

mass will imply a similar divergence in all masses.

The formalism with which we are working is unable to dis-

entangle the various sources of the divergence and a more detailed

model is necessary to make any further statements. For a pion field

coupled to a nucleon field, the pion has a quadratic divergence through

the diagram of Fig. 3.
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and the nucleon then acquires a quadratic divergence through that of

Fig. 4.

In this model, once the pion has been renormalized, there are

no further quadratic mass shifts but only shifts of the nucleon mass

due to the (finite) shift of the renormalized pion masses.

The general fourth-rank tensor structure, C , which was

defined earlier for the commutators, can now be explicitly exhibited for

these models:

r q
<7

(11.16)

The coefficient of the quadratic mass shift is then the matrix element

of the operator
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(11.17)

2) Bilinear current models (without charged Bose fields)

The logarithmic divergence can now be calculated from the

commutator [3 j - 3 j , j ] ; it becomes interesting only in the

special case of a pure Fermi current, j = 0y \}i , where the quadratic

divergence vanishes. The equations of motion for ^ are defined to be

(II. 18)

where X is assumed to have the anticommutation relations

and the components cp „ transform like boson fields. Then

A =r

and

£), jk(o)2

(11.21)

There are again no positive definite statements concerning the

vacuum subtracted diagonal spin averaged matrix elements to be made.

The only form which does not contribute is the e 9 6(r) term

which has no scalar part and whose spin averaged forward scattering
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matrix element vanishes. The rest have non-vanishing matrix elements

and we conclude, as above, that most mass shifts are logarithmically

divergent, including those of any neutral bosons, due to the coupling

between particles which was discussed in the case of quadratic diverg-
—uv\<j

ence. We have not expressed the commutator in the C form

because a more explicit statement concerning the type of interaction is

required for the X^ and $><p ip terms.

We have now exhausted the class of models for which we can

consistently couple the electromagnetic field to a bilinear current and,

in general,they all yield divergent mass shifts.

3) Algebra of fields

Two further classes of electromagnetic couplings have been

proposed which are,in some cases at least, more convergent than the

previous ones. In the first ' the electromagnetic current is taken

to be proportional to a canonical field,

J - A r Or = cJ T - P T (H. 22)

_ 0 k . . , . L . k
where G is canonically conjugate to <p

0 k
The [j , j ] commutator is then a c-number,

A

hence there are no quadratic divergences. Further,

- 2 4 >

is again a c-number and there are no logarithmic divergences either.
9)

Two versions of this class have been proposed. The first is in-

adequate as a description of the real world since the vector field is taken

to be a linear combination of the p,9 and w fields. Then, either the

vector field must have a Yang-Mills coupling, in which case the above

analysis does not hold, or there must be additional explicit terms in

the current corresponding to the current of the p and p~ and these

- 1 4 -



bilinear boson terms produce the usual quadratic divergence. In the

second the canonical field is taken to be an entirely new field which

is coupled to what would normally be called the electromagnetic

current. Then the above analysis does apply. When a Yang-Mills

coupling is introduced the equations must be modified to read,

( n 2 5 )

and

so that

j't^ff' (11.27)

where q is the component of the internal symmetry group correspond-

ing to the charge. While

- ^V^c£ ; (IL 28)

is as before, the other commutator is altered since the curl of the <p
Cfield is no longer the conjugate momentum to j ,

-iff/: c-ficj- <•# f/tLi c.}> fX>, fg

= L
I

if

(11.29)

It should be emphasised that the indices of the structure constants

include parity so that in the case of SU(n)(x)SU(n) we have a sum of

vector and axial fields. The mass shifts must again be logarithmically

divergent. The tensor C is readily identified as

(II. 30)

-15-



and the logarithmic mass divergence is proportional to the matrix

element of

It is perhaps worth noting that this is the only operator relevant

to the logarithmic mass shift divergences. The matrix elements of.
k 2 9this operator could vanish without : 9 C 9 : vanishing - the latter

2 u
is not equivalent to : 9 C 9 : in any one frame although it has been

4)suggested as a test for convergence . In this model the vanishing of
1 2 a \

< p \ : 9 Cq 9 : j p > is the content of the general requirement

for the shifts to vanish. On the other hand, there is no single frame
1 00k£]in which the vanishing of < p C j p > is sufficient; furthermore,

the requirement that this element vanishes in all frames is stronger

than is needed, so that vanishing divergences could conceivably occur

With

for arbitrary p_ .

In view of the well-known finite mass shift results obtained from

SLL x SU for soft pions using the WEINBERG sum rules , it may

be amusing to see how these are recovered from our general criteria.

Here the quadratic divergence of the mass split vanishes, being

governed by

since the commutator is a c- number. The logarithmic divergence for

the shift which includes both 1=0 and 1=2 parts is governed by

-16-



(11.31)

and vanishes by isospin conservation. Here we have reduced the soft

pions by the axial charges Q_ . The divergent neutral pion shift also

vanishes, in the same way. Direct use of the field algebra has bypassed

explicit use of the sum in evaluating the divergent t e rms . The critical

role of the soft pion property was of course to reduce the general

diagonal matrix element to a vacuum expectation value.

III. JOST-LEHMANN REPRESENTATION

In the previous section we have been considering the covariant

time-ordered product, which appears directly in the expression for the

mass shift and assuming the conditions needed for the Bjorken limit to

be valid, We must now investigate the general behaviour of the ampli-

tude more carefully. For this purpose we turn to an explicit para-
2)

metrization of the causal commutator - the JOST-LEHMANN

representation. Due to the particular mass conditions in the matrix

elements of interest here, there is no necessity to go to the more

general Dyson form and we can explicitly write, in the rest frame of p ,

L )

,OO

cr ' (III. 1)
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Owing to crossing (antisymmetry under n*-*> v , k •-> -k), the usual

odd terms in k do not appear. Rotational invariahce and the fact

that a spin average has been taken implies that the Y, depend only on

1 u | rather than u . Note that while the Jost-Lehmann represent-

ation was originally written in the rest frame of the external particle,

a straightforward Lorentz transformation gives it in the general frame
0 2 0 2 1 / 2 2 2 (1/ 2/m

p j 0 ; there v = k = -pk/m and | k:| = [k + k ] ' = [k + 1/ ] '

In general, it is not possible to infer the form of the T product

by first obtaining the form of the two orderings < pj j j j p > and

< pi j j • P > from the causal commutator, since the spectra of the

two orderings overlap; however, in our case, (as long as the particle

is stable under the strong interactions) the lowest intermediate state
u vmass is the same as the external one. Thus for j j the lowest value

0 2 2 l / 2
of k is [J< + m ] - m > 0 , For the other order we have

0 2 2 1/2
k < m - [ k + m ] <0 and the two orderings are distinguished by
the sign of their frequencies:

(HI. 2)

where

We can now calculate the (usual) time-ordered product

/V} tp,ft) =

(m.3)

struct

ures will give rise to non-covariant terms, reflecting the general lack

In general the k 's appearing in the kinematical tensor struct

- 1 u-



of covariance of time-ordered products when the equal time commutators
13)

contain gradients of delta functions . The addition of "seagull" terms

is required to yield a covariant conserved current correlation function

for consistent coupling to the electromagnetic field.

Another problem which may arise is a lack of convergence of

the s integral in M. . If that occurs, subtractions must be made

and the subtraction constants correspond to additional interaction of the

electromagnetic field with the matter fields. These represent addition-

al parameters describing the interaction of photons with the charged

particles involved, hence a redefinition of the electromagnetic inter-

action. We assume that some choice of subtraction constants results

in the correct Compton scattering and mass shifts and investigate the

consequences of such forms for the current correlation function. The
2

degree of divergence of 6m is closely tied to the asymptotic be-

haviour assumed for the Jost-Lehmann spectral function, i. e., to the

number of subtractions required. Physically, the structure of the

covariants associated with one subtraction corresponds to counter

terms, in a simple Lagrangian picture, of forms like *"F F ^

Such an O(k ) momentum dependence generates a quartic divergence.

Similarly, a still more rapid increase of ¥ associated with, say,

two subtractions, would lead to ~ A divergence through counter terms
uv 2 2 4

of the form ^F F 3 <j> with O(k ) dependence. It may perhaps

be mentioned in this context that we have treated all the usual con-

straints in the theory, such as the bare mass, as finite, i. e., that the

usual renormalizations are finite; as a result normal counter terms
2 2

like (6m ) $ did not have to be worried about in this context. If, on
the other hand, we were to take seriously this type of infinity, it would

14)

strongly alter the effective structure of the theory . For the remain-

der of this section we shall assume that the current correlation function
15)

obeys a once subtracted Jost-Lehmann representation

Provided that the spectral function Y(s,u) is sufficiently

regular at u = 0 [lim d u f (u) ¥(s,|uj) = 0], a dispersion relation

in v can be derived. If we assume that the Jost-Lehmann represent-

-19-



ation is once subtracted, the once subtracted relation reads, subtract-
0 lO

ing at k = 0 , k = ia ,

(HI. 4)

This may be cast into a dispersion form by the following steps.

Define

and Lorentz transform to an arbitrary frame

where v = -pk/m , [lcj= [k +y .] ' . The (s,u) plane integration

may then be rewritten as .

.1

(III. 5)
2

The last equation was obtained , for k > 0 , by the change of
2 2 / r> 2"

variables s = -u - k +- 2u Jvi2 + k ; the limits are just such as to

guarantee that s > 0 . The u integral is over a finite region since

¥. vanishes for u > m . If there is a finite contribution from j£ = 0,

it has been dropped, since the integral explicitly does not include that

point. A more careful treatment shows that inclusion of the point
2

yields a subtraction in v . Thus, an unsubtracted Jost-Lehmann
representation does not imply an unsubtracted dispersion relation in v

We are now in a position to discuss the relation between sub-

tractions in v and the validity of the Bjorken analysis. The equal

-20 -



time commutators may all exist and the asymptotic limit as k —> «a ,

k^ finite, would then exist and be well behaved (the exact forms are

discussed below). This in itself says nothing concerning the
2

behaviour in u for fixed k . Thus, it is quite possible to have

subtractions in v and well-behaved current commutators with finite

mass shifts

The converse question, whether an unsubtracted dispersion

relation in v implies convergence of the Jost-Lehmann form, is more

difficult. It seems possible, though artificial, to have the subtraction

from the u singularity cancel that of the asymptotic behaviour in s .

The task now before us is to recast the mass shift in terms of

the spectral functions ¥.(s,u) rather than in terms of the time-

ordered product. The convergence properties of the shifts will then

be discussed on the basis of the spectral functions. Going to the

Euclidean integral, we have

(III. 6)

plus the subtraction constants, if any, which would give quartic di-

vergences. We shall assume that there is no net quartic divergence,

since otherwise the following considerations become somewhat

academic. (Also, the transformation to the Euclidean integral is no

longer valid if the amplitude is subtracted.)

The angular integral in k can easily be performed:

(III. 7)

-21-



where

This expression will be used later in the general case; for the

moment we shall consider it only in the case where no subtractions

are needed and for the remainder of this section proceed under the

even stronger assumption that the s integral converges independently .

of u . For, as we are about to show, these assumptions are

sufficient for the validity of the Bjorken arguments as applied to the

quadratic divergences in the previous section. The additional

assumptions for the corresponding logarithmic terms will be developed
2

later. The asymptotic behaviour in k of the integrand is then
simply obtained by replacing the integrand of the s,u integral by its

2
asymptotic value as a function of k . The quadratic mass shift

becomes, upon expanding in k , .

(III. 8)

and dropping less singular t e rms . Its dependence on the spectral

functions is thus through the particular combination (¥- + — ¥ ) .

0 k i
We next also express the equal time commutator <p[ [j , j ] |p>

in terms of the ¥. . The relations thus obtained between the mass
l

shift and the commutator will establish the equivalence of the above

equation and the commutator forms of the previous section. For, in

terms of its. definition, we find for the commutator

(III. 9)

The right-hand side has exactly the structure of C with m.. = 0 ,

so that we may identify the m. in Sec. II as \ dsd u ¥.(s,u) given

earlier, thereby verifying that, under the stated conditions on the 1. ,

the relation between the equal time commutator and the shift still holds.

- 2 2 -



If the further assumption is made that the relevant scalar part
0 k

of the [j , j ] commutator vanishes, the logarithmic divergence be-

comes dominant. However, its determination appears quite com-
0 k

plicated unless the entire [j , j ] commutator vanishes, i .e . , unless

the conditions d uds Y.(s,u) = 0 hold separately. With the further

sumption that j ds Y.(s,u) - 0, rather than just its u-integral, weas
obtain the result

relating the logarithmic divergence to the first s moment of

Y + (1/2)Y . As in the above discussion of the quadratic parts, we

now show that the same combination occurs in the corresponding com-

mutator <p![K° ;(r),jk(0)]|p > .

We take the curl of the current commutator expression

eq. (III. 1) and obtain

whose only non-vanishing component at equal times reduces to

-i X Î;



The quantities m. can be identified as \ dsd u(-s)¥.(s,u) and the

analysis now clearly goes through just as in the quadratic case, to

justify the simple mass shift commutator relation for the logarithmic

divergence [at least when < p 1 [j , j ] 1 p > vanishes and the further

assumptions made on Y. hold] .

IV. CONDITIONS FOR EXISTENCE OF COMMUTATORS

In the preceding sections we have made rather strong assumpt-

ions concerning the behaviour of the Jost-Lehmann spectral functions

in order to obtain simple forms and relations for leading divergences

and equal time commutators. There are two major questions to be

discussed in the general case: i) How are the equal time commutators

expressed in terms of the (more general) spectral functions and what

conditions must be obeyed by the latter for the commutators to be at

all defined? ii) Under what conditions are the mass shifts and equal

time commutators related? A third question - what determines the

mass shifts when the commutators do not exist?- can also be answered,

but the result is not very illuminating. We shall start with the

requirements for the equal time commutators to exist. When they do

and,further, have the Lorentz transformation properties which are dictated

by the kinematical factors, the analysis of the previous section holds in

its entirety. On the other hand, more general structures may occur,

in which case knowledge of the equal time commutators still allows the

calculation of the divergence but the relation is no longer so simple.

The first problem, then,, is to give a general definition of the
181

equal time commutators. One approach is to recognize that the

operators involved are distribution valued and that only in special cases

can one cons .icier them as defined at given times; thus, in the more

general case, one should integrate with a suitable testing function in

time and then consider the limit in which these functions are localized

at t = 0 .
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An alternative approach, which we shall adopt, is to begin with
3)

the WIGHTMAN product as the boundary value of an analytic function
Thus

' ' (IV. 1}

UV IA Li U U. 0

where F̂ _ (z,p) is analytic in the cone z - x T irf , r) n <0, n >0 .

The functions F^ (x, p) a re the limit as n —> 0 within the cone.

We then define the commutator by

j
{IV. 2)

This, of course, yields a distribution in x^ , which, may or may not

exist as a distribution in r at t = 0 . If it does, then the equal time

commutator exists and we obtain the same result as the time distribut-

ion approach; if not, then the equal time commutator does not exist as

such and we shall not attempt to force a definition any further than to

identify the various singularities as n -*• 0 .

In terms of our spectral functions, the Wightman product is

given by e©

(IV. 3)

where

f . (Si

and
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A Lorentz transformation has been used to obtain the commutator in
2

an arbitrary frame from that in the rest frame. The variable £ is

just the magnitude of the spatial co-ordinate in the rest frame.

Since the integral must exist and f.(s,u) has finite support in
1 2

u , ip. may be expanded in a power series in £ ,

l
where

f'lsi = c-

This expansion is then absolutely and uniformly convergent for

fixed s . The next problem is to discuss the asymptotic behaviour of

(s) . In order to do this, it is useful to consider a modified
1

Mellin transform.
pc-i

2
The transform is taken with respect to [1 + (s/m )] instead of s in

order to avoid a spurious singukrjty at s = 0 . Then, assuming that

if/, (s) is polynomial bounded, g. (a) is analytic for Re a < -M ,

where lim 5' ip. (s) = 0 , and we assume that M can be taken

independent of n . The inverse transform is

where (T £ /YJ (IV. 6)

and we assume the asymptotic behaviour of g. (a) , as or -» co, is

such that this inverse exists.

The element < p {j^j17 j p > is then given by a sum of terms of

the form § 2 n xn(£) where
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(IV. 7)

19)where S (z) is Lommel's function of the second kind . The

asymptotic behaviour of this function for small z and Re a < 2 is

given by

±~?o

(IV. 8)

while,for Re a > 2 ,

where [a] = largest integer less than a .

We have dropped a term z |nz in the Re a < 2 expansion; it

vanishes for integer (2-a), which is the only case where it would be

needed. The a integral for g can then be performed by moving

the contour to the right until 1-n < Re a < 2-n. The only singularities

are those of g. (a) and the result is

fa e7t e7sj n /5,

*,. (^s/iif r(*-*jrtj-+.0 P
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4

(IV. 9)

If g. (a) is regular at a = 1 the first terms, for n - 0, can be

combined to form

. 10)

and the integral becomes

p'-

(IV. 11)

for the asymptotic form as £-»0 . The assumption of regularity at

a = 1 , for n = 0 , can be removed with a slight complication of the

formula; however, in that case, there is either no contribution to the

commutator, or the commutator does not exist, so only the case of

ĝ  (a) analytic at a = 1 will be considered in this paper. The only

assumption which has gone into this treatment is that the ip. (s) are

polynomial bounded.

It is now straightforward to calculate the equal time com-

mutators. At unequal times,

and

(IV. 12)

hence
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If the commutator exists as a distribution in r the factor e can be

dropped, yielding

(IV. 13)

where

For this to be a reasonable definition, the limit must be In-

dependent of the way in which r\lL —* 0 and for the equal time com-

mutator to exist, the limit must exist, as a distribution in r , at t = 0

for all p .

We first consider the time-time components of the equal time

commutators. Here, the tensor factors only contain spatial derivatives,

hence we may simply investigate the properties of the invariant functions

themselves - the spatial derivative of a distribution in j~ being well

defined if the original distribution is. At t - 0 the invariant function

must be odd in _r after the change of variables which is made below

and only odd testing functions contribute. The following integral

determines the equal time commutator

where, here.

and

p o

Now, a change of variables may be made, £—>±r + ify - i tsjr *7 and the

integral becomes

-29-



where

«? — — w 7 + / r / i — / (IV. 15)

The requirement that the limit be independent of the particular limit-

ing procedure chosen is satisfied if the integral

exists for an arbitrary odd testing function.

The time-space components have a product of a single time

derivative and a spatial derivative. The space derivative can be

ignored as before and the resultant distribution arises from the first

time derivative of the invariant functions. At t = 0 / the functions

are even under r -* -r and
**** *****

Zfj 'r
c

" - • • . * > * . . . —

must exist for any even testing function. Similar conditions may be

written for any higher number of time derivatives. These occur in
Ok ko |

the space-space commutators and the [9 j - 3 j > j 3 commutator.

However, the former does not yield any new conditions (the latter will

be discussed later). The fact that the space-space commutators are

no more singular to define than the space-time ones should not be too

surprising since in both cases we are dealing with the same model-

dependent set of Schwinger terms.. The existence of such terras in one

part of [j (r) j (0)] then, in general, implies their presence in any

other by the Lorentz structure of the equal time-terms.

2n 8
The integrals are sums of terms of the form £ /f" and,for

r?->0 , only r = 0 contributes; thus testing functions 9 polynomial

in _r (together with a damping factor for good behaviour as r-> ©a)

suffice to calculate the commutator. The indicated choice for odd qp

is thus p • r r | and for even q> , r £ , times an appropriate

damping function. Then, for odd testing functions

-30-
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- - Z

(IV. 16)

where C(n, t, ^) "= 2 \ p« r —Z^3~ ' *1 *s independent
(2TT) " * 3

Of VI .

The requirement that the commutators exist as a distribution

implies that this function must have a limit as rj -> 0 . But the

explicit i) dependence shows that this can be true only if all the

coefficients of the 17 terms vanish (except if a > -n-q-t-m). This

leads to a set of linear equations for disc g. (a) , one for each pair

(q, t). However, C(m, i, £) is a function of p̂  which depends on n .

It is shown in Appendix A that, if at is non-integral, the function is

sufficiently complicated to ensure that the only solution, for all p. , is

for the disc g. {a) to vanish. Thus g (a) must be meromorphic

with simple poles at the integers less than or equal to -n if the

commutator is to exist. Application of the same arguments to the

first time derivative implies meromorphy for the a < -n + 1 , except

for g. (a) , which must be analytic at a = 1 .

The space-space components of the commutators can be shown

to exist without any further restrictions, provided the other components

do. To continue to the commutator of K =9 j - 3 j wiih j ,

which involves third time derivatives, requires further analytic

continuation of the g. [a) . In order that this commutator exist,

g. (a) must be meromorphic with simple poles at the negative integers

for Re a < -n + 2 , g. (a) analytic at a-l and g. \a) analytic

at a = 1 and 2 .

In order to perform an explicit calculation of the equal time

commutators, it is convenient to further restrict the singularities of

the g. {a) . A pole of g. (a) at a = -n-p implies that

- 3 1 -



ip. (s) ' -' s ; one would expect, a priori, that this would, in turn,

require p + 1 subtractions for the s integral in the Jost-Lehmann

representation to exist. This is not the case; we show in the next

section that, if the only singularities are for p = 0 , then the existence

of the equal time commutators implies that there are cancellations

between the terms with different n 's such that the Jost-Lehmann

representation is unsubtracted. We further conjecture that the same

result holds.no matter what the behaviour is as s -> =o .

The calculation of the various commutators is given in Appendix

B. The result is that for the single time derivative (i. e . , the space

time components of the commutator) to exist, the residues g (-n) ,

defined by

must satisfy

This one condition is actually sufficient to guarantee that all the (j , j )

commutators exist and that their Lorentz transformation properties

are those of a tensor.

The coefficient of the delta function in d°j Js r($, $lJ/!fS Sjj

is then given by

where

and the g (-n) obey the previous constraint.

- 3 2 -



0 k
j j

i 0 k
The commutator < pj [ j , j 1 p > is then given by

^ft Cft r)J %
£) [ S

Pt I

(IV. 19)

The quantities[g^iD + g.(O)(O)]andfg.(n)(-n+l) + n g.(n){-n}j
are necessary and sufficient to determine the matrix element of the

commutator. Each term has a coefficient with a different tensor

structure; the unsummed terms have just the kinematical structure,

while the rest transform as higher rank tensors. Thus, the com-

mutator, in addition to having the transformation properties dictated

by the tensor structures, may transform as the pure time component
20)of a tensor of arbitrarily high rank . This is just a realization of

the fact that the Lorentz transformation properties of two operators

do not alone determine the Lorentz transformation properties of their

equal time commutator - an arbitrary number of pairs of additional

time indices is always permitted. (TCP determines whether the total

number of indices is even or odd.)

A simple illustration of such higher rank structure occurred
0 ^for currents bilinear in boson fields in Sec. II. Their [3 , j ] com-

kJl kJf 02 k Jf "
mutator had terms of the form 6 ,6 p and p p , the latter
two having unrelated coefficients. In the present notation, this means

the combinations g / ^ d ) + g (0)(0) , g (1)(0) + g ( 1 )(-1) and
(0) _ (0)

g0 (1) + g (0) a re non-vanishing, while all the others a re zero.

We also observe that,in generaLthe g (-n+1) a re sufficient to

generate any Lorentz transformation properties of the commutator;

the more singular structures g (-n) may be taken to be zero. These,
-33-



0 0 k j(
however, do determine the [j , j ] commutator and part of the [j , j . ]
commutator, as well as higher order derivative terms.

0) k

We now turn to the matrix element of the [K , j ] commut-

ator. As was mentioned above, the region of analyticity of the g. {a)

must be extended to the right so that the only singularity of g (a) is

at a = -n+2 and is of the form - fn' (-n+2)/£tf-n-2) and g* '(2) and

g (1) must be finite. Then, the asymptotic form of the unordered

product is

£

(IV. 20)

In Appendix B we find that this expression implies that

-!Lf%> v- (f

* l»->f,'%-*0 +'/x

(IV. 21)
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where
a (n-1) = 2n(n+l) a (n-1) - (n-l)(2n+l) a (n-2) .
r r r

Again the commutator is an arbitrary rank tensor since the

g 's are all necessary and sufficient to describe it and any powers
0

of p that may occur in the sums.

We shall see in the next section that the quadratic and logarith-

mic mass divergences (if they are the leading ones) are still determined

by the equal time commutators of [j , j ] and [K , j ] . Also,

under the conditions we have derived for the commutators to exist, the
uv 0

behaviour of the functions M as k —> OQ is just a polynomial plus

a 1/k term plus terms which vanish faster than 1/k . In

configuration space, it is only the l/k term which yields the

commutator. Hence, assuming the commutator exists, we can

always identify it as the coefficient of 1/k . The appearance of

higher rank tensors in the commutators simply implies that in the

asymptotic behaviour of the M. there are terms of the form

v /k which must be included (if the g (-n) are not zero

there are also terms of the form (v /k ) ).

V. JOST-LEHMANN FORM WHEN COMMUTATORS EXIST

In this section we discuss the properties of the Jost-Lehmann

representation in the case where the commutators exist. We deal

explicitly with the class of spectral functions which was discussed in the

previous section. There we saw that g. (or) is analytic for Re a < -n

so that

f% = linerf

-35-



7*7= - tJ? Aq'%) analytic forRe4<.

11

(V.I)

and, for n > 2 ,

o/+n-i

where the residues g (-n) satisfy the constraint

= O

Thus

A t(

- + Af'U)

a
(V. 2)

and, for n>_ 2,

where lim s"n+2 A?(n)(s) = 0 ,

It is now easy to show that the Jost-Lehmann representation for
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the time-ordered product needs no subtractions. We divide the s

integral into two regions:

2
where we take k + s >> 2m I k I, and \ u \ is restricted,by the Jost-

Lehmann form, to the region < m . The integral up to s converges

in any case; the second may not, as s-+ oo . However, it may be

expanded,

P*

Otf

(V.3)

This s integral converges, except possibly for the n = 0 term, whose

asymptotic behaviour is

% - Q

which is then also convergent by virtue of the constraint represented, by
_{r)

the -1 term. Note that the absence of the condition on the g (-r)

would lead to a subtraction and to asymptotic behaviour of the form

An k2 .
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Hence, we conclude that the existence of the commutator

implies tha.it the Jost-Lehmann form is. in fact, unsubtracted. We

conjecture further that, even if the 0 (s) grow faster than s ,

the same result holds - the existence of the commutator implies that

the retarded commutator obeys an unsubtracted Jost-Lehmann re-

presentation.

The next problem is to relate the divergence of the mass shift

to the equal time commutator. Following a procedure similar to the

earlier one, we have

(V. 5)

2 4
While the l/k and 1/k terms are indeed determined by the equal
time commutators, there is also a constant term, which ostensibly

21)
implies a quartic divergence, unrelated to the above commutators

It prevents the very introduction of a Wick rotation (which can handle

quadratics) since in the original Lorentz metric it is non-zero as

k —> co and so the usual surface terms in the rotation would not vanish

and are, in fact, complex. Thus, in order to discuss the divergences
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meaningfully in the mass-shift, we must deal with systems for which

this contribution is absent in the original Lorentz space form to start

with. Different methods of evaluating the various terms in fact yield

different quartic divergences] hence we assume that the g (-n) are

all zero in order to eliminate unambiguously the quartic divergences.

Then g (or) is analytic for Re a < -n+1 .

Under these circumstances, only quadratic and logarithmic

divergences occur:

v- f/3 j 7
J

(V.6)

We recall that the g terms and the g term come from the

kinematic tensor structure for the commutator C , while the

summation comes from the possible higher order tensor contributions

of the form C ' , as may be seen by comparison with the

previous section. It may therefore be concluded that both the quadratic
2

and logarithmic terms in 6m are determined, in general, by

the g-'r ' coefficients specifying the equal time commutator expansions

whenever these equal time commutators exist.

These results can be expressed in a much more transparent

form. The requirement that the equal time commutators exist

restricts the asymptotic behaviour of the invariant amplitudes to sums
2 n 2 2 f

of terms of the form (l/k y (v /k )

infinity. To see this, we recall that

2 n 2 2 f 2 2
of terms of the form (l/k y (v /k ) for mv « k as k goes to
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(V.7)

and the leading terms of the s integral are a polynomial in 1 /k .
2 2

Thus, expanding the factor (k + v j W e

&
ocu-rv

(V.8)

If there are higher order derivative terms in the commutators

[g (-n) / 0] there will be terms of order 1 [O((i/ /k )r)] or higher

and the problems of a quartic or higher divergence in the mass shift

will appear. The C. are linear combinations of the g (-n+1),
1 0 k —

hence they determine the [j , j ] commutator. The C are linear
combinations of the [g (-n+2) + (n-1) g (-n+l)]» hence they determine

Ofi k
the [K , j ] commutator. This is readily seen by taking the limit

as k°-> co ( k constant. Then

and the equal time commutators are

-40-



and

(V. 9)

On the other hand, the mass shift can be calculated directly and

+•

(V.10)

The effect of this work is to assure us that this is the only

possible asymptotic behaviour,that the relation between the commutator

and the mass shift indeed holds,and that the subtractions in the v dis-

persion relations are irrelevant to the divergence in the mass shift.
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APPENDIX A

The coefficients which appear in eq. (IV. 16) are Cj'^Lf h

* V* &

j

/
J. i

. ^

- /

(A.I).

First consider the case when 0 is not an integer; we choose t = 0 ,

q = 0 and 0 > n+2 . Then let 0 = n+2+e and we must sum over n

for fixed e in order to find the coefficient of rj~2e in eq. (IV. 16). Now

— t

which is then a sum of terms of the form (0 < r < n + 1)
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I")) (I" fif-n-t) C'r-t-'U ,*, f-
)lI ^.rirtt-t) rir-m-tt'/J I'7"'

(A. 3)

If e is neither integer nor 1/2 odd integer, then the series

does not terminate and, since r can be as large as n+1 , we have

a power series in (p ) , multiplying (p /m)

highest order term in the

series is n + 1 , hence each term in the series multiplies a_llnear.Iy.

independent function.of_p._ . For the function to vanish in all Lorentz

frames, each term in the series must vanish. Thus, disc g (a) = 0,

except for a integral or — odd integral.

We now turn to e - odd integral; then, we choose t = 0 and

q such that ^-n-q-2 = e = — . The same calculation then applies,

except that the series terminates; the last term vanishes since

\(-£-~z) = °^ for e = — . Again, the coefficients are linearly in-
0

dependent functions of p for each n . This leaves the points where

e is integral. The argument can not be carried through now - the

series terminate but the functions are not linearly independent,leaving

an insufficient number of equations to determine all the [disc g (a)]

at a integral. However, the singularity can be restripted to be a

- 43 -
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simple pole, since any multiple pole would yield a singular behaviour

as n goes to zero and the coefficient of the order n term is a poly-

nomial of order n in pu . We thus conclude that the only possible

behaviour for g (a) for Re a < -n+1 is that g (a) is meromorphic

with simple poles at the integers, i. e., tp (s) ~ £ s g (m) + % -
-n+1 ~ m OJ? k

where s 0 -*-0 as s -> <>o . If we consider the [K , j ] com-

mutator as well, the region about which statements may be made is

moved to the right and g (a) is meromorphic for Re a < -n+2 „

In the case where e is an integer, the C 's are more easily

calculated using a slightly different technique, (b = ipx/m).

-ri T /

' J-l

(A. 4)
2

For fixed t , the result is a polynomial in p whose order is independ-

ent of n . But t can only range over a finite number of values, as

can q , hence there are a finite number of conditions; and by using

a sufficiently large number of terms we can always satisfy the con-
- 2£

ditions that the coefficients of r\ vanish. Similar arguments must

be applied to the quantities which appear in the first time derivative;

they do not change the essential result. The g '(a) , for Re a < -n+1

must be meromorphic with simple poles at the integers except that

g (a) must be analytic at a = 1 . The residues at the poles for

Re a < -n must obey a set of homogeneous linear equations; but there

are no conditions on the residues at a = -n+1 .
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We also need conditions for the finiteness of the commutators

[K , j ] . At least when the g (a) are analytic for Re a < -n (as

will be assumed in the text) there are no further conuii.inns on the

residues at a = -n . However, the g (a) must be meromorphic

for Re a < -n+2 , except that g (o) must be analytic at a - 1 and

2 and g (a) must be analytic at a = 1 .

-45-
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APPENDIX B

In order to calculate the various commutators arising from the

invariant functions of Sec. IV, we must evaluate several integrals.

First we consider the contributions which come from the poles of

g (a) at a = -n . The relevant small distance behaviour is then

£ /?+. • w e need to calculate the properties at t = 0 for the

functions and its first three time derivatives. For the function, only

its odd part is relevant and we have:

JL. c*/*risT*- srv=- 2**

as the only distribution that can arise is a gradient of a delta function.

Here

and

3fff3

;
S-0 jLPt'A}tn+l-$)

( B .2)

The coefficient of the sinh term vanishes by virtue of the identity

-SJ! 51 ~~ a.I

We then define the coefficients a (n)
r

F'

-46-



and

Thus

JU~ S" I Si""- Cx)~ -
(B.4)

We now proceed to the first time derivatives. There are two

functions which contribute: 9 ? /f+ and 9 f / ^ . The

first contributes to 6(r) , the second has a divergent term and a

finite term of the form VV6(r) . The coefficient of 6 (r) is obtained

by integrating the first, fund ion

jn

~f~~

(B. 5)

O l.~L \"L O V^ ' J

The divergent term of d°[f (? - £ )] is obtained by integrating
the expressing

s J
L

J

(B. 6)
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It is equally straightforward to calculate the second derivative
2 2

te rms , VV6, using the same integral with r and 5 ; we leave this
—2

as an exercise for the reader. Taking the total n contribution,

we sum over n using eq. (IV. 11) to find

The condition for this to vanish is

(B. 7)

This same condition also removes the 1/p term in eq. (B. 4) and

similar terms in the higher-order derivative expressions; hence it

also guarantees that the commutators transform as tensors.

The second time derivatives are required for the space-space

components of the commutators. Thus, we need

11-7 p

(B.8)
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and

a-rr) ' ' " " '

(B.9)

The (3 ) 5 n ? n term contributes third derivatives of a

delta function as well as singular terms. We shall not calculate the

third derivative terms, only the divergent term which is given by

»+3 _ . *r * • „ i. ,'»>/ /iBBi f

(B.10)

2
The coefficient of 1/r̂  is thus identical to that in the first derivative

term, eq. (B. 1). The vanishing of these terms then leads to the con-

straint on the g (~n).

The remaining quantities of interest are the third time de-

rivatives which have contributions to the delta function from Jin ? and
2n -n . ,,2n -n-1 , »2n -n-2

f ? and singular contributions from £ ' s and § f
The delta function contributions are from d°(-d2) £n ? = 4(2TT)2 C6(r)
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and

"The Sty>ft/ietr "terms § "/£'"'' ore: (B. 11)
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14) This essential problem, which we have avoided, is discussed

by W. ZIMMERMAN "Some consequences of infinite mass

renormalization" (NYU preprint).

15) The above representation differs from the Jost-Lehmann one

in that it is for a T-product rather than a retarded commutator;

that it is a valid representation follows from the spectral con-

ditions just discussed.

16) Note, that the subtraction point is specified by the full k rather

than by a single number owing to the explicit dependence of the

Jost-Lehmann denominator on k
A*

17) There have been attempts to discuss the convergence of electro-

magnetic mass splittings on the basis of a Regge analysis of the

amplitude M^V[H. HARARI, Phys. Rev. Letters 17_, 1303

(1966) and COTTINGHAM and GIBBS, ibid U, 883 (1967)] .

We see here that the asymptotic behaviour involved is not that

which determines the convergence. In the second paper, the

authors attempt an analysis similar to ours, but neglect the

possibility of a finite contribution from u = 0 and are unable

to give explicit conditions for convergence.

18) B. SCHROER and P. STICHEL, Oommun. Math. Phys. 3, 258

(1966).

19) The integral over s may be performed by referring to the

Bateman Manuscript Project, Tables of Integral Transforms,

A. Erdelyi, Ed., (McGraw Hill Book Co. Inc., New York, 1954)

Vol. II, p. 128 (8). The properties of Lommel's function are

obtained from G.N. WATSON, Theory of Bess el Functions

(Cambridge University Press, London, 1958) 2nd Ed.j, p. 348.
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20) This possibility has been noted in other contexts by

D.G. BOULWAREand S. DESER, J. Math. Phys. 8, 1468 (1967);

cf. also S. BERMAN and Y. FRISHMAN, Phys. Rev. 1O[5, 1555

(1968).

21) Its presence merely means .that the present framework can

accommodate sufficiently singular theories to produce this

high a divergence and cannot be disposed of by requiring that

[j , j ] exist. The quartic divergence is related to Hio[j , j ]

commutator's VV6(r) terms or to the third derivative terms
O k *~

in the [j ,i ] commutator, i . e . , to "non-leading" Schwinger
terms.
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