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On page 43, line 1, after the full stop, please insert the following:

The distinction drawn here "between the S—3 configuration on the one hand

and the 3-U and U-U configurations on the other needs examination. Although

the leading term in the t-channel amplitudes is given "by s°* in the E-3

case, i t happens that the s-channel amplitudes are dominated "by

B ''° ' ' ' . This results from some cancellations "brought about "by the

crossing matrix whioh, in the E-3 configuration at t • 0, is given "by a

product of rotation matrices CL^Ui'^. Since the residues are proportional

to d.r • (iir/l) at t - 0 one can use the property*)

for . fc4£ - !k'-C - !?il i < J < fc-f C

to show tha t the s-channel amplitudes are dominated a t t - o (S-E oase)

by the daughter hi =l j - jMJ . Hence the leading term as S->oj for

s-channel amplitudes is given "by

2-U, and U-U . (7.5)'

•) This property is deduced "by comparing the large £ "bohaviour of the

functions

which are related by the formula

Clearly the largest value taken by J" in the summation must be

given by J - k + X - ] li~l - |
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ABSTRACT

The behaviour of partial wave amplitudes in the neighbourhood

of vanishing momentum, is studied in the Born approximation. A set

of phenomenological fields is introduced to assist in the construction

of a kinematically correct Born term. It is found that the Born

contribution to the partial wave amplitudes has a structure which,-

as a result of the kinematical properties of the phenomenological

propagator and vertex parts, yields considerable information about

the behaviour of Regge poles and residues at zero energy. Regge

poles arrived at in this way group themselves into Toller families

whose zero energy intercepts,, slopes, etc. , are severely con-

strained. Asymptotic formulae for forward scattering amplitudes

are obtained.
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ON THE ZERO ENERGY BEHAVIOUR OF REGGE POLES

AND RESIDUES

1. INTRODUCTION

These notes are concerned with the structure of partial wave

amplitudes in the neighbourhood of vanishing momentum transfer. If

the process described involves particles with unequal masses then the

amplitudes have a kinematic singularity at this point. The source of

the singularity is not difficult to uncover. It arises because the cross-

channel scattering angle Q (s) vanishes identically at t = 0 which

means that any functional relation of the type A(s,t) = B(t, 0 ) must be

irregular there. In particular, the cross-channel partial wave expans-

ion

A(s,t) = I(2J+l)fJ(t)d^(0t) (1,1)

must fail in the limit t -> 0 . It is clear that the coefficients f (t)

must diverge in some way to compensate the vanishing of 0 at t = 0 .

However, the precise nature of the divergence is not at all clear.

Another way of describing this phenomenon is to remark that

the partial wave expansion (1.1) can be appropriate only in kinematical

circumstances which allow the classification of states into represent-

ations of O(3) - or its non-compact relative, 0(2,1) - that is, into states

with well-defined angular momentum. It is a well-known fact that the

group O(3) is inappropriate for the classification of states with light-

like momentum. For such states it is impossible to define an intrinsic

angular momentum and, consequently, their transition amplitudes

cannot be labelled with J - hence the divergence of f T(t) at t = 0 .

2)
It is also well known that the correct group for classifying

states with lightlike momentum is the Euclidean group in two dimens-

ions, E(2). The irreducible unitary representations of E{2) are
2

labelled by a continuous positive parameter p which must take the

place of J . It can be shown that the correct analogue of the partial

wave expansion (1,1) which must be used at t = 0 is given by
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A(a.O) = \ \-Jf>u ^
V

where J. denotes a Bess el function of the first kind and g is a

positive quantity defined by

which limit is a linear function of s . It is therefore clear that the

expansion (1.1) must in some way go over into (1. 2) as the limit t-*0

is approached.

It is possible to gain some insight into the connection between

the expansions (1.1) and (1. 2) by means of the following qualitative

argument. In view of the approximate relation d. _ (8) z. J. _

for fi « I , it appears that the combination j(j+l)t manifests itself as
2

p in the limits t-*0 and j-*oo, that is,

(1.4)

near t = 0 . By the sort of logic familiar from impact parameter

methods one can see that the sum in (1.1) approximates more and more
9

closely to the integral in (1. 2) as t-»0 if g(p ) is defined by the limit.

lim
^ 2 f J ( j { j T T ) J [ ~ g ( P

2.

This condition can be otherwise expressed by

fj(t) ~ t g(J(J+l)t) (1.6)

for t-vO and J->oO.

Unfortunately, the condition (1, 5) is not sufficiently powerful to

provide information about the singularity at t = 0 with J finite.

Presumably this is because such behaviour is strongly dependent on

dynamical effects. A more sensitive tool is needed for distinguishing

these features. Such a tool can be found, we believe, by recourse to

field theoretic arguments.
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It is well known that the contributions to the partial wave ampli-

tudes made by a field theoretic Born approximation must, by virtue of

their origin, satisfy all the kinematic requirements demanded of a

relativistic theory. In other words, field theory provides a useful

guide to kinematical cor rectitude. It would be too optimistic, of course, -

to expect anything very far-reaching in the way of dynamical results

to come out of field theoretic model calculations. However, a compromise

in the nature of a phenomenological field theory might be usefully exploit-

ed in order to discover no more than a spectrum of kinematically allow-

able parametrizations of, for example, Regge poles and residues.

For this reason we shall adopt an ansatz based on analogies

with field theory. We shall express the pole contributions to helicity

amplitudes in the form of a field theoretic Born approximation, employ-

ing for this purpose a set of phenomenological fields, 0. , and their

corresponding currents, f. . We shall assume, moreover, that these

fields transform in a well-defined way under the operations of the com-

plex Lorentz group as well as T, C, P and that they are local fields

complying with the usual spin-statistics assumption.

With these assumptions the Born contribution to the process

1 + 2 ->3 + 4 can be expressed in the explicitly covariant form

where
P2 - P3 + P4 •

The current f. and its adjoint f. belong to some representation of

the (complex) Lorentz group, that is,

" (1.9)
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Correspondingly, the propagator A (P) must satisfy the covariance
A JD

condition

A'B"

for any complex A . The content of the representation D{A) need

not be specified in detail for the present. This content, a direct sum

of finite-dimensional representations, will be clarified when an explicit

labelling is introduced in Sees. 2 and 3 where it is needed in order to

remove from (1. 7) the many redundant components appearing in the

propagator.

The real aim of this work is to discover something of the

behaviour of Regge poles and their residues in the neighbourhood of

vanishing momentum transfer. We shall suppose that the poles of the

S-matrix - including Regge poles - are contained in the Born term.

The virtue of this ansatz lies in its clear separation of the dynamical

singularities (poles), which are to occur in the propagator, from the

kinematical ones which are confined to the vertex parts. In particular,

the constraints which must be satisfied by A. -r>(P) at P = 0 can be

formulated without reference to the external particles. Likewise, the

kinematical singularities and constraints implicit in helicity amplitudes

are properties of the vertices which can be considered without reference

to the nature of the exchanged particles. The factorizability of residues

is of course presupposed in the form (1. 7). It is a stronger factor-

izability than that assumed in mass-shell S-matrix calculations. The

S-matrix pole approximations are usually given in terms of the Poincare'

invariants, mass and spin, and are not necessarily consistent except

in the neighbourhood of the pole. The field theoretic Born approximat-

ion has, in addition to its dependence on mass and spin, a deeper struct-

ure expressed through representations of the homogeneous group. It

is this structure which assures the consistency of the Born approximat-

ion even at zero momentum where the Poincare" classification fails.

It must be emphasised that we have no intention of employing a

field theoretic model to calculate the functions appearing in (1. 7).

- 4 -



Field theory is being invoked only in its most phenomenological sense

in order to suggest the form {1. 7) for the Born contribution. By

exploiting the well-defined transformation properties of fields it is

possible to isolate the kinematically independent components of the
2

propagator and vertices and to separate the singularity at P = 0 from

the latter. A knowledge of these singularities is sufficient to fix

uniquely the constraints which must be satisfied by the propagator at
2

P = 0 in order to make the over-all Born contribution (1. 7) regular

there. These constraints, it will be found, amount to nothing more

than the classification of Regge trajectories into TOLLER families

appropriate relations among their positions, slopes, etc., in the
2

neighbourhood of P = 0 , Moreover, it is possible to do similar

things with the vertex functions - particularly in the equal mass case -

achieving thereby the most general kinematically allowable parametriz-

ation of Regge poles and residues.

Implicit in this continuation of a field theoretical Born term to

complex values of J is the notion of an "analytic field", <l>n 9, ,

which interpolates an infinite set of the familiar finite-dimensional

fields with k-i = j , a fixed integer or half-integer, and k+i~ j , j +1 ,

. . . . That is, k + J? is complexified along with J . Such a "field"

belongs to an infinite-dimensional (usually) non-hermitian represent-

ation of the Lorentz algebra. One should expect one-particle singular-

ities of this field to comprise a Regge trajectory. Questions as to

which of those properties - locality, TCP, etc. - usually taken as

characteristic of fields can carry over to this object are not considered

here.

The arrangement of the paper is as follows. Sec. 2 contains a

summary of well-known properties of the finite-dimensional represent-

ations of the Lorentz group and the fields belonging to them. Sec. 3

considers the 2-point functions for these fields and defines the concept

of the reduced propagator, A(W, j,iq) , a matrix consisting of scalar

amplitudes (kinematically independent apart from constraints at W = 0)

which incorporates the dynamical content of the usual propagator. The
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components of the reduced propagator are then expanded in a set of

unconstrained amplitudes. Sec. 4 is devoted to the decomposition of

the vertex parts into a set of scalar form factors from which the

kinematical singularities at W = 0 and the constraints at the pseudo-

threshold are then separated. In Sec. 5 the results of the preceding

two sections are joined to give expressions for the partial wave

projections of the Born term. It is then shown that, provided certain

constraints are satisfied, the Born term is regular at zero momentum

transfer in spite of the singularity of its partial wave projections.

These projections, which are bilinear forms, are diagonalized to

isolate particular pole contributions some properties of which are

examined in the neighbourhood of vanishing momentum

transfer. In Sec. 6, the continuation to complex angular momentum is

made resulting in a number of properties of Regge poles and their

residues which are enumerated. Sec. 7 includes some asymptotic

formulae

2. SOME PROPERTIES OF FIELDS"

In order to fix the notation it is necessary to discuss the trans-

formation properties of fields, that is,to make clear the meaning of

the subscript A which serves to distinguish the components <£. .

This material is well known (see for example STREATER and
5)WIGHTMAN ) but a restatement of it in concise form is in order here.

Firstly, the finite-dimensional matrices which represent the homo-

geneous Lorentz transformations including reflections are defined in

formulae (2. 2), (2.8), (2. 9) and (2. 10). The behaviour of fields #A

and their adjoints $. {defined in (2.15}) are given by (2. 13) and

(2. 14), The antiparticle conjugation operator C is defined by (2. 17)

and (2. 18). Finally, some properties of the Clebsch-Gordan coefficients

appropriate to the finite-dimensional representations of the Lorentz

group are listed; (2. 21) and (2. 22). A fuller discussion of these co-

efficients is contained in Appendix I.
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The finite-dimensional irreducible representations of the

homogeneous proper Lorentz group are characterized by an ordered

pair of integer or half-integer parameters {k, i ) . The basis vectors

of the irreducible representation D can be labelled by a parameter,

j , taking the values |k-X| , |k-H| + 1 , . . . , k+£ and by another

parameter, m , taking for each j the values - j , -j + 1, . . . , j .

This labelling is complete. It is possible in this basis to represent

any proper Lorentz transformation, A , by the matrix

.. ,(A) ^ D „ fR) dk^..(a) DJ' • (R1)
jm,j 'm' *- mM jMj' Mm1 '

M

(2.1)

where R and R denote ordinary three-dimensional rotations re-

presented in the usual way by matrices D (R) and D (Rr) of
dimensionality 2j + 1 and 2j' + 1 respectively. The matrix
k£

d t(a) represents a pure Lorentz transformation in the 03-p

through the hyperbolic angle a . It is defined by

(2.2)

where <k/c,^X| jM> denotes a Clebsch-Gordan coefficient of the three-

dimensional rotation group.

The improper transformations cannot be represented in the

form (2.1) except in the subclass of representations with k = I . In
ki -?k

general it is necessary to adjoin the representations D and D

in order to incorporate the space-reflections. In terms of a set of

basis vectors j k / j m > it is possible to represent the space-reflection

operator , P , by

P|kJPjm> = |J?kjm> e1)rj , k f I (2.3)

or by
P| f f jm> = ± | f f jm> e m , k = i = f . (2.4)

The space-reflection operator can be diagonalized when k / jt by

defining the new set of basis vectors

- 7 -



|(kj?)rljm> = i f o B (2-5)

1 1 ^ | k J ! i m > + - ^ | J ( k j m > , k < I

where t) = ± 1 . On the states (2. 5) we have

jm> >?e1Td . (2.6)

The formula (2. 4) can be expressed similarly,

P|(ffrj)jm> = |(ffn)jm> n e™* , (2.7)

with the distinction that the parity type n need take only one value,

+ 1 or - 1 .

The proper transformations can be represented in the basis

(2. 5) by a generalization of (2.1),

where

(2.9)

The improper transformations can be represented by the product of

(2.8) with the matrix representing space-reflection,

=6 . «... fi , ^e1K<i (2.10)
i?rj" D31 mm'

The formulae (2.8) and (2. 10) together with (2. 2) and (2. 9) complete

the specification of the irreducible representations D and D̂  ,

It may be mentioned that the matrices so defined can serve also to

represent the complex Lorentz transformations.

(ki)
Two properties of the matrices D which are important in

the following are
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a) reality:

D ( k i )

nj

(2.11)

b) ps eudo- orthogonality:

D(ki) . -1 j - m (ktf) , /J'-m' (2

They can be deduced from the definitions (2. 2), (2. 8), (2. 9) and (2.10).

It will prove useful to employ two alternative notations to dis-
(kJhtinguish the representations D in the following discussion. We

shall use D where j _ = k-x , cr = k + * +1 and, more simply,

The summary of properties of the finite-dimensional irreducible

representations of the JLorentz group given above is sufficient for the

purposes of this note. Henceforth the field 0 is to be written

^r • where the indices a,r}, j , m specify the spacetime transform-

ation properties and r denotes any additional (Lorentz invariant)

labels which may be necessary. Thus, under a homogeneous Lorentz

transformation A ,

(2.13)

Similarly, the adjoint field # . transforms according to

In view of the properties (2.11) and (2.12) of the transformation

;s D*

, namely

matrices D (A) it is possible to make an association between <j> and

- 9 -
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(x) = -n H " (2.15)

where 4> denotes the hermitian conjugate of $ . It should perhaps

be emphasised that we are working with non-unitary representations

of the complex Lorentz group. The transformation laws (2,13) and

(2.14) are consistent with (2.15) only if the operators U(A) satisfy the

"pseudo-unitarity" condition

*1 * * (2.16)

which, it is clear, implies unitarity only for real Lorentz transform-

ations.

The antiparticle conjugation operator, C , can be defined in the

usual way: it is a linear, unitary and Lorentz-invariant operator which

connects <f> and ^ . It is defined by the relations

rairjjm (x) (2. 17)

odd

(x) , 2{k+-f) odd.

The distinction between fermion and boson fields implied by oddness

or evenness of 2(k+>fy is necessary here because, according to the

definition (2.10), the former have imaginary parity and the latter real

parity.

Some use will be made in the next section of the Clebsch-Gordan

coefficients for the finite-dimensional representations of the Lorentz
7)

group , These coefficients, which couple the direct product
(kA> ^ V (U)

D ES D to the i r reducible representat ion D a r e denoted
(kJi)r|jm T h e y m u S t t h e i n "



variance condition

for any Lorentz transformation A

of a set of reduced coefficients by

They can be expressed in terms

(2.20)

where <jml j m , j r n >• denotes an ord inary SO(3) Clebsch-Gordan
J- X Ci £i

coefficient. The reduced coefficients are developed in some detail in

Appendix I where they are given as linear combinations of 9-j symbols.

If any one of the variables k,X , j , . . . should vanish it becomes possible

to express them in terms of 6-j symbols.

Two symmetry properties of the reduced coefficients which

will be needed in the next section are given by

J 2
>

(2.21)

(2.22)

- 1 1 -



fk X )
1 1

fk X )where,if D 1 1 is a boson (fermion) representation,one must use

3. PROPAGATORS

The propagator matrix A._(P) introduced in Sec.l has many

redundant components. It is possible by means of the covariance

condition (1.10) to eliminate the redundancy and to express A. ^(P)
A J3

in terms of a set of scalar amplitudes, the reduced propagator matrix

A(W, Jtt\) defined below in (3. 3). Such expressions for A. (P) are

given in this section by (3. 6) and (3.13). The components of the

reduced propagator, which retain the essential dynamical content of

the full propagator, are themselves subject to constraints. Two con-

ditions resulting from TCP-invariance and C-invariance, respectively,

are given by (3.9) and {3.11). Finally, and most important, there is

a set of constraints to be satisfied by the components of the reduced

propagator in the neighbourhood of W = 0 . It will be demonstrated

in Sec. 5 that these constraints are essential for maintaining the regular-

ity of the Born term at W = 0 . An expansion of the reduced propagator
2

into a set of unconstrained amplitudes G(W , N) which facilitates the
treatment of Sec. 5 is given by (3.16).

Expressed in the notation of Sec. 2 the covariance condition (1.10)

reads

, (?) =
I J > f J \O, i)

for any complex A . Most of the kinematical redundancy in A(P) can

be eliminated quite simply by exploiting the subgroup which leaves P

invariant. More particularly, when P takes the standard form

P = (W, 0 , 0 , 0 ) (3.2)
A*

-12-



this invariance subgroup corresponds to the ordinary three-dimension

al rotations and reflections. One concludes immediately that A(P)

takes the form

^ ^ r V ^ i " • <3-3)

The Lorentz-in variant amplitudes A(W, j , n) constitute the reduced

propagator matrix. This matrix characterizes the propagation of
iffiparticles of spin j and parity T) e .

The formula (3. 3) can be transformed to an arbitrary frame

yielding thereby an expression for the general A(P) in terms of the

reduced propagator. To this end it is useful to define the boost trans-

formations L which serve to transform P into P t i.e. „

Some arbitrariness of convention enters into the definition of the boosts

in that there are many different matrices, L t L* , . . . t all of which

satisfy (3.4). However, one can show that any two boosts, L and

L can always be connected by a three-dimensional rotation, R ,

L = LpR where R P = P . (3.5)

If now the substitution A - L_ is made in (3.1) it follows from (3. 3)

that A(P) takes the form

L

and, moreover, using (3. 5) one can show that this form is invariant
1

under the substitution L -> L p . It is independent of any particular

boosting conventions, It appears,therefore, that the kinematically

independent components of the matrix A(P) are contained within the

reduced matrix A(W, j,fj) the symmetries of which remain to be dis-

covered.

-13 -



The symmetry of A(W, j , n) which results from TCP-invariance

can be arrived at by applying the complex Lorentz transformation , I , ,

which reflects all the components of P,, . It is represented by the
r

matrices

S£ 2k (3.7)

where again it is necessary to distinguish fermionic representations

for which T) = -r}1 from bosonic for which n = n1 . Substitution of the

matrices (3. 7) into the general covariance condition (3.1) yields the

symmetry

2k 2k'

(3.8)

This formula can be interpreted in the rest frame (3. 2) as

where +n is taken for bosons and -n for fermions.

The remaining symmetry to be exploited is C-invariance. The

implications of C-invariance can be derived by expressing A(P) as

the Fourier transform of the vacuum expectation value of a time-ordered

product in the usual way. One arr ives at the formula

(3.10)

where e = +1 for boson fields and e = -1 for fermion fields (the spin-

statistics relation). In the res t frame this gives

where, on the right-hand side, one must take +»? for bosons and -n

for fermions.

The reduction of the propagator matrix into kineraatically in-

dependent components is now complete, being summarized in the formulae

-14-



(3.6) , (3.9) and (3.11).

It will be shown in Sec. 5 that the reduced propagator A(W, j , rj)

is subject to a set of cons t ra in ts at W = 0 if the Born t e r m is to be

finite t h e r e . There fo re , it will be advantageous to develop a se t of

unconstrained ampl i tudes in t e r m s of which the components of the r e -

duced propagator can be expanded. Such a se t can be found in the

following way.

Consider the m a t r i c e s , TT * defined by

TV , _ . _ Y~ y* , , x -TX<X' fl'1)

(3.12)

in terms of which one could express the propagator, i. e.,

3̂
(3.13)

From (3. 5) it is clear that U does not depend on the details of the

boosting convention. In fact it can be demonstrated that the components

of IT(P, j , r?) a re polynomials in P /W which means that (3.13) can be
A*

regarded as an expansion of A(P) into polynomials in P with in-

variant coefficients. Now the polynomials in P can be grouped into

symmetrical traceless tensors of rank N (i. e., belonging to the re-

presentation J) of the Lorentz group). A convenient

notation for these tensor polynomials is given by

N $%
W DJM.OO ' V " (3

The des i r ed reformulat ion of the reduct ion formula consis ts in a r e -

o rde r ing of the polynomial expansion (3.13) into the form

I
(3.15)

-15-



where the Clebsch-Gordan coefficient is clearly necessary in order

that A(P) have the correct transformation properties. The connection
2

between the invariant functions G(W , N) and the reduced propagator

^(W, j , rj) emerges when (3.15) is referred to the rest frame (3. 2) where

L p = 1 . Thus

i • E # + ) ,

(3.16)

and it follows from the properties of the reduced Clebsch-Gordan co-

efficients (2. 21) and (2.22)that G is, apart from a multiplier,

symmetric

2 (2k'+l)(2*'+l)
' N ) |

4k+l-k'-J?«

(3.17)

It will be demonstrated in Sec, 5 that the regularity of the Born

term at W = 0 is assured in all cases if and only if the functions
2 2

G(W , N) are regular at W = 0 „ This of course means that the

components of A are constrained in accordance with (3. 16) in the

neighbourhood of W = 0 .

To summarize, one can separate from the components of the

propagator a kinematically independent set, the reduced propagator

defined by (3. 3). The reduced propagator must satisfy the symmetry

conditions (3. 9) and (3.11) resulting from TCP-invariance and C-

invariance, respectively. The components of the reduced propagator

are further constrained at W = 0 by the requirement that the Born

term be regular there. These constraints are made explicit in the
2

expansion (3.16) by requiring that the coefficients G(W , N) appearing
2

there be finite at W = 0 .

-16-



4. VERTEX PARTS

The aim of this section is twofold: a) to express the matrix

elements of the current operator f. in terms of a set of invariant

form factors G(W, J, rj) and, b) to analyse the kinematical singular-

ities of these form factors at W = 0 . As a preliminary to this it

is necessary to discuss briefly the definition of two-particle states

and, more particularly, their continuation to complex values of the

momenta (since W = 0 is generally an unphysical point). In order

to do this meaningfully, some mention must be made of the irreduc-

ible representations of the complex Poincare" group. The essential

features are summarized in formulae (4.1) - (4. 8). A more detail-

ed treatment is included in Appendix II. The matrix elements of the

current operator between the vacuum and two-particle centre-of-mass

states are expressed by (4. 9) in terms of the form factors G(W, J, 17)

which are defined in (4.10). These are in turn expressed in terms of

a set of functions F(W,J, rj) which are regular at W=0 , (4.13),

(4. 14). The restrictions on these functions resulting from P and

TCP invariance are given in (4. 17) and (4.18), respectively. Finally,

a scheme for expanding the regularized form factors F(W, J, rj) in

powers of W is presented in (4. 22), (4. 24).

Helicity states must be defined relative to some boosting

convention. Formally the one-particle helicity state jpX> can be

defined by
I pX> = U(Lp) )\> (4.1)

where L denotes a suitable boost transformation of the type intro-
p

duced in Sec. 3 and \ X > denotes a rest state with spin S and J^-

component X . The usual convention, which we adhere to, is to

define L in terms of three polar angles v> , Q and f according to

U(Lp) = e * e 3 ' e e " ^ (4.2)

where the (hermitian) operators J are generators of infinitesimal Lorentz

-17-



transformations and where the components of p are given by

- w>(cU,sta siwflcctf^sU sl^i'w^sltx cose) . (4.3)

The angles can be expressed uniquely in terms of the components, p ,

if suitable limits are imposed st ^ 0, 0 ̂  6 4 ir and -JT < ¥ < ff . The

states [ pX >̂ defined in this way span an irreducible unitary representation

of the real Poincare group (at least if m > 0 ).

If the angles are allowed to take complex values in the respective

domains

0 4 K* <x < 00 , -re 4 Im <x ^ TC

-TT ,< 1ti¥x<TT , - oO < It* tf < <*»
(4.4)

then, with suitable conventions about boundary values, they can be given

as single-valued functions of the complex 4-momentum with the result
9)

that the states (4.1) span an irreducible but non-unitary representation

of the complex Poincare group.

The two-particle states can be defined in the same fashion, i. e.,

^ j J (4.5)

where U and U operate independently in the spaces of particles (1)

and (2) respectively. Their corresponding infinitesimal generators,

J and J , commute. For most purposes it is sufficient to deal with

the subset of states (4. 5) for which the total momentum, p, + p , takes

the form

, O,0) (4.6)

For such states the six polar angles are constrained by four relations and

can therefore be expressed in terms of two independent angles if and 6
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in addition to W. The resulting form for the two-particle centre-of-mass

states is then

•Ci) .

• » i r i " z / *- ~ " "" 03

(4.7)

where J = J + J and the angles aufW), a (W) are given by
k(U IMS AAS i- u

i l l .

2 * ^ ( 4 < 8 )

subject to the conditions Refl<> 0 , -ir $ I r n K ir . The functions <X,(W)

and 0C(w) a re analytic in the W- plane with cuts as detailed in Appendix II.

It should be remarked that the form (4. 7) is a valid representation of the

two-particle cen1;re-of-mass states only in the region |w| ^ jna - m j ^ .

This is because, on the boundary Jw{ = jm, - m | , either Red, = 0

if m > m or R e ^ = 0, if m, < m , which means that, on crossing the

boundary, the real part of one of the angles changes sign and therefore

leaves the region of definition (4. 4). What this in fact means- is that the

state | p-jA^ P 2 ^2^ J I W i ^ | m i " m 2 I ^ ' i s t h e a n a i y t i c continuation of a
"flipped" state, for example lp.-A., PtA0\ (-)Sl~\mtf t

9 Q I ' 1 1 ^ A '

lw | < |m - m l „ A detailed analysis of this phenomenon is contained
in Appendix II.

The vertex parts are defined as matrix elements of the current f

between the vacuum and two-particle states. It is a simple matter to

separate from these matrix elements a set of invariant form factors

G t W j , rj). Thus, using the rotational properties of the current, one can

write

(4.9)
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where the form factors are defined by

(4.10)

The functions G{W, j , r?) have singularities in the W-plane some of which

have their origin in singularities of the functions ^,(w) and (̂  (W). These

are usually termed kinematical. AH others are dynamical singularities.

Moreover there are kinematical constraints at threshold and pseudothreshold

where shc< = sho( = 0. In the neighbourhoods of those points it is possible
1 £t

to perform multipole expansions in (4.10) obtaining in a straightforward

way the behaviour
f * t

for S = S -S I , , , , , S + So where S, and So denote the intrinsic
1 2 i 1 A 1 Z

spins of particles (1) and (2).

If the masses are unequal, m- f m9, then the form factors (4.10)

have a kinematical singularity at w = o '±Jae removal of which is one of

our principal aims. The separation can be effected by rearranging

the exponents in (4.10). Thus, if one writes

(4.12)

then it follows from the behaviour of the current under pure Lorentz

transformations that

n (4,13)

where the regularized form factors, F(W, j , rj ), are defined by

(4.14)
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The functions d appearing in (4.13) are of course the representation

matrices defined by (2. 2), (2. 9). The angle C/ + flf_ is defined by

and clearly has no singularity at w = o. Hence the regularized form

factors F(W3 j , rj ) have no kinematical singularity there. On the

other hand, the angle 0(, - Of is given by

(4.16)

and is therefore singular at W = 0 if m. $ m . The kinematical

singularity of G(W, j , r\ ) is therefore confined to the known functions d .

For the special case, m = m , where #1 = OC there is no singularity

at W = 0.

The regularized form factors are not all independent, Invariance

under space-reflections yields the symmetry

where the intrinsic parities of particles (1) and (2) are represented in
., - ITTSI , ijrSo , . ,
the form ft e -1 and n e z respectively.

Invariance under TCP yields a further symmetry. This can be

derived most directly by remarking that tf (-W) = (X(W) - i^ for ImW > 0.

Substituting this into (4.14) and using the transformation law (2.13) for

currents, one finds

(4.18)

where, as before, +t\ applies to boson currents and -Kj to fermion

currents.

To conclude this section on the structure of vertex parts we

consider the feasibility of multipole expansions of the form factors. The

functions G(W, j , rj } are constrained by (4.11) in the neighbourhoods of the

i. •



threshold and the pseudothreshold and can therefore be expanded in

multipoles about these points. However, if m, f m then G(WJJ ,r)) is

singular at W = 0 which point may lie near to the pseudothreshold there-

by curtailing the convergence of a multipole series. With the regularized

form factors, F(W, j , rj), this problem does not arise,

Consider therefore the expansion of F(W, j , n) about the point

W = [ mn - mo [ . It can be seen from the analysis in Appendix II that

= ± tlC (4.19)

so that, if the expression (4.14) for F{W, j , TJ) can be recast into a form

involving a, + a T iir then it can be expanded in powers of this angle.
J. Zi

One can make the rearrangement

(4.20)

and therefore put (4.14) into the form M (*)

(i)

The operator, e ^ 3 e ^ , is a scalar for bosons or a pseudoscalar
for fermions and can be otherwise ignored. It follows that, in the neigh
bourhood of W = j m. - m l + iO the regularized form factors can be

I 1 ^ I
represented by

(4.22)
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where H(W, j,rj) is regular at the pseudothreshold. The pseudothreshold

factor in (4. 22) results from the definition of or. + a -in,

Thus it is established that the regularized form factors can be expanded

in multipoles about the pseudothreshold. Such an expansion could be

useful for representing these functions in the neighbourhood of W = 0

provided the mass difference is not large, i. e., provided

(n^ - m2)2 << 4 m i m 2 - (4.24)

To summarize, the principal formulae of this section are:

(4. 9) and (4.10) which give the vertex parts in terms ot a set of invariant

form factors G(W, j,)7) , {4.13) and (4.14) wMch serve to isolate the

kinematical singularity at W = 0 of G(W, j,tf) and define a set of regularized

form factors F(W, j , n) ; (4.17) and {4.18) which give the P and TCP

symmetries of the regularized form factors ; and (4. 22) which exhibits

the pseudothreshold behaviour. A completely analogous set of formulae

could be given for the matrix elements of the adjoint current

<( P-,*--̂  P2*"2I fAi° ^ a n d t h e i r associated form factors G(W, j,n) and

5. THE BORN CONTRIBUTION

Having isolated the kinematical properties of the propagator and

vertex parts, we are now in a position to express the Born contribution

to the partial wave amplitudes in terms of the invariant components of

the reduced propagator and form factors defined in Sees. 3 and 4.

This is given by {5. 5). Next it is demonstrated that the finiteness at W = 0

of the regularized form factors F(W, j , rj) and propagator components
2

G(W , N) is sufficient to assure the finiteness of the full Born term - the

sum over partial waves. Following this the reduced propagator matrix

is diagonalized (5.15) in order to isolate distinct pole contributions.
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The components of the reduced propagator are constrained by the
2

requirement that G(W , N) be regular at W = 0. These constraints

exhibited in (5. 21), (5. 22). On the basis of these constraints it is

possible to compute power ser ies expansions (5. 25) and (5. 26) of the

eigenvalues, D (W, j , n), and eigenfunctions, X J W , i,r\), of the reduced
"NT h!

propagator. The constraints imply that the coefficients, lim (9 D (W, j , )i)/3\Y )
V/->0 a

a r e rational functions of j and a re independent of t] for N <2(k-i)

if k / i (in the notation <k, $.) = a). It has been verified for N = 0,1, 2

that these coefficients are polynomials of order N in j , (5. 31), and we

conjecture this to be true for N > 2. The matrix, X , (W, j,rj),which

diagonalizes the reduced propagator is found to satisfy the constraint

lim (3NX (W, j^J /B WN) = 0 for N<jk + i - k' - V\ + j k . - i - k ' + i ' U

(5. 32). This property allows one to predict the behaviour near W = 0 of

the vertex functions, F = XG, which appear in the diagonalized form of

the Born contribution, (5. 33). The result is given by (5. 39).

The centre-of-mass frame for the process 1 + 2~>3 + 4 is defined

in the usual way by specifying the momenta as follows:

, ( cftot, , o , o

t o , o

o

where, if the angles, a,, . . . , a a re given by formulae of the type (4. 8),

then

P l + P2 = P3 + P 4 = (W' ° ' ° ' 0) • (5t 2)

In the centre-of-mass frame the Born term (1. 7) takes the form
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4A

(5.3)

where X = X - X and X1 = X - X . Use has been made of (3. 3) and

(4. 9) in deriving (5. 3). The expression (5. 3) is to be compared with

the standard partial wave expansion

V o i l *

It is clear that the Born contribution to the parity-conserving amplitudes

is given by

-E ( V 4 l r v ( f i ) T V
(5.5)

It follows from (4.17) that the amplitudes (5. 5) satisfy the usual parity

constraints,

(5.6)

and, from (4.18) and (3.9), the MacDowell symmetry,

(5.7)
where + (̂-77) must be used for boson (fermion) channels.

The amplitudes defined in this way exhibit a singularity at W = 0

resulting from the singular behaviour of the form factors (for unequal
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masses). This much was to be expected from the discussion of Sec.l.

It remains to be shown under what circumstances the complete Born term

(5. 3) remains finite at W = 0.

To deal with this aspect of the problem it is necessary to replace

the propagator A(W, j,r)) by its expansion in terms of the amplitudes
2

G(W , N) as given in Sec, 3, (3.16). The form factors G(W, j,rj), more-

over, must be replaced by their expansions, (4.13), in terms of the

regularized form factors F(W, j , T?). The Born term, (5. 3), then takes

the form

( 5 - 8 )

where the matrix K (W,0) is a purely kinematical construction defined

« •

The singularities of the Born term are thereby collected into the functions

of d and d in (5. 9) where, as will now be shown, they cancel one

another.

Consider the case m > m , m > m which is typical of the so -
1 2* o 4

called unequal-unequal configuration. (The treatments of the various

possible mass configurations differ in detail but will not be considered

explicitly here. ) As W->0 both a -a and a -« tend to -00. On the

other hand, 0-^0 as has been mentioned in Sec. 1. Although each term

in the sum (5. 9) individually diverges in this limit it can be shown by.re-

arranging the summation that the total effect is finite. The necessary re-

arrangement can be effected by using the properties of Clebsch-Gordan

coefficients which enable one to write
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I t * r\f \ , \ \

(5.10)

where the transformation. A, is defined by

* ^ (5.11)

The parts of (5.10) can be dealt with piecemeal. Firstly, the transformation

A can be brought into the standard form,

U(A) « e"^ J « i-'*"* e'V*>»f (5.12)

where the angles <ft, I* and ^ a re given by

(5.13)

From (4.16) it follows that near W = 0 the angles ct -a and a -a. diverge

logarithmically,

3 4 ) + . . . , (5.14)

the terms represented by dots being finite. It is a simple matter to
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prove, using 0~W,that the angles 0, ^ and 0, and hence the trans-

formation A, are all finite in the limit W-»0. (This result could have

been guessed by substituting (5.14) into (5.11) and setting Q = 0). The

other factor in (5.10), W d ^ } can be represented as a polynomial
soo

of degree N in Wch(a -a )/2 and Wsh(ff -ao)/2 and, again from (5.14),

this is seen to be finite at W = 0. Thus all of the terms entering (5,10),

and therefore KN itself, are finite at W = 0.
The conclusion of this analysis is that the Born term (5. 3) is

2
regular at W = 0 provided the propagator components, G(W ,N), and

the form factors, F(W, j,n)> are regular there. (One must of course

assume in addition that none of the summations in (5.18) diverges.

It has only been shown that each term of the summation is non-singular).

It should be remarked that the special case m = m and m3 = m shows

the additional result that only the N = 0 term contributes to the Born

term at W = 0.

In keeping with the viewpoint set out in Sec. 1. the poles of

the scattering amplitudes are presumed to reside in the propagator. A

discussion of their properties is facilitated by diagonalizing the

propagator. Conveniently, as it happens, the reduced propagator matrix,

A (W, j , n) is symmetric apart from a diagonal multiplier. If its

infinite dimensionality is assumed not to be a serious complication it

can therefore be diagonalized by an orthogonal transformation. That is,

one can express it in the form

X-

where X(W, j , rj) denotes an orthogonal matrix and Dta (W, j , n) the set of
2k '

eigenvalues. The sign factor (-) is needed because not A itself but
2k

(-) A is the symmetric matrix,as can be seen from a comparison of (3.9)

and (3.11). The poles of the propagator are given by the solutions of

the equations

i,r}) = 0 . (5.16)
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Field systems for which any one of the functions D or D vanishes

identically in W must be regarded as inadmissible. It will be assumed

throughout the following discussion that the propagator A(P) can be
2

inverted except for isolated values of P .

The functions D (W, j , rj) are defined only for those a = (k, i)

corresponding to irreducible representations of the Lorentz group which

contain states with spin j and parity r?e „ In Sec..6, however, it will

be supposed that there exist functions, meromorphic in the j-plane, which

interpolate these physical values.

In general terms the picture advocated here is a simple one. Each

physical particle of spin j and parity rje occurs as a zero of one or

other of the functions D (W, j , *)) which fixes its mass, W = m (j, n).

In a given model, of course, many of the D-functions may have no zero:

such is the case with systems of free fields whose equations are usually

set up in such a way as to produce only one particle - all of the D-furctions

but one being constants. The orthogonal matrix X(W, j,J?) which occurs in

the residue can be looked upon as a set of mixing angles. These angles

specify the mixture of the fields which goes to make up a particle of spin
J ,, ijrj

j and parity rje .

A very simple example which exhibits this mixing phenomenon is

provided by the Proca model of a vector particle. There are two fields

A and F satisfying the equations

" V

(5.17)

on the basis of which one can construct the invariant components of the

reduced propagator matrix,

A ( W > 0 f r ) = \/w.

(5.18)
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The vector particle is contained in both A and F , hence its propagator

is a 2 x 2 matrix. This can be diagonalized and put into the standard form

(5.15),

A(w,i,+) =

showing explicitly the pole at m and its antiparticle at -m. The vector

particle evidently contains A and F in equal proportions, X = i l / Z I .

Unfortun ately this model is too simple to illustrate some of the more

interesting features. The mixing angles are constants, for example, and
2k

do not vanish at W = 0. This is because the eigenvalues of (-) A(0,1,+)

are degenerate.

The conditions formulated above and in Sec, 3 which assure

the regularity of the Born term can be applied to the components of

A (P) as well as to those of A(P). They imply very powerful constraints

on the structure of the functions D (W, 3,17) and X , jW, j , 17) in the

neighbourhood of W = 0. One can write, analogously to (3.16) ?

N
(5.20)

2 2
and be a s s u r e d t h a t A(W , N) i s r e g u l a r a t W = 0 . F r o m t h i s it fo l lows
t h a t

(5. 21)

where Nn denotes the minimum value of N for which the Clebsch-Gordan

coefficient in (5. 20) is non-vanishing.

N =|k.+i - k'-i'l + I k-i -k'+i1 j (5. 22)

The constraints (5, 21) are of crucial importance for the discussion of

Sec- 6 j where application is made of the Born term model to the problem

of classifying Regge trajectories with particular reference to their
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behaviour in the neighbourhood of W = 0.

Taking N = 0 in (5. 21) one finds

, n ) - = I , A (o,o)
{5. 23)

The limit of the propagator is diagonal in the Lorentz indices or, in

other words, the representation mixing vanishes at W = 0. Even

more important, it no longer depends explictly on j and r\. The eigen-

values at W = 0 are functions D.^ (0) which depend only implicitly on j

and rj in the sense of being defined only for those a which correspond

to representations containing the states j , r).

It is feasible to use perturbation methods to discover the

behaviour of the functions D ̂  (W, j , n) in the neighbourhood of W = 0.

For simplicity suppose that the index, r, is absent. Expand the inverse

propagator in powers of W,

(5. 24)

A well-known formula of conventional perturbation theory gives the

corresponding power series expansions of the eigenvalues and eij

functions,

(5.25)

« *
2 + ' * ' , <*

w

(5.26)
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provided the zeroth order terms, D , are non-degenerate. A more

elaborate treatment would be needed in the event of degeneracy occurring

or if the suppressed index r must play a role. To employ the formulae

(5, 25) and (5. 26) in a manner consistent with the kinematical constraints
1 2(5. 21) it is necessary only to express the quantities D «, D R, ... ; in

Lip Ufp

terms of a set of independent parameters. These can be read off from

(5. 20) or its more convenient modification,

(5.27)

by expanding the (symmetric) matrices B , (W2,N) in powers of W .

Some general conclusions can be based upon the power series

expansions (5. 25) and (5. 26) with the help of Appendix I. These are:

1) Symmetries under W-» -W

Da(W,j,r7) = Dj-W.j^n) (5.28)

where ri(-rj) is used for bosons (fermions) «

2) Constraints at W =• 0

N N N
The coefficients D (j.rj) = lim (9 D (W, y,r)) / 3 W ) have two

01 \i'-^ Q Ciimportant properties which are deduced from a detailed examination

of the structure of the Clebsch-Gordan coefficients in (5. 20).

2 a ) ^ ( p , ) „ ^ ( j , - i j ) f r N < * C k - l ) , k j l ( 5 . 3 0 )

2b) 1> VI'H) = a r a t ^ o n a l function of j .

NIt has been verified for N = 0,1, 2 that D (j,ri) is a polynomial of order

N in j , explicitly
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+

We might conjecture that the polynomial form persists for N > 2. It

follows from (5, 28) that only even powers of W contribute to the boson

functions D (W, j , rj) and from (5. 30) that the only odd powers which

can contribute to the fermion functions have N >, 2(k-i).

The diagonalizing matrix X(W, j , f\) satisfies the constraints

r 0 fa N < M

where JNn is the number defined by (5. 22). This property which, like

the others (5. 28), .. . , (5. 31), depends upon the non-degeneracy assumption,

will prove important in the discussion of the behaviour of residues near

W = 0.

By employing the diagonalized form of the propagator (5.15) one

can express the Born contribution to the parity-conserving partial wave

amplitudes (5. 5) in a correspondingly diagonalized form,

(5.33)

The vertex functions T(W, j , rj) are related to the various form factors

defined in Sec. 4 as follows:

r'*'
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* i

(5.34)

where H , , (W, j , r}) is regular at W = 0 and unconstrained at the pseudo-

threshold. This formula with a = a applies also to the equal mass

case, m, = m , where the pseudothreshold coincides with W = 0o

For the vertex F(W, j,fr) it is possible to write formulae completely

us to (5. 34) with

(515) must be included,

2k
analogous to (5. 34) with the exception that the eigenfactor (-) from

= . . . etc. ( 5 ' 3 5 )

The vertex functions V( W, j , rj) are singular at W = 0 if m, =f m?

as has been discussed in Sec. 4. This singularity is confined entirely

'to the functions d ( ^ ) whose asymptotic behaviour is given by

Therefore, on using (5.14)

W -> 0 . (5 . 37)

On the other hand, the off-diagonal elements of X , (again neglecting

the index r) vanish according to (5. 32).,

(5.38)

It is now a simple matter to pick out the most singular terms from the
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sums (5. 34). Assuming that these do not cancel fortuitously - or

diverge even more drastically if there should be an. infinite number of

them - one obtains the following behaviour:

(w)w

This result is independent of j and n. It is independent, moreover, of

the range of (k'i1) values summed over although, of course, if this range

should be infinite the argument is not a mathematically respectable one.

To summarize,the principal formulae of this section are: (5. 5)which

specifies the Born contribution to the parity-conserving partial wave

amplitudes; (5. 8), . . . , (5.14) which contain the proof of the fact that the

Born term is regular at W = 0 in spite of the divergence of the individual

partial waves* (5.15) which expresses the reduced propagator in diagonal

form,thereby isolating distinct poles defined as the solutions of (5.16);

(5. 21) and (5. 22) which give the constraints to which the reduced propagator

must be subjected; (5. 30), (5. 31) and (5. 32), giving some general properties

of the eigenvalues and eigenfunctions of the reduced propagator resulting

from the constraints; (5 -33) which gives the Born contribution in diagonal

form involving the eigenvalues of the reduced propagator and a new set of

vertex functions, r (W, j,n) defined by (5. 34) and, finally, (5. 39) which

gives the behaviour of these functions near W = 0, a result which will

prove important for the discussion of Regge residues in the next section.

6. REGGE FAMILIES

The central idea in this work has been the simple notion that the

poles of the scattering amplitude are contained in the Born term. A natural

extension of this would be to require that the poles of reggeized partial

wave amplitudes are contained also in the Born contribution. It is proposed,

in fact, that the knowledge gained of the behaviour near W = 0 of the Born

contribution to the partial wave amplitudes, f(W, j , n) , for physical
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values of j can be extrapolated without significant modification to the

domain of complex j . That is, we wish to embed the Regge poles in

structures like (5. 5) and {5. 33) which must therefore be continued into

the complex j-plane. The upshot of such an effort will then be a

formulation of Regge poles which embodies a set of kinematical constraints

which are known to be consistent with Lorentz invariance. One is led

quite generally to the so-called "conspiratorial solution" of the constraint

problem: infinite families of daughter trajectories whose residues,

intercepts, slopes, etc. t . are subject to various constraints.

The first question to settle in such a programme is, what to

do about the bounds k-i ^ j ^ k+i ? For fixed (integef or half-integer)

values of k and £ there are only a finite number of values open to j and

there can of course be no uniqueness in the choice of analytic functions

which interpolate only a finite set of points. This difficulty can be

circumvented by setting

k - £ = j and k + £ = j + K. (6.1)

where 2j and K are non-negative integers. Functions of k, I and j can

then be looked upon as functions of jfi,R and j mifo j taking the values

j Jn
 + 1. ... » and K taking the values 0,1, 2, . . . , both sequences increasing

to infinity. We shall therefore postulate the existence of mesomorphic

functions D. .,JW, j , n) and F ^ . ,(W, j , n) which interpolate the physical
J0J J Q J 11)

j values of the functionsD^(W, j> r?) and r^fW, j , n), respectively

The index T= ± 1 represents "Lorentz signature", the amplitudes of
2$.

signature X being supposed to interpolate the points (-) = T .

The emergence of Lorentz signature appears natural in this

scheme when it is recalled, (4.18) (5. 34), that the vertex functions

F, fl{W, j , r\) have a definite symmetry under the transformation W-> -W

at physical values of j ,

This property, reflecting TCP-invariance, is clearly worth retaining
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in the Gomplex j-plane. We therefore require

(6.3)

At physical values of j the function r . -+v(Wt ], *?) coincides with

rj-fW, j , n) (1+T{-) )/2 where 2k = j+K+J0 and 21 = j-f-K-j

No such simple argument can be used to justify appending the

label X to the interpolating functions for D •. (W, j , n) which possessthe

more straightforward symmetry

However, in any reasonable model some account must be taken of

unitarity and one would expect the absorptive part of D to receive contri

butions from F I" and if these are T dependent the same must be true

of D. It will therefore be assumed that even and odd values of 2& must

be interpolated by independent functions D. . ^(W, j , n), f = ±1.

With these assumptions about interpolating functions,the

diagonalized Born contribution (5. 33) takes the form

T i ' )

(6.5)

for complex j . The poles of (6. 5) correspond to the zeros of D r . JW, j ,

which are given by formulae of the type

j = a* (W,rt) . (6.6)

It now remains to discuss those properties of the trajectory functions

T ) which are consequent upon the constraints set out in Sec. 5.T ,/(
° 2

The terms up to order (W ) in D(W, j , rj) were listed in (5. 31).
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They can be recast in the notation (6.1) to read

(6.7)

It is a simple matter, using (6. 7), to solve the equations, D = 0, up to
2

order (W ) with the following results:

4

(6.8)

where A, B,C,.,...»_, are expressible in terms of the parameters

a,b,c, . . Mof (6. 7).
12)One is thus led to the following conclusions :

1) Regge trajectories occur in families labelled by two quantum

numbers j _ and f . The members of a family, or daughters, are

labelled by K= 0,1, 2, . . ., and have alternating signatures f (-)' . If

j , = 0 all members of a family have the same parity type, r\. Otherwise

both types occur. (The quantum number j Q labels eigenvalues of the

reduced propagator and must be distinguished from the j label occurring

on the fields which labels rows and columns of the reduced propagator.)'
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2) In a family the intercepts at W = 0 are separated by integers

and do not depend on r? if j ^ 0.

3) Only if j =1/2 can the trajectories have a linear te rm in W. T hese

linear terms are expressed - for an entire family - by two independent

parameters .

4) If j f 1/2, l,the quadratic terms a re expressed by two parameters ;

if j - 1/2,1,by three parameters . Only if j = 1 can the quadratic

term resolve the parity degeneracy,

5) In families with parity doubling {jQ F 0) the lowest term in

^ , rj) which can depend on n is of order W io. This suggests that
0

observed parity doubling effects may be explained by assigning j > 1

to the particles in question.

Consider now the properties of Regge residues. They contain as

factors the vertex functions F(W, j,rj) defined in Sec. 5. The defining

formula (5. 34) must be continued to complex values of j . It is convenient

to replace the helicity labels X and X by total spin, S, and helicity,

X = X ~X , by multiplying in the appropriate Clebsch-Gordan coefficient

which leads to the formula

(6.9)

where j ' is summed over the values j ' j ' + 1, . . . „ It is therefore

necessary to suppose that the (unconstrained) form factors, H, ,(W, j , rj),

can be continued analytically in the variable k + S. while keeping fixed

both k-£ = j and j = j Q J j + 1, . . . . With such an assumption it is

possible to draw some inferences about the small W behaviour of Regge

residues.

First ly, with equal masses , m, = m 2 - m, one has

- 39 -



or, = <xz and
Z ZYtV

so that (6. 9) reduces to the form

and therefore, taking account of the damping behaviour of X near W = 0,

jV^ol4^"16'! 13)
W , one finds in the limit »i. e. X

which means that the residue at j = a"! - K is fixed in terms of the

r "'o
residue at j = a. . This is just the result of Toller. Clearly it should

**0
be possible, at least in principle, to uncover the form factors H(W, ],r])

by measurements of F(W, j , r\) in the neighbourhood of W = 0. Perhaps

more interesting would be the measurement of the mixing angles X(W, j , rj)

which should be independent of the particular external particles used.

Unequal mass vertex functions cannot be analysed in such
a. -CU+ i-jr

detail. This is because the singular behaviour of d(——~ ) compel sates

the damping in X for arbitrari ly large \C which must therefore be summed

to oO . The small W behaviour of the sum is3 however, barring dynamical
14)

accidents, the same as that given in (5. 39), viz

It could even happen that this vertex vanishes at W = 0, i. e. ,

j+ \C < 1 j o - i A| j (6.13)

15)
Such an eventuality has been postulated by MANDELSTAM for

.the pion trajectory in order to make it decouple at W = 0.
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7. ASYMPTOTIC FORMULAE

The results obtained in Sec. 6 can be employed in the derivation

of high-energy formulae for scattering amplitudes, it being assumed

that the Born term dominates. The three mass configurations, m = m

and m_ - m. (E-E), m = m and m f m or m /= m and m = m 4

(E-U), m 4 m and m f m (U-U) behave differently and must be
1 i 6 16)

treated separately. In addition the limits s -r oo, t fixed,and s -* oo,
8 fixed,are quite distinct and it is necessary to specify which is beings
considered. For simplicity of illustration we shall confine our attention

to the particular limit s -v », $ - 0.

It is a well-known fact that the condition 9=0 implies 6=0

(or rr) except in the E-E configuration where 6, varies with s. This

means that the functions, d^ . ( -6 . ) , can contribute to the large s
A A t

behaviour of the partial wave expansion only in the E-E case. On the

other hand, in the E-U and U-U configurations at least one of the vertex

functions r(t 2 , j , rj) is singular at t = 0. But it is just for these cases

that the equation $ = 0 maps t = 0 into s = oo. In fact, the value of t
for which 6 vanishes is given bys

( 7 # 1 )

for large s. In the E-E configuration 6 = 0 of course gives t = 0. At
s

0 = 0 , therefore, the vertex function gives, according to (612), thes
asymptotic factor

The familiar Regge behaviour arises as a result of the operation

of two distinct mechanisms: in the E-E configuration the angle 6,

increases with s so that the functions d (0 ) become asymptotically

proportional to s while the vertex functions tend to constants; in the

E-U configuration 6 - 0, one of the vertex functions tends to a constant

while the other (at the unequal mass vertex) yields a factor s NO l 'i
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in the U-U configuration 0 = 0 and each of the vertices yields a factor

, , * , ! • « -Ho

The first step in obtaining the dominant high-energy term is the

standard one of replacing the sum over partial waves by a contour

integral in the complex j-plane. The diagonalized Born -term (6, 5)

then takes the form

IW-n.

= L

j , ^)

{?. 3)

where X = ^-,-^p and X1 = ^-o"^* ( T n e s i S n factor (-) ''o has been

absorbed by writing (-) j ' j0 d ^ x 1 " ^ = ( " ) J 0 " X ' d-X'X(7r"0t} ']

The next step is to open up the contour and retain only the poJe

contributions. These poles a r e given by formulae of the type

j = a - K +O(t*) (7.4)

where a, denoting the intercept at t = 0 of the parent trajectory, depends

only on ]„ and t .

It follows that the leading term as s -> oo corresponding to a

Regge family with given j o and X is given by

(7.5)

Since 9 = 0 in the E-U and U-U configurations the residues ^ . , . must
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vanish for these cases unless X - \'. The forms (7, 5) were obtained

LER
17)

first by TOLLER 3 ), COSENZA, SCIARRINO and TOLLER 7* and

by SAWYER

It must be emphasised that the results {7. 5) exeirplify asymptotic

forms at the fixed angle, 0 = 0 . In the E-U and U-U configurations
s

they have the eccentric feature that all members of a Regge family

contribute to the leading term. In the E-E configuration only the parent

(K= 0) contributes.

Different asymptotic forms can be obtained by taking the limit

s -v oo with t fixed and then, in the leading te rms so obtained, letting t

vanish. Here the s-dependence comes out of the functbns

which, when the limit t = 0 is approached, take the forms

5J , E - E

(St*)* , E - U

(st)3 , u -u

Before the limit t = 0 is taken the dominant te rm is governed in all

cases by the parent trajectory which yields the factor s .. However,

in the E-U and U-U configurations this factor is accompanied by a
all ex

corresponding t or t which diminishes its importance as t is made

to vanish. On the other hand, the unequal mass vertex functions

contribute factors (t^) J0 which must be taken into account.

The contribution of the daughter, K., to the asymptotic form thus contains

the factor

, U- U

(7.8)

-43-



which is seen either to vanish or become singular at t = 0 except for a

particular daughter given by

or

1 Z 4 (7.9)

Thus it would appear that the contributions of the parent and a certain

number of daughters are extinguished at t = 0. The singularities of

the contributions coming from the lower daughters can be ignored

since these must be compensated in view of the regularity demonstrated

in Sec. 5. Hence the leading term in this limit is given by

a i 0 )

being in each case the contribution of a particular daughter.(In the

U-U configuration if the K specified by (7. 9) should be half-integral

then one must make the replacement K -> K + \ since the most singular

part of one of the vertex functions cannot be operative in this case. A

corresponding modification of (7.10) is implied).

It may be noted that the forms (7.10) with X = V reduce to (7. 5)

which correspond to a different limiting procedure.
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APPENDIX I

THE CLEBSCH-GORDAN COEFFICIENTS

Since the finite-dimensional representations of O(3,1) can

be made to correspond with the unitary representations of 0(4) by means

of the Weyl trick and since SO(4) is isomorphic to SO{3) x SO(3),it is

possible to construct the Clebsch-Gordan coefficients of 0(3,1) out of

the well-known SO(3) ones. The proper subgroup SO(3,1) corresponds

to SO(3) x SO(3) and can be dealt with quite easily. The incorporation

of space-reflectionscomplicates the problem somewhat and will be

considered afterwards.

The basis vectors of the product of two irreducible SO(3)

representations couple according to the rule

where O m l j , ^ > Km2 ^ d e n o t e s o n e o f t h e u s u al SO(3) Clebsch-Gordan

coefficients. Likewise the basis vectors of the product of two irreducible

SO(3) x SO(3) representations must couple according to the rule

(I. 2)
if "*> / j? A i x x i x ^

2
where the labels k, K(A,X) are the J and J labels referring to the

left (right) factors of SO(3) x SO(3). The phase factor e will be

determined when space-reflections are brought in. It is more useful

to employ the SO(3,1) ; basis ) Idjm^ defined by

\ \ / ~ / !""KAXSI<K.,JLAI1JH> (1.3)

Transforming (I. 2) to the new basis one finds

where the Clebsch-Gordan coefficient <(kijmlkijm1 , k J i m >is
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given by the sum

«,*,..

(1.5)

The reduced Clebsch-Gordan coefficient <(k-£ j jl k. J2,1 , k S. j > defined

here can be expressed in terms of a 9-j symbol,

(1.6)

1 J
Of particular interest for the purposes of Sec. 3 are the coefficients

with k =.£„ = N/2 and j = 0. They reduce the 4~j symbols because

L r.

The formulae (I. 5) and (I. 6) summarize the coupling properties of the

finite-dimensional irreducible representations of SO(3,1). Consider now

what must be added to them in order to assure invariance under the improper-

transformations. It is sufficient to deal with the space-reflect ion operator

P defined by

? ! U j w> - | K j i n ) e 1 ^ , kfl (1:8)

and

^ l ! f ^ i 1 t i , U J . f , (1.9)

since any improper transformation can be expressed as the product of P

with a proper one. The representations of SO(3,1) with k = i = n/2 carry
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an intrinsic parity, ± , and require no extension in order to represent

the full group O(3,1). The representations with k f* A must be doubled

in order to represent O(3,l). It is convenient for some purposes to

employ a basis which diagonalizes P. One such is defined by

(i.

where n = ± 1. The states so defined are symmetric in (k, i) and it

is helpful to adopt the convention k > A . On the states (1.10) one finds

(i.

If the Clebsch-Gordan coefficient {I. 5) is to be invariant under

improper transformations as well as proper ones, it must satisfy the

condition

if k > A, k > A , k2 > JL , while if, say, kg = A = n/2 it must satisfy

where + is the intrinsic parity type of the representation D . The

reduced coefficients defined by (I. 5) are subject to the same conditions.

Using the symmetry of 9.-j symbols

• v
(1.14)

one can deduce that the phase factors £(kl k i ,k i ) entering the
J. X £i £1

definition (I. 6) must satisfy

(1.15)

corresponding to (1.12^ or
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l~ 4t~ (Lie)

corresponding to (1.13), and similarly for the other possible situations.

There are many ways of choosing the phases to satisfy (1.15), (1.16),

etc., but in the absence of any deeper criteria we shall adopt the following

scheme which is the simplest we can think of.

c a s e i . ic T * , K , f J-T j * ^ r \ ' - * o

Case 2. k f A , k± t ^ , kg = £ = n/2

(1.17)

Case 3. k f £ , ^ = = S.^ =

(1.18)

Case 4. k = i = n/2 , ^ =

, K

2 !!
Z 2

{ o

(1.19)

(I. 20)

The Clebsch-Gordan coefficients have the symmetry

(I. 2L)
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which can be deduced from the properties of 9-j symbols and

O(3) Clebsch-Gordan coefficients. For the reduced coefficient

this becomes

Another useful symmetry is given by

i +

(1.22)

(I. 23)

All of these coefficients are of course real.

The Clebsch-Gordan coefficients employed in Sec. 3 refer to the

basis (1.10) which diagonalizes the parity operator. The reduced

coefficients are defined by

(I. 24)

They can be expressed as linear combinations of the 9-j symbols. The

various cases must be considered in turn. Since the coefficients are

symmetric in & fi. t , , , t it will be sufficient to exhibit them for k ^ i ,

^ ^1 ' k2 ^ ^2*

Case 1. k>

Using the formulae (1.10) one finds
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where use has been made of the fact that they vanish unless

(1.25)

In terms of 9-j symbols then

\Tz f* 1*

i f,

li

Case 2. k > i , k > i ] , k2 = i 2 = n/2

(I. 26)

n 4 n C-)
«t*?-

(1.27)
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Case 3. k > £ , - ij = n/2 , = n2/2

^ * 1,
t z »*

Z 2 if1

(1.28)

Case 4. k » I = n/2 , n /2

2 i Jt

(1.29)

It. is of course assumed that the parity condition (I. 25) is satisfied in

each case. Otherwise the coefficients vanish. For case (4) there is a
Jl+J2~ 3

stronger condition. The 9-j symbol in (I. 29) vanishes unless (-) = 1

and therefore the couplings (I. 29) can be made only if rjr} r) = 1.

The cases of particular relevance in Sec. 3 are those for which

k2 = *2 = N ^ 2 j h = ° a n d ^ = h ~ J w h e r e t h e 9"3 symbols reduced to
6-j symbols as in (I. 7). The corresponding simplified versions of (I. 27),

(I. 28) and (I. 29) are as follows:

Case 2. k > A ,

(I.3Q
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Case 3. k > ^ = n /2

A * 2. )

(I.3D

Case 4. k = 4 = n/2 , ^ =

\ y £J (1.32)
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APPENDIX II

CONTINUATION OF TWO-PARTICLE STATES

The two-particle states are characterized in general by six

polar angles a, 0, % and <* 6 V which are related to the components

of p, and p0 by formulae of the type (4. 3). The subset of centre-of-mass

states which are subject to the conditions

P l + p2 = ( W . 0 , 0 , 0 ) (II. 1)

are characterized by two angles and by W. The six polar angles are

constrained by four relations

W = ^ ckofy + w^ckcx^ (Q- 2>

(H. 3)

(U.4)

0 ~ w
I I f f • - C • * • " • -

(II. 5)

which can be solved in many ways. The simplest approach is to take

0 = V ^ 2 (II. 6)

(U. 7)

as two independent variables thereby replacing (II. 3), (II. 4) and(II. 5)

by the condition

1 Z (U.8)

It is then possible to solve (II. 2) and (II. 8) for a.(W) and ao(W) up to

-53-



multiples of 2 jri and an overall sign. The solutions can be given in the

form

2 m,

(n. 9)

Of the conditions (4. 4) necessary for the unique specification of a boost

-Tl I T (II. 10)

&. X < (II. 11)

It is always possible to impose the restriction (11.10) on solutions of (II. 9).

However it is possible to impose(II. 11) only for |W| ^ rn. - m«

The real part of or. (»„) vanishes on this circle if m. > m (m, < m_)

and becomes negative inside it. This effect necessitates the exercise

of some care in the construction of boosts.

The boost operators appropriate for two-particle centre^of-mass

states a re given as follows»

>0

(n.12)

of,

(n.is)
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in terms of the angles defined in (II. 6) and (II. 7). Corresponding

to these boosts the centre-of-mass states take the form

> u ( n )
1 6

= r -v

(11.14)

Defining the quasi-states |\V0q> XX \ over the entire W-plane by
7 1 2

e
(11.15}

one can express the formulae (11.14) in the form

<|^-w2
ir, »!,>

(II. 16)

The quasi-states are by definition continuable in W and therefore the

expressions (11.16) constitute the rules for continuing two-particle centre-

of-mass states across the boundary |W{ = \m- - m 9
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