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and the -0 and U-U configurations on the other needs sxamination. Although
the leading term in the t—channel amplitudes is given by s¥ in the B-T
case, i h!a.ppans that the g—channel amplitudes are dominated by

f;;“_i‘ﬁ)':)‘iE . This results from some cancellations dbrought about by the
crossing matrix which, in the E-x configuration at t = O, is given by a
produqt of rotation matrices d\i}{(ﬁ-”zj’. Since the residues are proporiional

to d::’-‘-{iﬂ'/l> at t = U one can use the property™)
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to show that the s-channel amplitudes are dominated at t+ = o (BE-C ocase)
by the daughter I¢ :}Jo-[?\l! . Hence the leading term as S-oy for

a=channel amplitudes is given by
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*)} Dhis property is deduced by compéring the large C; behaviour of the
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ABSTRACT

The behaviour of partial wave amplitudes in the neighbourhood
of vanishing momentum is studied in the Born approximation. A set
of phenomenological fields is introduced to assist in the construction
of a kinematically correct Born term. It is found thai the Born
contribution to the partial wave amplitudes has a struciure which,
as a result of the kinematical propertiies of the phenomenological
propagator and vertex paris, yields considerable information about
the behaviour of Regge poles and residues at zero energy. Regge
poles ar‘rived at in this way gfoup themselves into Toller familics
whose zero energy intercepts, slopes, etec,, are severely con-
sirained., Asymptotic formulae for forward scatiering amplitudes

are obtained,




ON THE ZERO ENERGY BEHAVIOUR OF REGGE POLES
AND RESIDUES

1. INTRODUCTION

These notes are concerned with the structure of partial wave
amplitudes in the neighbourhood of vanishing momentum transfer. If
the process described involves particles with unequal masses then the
amplitudes have a kinematic singularity at this point. The source of
the singularity is not difficult to uncover. It arises because the cross-

X 1) . . .
channel scattering angle Bt(s) vanishes ) identically at t= 0 which
means that any functional relation of the type Af(s,t) = B{(t, Bt) must be
irregular there, In particular, the cross-channel partial wave expans~
ion

_ J
Als,t) = ) (23+1)f (1) d}, (8,) (1,1)
T J WL

must fail in the limit t>0 . It is clear that the coefficients fJ(t)
- must diverge in some way to compensate the vanishing of Bt at t=0 ,

However, the precise nature of the divergence is not at all clear,

Another way of describing this phenomenon is to remark that
the partial wave expansion (1.1) can be appropriate only in kinematical
circumstances which allow the classification of states into represent-
ations of O(3) - or its non-compact relative, O(2,1) - that is, into states
with well-defined angular momentum, It is a well-known fact that the
group O(3) is inappropriate for the classification of states with light-
like momentum. For such states it is impossible to define an intrinsic
angular momentum and, consequently, their transition amplitudes

cannot be labelled with J - hence the divergence of fJ(t) at t=0 .

It is also well known that the correct gréupz) for classifying
states with lightlike momentum is the Euclidean group in two dimens-
ions, E(2), The irreducible unitary representations of E(2) are
labelled by a continuows positive parameter p2 which must take the
place of J , It can be shown that the correct analogue of the partial

wave expansion (1,1) which must be used at t = 0 is given by




o

( dp? glo?) & _ (nE) (1.2)
o

where ‘Ik-u denotes a Bessel function of the first kind and & isa

Als,0) =

M

positive quantity defined by

llm ( i

t—>0 -
which limit is a linear function of & . 1If is therefore clear that the
expansion (1.1) must in some way go over into (1. 2) as the limit t—0

is approached,

It is possible to gain some insight into the connection between
the expansions (1.1) and (1. 2) by means of the following qualitative
argument In view of the approximate relation -:i?t JB \/] (j+1)9)
for 6 << 1, it appears that the combination j{j+1)t manlfests itself as

p2 in the limits t=0 and j—> o, that is,

di#(ét) N G+ (1. 4)

near t= 0 . By the sort of logic familiar from impact parameier
methods one can see that the sum in (1.1) approximates more and more

closely to the integral in (1,2) as t-»0 if g(pz)\ is defined by the limit,

~ 9
lim EICES VI o2\ i ¢(o%) (L. s)
J—=o0 ! p2 J (\J{J+1) i ) ’
This condition can be otherwise expressed by
fJ(t) ot g(J(T+ 1)) (1. 6)

for t—0 and J—-u.

Unfortunately, the condition (1, 5) is not sufficiently powerful to
provide information about the singularity at t= 0 with J finite.
Presumably this is because such behaviour is strongly dependent on
dynamical effects, A more sensitive tool is needed for distinguishing
these features. Such a tool can be found, we believe, by recourse to

field theoretic arguments,




It is well known that the contributions to the partial wave ampli-
tudes made by a field theoretic Born approximation must, by virtue of
their origin, satisfy all the kinematic requirements demanded of a
relativistic theory. In other words, field theory provides a useful
guide to kinematical correctitude, It would be too optimistic, of course, -
to expect anything very far-reaching in the way of dynamical results
to come out of field theoretic model calculations, However, a compromise
in the nature of a phenomenological field theory might be usefully. exploit-
ed in order to discover no more than a spectrum of kinematically allow=~

able parametrizations of, for example, Regge poles and residues,

For this reason we shall adopt an ansatz based on analogies

with field theory, We shall express the pole contributions to helicity

amplitudes in the form of a field theoretic Born approximation, employ-

ing for this purpose a set of phenomenological fields, d;A , and their
corresponding currents, fA . We shall assume, moreover, that these

fields transform ina well-defined way under the operations of the com-
plex Lorentz group as well as T,C,P and that they are local fields

complying with the usual spin-statistics assumption,

With these assumptions the Born contribution to the process

1+2-3+4 can be expressed in the explicitly covariant form

<P3)$3 ’?\f'\u f T P »Pz A2 >Bom

l

Z e T0 4,7 <ol DAL ALY 5 ()

where _ -
P 2p +py=pry+p, -

The current fA and its adjoint 'f_A belong to some representation of
the {complex) Lorentz group, that is,

S -1
fA——>U(A) fA UA ) = gDAB(A ) fB , (1.8)
I~ UM, A = 7 E, D_, (4 (1. 9)
A A & B BAYY - '
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Correspondingly, the propagator &, (P} must satisfy the covariance

AB
condition
A _(P) = 9 D, o) Ayt (AP) Doy (A) (1.10)
A B Z_ UAA A'B B'B '
A'B
for any complex A . The content of the representation D{A) need

not be specified in detail for the present, This content, a direct sum
of finite-dimensional representations, will be clarified when an explicit
labelling is introduced in Secs, 2 and 3 where it is needed in order to
remove from (1, 7) the many redundant components appearing in the

propagator,

The real aim of this work is to discover something of the
behaviour of Regge poles and their residues in the neighbourhood of
vanishing momentum transfer, We shall suppose that the poles of the
S-matrix - including Regge poles - are contained in the Born term.

The virtue of this ansatz lies in iis clear separation of the dynamical
singularities (poles), which are to occur in the propagator, from the
kinematical ones which are confined to the vertex paris, In particular,
the constraints which must be satisfied by AAB(P) at P2 =0 can be
formulated without reference to the external particles, Likewise, the
kinematical singularities and consiraints implicit in helicity amplitudes
are properties of the vertices which can be considered without reference
to the nature of the exchanged particles. The factorizabilily of residues
is of course presupposed in the form (1,7), It is a stronger factor-
izability than that assumed in mass-shell S-matrix calculations. The
S~-matrix pole approximations are usually given in terms of the Poincaré
invariants, mass and spin, and are not necessarily consistent except

in the neighbourhood of the pole., The field theoretic Born approximat-
ion has, in addition to its dependence on mass and spin, a deeper struct-
ure expressed through representations of the homogeneous group., It

is this structure which assures the consistency of the Born approximat-

ion even at zero momeniim where the Poincaré classification fails.

It must be emphasised that we have no intention of employing a

field theoretic model to calculate the functions appearing in (1, 7),




Field theory is being invoked only in its mosi phenomenological sense
in order to suggest the form (1, 7) for the Born contribution, By
exploiting the well-defined transformation properties of fields it is
possible to isolate the kinematically independent components of the
propagator and vertices and to separate the singularity at P2 =0 from
the latter. A knowledge of these singularities is sufficient to fix
uniquely the constraints which must be satisfied by the propagator at
P2 = 0 in order to make the over-all Born contribution (1, 7) regular
there, These constraints, it will be found, amount to nothing more,
than the classification of Regge trajectories into TOLLER families
'appropriate relations among their positions, slopes, etc., in the
neighbourhood of P2 =0 , Moreover, it is possible to do similar
things with the vertex functions - particularly in the equal mass case ~
achieving thereby the most general kinematically allowable parametriz-

ation of Regge poles and residues.

Implicit in this continuation of a field theoretical Born term to
complex values of J is the notion of an "analytic field", ¢(k gy
which interpolates an infinite set of the familiar finite-dimensional
fields with k-I = Jg 'JO

.. . Thatis, k+f is complexified along with J . Sucha 'field"

, a fixed integer or half-integer,and k+4 = jO +1,
belongs to an infinite-dimensional (usually) non-hermitian represent-
ation of the Lorentz algebra, One should expect one-particle singular-
ities of this field to comprise a Regge trajectory. Questions as to
which of those properties - locality, TCP, etc, - usually taken as
characteristic of fields can carry over to this object are not considered

here,

The arrangement of the paper is as follows, Sec.2 contains a
summary of well-known properties o the finite-dimensional represent-
ations of the Lorentz group and the fields belonging to them., Sec.3
considers the 2-point functions for these fields and defines the concept
of the reduced propagator, A(W,j,n)} , a matrix consisting of scalar
amplitudes (kinematically independent apart from constraints at W = 0)

which incorporates the dynamical content of the usual propagator, The

=-5=-
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components. of the reduced propagator are then expanded in a set of
unconsirained amplitudes. Sec. 4 is devoted to the decomposition of
the vertex parts into a set of scalar form factors from which the
Kinematical singularities at W = 0 and the consiraints at the pseudo-
threshold are then separated, In Sec.5 the results of the preceding
two sections are joined to give expressions for the partial wave
projections of the Born term. It is then shown that, provided certain
consiraints are satisfied, the Born term is regular at zero momentum
transfer in spite of the singularity of its partial wave projections.
These projections, which are bilinear forms, are diagonalized to
isolate particular pole contributions some properties of which are
examined in the neighbourhood of vanishing momentum

transfer, In Sec, §, the continuation to complex angular momentum is
made resulting in a number of properties of Regge poles and their
residues which are enumerated, Sec. 7 includes some asymptotic

formulae,

2, SOME PROPERTIES OF FIELDS"

In order to fix the notation it is necessary to discuss the trans-
formation properties of fields, that is,to make clear the meaning of
the subscript A which serves to distinguish the components dJA .
This material is well known (see for example STREATER and
WIGHTMAN %)

Firstly, the finite-dimensional matrices which represent the homo-

} but a restatement of it in concise form is in order here,

geneous Lorentz transformations including reflections are defined in
formulae (2, 2), {2.8), (2.9)and (2.10), The behaviour of {fields q.’:A

and their adjoints d’A (defined in (2.15)) are given by (2.13) and

(2.14). The antiparticle conjugation operator C is defined by (2.17)
and (2,18), Finally, some propertieé of the Clebsch-Gordan coefficients
appropriate to the finite~dimensional representations of the Lorentz
group are listed; (2, 21) and (2,22), A fuller discussion. of these co-

efficients is contained in Appendix I,

~h-




The finite-dimensional irreducible representations of the
homogeneous proper Lorentz group are characterized by an ordered
pair of integer ar half-integer parameters (k,f). The basis vectors
of the irreducible representation DkE can be labelled by a parameter,
j , taking the values | k-%] , {k-%/+1, .,., k+£ and by another
parameter, m , taking for each j the values -j, -j+1, ..., j.

This labelling is complete. It is possible in this basis to represent

any proper Loreniz transformation, A , by the matrixs)
kf _ j ki L
D o = % D! (R iy (@) DY (RY

(2.1)
where R and R' denote ordinary three-dimensional rotations re-
» I' °
presented in the usual way by matrices D)R) and D’ (R') of

dimensionality 2j+ 1 and 2j'+ 1 respectively. The matrix

d;ﬁﬁ‘(a) represents a pure Lorentz transformation in the 03-plane
through the hyperbolic angle a . It is defined by

(k=M e I > (2. 2)

ki

d_ . (a) = z<'M kk, Ix> e
JMJ'( KA M|

where <k:c,1>t] jM> denotes a Clebsch-Gordan coefficient of the three-

dimensional rotation group.

The improper transformations cannot be represented in the
form (2,1) except in the subclass of representations with k = { . In
general it is necessary to adjoin the representations D]‘da and DXk
~ in order to incorporate the space-reflections. In terms of a set of
basis vectors | kAjm> it is possible to represent the space-reflection

operator , P , by
Plkfjm> = |dkjm> '™ , k¢4 (2. 3)

or by -
P|ffjm> = £|ffjm>¢e™ , k=A=f . (2. 4)

The space-reflection operator can be diagonalized when k ¥ A by

defining the new set of basis vectors

-7-




|1 . :
. '?—ﬁ]kﬁ_]m> +~J~%,ﬂk3m> . k)f
|nim> = 7} L J (2. 5)
\7? |kfjm> +—J-§!Xk3m> , k<
where n=x1, On the states (2.5) we have
Plk{) njm> = [&l) nim> ne'™ (2. 6)
The formula (2. 4) can be expressed similarly,
PlEtn) jm> = [ffmim> ne > (2. 7)

with the distinction that the parity type n needtake only one value,

+1 or -1,

The proper transformations can be representied in the basis

(2. 5) by a generalization of (2.1),

(k£) - i (k4) i '
DU @ = L DL A 00 DL R (2.8)
where
(k) =1[kﬂ . Ak ] |
Qi@ = 5[ iy @)+ @) |, k>4
(2. 9)
(£1) _ if A -
danj'q'(“) - ann| dej'(a) » k X f .

The improper transformations can be represented by the product of

(2, 8) with the matrix representing space-reflection,

inwj

plki) (P) =6 5. 6 ne (2. 10)

njm' nlj'lml nnl JJ? mml

The formulae (2,.8) and (2, 10) together with (2. 2) and (2, 9) complete
the specification of the irreducible representations D(k‘P) and D(ffn)_
It may be mentioned that the matrices so defined can serve also to
represent the complex Lorentz transformations.

(kD)

Two properties of the matrices D which are important in

the following are




a) reality:

k%) (W = n(oytirm D) ) (_)k+f+m' n

njm' nij!mf nj_m, n'jl_m'

(2.11)

b) pseudo-orthogonality:

(k) -1, g-m (kl) _\jt-m!
Dnjm,n.j,m.(A ) = (~) Dn,j,_m,,nj_m(/\)( ) . (2.12)

They can be deduced from the definitions (2. 2), (2,8), (2.9) and (2,10).

It will prove useful to employ two alternative notations to dis-
tinguish the representations D(k“
oo _

shall use D 0 where jo = k-4 , o= k+£ +1 and, more simply,

DY .

in the following discussion, We

The summary of properties of the finite-dimensional irreducible
representations of the Lorentz group given above is sufficient for the
purposes of this note, Henceforth the field qSA is to be written

¢ranjm .
ation properties and r denotes any additional (Lorentz invariant)

where the indices a,n, j,m specify the spacetime transform-

labels which may be necessary, Thus, under a homogeneous Lorentz

transformation A ,

Vragjon () = VA Gy 0) VIAT) =

o -3
o Dajm, g (A7) ey rgnr (Ax) - (2.13)

Similarly, the adjoint field aranjm transforms according to

Frargim 007 VI $eys G0 VXY

< Lo
= by ] /\ X D [N [ . A
2o, Brapione (00 D i (1) (2,14
In view of the properties (2,11) and (2,12) of the transformation

matrices DQ(A) it is possible to make an association between ¢ and

¢ , namely

- —

. AT T [P Rt




- k+4 - +
= - ) 2.1
Seamm®@ = () b anim™ (2.15)
where (61' denotes the hermitian conjugate of ¢ . It should perhaps
be emphasised that we are working with non-unitary representations
of the complex Lorentz group. The transformation laws (2,13) and

' {2.14) are consistent with (2.15) only if the operators U(A) satisfy the

"pseudo-unitarity" condition
il = uaht (2. 16)

which, it is clear, implies unitarity only for real lLorentz transform-

ations,

The antiparticle conjugation operator, C , can be defined in the

usual way: it is a linear, unitary and Lorentz-invariant operator which

connects ¢ and ¢ . It is defined by the relations
Hm =
. (-) ¢ru n= m(x) 2(k+{) even
¢raqjm(x) C = tm (2.17)
(-) d»m ni- ™ + 20rh) odd
j-m
1 (-) ¢r«r]j-m(x) , 2(k+f) even
® e im ) = (2,18)
hm j-m i
T by yjem® . 20eeD) oda.

The distinction between fermion and boson fields implied by oddness
or evenness of 2(k+/‘) is necessary here because, according to the

definition (2.10), the former have imaginary parity and the latter real
parity,
Some use will be made in the next section of the Clebsch-Gordan

coefficients for the finite-dimensional representations of the Lorentz

7
group ). These coefficients, which couple the direct product
) (kydy) (k)

D 8D to the irreducible representation D are denoted
<(kﬂ)rljm l (kl.ﬂl)rlljlml, (k X )l]2 2m > ., They must satisfy the in-

~10-




variance condition

ZD“*“ () RO W R B gym, (R ko), 4y, ) =

'fl—;m: Wi, q
Z «ﬁﬂnjmi(&.fﬂ Pl: 1:' m: ) (E2£2)‘lfzj:’a h‘é?
T
WM faga; D(Q.EI) | n _‘D(ézp)r |
Ty sy 2™l ™ (2.19)

for any Lorentz transformation A . They can be expressed in terms

of a set of reduced coefficients by

<Glygim | e, L)W 3 mp, e, dogi,m, > =

= <ehni e A0 3,5 Gk on,3,><im] y my, jom >

(2. 20)

where <jm| jym m_> denotes an ordinary SO(3)} Clebsch-Gordan

s ]
1°99™g
coefficient, The reduced coefficients are developed in some detail in
Appendix I where they are given as linear combinations of 9-j symbols,
If any one of the variables k,? +Jsv.. should vanish it becomes possible

to express them in terms of 6-j symbols,

Two symmetry properties of the reduced coefficients which

will be needed in the next section are given by

= <Cchni ey )iy ey 4 0y5,> (')k1+91+j1+k2+f2+jz+k+p+i

(2, 21)
<Gehyng Jae A 0y 3 ki i,> =
i
(2k+1)(28+1)(2j..+1) 2k
= <tehng, e, Ly 203 Jac Aoy i > : () !
ACEES PR [N (2k 1120 _+1) 25+
(2,22)




(le )

where,if D 1’ is a boson {fermion) representation,one must use
n, (-n,).
3. PROPAGATORS

The propagator matrix (P) introduced in Sec,1 has many

AAB
redundant components., It is possible by means of the covariance
condition (1.10) to eliminate the redundancy and to express AAB(P) :

in terms of a set of scalar amplitudes, the reduced propagator matrix
A(W,J,n) defined below in (3.3). Such expressions for AAB(P) are
given in this section by (3.6) and (3.13). The components of the

reduced propagator, which retain the essential dynamical content of

the full propagator, are themselves subject to constraints. Two con-
ditions result:'mg from TCP-invariance and C-invariance, respectively,
are given by (3.9) and (3,11), Finally, and most important, there is

a set of constraints to be satisfied by the components of the reduced
propagator in the neighbourhood of W =0 . If will be demonstrated

in Sec, 5 that these constraints are essential for maintaining the regular-
ity of the Born termat W =0 . An expansion of the reduced propagator

into a set of unconstrained amplitudes G(Wz, N) which facilitates the

treatment of Sec, 5 is given by (3.16).

Expressed in the notation of Sec. 2 the covariance condition (1,10)

reads

A'rqum Yy m (-P) -

Z *
- :Dnjm,ﬁ'jii (A A'rm'li'{?n, TRB T (AP) D

Ry, Wy j T

for any complex A , Most of the kinematical redundancy in A{P) can

(3.1)

be eliminated quite simply by exploiting the subgroup which leaves Pu

invariant, - More particularly, when P“ takes the standard form

1“3“=(W,0,0,0) (3. 2)

-12-




this invariance subgroup corresponds to the ordinary three-dimension-
A
al rotations and reflections. One concludes immediately that A{P)}

takes the form

By = s (W,3,n) . (3.3)

Arunjm‘ rlulnljlml nnl 6331 amml AI‘O(, 1"'0('

The Lorentz—invariant amplitudes A(W, j, n) constitute the reduced
propagator matrix. This matrix charactierizes the propagation of

particles of spin j and parity n e

The formula (3. 3) can be transformed to an arbitrary frame
yielding thereby an expression for the general A{P)} in terms of the
reduced propagator. To this end it is uséful to define the boost trans-
formations LP which serve to transform f’ into P , i.e.,

P o) B o=@ w (3.4)
7] Pu P'ul

Some arbitrariness of convention enters into the definition of the boosis

in that there are many different matrices, L L all of which

t
P ¥ ] P » * e 0 )
satisfy (3.4). However, one can show that any two boosts, LP and
L'P, can always be connected by a three-dimensional rotation, R ,

1 A A
LP = LPR where R P=P, (3.5)

-1 )
If now the substitution A= LP is made in (3. 1) it follows from (3. 3)

that A{P) takes the form

A"'“Vlj\“ﬁ'“'ﬂ'j"m‘ (P) =

- o , - - “(‘ -t
_ﬁzi:ﬁ Do, (Lp) Bratar (W) Pigi i (Lp) g
and, moreover, using {3.5) one can show that this form is invariant

under the substitution LP—> LIP . It is independent of any particular
boosting conventions, It appears,therefore, that the kinematically
independent components of the matrix A{P) are contained within the
reduced matrix AW, j,q) the symmetries of which remain to be dis-

covered,




The symmetry of AW, j, n) which results from TCP-invariance
can be arrived at by applying the complex Lorentz transformation , IS -

which reflects all the components of P# . 1t is represented by the

maitrices

(k) _ 2k
Dnjm, it ! (Ist) (=) 5mm'6jj' én,in' (3.7)
where again it is necessary to distinguish fermionic representations
for which n = =-n' from bosonic ior which n =n!, Substitution of the

matrices (3, 7) into the general covariance condition (3.1) yields the

symmetry
- 2k 2k!
runjm' rl“lnljlml(“P) - ( ) I‘ﬁ’i‘.ﬂjm, I"b[';tn'j'm'(p) ( ) \
(3. 8)
This formula can be interpreted in the rest frame (3, 2) as
2k 9k’
- = - W ] -
Arq,l"'fx'( WJJIT]) ( ) AI‘N, I"(X'( ,J,in) ( } (3.9)

where +n is taken for bosons and -n for fermions.

The remaining symmetry to be exploited is C-invariance. The
implications of C-invariance can be derived by expressing A{P) as
the Fourier transform of the vacuum expectation value of a timé-ordered

product in the usual way, One arrives at the formula

j'-m' j+m

Al“ﬂnjm: rl“tnljlml(hp) = € (-) AI"M’in'j"m', r(\’_'tj"m(P) (-)

(3.10)

where € =+1 for boson fields and € = -1 for fermion fields (the spin-

statistics relation)., In the rest frame this gives

A (-W,in = a (W, §,4n) (3.11)

ra, v’ r'vt, ro

where, on the right-hand side, one must take +n for bosons and -7

for fermions,

The reduction of the propagator matrix into kinematically in-

dependent components is now complete, being summarized in the formulae

-14~-




(3.6), (3.9) and (3.11).

It will be shown in Sec, 5 that the reduced propagator A(W,j, n)
. is subject to a set of constraints at W = 0 if the Born term is to be
finite there. Therefore, it will be advantageous to develop a set of
unconstrained amplitudes in terms of which the components of the re-
duced propagator can be expanded. Such a set can be found in the

following way.

Consider the matrices, TI , defined by

Wi, st (BT }: 5 () D e (L)

(3.12)
in terms of which one could express the propagator, i.e.,
By ra' g (®» = _Z Briar (W37 T iy (R3:7)
A (3.13)

From (3, 5) it is clear that II does not depend on the details of the
boosting convention. In fact it can be demonsirated that the components
of II(P,j,n) are polynomials in P“/W which means that (3,13) can be
regarded as an expansion of A(P) into polynomials in Pu with in-
variant coefficients. Now the polynomials in P,u can be grouped into

symmetmcal traceless tensors of rank N (i.e., belonging to the re-

presentation _Dr 4 of the Lorentz group). A convenient
notation for these tensor polynomials is given by 8)
N
wh D'%L 2w 3.14
JM, 00 P (3.14)

The desired reformulation of the feduction formula consists in a re-

6rdering of the polynomial expansion (3.13) into the form
ATC’\V]jH‘. ,T'O(' ntj, m (P)

LN
L— G Ry (W N) Canpm|sayio, (3 34 J-M>W DI U-'P)
NIM

(3.15)




where the Clebsch-Gordan coefficient is clearly necessary in order

that A(P) have the correct transformation properties. The connection
between the invariant functions G(Wz, N} and the reduced propagator
AW, j,n) emerges when (3.15) is referred to the rest frame (3. 2) where

Lp =1, Thus

t)o)

(3. 186)

N
2

() g

N 2
W i = ZW W . —
ATD(. I"O('( 23, v GrO(, r.ta(l( » N) <anj i otnj, (

and it follows from the properties of the reduced Clebsch-Gordan co-
efficients (2, 21) and (2.22)that G 1is, apart from a multiplier,
symmetric

L
4
2 _ 2 (2k'+1)(24'+1) k+f-kr=
Gro:,r'o('(w N) = Gr'o(',ro((w M) [ (2k+1)(2x+l)] (-)

(3.17)
It will be demonstrated in Sec, 5 that the regularity of the Born
term.at W = 0 is assured in all cases if and only if the functions
G(Wz, N) are regular at W2 =0 , This of course means that the
components of A are constrained in accordance with (3, 16) in the

neighbourhood of W = 0,

To summarize, one can separate from the components of the
propagator a kinematically independent set, the reduced propagator
defined by (3.3). The reduced propagator must satisfy the symmetry
conditions (3,9) and (3.11) resulting from TCP-invariance and C-
invariance, respectively. The components of -the reduced propagator
- are further constrained at W = 0 by the requirement that the Born
term be regular there. These constraints are made explicit in the
expansion (3.16) by requiring that the coefficients G(Wz, N) appearing
there be finite at W2 =0,
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4, VERTEX PARTS

The aim of this section is twofold: a) to express the matrix
elements of the current operator f{ A in terms of a set of invariant
form factors G(W, J,n) and, b) to analyse the kinematical singular-
ities of these form factors at W =0 , As a preliminary to this it
is necessary to discuss briefly the definition of two-particle states
and, more particularly, their continuation to complex values of the
momenta (since W = 0 is generally an unphysical point), In order
to do this meaningfully, some mention must be made of the irreduc-
ible representations of the complex Poincaré group. The essential
features are summarized in formulae (4,1)- [4.8). A more detail-
ed treatment is included in Appendix II. The matrix elements of the
current operator between the vacuum and two-particle centre-~of-mass
states are expressed by (4.9) in terms of the form factors G(W,J,n)
which are defined in (4.10), These are in turn expressed in terms of
a set of functions F(W,J,n) which are regular at W =0 , (4.13),
(4.14). The restrictions on these functions resulting from P and
TCP invariance are given in (4.17) and (4.18), respectively. Finally,
a scheme for expanding the regularized form factors F(W,J,n) in

powers of W is presented in (4, 22), (4. 24),

Helicity states must be defined relative to some boosting
convention, Formally the one-particle helicity state (pl) can be

defined by
|pA> = U(Lp) b x> (4.1)

where Lp denotes a suitable boost transformation of the type intro-
duced in Sec.3 and | A > denotes a rest state with spin S and Iy -
component A , The usual convention, which we adhere to, is to

define Lp in terms of three polar angles » , § and ¥ according to
U(ly) = e 10T 1T e'i(xJ:’3

(4. 2)

where the (hermitian) operators JW are generators of infinitesimal Lorentz
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transformations and where the components of pu are given by

P = m (cha, shat w8 cos S, shx sind s ¥, sha cos€) | (4.3)

The angles can be expressed uniquely in terms of the components, p‘u,
if suitable limits are imposeda > 0, 0 6w and -7 ¢ ¥ <7 . The
states | pA > defined in this way span an irreducible unitary representation

of the real Poincaré group (at least if m >0 ).

If the angles are allowed to take complex values in the respective

domains

0 & L < oo - & T £TT

0 { Re® ¢ y =03 < Iwmb < o0

KRG LT , =00 < TmY <o
(4. 4)

then, with suitable conventions about boundary values, they can be given
as single-valued functions of the complex 4-momentum with the result

- 9
that the states (4.1) span an irreducible but non-unitary representation

of the complex Poincaré group.

The two-particle states can be defined in the same fashion, i.e.,

PRI U(”(Lpﬂ U(»(L[]z) | 2,22 (4. 5)

Y

where U™ and U(z) operate independently in the spaces of particles (1)

and (2) respectively. Their corresponding infinitesimal generators,
7 o q 2
yu7 Jav

the subset of states (4. 5) for which the total momentum, p]L + p2 . takes

, commute, For most purposes it is sufficient to deal with
the form
'?1+ Pz = (W, o, 0, 0) (4.6)

For such states the six polar angles are constrained by four relations and

can therefore be expressed in terms of two independent angles ¥ and 6
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in addition to W, The resuliing form for the two-particle centre.of-mass

states is then

. () I )
I?1A1 P,_/\ > T;. e” QJ‘;, e-'LQ(-‘ (W)IOS * 10(2 (W) I03
11‘3 l()\i'*')\z)bo
17\ A ) (4.7
_ D) (2) .
where J/uv = .&w + J 7 and the angles al(W), az(W) are given by
Z’M..IW 27 W (4.8)

subject to the conditions Rex > 0, -# < Imk< # . The functions Oll(W)

and Dcz(W) are analytic in the W-plane with cuts as detailed in Appendix II.
It should be remarked that the form (4. 7) is a valid representation of the
two-particle centre-of-mass states only in the reglon \WI lm - m2 |T
This is because, on the boundary |W/[ = |mi3 m, ] 2 , either Red =0
if m, > rnz or Re&k2 =0, if ml
boundary, the real part of one of the angles changes sign and therefore

< m,, which means that, on crossing the

leaves the region of definition (4.4). What this in fact means' is that the

1
state ‘p AL PAA > |W\ > lmz - m2 { %, is the analytic continuation of a
171 Polte 2 s I ARAY
"flipped'' state, for example ‘pl A, PLA > 171, ¢ R
3 1" 72772
w -
Iwl < 1ml mzl
in A ppendix II,

A detailed analysis of this phenomenon is contained

The vertex parts are defined as matrix elements of the current fA
betwe en the vacuum and two-particle states, It is a simple matter to
separate from these matrix elements a set of invariant form factors.
G(W ,j, n). Thus, using the rotational properties of the ‘current, one can

write

<0H-ruv\jm \P.)\: ' 172. 7\2> -
) (22 €3l t()‘u“'?‘z)y

(ol ei¥Ta @00 T v T 7Ty e
= TANM

N RN O R R

i

(4. 9)




where the form factors are defined by

. (1 B ) - 2}
(ol Gy {W:Q,‘])Mt}‘z) = <ol 5-70"\35‘.-31 AN Ty w e (W) T, em\?: 13;'10 .

The functions G{W, j, n ) have singularities in the W-plane some of which
have their origin in singularities of the functions 0(1(W) and 0(2(W). These
are usually termed kinematical, All others are dynamical singularities,
Moreover there are kinematical cons’t;raints af threshold and pseudothreshold
where sh o(l = sho{z = 0. In the neighbourhoods of those points it is posside
to perform multipole expansions in {4.10) obtaining in a straightforward
way the behaviour

I35l

;l: (Olc‘m(wls‘i)l)\ Ao) KSA[S,8;,58A0 ~ (sha) (4.11)
[ 3

>

1
spins of particles (1) and (2),

for §= ‘Sl- Szl R 82 where S1 and S2 denote the éntrmsm

If the masses are unequal, m, f m,_, then the form factors (4.10)

21
have a kinematical singularity at W = 0 ihe removal of which is one of

our principal aims. The separation can be effected by rearranging

the exponents in (4,10). Thus, if one writes

0] 2

40T 440, T, (a 0030~ 5 (40, )Ty - 3,2 (4.12)

then it follows from the behaviour of the current under pure Lorentz

transformations that

(0] Gerg (W, 1) [A,22) = de“&-ﬁ( %) (0] Fr (WD A ML)

(4.13)

where the regularized form factors, F(W,j, n), are defined by

LRt L (2
{0} F’fd (W,j,q)m,;\;) = <0H"°"']3'31'7‘1 e‘%‘.(aﬁdz)(ﬁ;(;—% 1y, 1 A, A, >
(4. 14)
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The functions d% appearing in (4.13) are of course the representation

matrices defined by (2.2), (2.9). The angle ul + o, is defined by
(4 a,) o W= m?
(X 4d) s 207 (4.15)

2’“;‘“3.

and clearly has no singularity at W = 0, Hence the regularized form
factors F(W,j,n) have no kinematical singularity there, On the

other hand, the angle 0(1 - Q’z is given by

2 a2 2,24
chio-o,) = Mix™ o Am-m ) (4.16)
2
Z'm 2w, W
and is therefore singular at W = 0 if m, # m,. The kinematical

singularity of G(W,j,n)is therefore confined to the known functions du.
For the special case, . m; = m,, where 0(1 = D& there is no singularity

at W =0,

The regularized form factors are not all independent, Invariance

under space-reflections yields the symmetry
(o] s (W,j'#])i)\,)\ﬂ = NMif. (OlFra((w:j: n) "‘A: =A) (4.

where the intrinsic parities of particles (1) and (2) are represented in

the form yl_elemsl and r]zems2 respectively.

Invariance under TCP? yields a further symmetry, This can be
derived most directly by remarking that &(-W) = (W) - iz for ImW > 0,
Substituting this into (4.14) and using the transformation law (2.13) for

currents,one finds
oy R, win-2)
(Dl Fm(”'waj}f)‘i:ki/\:.) = (‘) (Oi r’ra(w'j;il’l)hlﬁl)c (4.18)

where, as before, +n applies to boson currents and - to fermion

currents,

To conclude this section on the structure of vertex parts we
consider the feasibility of multipole expansions of the form factors. The

functions G(W, j, n ) are constrained by (4,11) in the neighbourhoods of the

-21 -
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threshold and the pseudothreshold and can therefore be expanded in
multipoles about these points. However, if m,y F m, then G(W,j n) is
singular at W = {0 which point may lie near to the pseudothreshold there-
by curtailing the convergence of a multipole series. With the regularized

form factors, ¥(W, j, n), this problem does not arise,

Consider therefore the expansion of F(W, j, n) about the point

= ‘ml - mzl . It can be seen from the analysis in Appendix II that

Lo (o, (W) +x, (W) = i (4.19)

W-s i - {20

so that, if the expression (4. 14) for F(W, j,n) can be recast into a form

involving a + a_ Fiw then it can be expanded in powers of this angle.

2
One can make the rearrangement

) . 2)
-4 (d +X )(J;;' o‘;’ = T'ic" (o( +d -47\:){3-;)— J;':’ -7 JQ;
(4. 20)
and therefore put (4. 14) into the form
: D 2 @
. X Lo X -m)(I( -J, ) wdy T _
(o[ (WA = <ol pp e 2007 7T P =
. () (2
= o 2 (“ st~ ) [ Jg3 - Jog
% gy () ol g €
. 'n:jm etw:r”L ]Au_kl) Q_;'“Sa (4. 21)

-wJ(S%) eing)

The operator, e , is a scalar for bosons or a pseudoscalar
for fermions and can be otherwise ignored, It follows that, in the neigh-
bowrhood of W = lml - mzl + i0 the regularized form factors can be

represented by

. - (m,-mlf-—wz 278
(o]Fw(w,a,q)ll,lz Z;;]' dqu_ (im/2) ( Py, ) .

(o] (W, 7,70 182) <5284
(4. 22)
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where H(W, j,n) is regulér at the pseudothreshold. The pseudothreshold

factor in (4. 22) resulis from the definition of o + a, -iw,
e 2 Y
S[" 0(|+0(L—L)i _ (mi“ W‘z) - \r\/ (4. 23)

2 4m‘m2

Thus it is established that the regularized form factors can be expanded
in multipoles about the pseudothreshold. Such an expansion could be
useful for representing these functions in the neighbourhood of W = 0

provided the mass difference is not large, i.e., provided

2 .
(rn]L - mz) << 4mlm2 . (4. 24)

To summarize, the princpal formulae of this section are:
(4. 9) and (4. 10) which give the vertex parts in terms of a set of invariant
form factors G{W, j,n) ; (4.13) and (4. 14) which serve to isolate the
kinematical singularity at W = 0 of G(W, j,”) and define a set of regular ized
form factors F(W, j, n}; (4.17) and (4.18) which give the P and TCP
symmetries of the regularized form factors ; and (4, 22) which -exhibits
the pseudothreshold behaviour. A completely analogous set of formulae
could be given for the matrix elements of the adjoint current
< P, )Ll, pzkzl?AlO > and their associated form factors G(W, j,n) and
F(W,j.n).

9. THE BORN CONTRIBUTION

Having isolated the kinematical properties of the propagator and
vertex parts, we are now in a position to express the Born contribution
to the partial wave amplitudes in terms of the invariant components of
the reduced propagator and form factors defined in Secs. 3 and 4.
This is given by (5.5). Next it is demonstrated {hat the finiteness at W = 0
of the regularized form factors ¥(W, j, n) and propagator components
G(WZ,N) is sufficient to assure the finiteness of the full Born term - the
sum over pariial waves., Following this the reduced propagator matrix

is diagonalized (5. 15) in order to isolate distinct pole contributions.
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The components of the reduced propagator are constrained by the
requirement that G(Wz, N) be regular at W = 0. These cons traints are
exhibited in (5. 21), (5.22). On the basié of these constraints it is
possible to compute power series expansions (5. 25) and (5. 26) of the
eigenvalues, D l(W i, n}, and eigenfunctions, X B(W i»n), of the reduc ed
propagator, ’I‘he constraints imply that the coefficients, W1m (0 D (W, i, n)/awh)
are rational functions of j and are independent of n for N < 2(k~42)
it k # £ (in the notation (k, £) = @). It has been verified for N = 0,1, 2

that these coefficients are polynomials of order N in j, {5. 31}, and we
conjecture this to be true for N > 2. The matrix, Xaaf’ (W, j,n),which
diagonalizes the reduced propagator is found to satisfy the constraint

lim (80X (W,5,m/oa W) = 0for N<|k+2 -k - 2]+ [k-2-k+21|,
W70 ol
(5. 32}). This property allows one to predict the behaviour near W = 0 of
the vertex functions, I = XG, which éppear in the diagonalized form of

the Born contribution, (5.33). The result is given by (5. 39).

The centre-of-mass frame for the process 1+ 23 + 4 is defined

in the usual way by specifying the momenta as follows:

o= omy (chay, 0,0, sh, )

i

L= m (chey, 0 , 0 ,-sho, )

b= "ma (cha'b’.shdgme, o, Sh%ta&&)

LI}

ty (chog, - sha sma | o, - shot, co59)

P

(5.1)

where, if the angles, «a

then

P @y are given by formulae of the type (4. 8),

p1-+p2=p3+p4=(W,0,0,0). . (5., 2)

In the centre-of-mass frame the Born term (1. 7) takes the form
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<'P3,)‘3v P+X4} T\’PI "PZA2> = Z <?3A3' P4~A4I'Fr'o('n'j‘h\”o> x
Born  Taim
‘\"d.'y"j'm'

Ar'd.'n'j'm’, XN fm (P <Olf-1"a'll'jm \'P;A- » Po Ay =

Z Z: (Aslelc‘(wiml 'J\ G)AT/“,N(WJQ) X

"H TR

x (0} GM(W,j, q)ll.'\z) (5.3)

where A = ll - Az and A!' = A3 - 14. Use has been made of (3. 3) and

(4. 9) in deriving (5.3). The expression (5. 3) is to be compared with

the standard partial wave expansion

Gl THd D = 5 0o (aalft, ) 3de) ) (-0, (5-4)
4

It is clear that the Born contribution to the parity-conserving amplitudes

is given by
b o0 O h | £ 10,0 5, =
= 2 Ol G (Wf0) Ay (W 30) (0] Gy (W) | ANS)

T bt
e (5. 5)
It follows from (4. 17) that the amplitudes (5. 5) satisfy the usual parity

consirainis,

O 2ad £00, 3, PIAA) = 9,7 (42 £0W,5,7) 1%, 2,)
1711 (15 }‘4 I f(w,a,"])iﬁjl‘—%)

(5.6)

and, from (4.18) and (3.9), the MacDowell symmetry,
- A=A, = At .
()\3)\4_15'(\»,],:;)].\,)\2)— e ()\3314'£(-W,j,ii0])\,)\2) ,

(5.7)
where +n(-7n) must be used for boson (fermion) channels.

The amplitudes defined in this way exhibit a singularity at W = @

resulting from the singular behaviour of the form factors {for unequal
-25-
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‘masses). This much was to be expected from the discussion of Sec.l.
It remains to be shown under what circumstances the complete Born term

(5. 3) remains finite at W = {.

To deal with this aspect of the problem it is necessary to replace
the propagator A{W, j,n) by its expansion in terms of the amplitudes
G(Wz, N) as given in Sec, 3, . (3.16). The form factors G(W, j,n}, more-
over, must be replaced by their expansions, (4.13), in terms of the
regularized form factors F(W, ], n). The Born term, (5.3), then takes

the form
S @wm“””ﬂ%h%%“ 7)1y 27 Ky ,0) o 1)
. - {0 B (W, 4, ) 1N 2) (5. 8)

where the matrix K (W,6) is a purely kinematical construction defined

» (o&'n'J’/\'l Ky (W, 0) |« 0 iA) =

;w#_ wﬂ(“;ﬂd G2
i (499 L G2y

The singularities of the Born term are thereby collected into the functions

(5.9)

1
of da and da in (5. 9) where, as will now be shown, they cancel one

another.

Consider the case m, > m, » m, > m, which is typical of the = -
called unequal-unequal configuration. (The treatments of the various

possible mass configurations ditfer in detail but will not be considered
explicitly here.) As W-—)OIboth a-a, and ag-a, tend to -00. On the

other hand, 620 as has been mentioned in Sec. 1. Although each term
in the sum (5. 9) individually diverges in this limit it can be shown by re-
arranging the summation that the total effect is finite. The necessary re-
arrangement can be effected by using the properties of Clebsch-Gordan

coefficients which enable one to write
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an AT KW e)lensn) =

= 2 Do N Waplang, (8%e)s> drt(%28) wh

\3"‘7{
nyS TR

(5.10)

where the transformation, A, is defined by
: . 1
UA) = ot @aa) T (100 o7 (€1-¥2)dos ‘ (5. 1)

The parts of (5.10) can be dealt with piecemeal, Firstly, the transformation

A can be brought into the standard form,

U (A) - 3_‘:¢ 3.3! G"". ; 3;3 e-..i’l.}JJ;, (5.12)

’

where the angles ¢, £ and ¢ are given by

i d shi (&,-«,) Siné

ch g (%y-%) shz (A= 0g) = shz(d,~%,) chy (ay-x4) tos 8
hl = chi(od-%,) chi (g %) = shi (@#,-%,) shs (@;-%,) cos6

sh (0(3-0(4) Sin 6

g (k5= 0g ) s (= #;) - sh3 (= %,) cha (a-%,) tosb

(5.13)

From (4.186) it follows that near W = 0 the angles al-az and a3-a4 diverge '

logarithmically,

An (/Wi + ...

R
1
Q
]

n(/we + ...

o, ~a

3% (5.14)

H

the terms represented by dots being finite. It is a simple matter to
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prove, using 6 ~ W,that the angles ¢, & and ¢, and hence the trans-

formation A, are all finite in the limit W0, (This result could lave

been guessed by substituting (5.14) into (5.11) and setting 6 = 0). The
AN

other factor in (5.10), WNdSzol , can be represented as a polynomial
of degree N in Wch(al-az)/z and Wsh(al-ozz)/z and, again from (5. 14},
this is seen to be finite at W = 0, Thus all of the terms entering (5. 10),

and therefore K. itself, are finite at W = 0,

N
The conclusion of this analysis is that the Born term (5. 3) is

regular at W = 0 provided the propagator components, G(Wz, N), and

the form factors, F(W, j,n), are regular there, (One must of course |

assume in addition that none of the summations in {5, 18) diverges.

It has only been shown that each term of the summation is non-singulaﬂ.’ '

It should be remarked that the special case m, = m, and mg = m, shows

the additional result that only the N = 0 term contributes to the Born

term at W =0,

In keeping with the viewpoint set out in Sec. 1, the poles of
the scattering amplitudes are presumed to reside in the propagator. A
discussion of their properties is facilitated by diagonalizing the
propagator. Conveniently, as it happens, the reduced propagator matrix,
A(W,j, n) is symmetric apart from a diagonal multiplier. If its
infinite dimensionality is assumed ndt to be a serious complication it
can therefore be diagonalized by an orthogonal transfofrnation. That is,

one can express it in the form

B W) = @ 3 T (1) X (W3, )
rra”

Dr'a“ (W,J,fl) (5. 15)

where X(W, j, n) denotes an orthogonal matrix and D.;j (W, j, n) the set of
eigenvalues. The sign factor (u)zk ié ne eded because not A itself but
(-)2kA is the symmetric matrix,as can be seen from a comparison of (3,9}
and (3,11). The poles of the propagator are given by the solutions of

the equations

Dm(W,J,n) =0 . (5.18)
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Field systems for which any one of the functions DTa or DTa vanishes
identically in W must be regarded as inadmissible. It will be assumed
throughout the following discussion that the propagator A(P} can be

inverted except for isolated values of Pz.

The functions Dra (W, j, n) are defined only for those a = (k, £)
corresponding to irreducible representations of the Lorentz group which

contain states with spin j and parity nem'].,

In Sec.8, however, it will
be supposed that there exist functions, meromorphic in the j-plane, which
interpolate these physical values.

In general terms the picture advocated here is a simple one, Each

m
/ occurs as a zero of one or

physical particle of spin j and parity ne'1
other of the functions Dm!(W, j, 1) which fixes its mass, W = m_m(.]', n.

In a given model, of course, many of the D-functions may have no zero:
such is the case with systems of free fields whose equatiions are usually
set up in such a way as to produce only one particle - all of the D-furr tions
but one being constants. The orthogonal matrix X(W, j,n) which occurs in
the residue can be looked upon as a set of mixing angles. These angles
specify the mixture of the fields which goes to make up a particle of spin

J and parity new3 .

A very simple example which exhibiis this mixing phenomenon is
provided by the Proca model of a vector particle, There are two fields
A and F _ satisfying the equations

" L ying q
9 A, -3, Au=mF
v v T v
a _ a (5.17)
by = mAy
on the basis of which one can construct the invariant components of the

reduced propagator matrix,

NMw, o, +]) = A/ m
AW, 1, =) = A

[ em -
A(\N’f,-i*) = ! : W

{5.18)
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The vector particle is contained in both Au and'Fw, hence its propagator
is a 2 x 2 matrix, This can be diagonalized and put inio the standard form

{5.15),

-~ L L \_1 { e

A CLL) 7

A(u,1,4) = / "?) o
\ t 5.156
X "ﬁ,_f. ) -( u-wn)/ :

showing explicitly the pole at m and its antiparticle at ~-m. The vector
particle evidently contains Au and F,uv in equal proportions, X = ¥ l/J_Z' .
Unfortun ately this model is too simple to illustirate some of the more
interesting features. The mixing angles are constants, for example, and
do not vanish at W = 0, This is because the eigenvalues of (—)2 A0, 1, +)

are degenerate.

The conditions formulated above and in Sec, 3 ‘'which assure
the regularity of the Born term can be applied to the components of
Aﬂl(P) as well as to those of A(P). They imply very powerful constraints

- _“ - . - 0
on the structure of the functions DTQ(W, j.n) and Xm/,'r'a»' (W, j, n) in the
neighbourhood of W = 0, One can write, analagously to (3.18) ,

'ror T (W Z. W 73,7a'(\'V2, N) <0((” i o('ru R (N‘{Zgﬂ‘ O)

(5. 20)
and be assured that A(Wz,N) is regular at w2 = 0. From this it follows

that

s (6“&:0(,,‘,,0(.(%3',@) 0, N<w,
- N =
B b e (0, M) < gl 5, (Mo Npfow) 0, Noo

(5.21)
where NO denotes the minimum value of N for which the Clebsch-Gordan
coefficient in (5, 20) is non-vanishing.

T R NI T) SRR (5. 22)

The constraints (5. 21) are of crucial importance for the discussion of
Sec. 6 , where application is made of the Born term model to the problem

of classifying Regge trajectories wilth particuiar reference to their
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behaviour in the neighbourhood of W = 0,

Taking N = 0 in (5. 21) one finds
Am,w‘cr' (0 'E”Z) = Bﬂ(d" A‘rd,‘:“a (O‘O) : {5.23)

The limit of the propagator is diagonal in the Lorentz indices or, in
other words, the representation mixing vanishes 10) at W = 0, Even
more important, it no longer depends explictly on j and n. The eigen-
values at W = 0 are functions Dva (0) which depend only implicitly on j
and n in the sense of being defined only for those & which correspond

to representations containing the states j, n.

It is feasible to use perturbation methods to discover the
behaviour of the functions D o (W, J, n) in the neighbourhood of W = 0,
For simplicity suppose that the index, r, is absent. Expand the inverse
propagator in powers of W,

k- . d LS
r A:M. (W, 5,1} = Syur D¢ + WD;W F WD + oo . (5.29)

\
A well-known formula of conventional perturbation theory gives the
corresponding power series expansions of the eigenvalues and eigen -
functions,

. 0 1 2 (2 D;ﬁ b;oc
D, (W) = Do+ WD + W waZ e } b

¥ D5 -D, (5. 25)

w* Dys Dig .
Koo (W)= [ 1-— 2 el ., o = &
o<o<( j’l) / 2 g#x (D;_D;)Z ?

1 A 1
W Dyt + Wz{ ]j;o(‘ Dy (bxdﬁ:bo(’o(’) r
o —o © ° - o o\
< o - -5, (> - D7)
e ]
xp g’
+ - . - PR , O(#O(’
@, #Ofiﬂ(" (:D: ‘Dg ) (‘Do( -D ;) j
\ (5. 26)
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0
provided the zeroth order terms, Da , are non-degenerate. A more
elaborate treatment would be needed in the event of degeneracy occurring
or if the suppressed index r must play a role. To employ the formulae

(5.25) and (3. 26) in a manner consistent with the kinematical constraints

1
(5. 21) it is necessary only to express the quantities DaB’ DCZIB' ey in

terms of a set of Independent parameters, These can be read off fro
(5. 20) or its more convenient modification,

¢

Zh -1 ' ! ”~ » R-
g W, n) = T WN B (e N 209,84 100> o
N .
21+
' v ; {5.27)
by expanding the (symmetric) matrices Baa‘ (WZ,N) in powers of Wz.

Some general conclusions can be based upon the power series

expansions (5. 25) and (5. 26) with the help of Appendix I. These are:

1) Symmetries under W= -W

Da(W,J,n) = Da(-W,J,+n) (5. 28)

*

. k . 2R
Ko (W {117 = 7 K (W 5 20) () (5. 29)
where n(-n) is used for bosons (fermions) .

2) Constraints at W = 0

N N
The coefficients DN(j,n) = lim{®@ D (W,jn) /o W ) have two
o Wes 24
important properties which are deduced from a detailed examination

of the structure of the Clebsch-Gordan coefficients in (5. 20).

2a) -D:(j,}}) = D:(j‘,—q) v{:v'r N(Z(k-ﬂ) , R+ L (5. 30)

N L.
2b) -‘Di ij,tf) = a rational function of j,

It has been verified for N = 0,1, 2 that Dg(j,n) is a polynomial of order
N in j, explicitly
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Do) = A,
D)= n(f+E) o) Sy _p 2

D, ('ffﬂ = a,X}+ j(jﬂ) bz (L) + llj(j+7) ¢, («) 5%_?,1. (5. 31)

We might conjecture that the polynomial form persists for N > 2, It
follows from (5. 28) that only even powers of W contribute to the boson
functions Da (W, j,n) and from (5. 30) that the only odd powers which

can contribute to the fermion functions have N > 2(k-4).

The diagonalizing matrix X(W, j, n) satisfies the constraints

i 1OV XM,(W A

.,
Wearo b J

,’})/QWN} = 0 {'or N < N, (5.32)

where NO is the number defined by (5. 22), This property which, like
the others (5. 28), ..., (5, 31), depends upon the non-degeneracy assumption,
will prove important in the discussion of the behaviour of residues near

W = 0,

By employing the diagonalized form of the propagator (5.15) one
can express the Born contribution to the parity-conserving partial wave

amplitudes (5. 5) in a correspondingly diagonalized form,
(2§ £ (2 [ F (w50 )1)\’\1)3
- D \m(wmlo)b(wm( W (IR,

™ (5. 33)

The vertex functions I’ (W, j, n) are related to the various form factors

defined in Sec. 4 as follows;

(o] I‘m(w,g,q])i:\.?«l) = Z_ Xm'm«,(w,‘»,-,fr]) (ol G, (W, 2 nHNA ) =
T

DGI




= Z )\Uig ‘;‘,f\.’ 4 hﬂ C’ {ﬁl_j—) (O‘F,,(W 0 r)“\ )‘)

Td‘*r"' g 1]314'1?1 LN 13

. - RGN

= 2 oW gq) do o (G2B0E) (o qeonie )
o “3 1o, 7 3 frw)J 13’( 7 N

x (o{ Hrfx'(w, ‘?’- r}')lS'A)(S)ISRL, :52-21> ’

(5.34)

where HT’a' (W, j,n) is regular at W = 0 and unconstrained at the pseudo-

threshold. This formula with a = a, applies also to the equal mass
case, m, = m,, where the pseudothreshold coincides with W =
For the vertex T'(W, j,n) it is possible to write formulae completely
2k ’
analogous to (5. 34) with the exception that the eigenfactor (-}  from

{515) must be included,

()‘3-)\‘*(@(\'\}’1"‘1) [0) = Z (Ashq ] GT'D( W i f))D) (- ) w LT (W ]1”)

Tl
— ... ele (5.35)
The vertex functions I'(W, j, n} are singular at W = 0 if m, + m,,

as has been discussed in Sec. 4. This singularity is confined entirely
o 8%

5 ) whose asymptotic behaviour is given by

~to the functions d

( ) (k¢ iw=e'~1ni) g
1’1;-,}“! Ly A 7 , C"’too-(5.36)

Therefore, on using (5. 14)

R - W *If\,li

du:,'jlj’n 2) (.__...) . W > 0, (5.37)

On the other hand, the off-diagonal elements of Xaa‘ (again neglecting

the index r) vanish according to (5. 32),

! Rl -k'-2') + {h-L-k'e it
Koo (W, 1,7) o () (5. 38)

It is now a simple matter to pick out the most singular terms from the

-34-



sums (5.34), Assuming that these do not cancel fortuitously ~ or
diverge even more drastically if there should be an. infinite number o
them - one obtains the following behaviour:

kak = k-L- [\ 1] (5.39)

\ -
Y‘(W,j,%ﬂ ~ (W)

This result is independent of j and n. It is independent, moreover, of
the range of (k'4') values summed over although, of course, if this range

should be infinite the argument is not a mathematically respectable one.

To summarize,the principal formulae of this section are: (5. 5)which
specifies the Born contribution to the parity-conserving partial wave
amplitudes; (5.8),...,(5.14) which contain the proof of the fact that the
Born term is regular at W = 0 in spite of the divergence of the individual
partial waves; (5.15) which expresses the reduced propagator in diagonal
form,thereby isolating distinct poles defined as the solutions of (5.16);

(5. 21) and (5. 22) which give the constraints to which the reduced propagator
must be subjected; (5.30), (5.31) and (5. 32), giving some general properties
of the eigenvalues and eigenfunctions of the reduced propagator resulting
from the constraints; (5-.33) which gives the Born contribution in diagonal
form involving the eigenvalues of the reduced propagator and a new set of
vertex functions, F‘ra(w’ j,n) defined by (5. 34) and, finally, (5.39) which
gives the behaviour of these functions near W = 0, a result which will

prove important for the discussion of Regge residues in the next section.

6. REGGE FAMILIES

The central idea in this work has been the simple notion that the
poles of the scattering amplitude are contained in the Born term. A natural
extension of this would be to require that the poles of reggeized partial
wave amplitudes are contained also in the Born contribution. It is proposed,
in fact, that the knowledge gained of the hehaviour near W = 0 of the Born

contribution to the partial wave amplitudes, f(W, ], n)Born' for physical




values of j can be extrapolated without significant modification to the
domain of complex j. That is, we wish to embed the Regge poles in
structures like (5. 5) and {5, 33) which must therefore be continued into

the complex j-~plane. The upshot of such an effort will then be a
formulation of Regge poles which embodies a set of kinematical consiraints
which are known to be consistent with Lorentz invariance. One is led

quite generally to the so-called "conspiratorial solution"” of the constraint
problem: infinite families of daughter frajectories whose residues,

intercepts, slopes, etc., . are subject to various constraints,

The first question to settle in such a programme is, what to
do about the bounds k-4 £ J < k+tf ? For fixed (integef or half-integer)
values of k and £ there are only a finite number of values open to j and
there can of course be no uniqueness in the choice of analytic functions
which interpolatel‘only a finite set of points., This difficully can be

circumvenied by setting
and k+2 = j+K {6.1)

where ZjO and K are non-negative integers. Functions of k,£ and j can
then be looked upon as functions of j,,k and j with j taking the values
jO’ j0+1, w., and K taking the values 0,1, 2,..., both sequences increasing
to infinity, We shall therefore postulate the existence of meromorphic
(W, j, n). which interpolate the physical

. T . (4
functions D. ., (W, ],n) and T .
™o b Jgdtk 11)
j values of the functions. DM(W, j,m) and PM(W, i, 1), respectively .
The index 7= £ 1 represents ''Lorentz signature’, the amplitudes of

g
signature 7T being supposed to interpolate the points (-)2 =T,

The emergence of Lorentz signature appears natural in this
scheme when it is recalled, (4.18) (5. 34), that the vertex functions
Fkﬂ (W, i, n have a definite symmetry under the transformation W— -W
at physical values of j,
G (w,z'.\,-g);‘,\‘;a,_.) = ) Lol -, ‘iq}lﬂ‘k)aw“r}\l] 6.2
L 2 ‘

Ky

~

This property, reflecting TCP-invariance, is clearly worth retaining
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in the complex j-plane., We therefore require

‘ | oty o)
(o] jm( S = T Zj (o] T} jm( ,J,iq)i)\,z\z)em(m 2

(6.3)

At physical values of j the function I‘J i+ K(W j, ) coincides with
(W i, n) (I+7T(- ) )/2 where 2k = j+K+j, and 24 = j+K- ior
No such simple argument can be used to justify appending the
label T to the interpolating functions for Dld (W, j, n) which possessthe

more straightforward symmetry

Wi _ W
DM( JJJ n) Dl‘d( JJJ in) . (6- 4)

However, in any reasonable model some account must be taken of

unitarity and one would expect the absorptive part of D to receive contri-

butions from I T" and if these are T dependent the same must be true

of D, "It will therefore be assumed that even and odd values of 24 must

be interpolated by independent functions D}r j+K.(W’ Js rl), T = 41,
0
With these assumptions about interpolating functions,the

diagonalized Born contribution (5. 33) takes the form

(ZJH) (7\37\41 {(W,‘},ri) 39\,)2)&1% =

3 T e ("334‘Fafjfu(W»Jf‘i”"'X"”;}:‘K(Wam)ﬁ‘_}’)

L |
By (¥ 351
(6. 5)

O
Eatd

for complex j. The poles of (6. 5) correspond to the zeros of D'jt j+K(W' i)

which are given by formulae of the type 0

i= (W, ) . (6. 6)
J0
It now remains to discuss those properties of thetrajectory func tions
a:'; (W,n) which are consequent upon the constraints set out in Sec. 5.
0

The terms up to order (Wz) in D{(W, j, n) were listed in (5, 31).



They can be recast in the notation (6.1) to read
oy ‘ T
1‘0‘+K(O)j;rl) = CLD (jo,ji-“-)

o0 (0,500 = n(i+d) a¥(fee) &

1 3%

D e (0,4, 1) OW = 5 (o) #1530 bulgut0 # g (40) (10 6
(6.7)

It is a simple matter, using (6. 7), to solve the equations, D = 0, up to

order (Wz) with the following results:
T T
D(Af’”' (O,‘l’}) = o (Jo)‘ - K »
. < - T
’Od&ax(o,'q)/aw = n (A} FrBT) 530.,2 ,

316(30.‘ (.o, q)/awz

b

ALlg) + (@ a™k+4) B Q) +
G CARSIERY C, 53“ +

# ook ) [ Dy 4 @k R)ET |6,

bb

(6. 8)

where A,B,C,...
a,b,c,...,of (6.7).

are expressible in terms of the parameters

12) |

One is thus led to the following conclusions

1) Regge trajectories occur in families labelled by two quantum
numbers j0 and T . The members of a family, or daughters, are
labelled by ¥= 0,1, 2, ..., and have alternating signatures 'Z‘(“)'K:' If

j,U = 0 all members of a family have the same parity type, n. Otherwise
both types occur. {The quantum number jo labels eigenvalues of the
reduced propagator and must be distinguished from the jO label occurring

on the fields which labels rows and columns of the reduced propagator)’
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2) In a family the intercepts at W = 0 are separated by integers

and do not depend on 7 if j, F0,

3) Only if o= 1/2 can the trajectories have a linear term in W, T hese
linear terms are expressed - for an entire family - by two independent

parameters,

4) If j0 F 1/2,1the quadratic terms are expressed by two parameters;
if jg = 1/2,1,by three parameters, Only if jo = 1 can the quadratic

term resolve the parity degeneracy.

5) In families with parlty doubling (30 £ 0) the lowest term in
aJ « (W, n) which can depend on n is of order WZJO. This suggests that
oboserved parity doubling effects may be explained by assigning jo > 1

to the particles in question.

_ Congider now the properties of Regge residues. They coniain as
factors the vertex functions T(W, j,n) defined in Sec. 5. The defining
formula (5. 34) must be continued to complex values 6f j. It is convenient
1o replace the helicity labels ?Ll and 12 by total spin, S, and helicity,

A = X ~A_,by multiplying in the appropriate Clebsch-Gordan coefficient

1 2
which leads to the formula

(o] r;:jm (W,j.,ﬂ)‘ S)\)

= . . . —_—— n —s—
0 M e (g ) & (5 2
joK “("J[ 0 303 ‘} J
T .
X (O\ Hme,(W,]',q’) ’SA) (6. 9)
where J' is summed over the values j'o, J‘O + 1, . It is therefore

necessary to suppose that the (unconstrained) form factors, ij (W, 3,n),
can be continued analytically in the variable k + £ while keeping fixed
both k-2 = jo

possible to draw some inferences about the small W behaviour of Regge

and j = jO’ jo +1,... K With such an assumption it is

residues.

Firstly, with equal masses, rnl = m2 = m, one has




o = and gh B -aT W | (6.10)

1 z 2 vy
so that (6. 9) reduces to the form
4 :
(Glr.;'oj;p((wqyn))SA) = ‘
¥ 1-$1
ELs - * o
=Y x* W) TS Ty Yy ot (W, 1) SN
T Xﬂai“ﬁj’ojw( ) dtl]M"‘)‘( ) ) Ol ];6.1}1)

and therefore, taking account of the damping behaviour of X near W = 0,

igmig] Hle-w
i.e. X~VJ 0 Ol ‘ \ , one finds in the limit 13),
T . ‘J’o]'H{' T i |
O 05 1N = diiasy (127 (O1H; 1y, (0.50)33)

which means that the residue at j = ajT - K is fixed in terms of the

residue at j = a?."

This is just the rgsult of Toller. Clearly it should
be possible, at lgast in principle, to uncover the form factors H{W, j,n)

by measurements of I'{(W, j, n) in the neighbourhood of W = 0," Perhaps
more interesting would be the measurement of the mixing angles X{(W, j, n)

which should be independent of the particular external particles used.

Unequal na ss vertex functions cannot be analysed in such

-a,+ ix
detail, This is because the singular behaviour of d(ﬁ-—-—aéz—-——) compe sates

the damping in X for arbitrarily large K' which must therefore be summed
t0 «0. The small W behaviour of the sum is, however, barring dynamical

14)

accidents, the same as that given in (5. 39), viz
e o1

I T, (w5, 1s2) ~ ) (6.12)

‘303+K

It could even happen that this vertex vanishes at W =0, i, e.,

JHe < gAY (6.13)
15)

Such an eventuality has been postulated by MANDELSTAM for

the pion trajectory in order to ma ke it decouple at W = 0,
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7. ASYMPTOTIC FORMULAE

The results obtained in Sec, 6 can be employed in the derivation
of high-energy formulae for scattering amplitudes, it being assumed
that the Born term dominates. The three mass configurations, m, = m,
and m g = my ({E-E), m, = m, and m, # w, or mlf- m,, and mg = my
(E-U), ml% m., and m_ ¥ m, (U-U) behave differently and must be

2 3
16
treated separately. In addition the limits )s ~» o, tfixedand s < o,
GS fixed are quite distinct and it is necessary to specify which is being
considered. For simplicity of illustration we shall confine our attention

to the particular limit s —» oo, 65 =0,

It is a well-known fact that the condition GS = 0 implies 9t= 0
{or 7) except in the E-E cor}figuration where Bt varies with s. This
means that the functions, dgul(—et), can contribute to the large s
behaviour of the partial wave expansion only in the E-E case, On the
other hand, in the E-U and U-U configurations at least one of the vertex
functions f‘(t %, j, 1) is singular at t = 0, But it is just for these cases
that the equation 85 = 0 mapst=0into s = . In fact, the value of t
for which BS vanishes is given by

2 02 Y2 \
t (- )Yy o, 4 O(_L)

z

(7.1)

5 s

for large s. In the E-E configuration Bs = 0 of course gives t = 0. At
BS = 0, therefore, the vertex function gives, according to (612), the

asymptotic factor

| Sj.-HC—lan-.-[Mi , E-U
A | i+c-| oI

Dan () ~(p ~ :
Joj‘“( N $# PRSIy
- (sY) ¢ , U-U

N

(7.2)

The familiar Regge behaviour arises as a result of the operation
of two distinct mechanisms: in the E-E f:onfiguration ithe angle Gt
increases with s so that the functions dJ(Gt) become asymptotically
proporticnal to sj while the vertex functions tend to constanis; in the
E-TU configuration Gt = {), one of the vertex functions tends to a constant -

- . e Lip~ LM
while the other (at the unequal mass vertex) yields a factor s
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in the U-U configuration @
1 . .
(77 Ho 1ML,

¢ 0 and each of the vertices yields a factor

The first step in obtaining the dominant high-energy term is the
standard one of replacing the sum over partial waves by a contour
integral in the complex j-plane. The diagonalized Born term (6.5)

then takes the form

B fael T [ D20 BAD,

. 44T et ‘
= Z jdé + e i dii (W“et) .
N7 Jo® zsinrr(J—Ja) A

'/z N L
Q2 T7 L 0 DRCITL (4 3 1)

:DJ 3+n ’3 T’)

{7.3)

where A = ?L 7\. and A! = ?L ?L4 (The sign factor (-)* 790 has been

absorbed by wrltmg (- )'] J dilk( 6 ) = (- )J J)L')L(Wuat)')

The next step is to open up the contour and retain only the polk

contributions. These poles are given by formulae of the type

1
j= a- &k +0(t?) (7. 4)

where a, denoting the intercept at t = 0 of the parent trajectory, depends

only on jO and 7 .

It follows that the leading term as s —» ® corresponding to a
Regge family with given jO and T is given by
1t {(X~X) o~ F-¢

1+ Te : @ J
2 ST («- ]D) (A

-l Al . E-U omU-U
| (7. 5)

Since et = 0 in the E-U and U-U configurations the residues B(A) must
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vanish for these cases unless A = A", The forms {7.5) were obtained
7
first by TOLLER 3), COSENZA, SCIARRINQO and TOLLER )
17
by SAWYER ).‘

and

It must be emphasis ed that the results (7. 5) exenplify asymptotic
forms at the fixed angle, GS = 0. Inthe E—U and U-U configurations
they have the eccentric feature that all members of a Regge family
contributé to the léading term. In the E-E configuration only the parent

(K= 0) contributes.

Different asymptotic forms can be obtained by taking the limit
8 = oo with t fixed and then, in the leading terms so obtained, letting t

vanish. Here the s-dependence comes out of the functions

L}

: d
! zst

i Loy - | e
AA t [(t - ml)l Xt- lra1+wz)‘}(t ~( sy ¥ Xt ‘(“Ty‘ “y )) )]55

(7.6)
which, when the limit t = 0 is approached, take the forms
: s , E-E
1 £yd
dyy o) =~ (st ), ; E-U
(St) ’ U-U ’ (7.17)

Before the limit t = 0 is taken the dominant term is governed in all
cases by the parent trajectory which yields the factor s7 . However,
in the E-U and U-U configurations this factor is accompanied by a
corresponding ta/2 or t4 which diminishes its importance as t is made
to vanish. On the other hand, the unequal mass vertex functions

-at ljo' { l”

1 .
contribute factors (t%) which must be taken into account,

The contribution of the daughter, k, to the asymptotic form thus contains

the factor
-k [2o-I1M] ko a-g | |Jo~idifok
5 to s yv
_ v , E-U
o~ % 1o~ 1AL &} - | -
Kol t/;lg P+ 4 o1t -k -

(7. 8)
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which is seen either to vanish or become singular at t = 0 except for a

particular daughter given by

S L T St I~ &

K o= the-tl e e, U-U
(7.9)

Thus it would appear that the contributions of the parent and a certain

number of daughters are extinguished at t = 0. The singularities of

the contributions coming {rom the lower daughters can be ignored

since these must be compensated in view of the regularity demonstrated

in Sec. 5. Hence the leading term in this limit is given by

- NP -
DY T CE-v

- g -1 XY
AL - 1o~ |
SD{ 2.“0 l>\” 2'\ e , U"U (7. 10)
being in each case the contribution of a particula r daughter.(In the
U-U configuration if the & specified by (7. 9) should be half-integral
then one must make the replacement Kk - & + % since the most singular
pari of one of the vertex functions cannot be operative in this case, A

corresponding modification of (7.10) is implied).

It may be noted that the forms (7.10) with A = X' reduce to {7, 5)

which correspond to a different limiting procedure.
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APPENDIX I

THE CLEBSCH-GORDAN COEFFICIENTS

Since the finite-dimensional representations of O(3,1) can
be rrﬁde to correspond with the unitary representations of O(4) by means
of the Weyl trick and since SO(4) is isomorphic to SO(3} x SO(3),it is
possible to construct the Ciebsch-Gordan coefficients of O(3, 1) out of
the well-known SO(3) ones, The proper subgroup SO(3,1) corresponds
to SO(3) x SO(3) and can be dealt with quite easily. The incorporation
of space-reflectiomscomplicates the problem somewhat and will be

considered afterwards.

The basis vectors of the product of two irreducible SO(3)

representations couple according to the rule

\31 ", 32 ™y = %‘ ‘j, oy ,m> <jml 3,m,,321}))_> (1.2)

where { jm| jlm1 s jz m,, > denotes one of the usual SO(3) Clebsch-Gordan
coefficients. Likewise the basis vectors of the product of two irreducible

S0O(3) x SO(3) representations must couple according to the rule
“21’01 SRR E(:z E7."(2)2 > -
=€) AR LB A Ry Chid by CAALEN, Ao hyd

where the labels k, k{£,]) are the J and Jz labels referring to the

left {right) factors of SO(3) x SO(3). The phase factor ¢ will be

(1. 2)

determined when space-reflections are brought in, It is more useful

to employ the 80(3,1) : basis | kljm > defined by

klymy = ) RSAd Che A Jqwd> (L 3)

Le

Transforming (I, 2) to the new basis one finds
\E‘£1j1in1, leﬁzjzanD = £ Z | E1 ?1 L;z‘pz_; L’ﬁm) <HHMJ hfﬂli W, )&2’0sz2 I\12>(I.4)

where the Clebsch-Gordan coefficient <kﬂjmlklﬂlj1ml » kL 2jzrn2 >is




given by the sum

i 5. "} / aom L ; =
CRign [ &digon, kbpmp =

= € Z <3’m['fuc’ €2> ki ‘E’_‘K“ ;‘;,k;)-(f}ff,),,f_;jz} x

WA

<h| Ky ?l;\I ‘Jlmi> <€ % Pz >‘z lﬂzmz>
= <k 63 g ¢ Gis &, {;:&> <3 'mfél'm, , :,:,'mz:) (1. 5)

The reduced Clebsch-Gordan coefficient {(k4£j | klﬁljl s kolod, > defined

here can be expressed in terms of a 9-j symbol,
A
R Yers

<k;§i|§k1§1jqﬁszljz>= 6[(&?“@)(29“)(2_]'1“)(zjﬁq)]ﬁ ﬁzgzjlg }, . (1.8)
h L j J

Of particular interesti for the purposes of Sec. 3 are the coefficients

with k2 = £2 = N/2 and j2 = 0. They reduce the (-j symbols because
( R‘ (l T (_—)hﬁ T +NA h - .
Ny NSO = - 1Yz \ r‘..“ J *' (1. 7)
R & T J E("—ﬂ‘)(N-H))i AR ey -

The formulae (1. 5) and (I. 6) summarize the coupling properties of the
finite~-dimensional irreducible representations of SO(3,1}), Consider now
what must be added to them in order to assure invariance under the improper.

transformations, It is sufficient to deal with the space-reflection operator

P defined by
?H(/(J m)- [f&ém) elTrj \ f{#,{ (1. 8)

and

FlEzgmy= 2l d e wedog 0wy

since any improper transformation can be expressed as the product of P

with a proper one. The representaiions of SO(3,1) with k = £ = n/2 carry
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an intrinsic parity, + , and require no extension in order to represent
the full group O(3,1). The representations with k f £ must be doubled
in order to represent O(3,1). It is convenient for some purposes to
employ a basis which diagonalizes P. One such is defined by
. m - ¥ i
o Ragm) o+ Nlkgm)y  R>¢
‘ﬁ i\l\t)’ﬂ”ﬂ‘i> - ;
| R (L. 10)
niklsad> 4+ 1Lk ’
N ¢ i > 3 W‘> , k<e

where n = 1, The states so defined are symmetric in (k,£} and it

is helpful to adopt the convention k> £ , On the states (I.10) one finds

POy gmy = | (RE) qym) Y\eiﬂj (1. 11)

If the Clebsch~Gordan coefficient (1. 5) is to be invariant under
improper transformations as well as proper ones, it must satisfy the

condition
<R33'm|f1=€|ﬁlmi R & 31‘”‘17 = ‘"ﬁﬁa:-j <£kﬁahlf‘é'»}"*“'e"h"}za‘z> (L.12)

>4, k,> £,, while if, say, k, = £_ = n/2 it must satisfy

k> 4L, k> 4y, kg > Ly, 2~ %y

1

ik 5 sy = £ @ it 32 g w19)

22y

where + is the intrinsic parity type of the representation D The
reduced coefficients defined by (I. 5) are subject to the same conditions,

Using the symmetry of 9.-j symbols

( hl £, :}I _ fl ka 1! ( )k'mz*k*fl"’{z*hj“‘],*g
#' R L g 4Lk, & , (L.14)
VRO Lok g

one can deduce that the phase factors €(k klﬂlkzﬂz) entering the

definition (I.6) must satisfy

f—< +!€2-DR-tf{1*g -&
e (kb Ak, f) = c(TRA K by k) () Z

(I1.15)

corresponding to (I.12) or




4 R-—-k f—-t\.',
EREAG WY E) = x e(erakmmt) (L6

corresponding to (I1.13), and similarly for the other possible situations.
There are many ways of choosing the phases to satisfy (I,15), (I.16),

etc,, but in the absence of any deeper criteria we shall adopt the following

scheme which is the simplest we can think of.

_L .
Casel. k%4, klrﬂl, kz#.@z

k +k,- k
elhk L k2, = () (1. 17)
Case 2. k#4, klaéﬂl, k, =4, = n/2
o
(-)F“T'-fq , k> A
(&X&ﬂ_i%__%.i)_—, \g+f2_’:_f( ,
a5
+ ( , k¢ (L 18)
Case 3., k#4, ;1=£1‘n1/2,k2=_£2_“=_n2/2
Np +Tafy - 5
| (~ k>4
E(R{’ h%?!%q“ﬂ}/ln%%) = ) ,
ey, -R
) k< (1.19)
Case 4. k=£=n/2, k= 21'= n/2, k, =4, = ny/ /2
H1+H7_‘H
=) z CoL T Y
goo#n i, W, 1Y
TN ,7 7 )=
L 0 JICRTHA
(I. 20)

The Clebsch-Gordan coefficients have the symmetry

R4k, -R 46,46, -
\h(.éul ff‘t 13 "’11>R1 ’m1> <hf}ml{k{ JI-ML ﬁ513%> (=) kz +846 E

(I. 21)
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which can be deduced from the properties of 9-j symbols and
O(3) Clebsch-Gordan coefficients. For the reduced coefficient

this becomes

. ., o Q,Jh +}£4PH(H(+5+I|;+].
e Mg, k0> = <KGlE Gy, G0 o
(I.22)

Another useful symmetry is given by
REHAGY kb1 Y = <kep, kG e 002
. [(zkﬂ){zhl)('lﬁ)]yl E(RERG by0,)
GG ))+) | e(Rt, ke ,0)
(1. 23)

A1l of these coefficients are of course real,

The Clebsch-Gordan coefficients employed in Sec, 3 refer to the
basis (I.10) which diagonalizes the parity operator. The reduced

coefficients are defined by

<(?’21}t\j‘ml(ﬁ1f1) 1113'1in1,(§ 9) ' , M Y =

:((EJZ)M“(&&)\\JP (Pzz 1) )N, ]2> (]n\[ i, g,m )

(1. 24)

They can be expressed as linear combinations of the 9-j symbols, The
various cases must be considered in turn. Since the coefficients are

symmetric in & 2 y 3 it will be sufficient to exhibit them for k 2> £,

k 24, ky 2 4,

Casel., k> 1, k1> ﬂl, k2>'£2

Using the formulae (I.10} one finds
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Vi KGRyl l)mg, &I > =
= <1’{EJ” kie'a"h*{132> + <€ﬁ3 i klélj,,hl(29)>

o UBE LR Y + 1, CRE kG, Gk gD

where use has been made of the fact that they vanish unless
41 + j; - j
- = 1,25
In terms of 9-j symbols then

RNl iy Ly (k&) 0, =

—
—

L
\2

kz eIZ J;
R @ y
bekt { Ry Ifl & £ +k,-ke 4Lk, b4~ k, £ 1
+ f](") {kl ¢, 27} + 7]‘[‘) " { h). el %‘; + '()2 (")| : . Sﬂz‘ ﬁi j: )
2 & 4 k£ 3 { k £ i J
(1. 26)
Case2. k>4, k>0, k2=£2=n/2
(ROl ( | (k! D, Jdio (22 f}’)l 7=
= <Hj|l%1f11‘1,ﬁz% ", jz 7 Il “j H“iv%’f'\ 527
. 2 Rt 2 2-k (£1 L j1 Oyl -’&E& %\' )
= [(1%1)(2}241)(2]1”@ ) ];2 j;_ ’Hl ©) lz z Iz
k R 4 A
(1. 27)
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Case3. k>, k =£1=n,/2, k2=£2=n2/2

i

R )y, (21 0,) 4>

= RGIS 2, 2l

Vi
= L {(zkﬂXzCH)2J.H)f13z+’)].é gk x
2
X ﬂ.; g} J'
2 F &
R (L. 28)

oM

oo, n .
LA A (A IR ISR AT
22 1/

(I, 29)

It is of course assumed that the parity condition (I. 25) is satisfied in

each case, Otherwise the coefficients vanish, For case (4) there _&s a
i1t

stronger condition, The 9-j symbol in (I, 29} vanishes unless (-) i) =1

and therefore the couplings (I. 29) can be made only if nnn, = 1.

The cases of particular relevance in Sec. 3 are those for which

ky =2y =N/2, 4,
6-j symbols as in (1. 7). The corresponding sumphfled versions of (I, 27),

=0andj= j1 = J where the 9-j symbols reduced to
(I. 28) and (I. 29) are as follows

Case 2. k>4, k1> .El

(R d | (ki) T, (—2—-2'3 +}.0) =
k) (2l 12 kedeT (k4,7 _ff. k, T
= IR () Mﬁif'{!wl U k¥ (L. 30
-5]-
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Case3.ﬂ k>£, =2 =
17 y/?

— I

((H)V\I”('—:%)n], (%;)*‘» = L > (N+D |
(L.31)

| -(Z‘H’l) (224’*) Y (-)kql-tT {—:—. -E.L T?

Case 4. k=2=n/2,k1=‘1 1

=2

z

0
7
o
ot
Wi e
wid N

:r_}
N
5 A (1. 32)
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APPENDIX II

CONTINUATION OF TWO-PARTICLE STATES
The two-particle states are characterized in general by six

polar angles a, 6 ‘301 and a, 0, 92 which are related to the components

of py and P, by formulae of the type (4. 3). The subset of cenire-of-mass

states which are subject to the conditiors
pptp, = (W, 0,0,0 (IL1)

are characterized by two angles and by W, The six polar angles are

constrained by four relations

W = m CFLOI1 + m, ch oy (H. 2)

0 = M shojcos, + My Sha, cos,

(II. 3)
O = ke 36, cog, + wy Sho, S, CO0,

(IL. 4)
0O = M slnoq SmQ,Sim'O' + 4-u?_shfxl Sm@ts;u‘fz

(11. 5)

which can be solved in many ways. The simplest approach is to take

0 = 8. = .
92

1 (I1. 6)

f = 501 = 3’211:71' (IL. 7)

as two independent variables thereby replacing (II, 3), (II. 4) and(Il. 5)
by the condition

O=m S\‘\D( - m Shﬂ(
1 1 2 2 (IL. 8)
It is then possible to solve (II. 2) and (II. 8) for al(W) and az(W) up to
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multiples of 27i and an overall sign. The solutions can be given in the

form

T

Wi m?® - m,

cha, =
Zm W
2 1 i

ch‘o(1 = w'm‘;m‘ (1L 9)
2,

Of the conditions (4. 4) neceasary for the unique specification of a boost

N ¢ Imax £ T (11. 10)

0 \{ Rﬂ. X £ oo . (II. 11)

It is always possible to impose the restriction (II. 10) on solutions of (II. 9),
, L

However it is possible to impose(Il. 11) only for ,Wl p3 \mlz - mg ,L .

The real part of @ (crz) vanishes on this circle if m, > m,, (m1 < mz}

and becomes negative inside it, This effect necessitates the exercise
of some care inthe construction of boosts,
The boost operators appropriate for two-particle centre-of-mass

states are given as follows;

e‘i?J-['L e—iB\TM ei?Ill e-"'«1(w)'];3 s 29.“1}0
U(Lﬁ) = .
e_i_(‘-fx'n) e-'l(ﬁ“wﬂ)l},, ei(b"i'ﬂ')\nz eid,(W)J:)j, , 'Pao(1 <0
(IL. 12)
w,) - AT OO T (W g,
e-i}fxz e-'le:fs, . e"ff:ru eixz(w):‘-os R <0
| _ ) 2
{1I. 13)

-54-



in terms of the angles defined in (II, 6) and (II. 7). Corresponding

to these boosts the centre-of-mass states take the form

8y (2) _
[Py - Py > T UL, ) UL ) RO

o 2 T
e-i‘i’xz e-iB.T;. e-w I; + 10, J T "99 2

)\qnh?): Racty > O, R‘dl 20

. ) . .
T 10T i, CringTor ol 923, 0,7, R, <O, Rl %0

Vo3

(27

tffJ'—,_ -LBT;, e-w( J- o3 +wt J-

etffml }A,,)\:,_) [2,0(‘>/0, anrz.{o

)

(I1. 14)

Defining the quasi-states lW 0y JLIJL2> over the entire W-plane by

2 w1y AP Y
We‘-f)\,)\2> _ e_-llfIn- e]u e~L0( J 03 +N2 3—03 l'ﬂ']}[ ’A X > L( 1™

(11.15)

one can express the formulae (II, 14) in the form

+

IP111”P1)‘27 = \Wa‘flﬂz> , IW, 2 Iiﬂ,l-m;lll

SiHh Ay
e

1
A B2 = [Weg-220 () W) | mtem? ) m>wm

For—

Il

: —)«l 2
HJ1A1! 1)1}\1> lwelfh’l-}z> (")Sl 621 Iw\<'m -WI ‘ ’ m|< WIZ

(11. 16)

The quasi-siates are by definition continuable in W .and therefore the

expressions (II. 16) constitute the rules for continuing two-particle centre-
2 ]
of-mass states across the boundary |W| = \mzl - m, ‘i .
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umfw(LAP).-_ Diwrw () W DZE (1)
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