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ABSTRACT

The Fried-Jin derivation of the condition Z = 0 is re-examined

making explicit use of the HNZ construction of a composite particle field.

This leads to another condition for compositeness originally due to

Nishijima. The latter condition is shown to have important implications

concerning the vertex renormalization constants and the mass shift.
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CONDITIONS FOR COMPOSITENESS IN FIELD THEORY

I. INTRODUCTION

Nowadays there seems to be an increasing interest in the Z = 0

condition for compositeness, after its rather obscure (in the sense of

having been largely unnoticed) start more that ten years ago. Until

very recently the condition Z = 0 was considered only within the context
2)

of Lagrangian field theory but after a brief letter by FRIED and JIN it

has also been studied within the framework of the "axiomatic" approach.

In this context there has been a great deal of discussion concerning
2)

i) whether any meaning can be attached to the FRIED-JIN derivation of

the JOUVET condition and ii) whether any other additional condition for

compositeness can be formulated.

This note is an attempt at answering these questions. To this end,

some necessary basic assumptions and conventions of notation are first

given in Sec. II. In Sec. Ill, which is essentially based on the LSZ form-

alism, two conditions for compositeness are given, the JOUVET condition
3)Z = 0 and the NISHIJIMA condition which, in Lagrangian field theory,

is equivalent to saying that the self-energy of the particle concerned is

divergent. Here the key tool used is the HNZ construction * ' of a

composite particle field. The two conditions mentioned above are, of

course, only necessary conditions; the important point, however, is that

both can be justified outside Lagrangian field theory. This point must

be emphasised here because the relevant arguments in Ref. 2 are based on

Ref, 3 which explicitly deals with Lagrangian field theory.

In Sec. IV an explicit Lagrangian is used to illustrate the neat
4) 5) 6)

analogy, if not equivalence, of the HNZ construction ' ' with the work

of BROIDO and TAYLOR. ' Further, an additional justification of the

Nishijima condition is given and it is shown that it implies that the com-

posite particle, b_ say, must satisfy the condition
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if the particle b js the limit of an elementary particle with renormalization

constant Z . The symbol Z stands for the vertex renormalization

constant. Finally, the conditions under which relation (I. 1) holds when
2

Z vanishes or Z 6b diverges a re also studied. Assuming that particle
2b has two constituents 1 and 2 it is shown that Zq 6b is necessarily

divergent in the case when particles 1 and 2 have at least one quantum

number different, whereas if this is not the case, any one of the two conditions
2

can be satisfied. In particular, if Z 6b is finite or vanishes, then Z
8)itself must vanish, as was first conjectured by SALAM.

Only stable, massive, neutral and spinless particles are considered

throughout.

II. BASIC ASSUMPTIONS AND NOTATION

The axiomatic formalism of Lehmann, Symanzik and Zimmermann

is assumed. Further , it is postulated that to every particle a there can

be associated one and only one field operator <j> (x) , called interpolating

field, which satisfies the canonical commutation relations

[6(x) , <My)J _ v = 0 for all a, b,
a D xQ - yQ

and
- . ~ - l

It is well known that if the T-functions

Z a b ( x r . . x n ) = < o | T ^ a ( x 1 ) . . . 0 b ( x n ) / o > , (II. 2)

a re given, the dynamics of the theory is completely determined. Conversely,

if the off-shell S-matrix is known the ^-functions and the field operators

themselves can, in principle, be determined.

The Fourier transform of the £-functions is
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9)
and these new functions have a unique decomposition into connected

parts
= 6(4)(Ek.)

V i4)(Ek.)

which, diagrammatically, is written

6u\ O
O + . . . • (ii.4)

These rj functions have no 6-singularities and in perturbation theory they

correspond to infinite sums of connected Feynman diagrams. Co-ordinate

space n-functions can be defined by an inverse Fourier transform.

If the system of two particles 1 and 2 has the quantum numbers

of particle b then the irreducible V function

j' ' n =
J
b

1

2

1
-

2

(II. 5)
2 2

has no pole at (k + k ) = b . In eq. (II. 5) the notched line 1
denotes the b-particle propagator and ]£) is defined by the equation

n = n

III. COMPOSITE PARTICLES

It is natural to expect a composite particle to be logically depend-

ent on its constituents. Mathematically this has been made explicit by

assuming that the interpolating composite particle field can be expressed

*) This diagrammatic notation has been introduced by SYMANZIK and developed by TAYLOR.
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in terms of the interpolating fields of the constituents * ' *

In what follows only the simple case

tfb(x) = X^fx) *2(x) (III.l)

is considered. In this equation the local product is defined by a very

specific (though not specified) limiting procedure, namely

b /To % r (m-2a)

where

V X ' e ) = * l ( x + °2?) 0 2 ( x " a i ? } ' "l +°2 = 1 ( m* 2 b )

and

FK(5) =<0U b (xJ ) |K>

o (in. 2c)

The ket | K> is a one-b-particle state (as defined in Ref. 7) of momentum

K , and the limit is such that (ft (x) does not depend on it. The limit

X-1 = lim F (?)

K
K2 = b2 (HI. 3)

does not necessarily exist.

The way in which £ approaches zero may be crucial for the

definition of $ (x) . For simplicity it has been assumed that there are

selection rules which ensure that

<0U1(x)*2(y)j0> = 0 . (III. 4)'

The postulate given at the beginning of Sec. II ensures that the field

<b (x) is the only field associated with the particle b and must satisfy the
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commutation relations (II, 1). In general, however, a commutator of the

form

x y

with two arbitrary particle fields, ^ and <£ , is not a C-number and

hence the commutation relations become a condition for compositeness *)

in the case of the field <j> defined by eq. (III. 2). This condition has to

be imposed using the explicit limiting procedure of definition (III. 2),

equal times _ - 1 (3)
- l Z 3 6

Now, as this is a c-number it is equal to its vacuum expectation value.

Taking first g = V = 0 the "equal times" condition is exactly x - y

and the previous relation reduces to

after the limit is exchanged with the vacuum expectation value operation.

Hence

l im
3 " g-> 0

F K { € )

(III. 5)

r?-> 0

As the function A (x) is known to diverge in the origin at least as l / x ^

if the function F (£) stays finite for §^_>o the condition Z = 0 is

guaranteed without further analysis. If, on the other hand, the function

P1 (?) diverges at the origin, as claimed below , the two limits

{!•-••> 0 and rj — 0̂) must be taken simultaneously; otherwise the first limit

^ Thus one of the arguments given by BRANDT et al. ' against the FRIED and JIN derivation of Z = 0

is explicitly excluded.

**) In fact one has to set E = 7j before taking the limit operations outside the commutator.
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makes expression (III. 5) diverge before the denominator in the right-hand

side does.

3)NISHIJIMA has given very good reasons to believe that the function

FT (?) diverges at the origin and this makes A in definition (III. 2) equal to

zero, contrary to the view maintained by BROIDO and TAYLOR. A

vanishing A is not paradoxical, since the interesting limit is (III. 2a) and

it is well known that products of field operators at the same point are highly

divergent.

To support the claim that F (§) diverges at the origin,a slightly

modified version of Nishijima's arguments is now given.

The uniqueness of the field 0,(x) implies that

n =

is equal to

l i m
n

V K
K2=b2 ;conn

where the subindex "conn" means "connected part of". Using relation

(II. 5) the numerator in the left-hand side of the last equation can be de-

composed into two parts, yielding.

= lim

Roughly speaking,this is an equation of the form

B + FA

(III. 6)

A =
F (III. ?

which, for A and B different from zero, has as the only solution F =

and thus
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8 )

This relation will be called the Nishijima condition for compositeness*> It

must be remarked that in eq. (III. 7) two different quantities were denoted
3)

by F ; this is justified because

K2=b2

which in the loose notation of eq. (III. 7) means that this quotient is "one".

By a model-dependent analysis it is also possible to prove that F~,(£)
3)

diverges logarithmically at the origin and therefore the condition Z = 0

in eq. (III. 5) is ensured.

The Nishijima condition eq. (III. 8) is even more direct in Lagrangian

field theory because F (0) f

F r , (0) = < ( K o o , ( i n . 9)

represents the self-energy of the particle b_ and self-energies are known

to be divergent in all known models with the exception of the photon in

Q. E. D. This is precisely the reason given by Nishijima for claiming ihai

the photon is not a composite particle.

To summarize, the two conditions for compositeness given in this

section are

Z = 0 (Jouvet condition) (III. 10)

and the condition (III. 8) which,when inverted and with the help of eq. (III. 'A),

yields

X = 0 (Nishijima condition) . (III.il)

v) Notice that in simple field theoretical models, like the Lee model, the irreducible part B in eq.(III.7) is

identically zero and therefore the Nishijima condition cannot be derived.
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IV. EXTENSION TO LAGRANGIAN FIELD THEORY *>

In this section a composite particle b is assumed to be described

in a consistent way as the limit of an elementary particle h with renormal-

ization constant Z« set equal to zero. To start with, the initial Lagrangian

f 0) is

y free (i)

l ,2,b

There are at least two ways, not obviously equivalent, of defining the Z = 0
o

limiting theory: one can either take the limit in the equations of motion
corresponding to the Lagrangian (IV. 1) or take the limit ©c (Z = 0) and

o

afterwards derive the equations of motion from this new Lagrangian,, The

equations of motion for the particle b derived from the Lagrangian IV. 1)

are

O n » ^ >2

(IV. 2)

7)which in the l imi t Zo - • 0 give

and

I
—'— = 2 + * ^ O - * — (IV. 3)

iZ36b

with

lim g Z l
and

0 = i g Z1 . (IV. 5)

''"' Concerning the description of a composite particle in Lagrangian field theory see, for instance, Ref.7 and

papers quoted therein.
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From the second of the eqs. (IV. 3) it is easy to show ihat

K<o o 9 = 1 . (IV. 6)
K = hl

This equation immediately proves that X , as defined by eq. (IV, 4), is

identical to the X defined by eq. (III. 3) in the previous section. This is

an indication that the HNZ construction, eq. (III. 2), is equivalent to the

formalism given in Ref. 7 and therefore that Broido and Taylor are wrong

when they assume that X must be non-zero to allow for the existence of

the composite particle. Only in simple models where the self-energy is

finite and there are no irreducible diagrams is it possible to violate the

Nishijima condition, eq. (III. 11).

Since g , in relation(lV, 4), is the physical coupling constant, the

vanishing of X implies condition (1.1), which in turn means that either

Z1 = 0 (IV. 7)

or
Z 6b = «3 (IV. 8)

Before discussing these relations it is convenient to consider the

second way of obtaining the limit Z = 0 „ as explained below eq. (IVO 1)B

It is very easy to show that the Euler- La grange equation for the

field $ coming from the Lagrangian <Z = oT(Z0 = 0) is
b o

(IV. 9)

that is, eq. (III. 1) is re-obtained. Now, using this equation and the de-

finition of the propagator of the particle b , i. e,,

« = <0 |T tfb(x) ^b(y)|0>

it follows that

from which two important conclusions can be drawn. First, in momentum

spaco it is possible to cancel the explicit propagators of eq. (IV. 10), thus

obtaining the relation
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(K = 1 (IV. U)

off-shell. This is a remarkable result in that it contains eq. (IV. 6) as a

particular case. However, as the left-hand side of eq. (IV. 11) is a function
2

of K and no

to accept that

2
of K and not a constant as the equation suggests, the only alternative is

= X +f(K)

with \H> 0 . This is again in favour of the Nishijima condition, eq. (III. 11),

and the fact that in Ref.7 the possibility X - 0 was not supported can be

understood as due to the fact that the authors did not realize that eq. (IV. 11)

can be obtained (although they almost obtained it). It is emphasised again

that in simple models eq. (IV. 11) can perfectly well be a finite equation.

If the two limiting procedures a re not equivalent the conclusions

are the following. F i r s t , it can be shown that, except for the propagator,

all Green functions coincide in both limits (compare eq. (IV. 3) and eq.

(IV. 10)). This, however, is self-contradictory since the unitarity relation

for the propagator is

2
Im A' (s) = p(s) | TA1 [ + higher Green functions

and cannot be valid for two different propagators and the same higher

Green functions. Hence, only one of the two limiting theories could hold.

Postulating now that the two limiting procedures which make Z,.
7) 4

vanish define the same composite-particle theory , then a second con-

clusion is obtained by comparison of eq. (IV. 10) with eq. (IV. 3),

Z 3 6b2 = ^ , (IV. 12)

which is eq. (IV. 8). This postulate seems to be a requirement that the

composite particle theory be a well-defined one, or at least that the limit

be well defined. Some simple models do not give the same result in the

two limits, but this could simply be a peculiarity of the models, since

they always violate at least one of the general principles of field theory.

Finally, when condition (III. 4) is lifted, the derivation of eq. (IV. 10)
2

jives an extra constant term which can be identified with i/Z ^b . In such

See Ref. 14 for peculiar results that can be obtained if this is not postulated.
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a case eq. (IV. 12) does not necessarily hold but then condition (1.1) requires

that rr - n

that is, eq. (IV. 7) is now obtained. This condition, therefore, appears

related to the non-existence of selection rules between the constituent fields,

whereas eq. (IV. 12) necessarily holds if condition {III. 4) is satisfied, that

is, if such selection rules do exist. It appears that the fact that the re-

lative nature of the constituents could fix the vertex function renormal-

ization constant as well as the mass shift has not been realized before.

Physically this is a perfectly acceptable situation and it is desirable that

this line of investigation be further pursued.
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