
IC/68/14

t#)
INTERNATIONAL ATOMIC ENERGY AGENCY

INTERNATIONAL CENTRE FOR THEORETICAL

PHYSICS

REGGEIZATION OF QUARK NUMBER

R. DELBOURGO

ABDUS SALAM
AND

J. STRATHDEE

1968

PIAZZA OBERDAN

TRIESTE



.. ..Pt-iw..—- i t - K -



IC/68/14

INTERNATIONAL ATOMIC ENERGY AGENCY

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

REGGEIZATION OF QUARK NUMBER f

R. DELBOURGO *

ABDUS SALAM * *

and

J. STRATHDEE

TRIESTE

February 1968

To lie submitted for publication

* Imperial College, London

** On leave of absence from Imperial College, London



ABSTRACT

In earlier work the reggeization of approximate dynamical groups

has been presented as a calculational method for classifying particles

and evaluating S-tnatrix elements at high energies. In continuation of

this work, a specially simple model is considered where just one invariant

of the higher U(6) x U(6) approximate symmetry, quark-plus-antiquark

number is reggeized. The resulting classification of particles

(according to their quark content) into exploding supermultiplets of

spin and unitary-spin and the formulae for computing S-matrix elements

are given for high energies where an exchange of an N-plane trajectory

in the cross channel may be expected to dominate the scattering. The hope

is that this analysis may help reduce the large number of parameters now

used in Regge theory by combining Regge ideas with higher symmetries.

The type of Fourier expansion on a higher approximate symmetry group

and the Regge technique used here for evaluating asymptotic

behaviour may possess wider applications than the case considered in

this paper.
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REGGEIZATION OF QUARK NUMBER

1. A REGGE MODEL OF HIGHER SYMMETRIES

The Regge method in strong interaction physics originated in

the study of the S-matrix for complex values of angular momentum,

and has recently met with a certain number of successes in describing

elastic and inelastic two-body reactions. Even where it has succeeded,

however, it has been necessary to admit a large number of residue

parameters with no guiding principle to limit their arbitrariness. A

similar situation prevailed in the absorption model description of low-

energy scattering; recently, however, higher supermultiplet theories

(and in particular U(6, 6)) were used with fair success to constrain

strongly the values of the coupling constant parameters that entered

into the Born approximation. One may expect that a marriage of super-

multiplet schemes with Regge theory would be desirable in that it may

suitably reduce the number of Regge parameters. We shall describe
2)

below one attempt at obtaining these correlations based upon a super-

multiplet scheme that reggeizes the quark number.

The basis of our scheme is the following. Angular momentum is

but one of the conserved quantities on which S-matrix depends. In

particular, if a system possesses a higher spin-containing symmetry,

there may be other conserved quantities (Casimir invariants of the

relevant symmetry group) which it may be more profitable to complexify

and reggeize. For example, with the hydrogen atom it is well known

that one obtains a deeper insight into the dynamics of the bound states

if it is the principal quantum number (connected with the well-known

O(4) symmetry of the system) that is reggeized rather than the angular

momentum. For hadron physics the U(6) ® U(6) group appears to be an

approximate symmetry for classification of particles. The analogy of

the principal quantum number for the hydrogen case here would seem to

be with the total quark number N (half the number of quarks plus anti-

quarks) and an analogous reggeization of this number appears to be
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indicated. One may now go further and explore the dynamical

consequences for high-energy scattering of such a reggeization

procedure and it is this aspect of the scheme in terms of its practical
3)applications which we wish to stress in this paper

The consequences of the scheme are two-fold:

2
i) One obtains two master trajectories {plots of Re N versus (mass) )}

one for mesons (B = 0) and one for fermions (B = 1). For

M > 0, Re N goes through 1, 2, 3 , . . . for mesons and 3/2, 5 /2 , . . .

for fermions. On present evidence it is not excluded that this

simple picture of Regge recurrences classified according to quark

content can accommodate all known semistable meson and baryon

states. The idea that there should be basically only one baryon

and one meson entity was proposed long ago by Weisskopf.

ii) To evaluate the high-energy behaviour of scattering amplitudes we

make the Regge assumption that the amplitude is dominated by the

contributions from an exchange in the crossed channel of these

master trajectories. The residue functions automatically satisfy

Uw(6) invariance.

It appears that this Regge model will provide a reasonably

restrictive theoretical framework for analysis of experimental data.

Naturally this theory will not provide any antidote to the obvious failures

of conventional Regge techniques nor will it provide a fundamental answer

to the unitarity difficulties which beset supermultiplet schemes. But it

does give the possibility of building unitarity into the formalism as

this is always done in Regge theory, i.e. mainly through the signature
4)factor. The new formalism will^however, certainly provide relations

between presently used Regge residue parameters.

2. PARTIAL WAVE EXPANSION IN U(6) ® U(6)

The basic ideas of the approach were described in I and II. Here

we shall present a simplified version of the generalised expansion

technique, proceeding by direct analogy with the conventional partial wave



expansion of the S-matrix, The conventional partial wave expansion

can be understood either as a consequence of rotation invariance of

the S-matrix - and this of course is the deeper point of view - or,

alternatively, as a mathematical expansion in terms of an appropriately

chosen complete set of functions. It is this latter point of view that

we wish to stress in this paper.

The rotation symmetry of the S-matrix manifests itself in the

following ways:

a) Particles at rest group themselves into (2J+1) component

multiplets of SU{2) . (If the masses of the particles vary with J,
J

one has a strong suggestion towards grouping them on a Regge

trajectory).

b) A three-point function with all particles confined to the O-3 plane

shows helicity conservation

T (6)

(2.1)

c) A four-point function with all particles also confined collinearly

(forward scattering) shows net helicity conservation:

= I T

Suppose now that we are dealing with a non-forward scattering

amplitude with the final particles rotated through an angle B out of the

03 plane. We can always extract the angular dependence of T(E,0) by

expanding in a complete set of orthonormal (square integrable) functions

as followst

TV
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The completeness of fn means that a one-one correspondence between

T and T(0) exists. If we know nothing about the rotational invariance

of the S-matrix but simply that conditions b) and c) hold as empirical

experimentalfacts,it is appropriate to choose the complete set of

functions fn to be the two -labelled function d> >, (6) satisfying

^1 M(0) = 6\ -it > a s o n e well knows, a class of such functions is given
A A A A

by the rotation functions of SU(2)L. Thus one writes the mathematical

expansion:

(2.3)

Expressing the summation as a Sommerfeld-Watson integral, one may

tie in c) with a) and b) in the well-known manner by proposing that

(E) exhibits poles in the expansion-parameter J according to

\

Let us generalize. If the rotational symmetry SU(2) is
J

combined with SU(3) to give a possible rest symmetry

U(6) 8 U(6) and if U(6) x U<6) was known to be the symmetry

of at least a part of the S-matrix - a very strong assumption and

certainly false for the exact S-matrix - the symmetry would manifest

itsel. in the following waysi

a1) Physical particles group themselves in U(6) ® U(6) multiplets. 5 '

(If the first few representations are known it would be natural to

attempt to trace a Regge trajectory through them.)

7)br) Three-point functions exhibit W-spin conservation (generalised

helicity conservation - see Appendix). Thus

r.i/ir n» %



= L <£WlVtf,vO T , u . (E> (2.1')

where <?w| W W > denotes the U(6)w Clebsch-Gordan

coefficient which couples D J- ® D ^to D . In general there

is more than one independent coupling. It is therefore necessary

to include a parameter t to distinguish among them.

c!) Collinear scattering processes also exhibit U(6)w conservation

V M < 2 ; W I W , 2 > (2.2-)

d1) Non-collinear four-poirtt functions show conservation of coplanar

symmetry U(3) ® U(3) which has no analogue for the smaller

rest symmetry SU(2) .

If we accept only that a'), b1), c1) and d1) hold as empirical

facts (at least to a fair approximation), we may adopt the mathematical

expansion theorem attitude and express non-forward scattering amplitudes
N

in terms of the complete set of suitably defined functions dw w , (0) as

follows:

To satisfy the boundary conditions b1), c1) and d1), the suitable

definition of d
w w , (0) turns out to be that these functions are

N N
U(6) x U(6) rotation functions (dww,(0) = *AVW, J also d (0) are
diagonal in U(3) ® U(3) labels subsumed in W) but this is incidental

for our present purposes.
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What exactly is the nature of the relevant Casimir invariant N of

U(6) x U{6)? The completeness notion used here requires that we sum

over a one-parameter family of U(6) x U(6) representations $5 since we

are eliminating thereby a single angle 8 . Moreover, if the representations,
N

$$ are non-degenerate in their U(6)w content, i. e. if a complete set of

basis vectors can be labelled |NW)>, then the functions

are well defined. One may show that any square-Integrabl e function

defined over the interval 0^ 9 4 n and satisying the appropriate boundary
Nconditions at $ = 0, ir can be expanded in terms of the d w w t ( 0 ) if we

characterize the representation D by, for example, the symmetrized

1* * N-§B
U(6) x U(6) tensors $~ where B denotes the baryon number

? r ' * a N+|B
and N takes the values f B, §B+X, ^B+2,. . . , i. e . , N is the quark

number .

Returning to the expansion (2. 31 )rfinally one ties in the property a')
N

by assuming that T (E) exhibits poles in the N-Casimirs corresponding

to U{6) ® U(6) bound multiplets, thereby reducing expression (2. 3') to

<WJW4|T(E;0)|W1Wl> *

^ > l ? (2.4.)
N

This is the direct analogue of (2. 4).The rotation functions d (0) =

= <(NW|e" Z INW 1 y which make their appearance a re generalized
3

derivatives of the Gegenbauer functions C (see next section) just like the

d^ ^ which are generalized derivatives of the Legendre. We can

now pass to the Regge amplitude by making a Sommerfeld-Watson

transformation
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^ ^ ^ ( 2 . 5 ' )

2
where ofrrO = N is the master trajectory function. This is of course

the direct analogue of the normal reggeization procedure which yields

^^ (E)

Note the very close correspondence between eqs.(2. l)-(2-5) and (2.1 M-(2. 5').

If we multiply expressions (2. 5)or{2. 5') by the signature factors

(1 ± elira) we shall be taking some account of unitarity in the sense that

absorptive effects on the high-energy amplitude are incorporated through

this.

3. ROTATION FUNCTIONS IN U(6) ®U(6)

Any further progress requires a practical knowledge of the

J^TIr,(0) functions which appear in (2. 5'). This section is devoted to
2)10)

their computation and tabulation. The first and most direct method would
i N

be to work directly in the basis | NW y and to determine the dww,(0) by

setting up differential equations for them. A second, less direct, but more

feasible method which we shall use instead is to work in an auxiliary

relativistic basis J A... , .A )> and to calculate the (M-function-like)

d (6 ;̂ passing to t\\e standard basis via the transformation
1* ' N' 1" * * N

wave functions (A, . . ,A |NW) we recover the canonical d (0). There
are several advantages in following this seemingly indirect path.
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i) Crossing complications that occur in the canonical basis a re

avoided. All one needs is to differentiate between particle and

antiparticle wave functions u A A (NW) =<^A.. . . A J N W > and

vfl A (NW) =<vA . , A JNW >̂ , respectively, in passing from one
A j . • • A

N 1 -N

channel to another.

ii) Tied to i) is the problem of kinematical constraints on canonical

basis amplitudes T,w . in passing from one channel to another.

In the M-function approach these constraints are automatic (after

contraction over the wave functions) and need not be considered

separately providing that the invariant amplitudes in M are

kinematic singularity free.

iii) The use of the relativistic basis f A . . . AM >̂ permits us to discuss

in a simple manner the case where the total four-momentum vanishes.

Moreover off-mass-shell continuations appear to be more straight-

forwardly carried out for M-functions than for T,w ..

(iv) Thr- most important advantage of using M-function approach is that

symmetry-breaking prescriptions can be readily formulated,

particularly the symmetry breaking which comes about through using

physical masses of particles rather than mean masses of multiplets

and which affects even the Clebsch-Gordan coefficients (W1 W I W).

This is not easy to do after one has passed to T,w . .

The auxiliary basis appropriate toa')-dT) is of course provided by the
3)non-unitary representations of U(6,6). The interpretation of the super-

multiplet condition bT) is that one is limited to couplings involving the U(6,6)

auxiliary fields \p . (p) and the momenta q only, while a1)

Ay - « A
N A

is assured by subjecting the U(6,6) fields to subsidiary Bargmann-

Wigner equations, c1) and d') are natural consequences of applying

these rules to open diagrams.
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The d(0) functions may be calculated by inserting a general pole

contribution specified by the quark number N into the scattering diagram.

Before carrying out the contraction over external wave functions one meets
Nd (0) with a certain number of U(6, 6) indices (the number depending on

the external particles alone). It is these which we list below for some
Nsimple cases rather than the contracted forms d .

Take the case of meson (B = 0) exchange first and various simple

examples.

dN(0) = C^T(cos0) ; cos© = -q-q' + ^ ( 3 ' ^
Try

2) (1,1) + (6,6)^ -> (1,1) + (6,?)

There are two separate contributions to the amplitude corresponding
N N

to the canonical functions d.. 1 and a . The amplitude is therefore
J. X l o t )

described by the general linear combination

(3 .2)

where

v
_ ( r

# j (3.4)

3) {1,1) + (6,1)A -• (1,1) + (6,1)B

The linear combination here is modified to

9. V ^ B J CN
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4) (1,1) + (6,6)^ -* (1,1) + (6,6)^,'

This is a generalization of process 2), the amplitude now containing

a double derivative:

The single differentiation formula has been written above; the double

differentiation gives

2
Contraction of •:•• — over the external wave functions provides d__ r,r(6).oq oq r 3535

The calculations for more complicated d(6] involving further derivatives

have not as yet been carried out.

We now turn to "the simple cases involving baryonic exchanges. For

the single quark family exchange B = 1/3 there is the basic process

3>) (1,1) + (6,1) -» (1,1) + (6,1)

In this case we arrive at-

relating to ^6(^) (3.9)
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On the other hand, for the more practical case of B = 1- exchanges we must

consider the basic process

5) (1,1)+ (56,1) (1,1)+ (56,1)

rr c'"
Suppressing the six obvious multispinor indices

(3.10)
. , r r r r*'f r r r r"f

N 10)
The d functions which may be deduced from this have been given
in detail elsewhere.

All these functions need to be multiplied by the threshold factor

( Is 1 ta1 t) which appears naturally in M-function calculations. This was

shown explicitly in I. The Regge formulae therefore appear in the form

(omitting signature factors) s: g (t) g (t)(|q||q'l) d fsinwa where the j3's

are reduced residues.

4. THE FEYNMAN TRAJECTORIES AND THEIR DECOMPOSITION

INTO REGGE TRAJECTORIES

The master N-trajectories (we shall sometimes refer to them as

leaning Feynman towers since the particles on them correspond to the most
31)degenerate tower studied by Feynman for the non-compact U(6, 6) for

mesons and baryons) contain all the relations between the J-Regge para-

meters. To see exactly what these relations turn out to be we have to

carry out the reduction chain SU(6) 8 SU(6) -*SU(6) ->SU(31 EJ SU(2)T of the

master trajectories into the SU(2) satellites for specific SU(3) represent-
J

ations. Mathematically this reduction corresponds to the decomposition

of particular SU(3) components of the SU(6) S SU(6) rotation functions C-,
into the SU(2) rotation functions P = C2 . The relevant formula is

J J J
obtained from

where the summation terminates at the background and CL is a

F function (a sum of V function ratios). For the simple case of the

- 1 2 -
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(21,21),

(6,6) -

U(fi)

.(1,1



reduction

L N = ^~ Nfc N-ife (4.1)
It

the explicit formula was given in eq. (15) of II. In the next section when

we consider symmetry breaking we shall need this reduction. In the

M-function approach of Section 3 where all d" 's are expressed in terms

of C^ and its derivatives, it is just the formula (4.1)which is

repeatedly needed.

To illustrate the consequences of this type of reduction graphically

let us plot a few satellite trajectories for the meson case. The master

trajectory is shown in Fig.l. It gives rise to the satellites in Fi^.3,4

and 5- The rotation function d^™, pertaining to the master trajectories

is a sum of rotation functions for all satellites. The general properties of

these satellites have been noted in II. Here let us re-e.nphasise the

main physical points.

A. Parallel satellites

If the symmetry were exact,all satellites would be parallel to the

parent. Since empirically different SU(2) and indeed SU(3) trajectories

are found to be roughly parallel (wi th the exception of the Pomeron which

may be a fixed pole) higher symmetry may provide the simplest

explanation of this fact.

B. Residue relations

In the asymptotic limit P (cos0) R; (cosfi) ,* it is clear from this

that the leading satellite trajectory contained in the expansion (4.1) will

dominate the scattering amplitude, e. g., the SU(3) octet piece will show a

dominance of the p trajectory over the ir trajectory contribution. On
N

the other hand,the octet part of function d automatically includes

the contribution of both trajectories and the decomposition

C-j = Ct P + 0^. P 2+ •" shows how, for example, the p and ir

trajectory contributions emerge. This reduction provides group-theoretic

relations between the Regge residues CU-,̂  /^-^o automatically.

- 1 4 -



C. Symmetry breaking

Since the high-energy behaviour in Regge theory depends so

critically on or(t), and in particular on the intercept a(0), it is evident

that any mass shifts 'produced by the symmetry breaking will shift the

resultant satellites, and their asymptotic contributions will differ markedly

from the exact symmetry predictions. This is in contrast to the effect

of symmetry breaking for vertices wherejbarring certain exceptional cases,

one hopes that symmetry breaking may be wholly accounted for just by

change of kinematical factors^. gm) by using physical masses in the invariant

couplings (and Bargmann-Wigner equations) rather than mean supermultiplet

masses. To show how critical a role this trajectory shifting can play,

take the example of pure j$J of SU(3) exchange that occurs in a process like

K~p -* IT + Y~ which shows no forward peak and a high-energy

behaviour E * " corresponding to a _{Q)£; -0. 7. Assigning the 27

as well as the 2+ octet (f, Az, K**, . . . ) to the same 40J5 of SU{6), it is

clear that an SU(3)-dependent mass shift between the 2̂7 and the j ^ of the

order of no more than 300 MeV (without change of slope) can shift '

ao(0) from its value of about 0. 4 down to arr,r7(O) tz, -0. 7.
o Z I

D, Mass formulae and trajectory shifts

To take account of trajectory shifts on account of symmetry breaking

we need mass formulaej which in general may have the form '

M2 = M2(N,J, F)

= M2(N) + M2(F) + M2(F,J) (4.2)

where F denotes the SU(3) labels (including I and Y). To incorporate the

trajectory shifts, go back to the expression of Section 2

T
fc - M7CN)

1 R)

One may replace C exactly by E d P ; if we further decide to
V4 J (C tJ

-15-



2 2
incorporate symmetry breaking by replacing M (N) by M (N, J, F), we
obtain

T - I Ji_
J *) t M z a T F ) (4-3)

The trajectory function Xot(t,K, F) (obtained from solving for J the equation
2 2

t - M {\C, J, F) = 0) now allows 1) for possible SU(3) shifts given by MJF) in

(4.1) and 2) for departures from parallelism among the satellite trajectories aris-

ing from tte M (F, J) term. In keeping with our programme, we shall not inter-

fere with the residues $ (t). Let us examine the simplified form of amass
formula (4.2) where

MQ(N) = NMQ , M2
2(F,J) = J(J+I) M^F) (4.4)

i, e. the master trajectory in the N-plane rises linearly. It is a simple matter
2

to solve out for the trajectory function from t - M =0; we get

a(t,K,F) ^ + ) )

(4. 5)
2 2

to lowest order in M /M To this order the trajectories remain linear

but with modified slopes, exhibiting an SU(3) mass shift which depends on

which satellite we are considering.

Since at present we have no reliable theoretical means for computing

mass formulae - except perhaps as tadpole effects or as estimates from second-

order self-energy graphs written in the language of current algebra - we

have to take the trajectory parameters from experiment. This is a weakness

of the present scheme.

5. RELATIVISTIC ASPECTS OF U(6, 6)

Just as for forward scattering of equal-mass particles, the little

group enlarges from O(3) toO(3,l), likewise here U(6) ® U(6) enlarges to

-16-



U(6, 6) itself. TheO(3,l) partial wave analysis at P = 0 which was

originally carried out by TOLLER can similarly be done here for U(6, 6).

Following the method of FREEDMAN and WANG one first shows, for a

certain unphysical range of a , that one may deal with the compact group

structure U(12) rather than U(6, 6) so far as partial wave analysis and

reggeization are concerned, continuing back later to physical values of s.

Denoting the U(12) rotation functions by cCj ( 6) where t/C and N stand,

respectively, for the set of U(12) and U(6) © U(6) Casimirs ;one can make

the expansion at P = 0 ,

T d (0) l r ^
U (5.1)

In the case of O[Z, 1) or O(4) the appropriate rotation functions are known

to be Q (cosd) and their derivatives. For the U(12) or U(6, 6) degenerate
11/2series one can show that they are proportional to C / and their

derivatives.

The expansion (5. 1) holds at P = 0 . It can however be extended
2

to the case t = P ^ 0 for all W spin-conserving amplitudes since

d' w T|(0) provide appropriate expansion functions for this case as well.

This is analogous to the expansion of general flipless amplitudes for all
] 7)

momentum transfers using O(3,1) rotation. An extension to W-changing

amplitudes is possible, analogous to the O(3, 1) expansion proposed recently
17)by a number of authors for spin-flip amplitudes. These expansions

correctly incorporate threshold effects and at the same time have the merit

of automatically building the Toller parent-daughter phenomenon into the

formalism even for t f 0. Thus a trajectory in the U(6, 6) Casimir

e/r -plane gives rise to a series of parent and daughter trajectories in the

U(6) £3 U(6) N-plane - all of these daughters unfortunately being parallel
18)to the parent

-17-



To see the complexion of these daughters,take the Peynman meson

trajectory in U(6, 6) which,for this degenerate series, passes through the

U(l2) representations 1, 143, 59 4 0 , . . . . From the U{6) ® U{6)

reduction of these multiplets

1 = ( l .D

143 = (6,6) + (6,6) + (1,1) + (1,35) + (35,1)

5940 = (21,21) + (21,21) + (6,6) + (6,6) + (6,120) + (120,6)

+ (6,120) + (120,6)

+ (1,1) + (1,35) + (35,1) + (35,35) + (405,1) + (1,405)

one is led to sets of U(6) 0 U(6) trajectories, among which is the master

meson trajectory considered earl ier . The important relativistic aspects

which emerge a re : :

19)A. Gribov doubling

The reduction of U(12) multiplets into U(6) x U(6) multiplets produces

pairs of the variety (A, B) 6) (B,A). For example (6,6) is accompanied by

(6, 6); likewise (35,1) by (1, 35).

To characterize this doubling, one may say that the states a re

populated equally by composites of quarks (6,1) and pseudoquarks (1,6)

(also by antiquarks (1,6) and antipseudoquarks (6,1)), Even apart from

Tollerization, this particular doubling should have been expected from the

Gribov-Pomeranchuk-Okun phenomenon which even in conventional reggeization

schemeswould lead one to expect that a reggeized quark state should be

accompanied by a pseudoquark state from MacDowell symmetry. "* ' If

composites of quarks exist, one should expect composites of pseudoquarks

also to exist.

The important point to note about the Gribov doubling is that whereas for

fermions it always leads to parity-doubling ((56,1) ~* (1, 56)) (the two

states have opposite parity ) this is not necessarily the case for mesons;

(consider (6, 6) —»(6~, 6); parity of the two states is the same).

-18-



B. Parity doubling for mesons

In addition to Gribov doubling {which, as remarked above, does not

lead to parity doubling for mesons), another peculiarly Toller-like

phenomenon of parity doubling for mesons does take place. This is the

doubling implied, for example, for the 143 by (6,6) + (6, 6)=^>{1, 35) + (35, 1).

This is analogous(but not the same)as the parity doubling phenomenon for

Toller's theory of SL(2, C) when for mesons one may expect parity

degeneracy whenever the Lorentz quantum number M in Toller's notation

does not equal zero. Perhaps one way to understand this new doubling

is to remark that the chiral subgroup U(6) x U(6)

group of U(12) as non-chiral U(6) x U(6)

is as equally a sub-

i /
As we have seen above

•>o
for reggeization U(6, 6) and U(12) possesscompletely interchangeable roles;

one may start with either group and pass to the other by continuations

in s and t variables. One may expect the theory therefore to exhibit

doubling associated both with the chiral as well, as non-chiral subgroups.

All this is not too clear at present. What we seem to have i» thai

within an S-matrix approach, at the point P = 0, one can resolve the

old dilemma of chiral U(6) x U(6) being a symmetry at the same time as

well as U(G) x U(6) non-chiral.

6. THE OUTLOOK

It must be admitted that it needs trepidation and courage to propose

a theory of the type suggested here where the expectation is that higher

symmetries may exhibit themselves best in giving a coherent description
21)

of Regge residues. . This is because, on superficial evidence, the

major necessary condition for the theory - the existence of a string of

higher supermultiplets lying on the master trajectories - seems unfulfilled.

Unfortunately the situation in this regard may remain unchanged for a

number of years.

The higher supermultiplets of U(6) x U(6) contain vast numbers of

particles. The present rate of resonance identification, notwithstanding

the heroic efforts of experimental colleagues, is slow. The

situation is complicated further because, as has been shown by HORN,

LIPKIN and MESHKOV and ABRAMSKY and KING, 22> firstly, the higher
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SU{3) multiplets contained in these supermultiplets are hard to produce

in normal meson-baryon and baryon-baryon collisions and, secondly,

most of these resonances do not possess two-body decays. Also, there

is a great amount of mixing going on when resonances have the same

quantum numbers. Indeed much theoretical work needs to be done to

identify experimental situations where there is most chance of observing

these higher multiplets.

In practical applications of the theory, one difficulty has been

noted in Section 4. This is the difficulty associated with symmetry-

breaking effects in mass formulae and the trajectory shifts these can

produce, so that the trajectory parameters must at present be taken

from experiment, A second difficulty is connected with the general

reggeization programme. The Regge pole model, even with its large

number of parameters, has spectacular failures as well as successes.

The failures have been attributed to kinematic effects, imperfectly

understood so far,and to the fact that pion exchange effects (perhaps on

account of their exceptionally long range) appear less amenable to a

Regge treatment and more to absorption or coherent droplet-models.

The reggeization scheme presented in the present paper will inherit

the conventional kinematical structure. To be sure, though,there will benew

features, like the threshold factor (jq'| ]q|) rather than the conventional

factor (Iq'j jql) , mentioned in Section 4, and the new zeros contained in

& of eq. (4.1) as well as the new features which will arise from a
. 23)

consideration of sense and nonsense phenomena anew in the present case. ,

It is possible that a Toller-like programme may provide, here as

in conventional Regge theory, one way to define singularity-free amplitude.

It is perhaps worth remarking that something mathematically similar to

a Toller expansion of conventional amplitudes in terms of O(4) rotation
17)

functions is automatically included in our formalism, through the

U(2) x U(2) subgroup of U(6) x U(6). Even though U(2) x U(2) has a

completely different physical significance from O(3,1), the rotation

functions for the two cases are identical.
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Whether this feature is enough to take care of all kinematic singularities

automatically, we do not know.. ' Only experience with the formalism

can tell.

3 )
To expand on this point, it has been stressed before ' , that the

U(6, 6) theory has two relatively disconnected features; • first, the obvious,

it includes the internal symmetry SU(3); second and unfortunately the

less emphasized but in our view the more important i.e. the extension

of the space-time Lorentz structure SL(2, C) to the bigger (perhaps

coniormal) structure U(2, 2). This extension U(2, 2) X 0(4, 2) increases the

number of "space-time" Casimirs from the two well-known ones of SL(2, C)

to three of U(2,2). It was pointed ou,t in Ref. 3) that the empirically well-established

proportionality of electric and magnetic form factors of the proton is a direct

consequence of this particular extension of SL{2,C) space-time group to the

U{2,2) group. Thus, even if SU(3) was a badly broken symmetry or

if it was conclusively established that all hadron resonances make up

only the 8's and the 10'sof SU(3) and never any other multiplet, it would

still, in our view, make better dynamical sense for reggeization ideas

to make a partial wave analysis using the U(2, 2) extension of space time

structure (in practice in terms of functions C anrd their derivatives

corresponding to the little group U(2) x U(2).) Thus the first logical

step in reggeization of higher symmetries is to consider reggeization of

U(2) x U(2); this will give baryon and meson trajectories with content

similar to those derived from non-compact groups by BARUT and
25)

KLEINER!' ; next, one may include I-spin and extend the symmetry to

U(4) x U(4) and,finally, with the inclusion of SU(3) to U(6) x U(6). The
V

kinematic factors a arising from the decomposition of the relevant

C-T to C2
T = ( I P for each assumed symmetry would be different. (For

IN J JN J J ' 1

U(i/) S V(v) symmetry the rotation functions are Cf^cos 0); for U(2v) they

are C^ (cos 0) and for O(v) they are c j ^ f c o s 6) .)

Hopefully, experiment may distinguish between the various possibilities

which correspond to the successive chains of symmetry-breaking.
One of the important parameters relevant to this distinction is the F/D

26)
ratio ; it is a mathematically fascinating problem to compute the F/D

ratio along the SU(3) 8-projection of iheFeynmwi trajectory. Other problems

are; a better understanding of the mathematical expansion theorem for the

case of less degenerate series; a simpler procedure for computing
N

the relevant d functions; and^most critical of all, a reliable mass formula

for use in (4. 3). - 2 1 -



APPENDIX J

There are at least four formulations of U(6, 6) and its subgroup

symmetries known to the authors3' ?\ Though their relative merits are

hotly debated all of them unfortunately suffer from one. shortcoming

or another. All approaches do at least agree on the subgroup hierarchy

of Section 2 as representing the maximal possible invariance attainable.

To describe the approaches and their interrelations let us briefly recall

the group structure they use in order to explain the detailed differences.

To begin with, there is the U(6, 6) algebra which is isomorphic to the

algebra generated by the 16 Dirac matrices y multiplied into nine SU{3)

matrices T :

< , 1 , * , , * , ? /

(The Lorentz sub-algebra is generated by or and 7,0, ,} Four

translations P are adjoined to U(6, 6) whose commutation property is

obtained through the isomorphism P • = y . For processes involving

one (timelike) vector P_ = yQ the subgroup of U(6, 6) which commutes

with y is the "little" group U{6) ® U(6) which consist of

(1» Tn* ? * yn 2) T • Collinear processes confined to the 0-3 plane require

the "lesser" group which commutes with the pair of vectors yn and y~,

this is U(6),ir and consists of (1, cr_, y_ f., yn cr ) T (for the Lorentz

case the analogous subgroups are SU(2) consisting of cr and the helicity

group U{1) consisting of or alone). W-spin is thus the generalized
o

helicity of U(6, 6). Finally, there are the coplanar processes confined to

the 013 subspace whose "least" group is U(3) ® U(3) made up of (ltyQcr ) T ;

this has no analogue in the Lorentz group case.

So much is common ground. However the four approaches differ in

the concrete realizations which they give to the generators of U(6,6) and

the way the translations P are handled.
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1.) First ly there is the simple field-theoretic approach ' " ' based on a

Lagrangian formulation of U(6) $> U(6) multiplets, e. g. the quark Lagrangian

= i!/(lj& -m)0 + g(0^) or a more complicated Lagrangian constructed

from the U(6, 6) multispinors. In this formulation the mass and interaction

terms are U(6, 6) invariant whereas the kinetic energy terms of the type
~ 6)

id ifj a re not . Evidently open diagrams and their sums do posses?the
hierarchy of little group symmetries, (even if derivative interactions a re

included) whereas closed loopsare not likely to preserve these. If a

Regge pole is pictured as an infinite sum of pole diagrams the hierarchy

of symmetries survives. However, inclusion of two-particle or more

intermediate states, i. e. imposition of unitarity, breaks the chain through

the symmetry breaking introduced by closed loops.

31)
2) The second approach was suggested by a number of authors

and developed in particular by Fronsdal and his collaborators.

Here the full noncompact U(6, 6) may be taken as a rest symmetry with the

consequence that there must exist an infinity of particle states corresponding

to representations of U{6) ® U(6) all having the same mass . The subgroup

hierarchy provides exact invariance groups for the relevant processes;

unitarity also is exactly satisfied but only in the mass degenerate limit -

as soon as mass differences are introduced between different particle

states unitarity disappears. It is clear that reggeization of approach 1)

and its interpretation as a summation over an infinity of particle states

brings closer together approaches l) and 2).

3) The third approach is based on current algebras and is wide enough

to encompass either 1) or 2). Unhappily there exists no model, however

idealised, for which the cha rges defined from the full set of U(6) ® U(6)

currents a re conserved.

4) The last approach is the inhomo^cneous U(6, 6) theory of BELL and

RUEGG and CHARAP, MATTHEWS and STREATER ' which adjoins 143
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momenta to U(6, 6), Before specializing to four physical momaita the

subgroup hierarchy,as well as unitarity in a generalised partial wave

expansion, emerge as exact consequences of the theory; also, one may

write equations of motion for the nomtnitary finite-dimensional

representations of U(6, 6) since one is dealing with a 143-dimensional

Poihcare* group. In the blinkered limit of four-momenta surviving from

among the 143, the equations of motion of approach l)are obtained. One

could write if one wished Majorana type equations in the (144) space for

infinite-dimensional representations of U(6, 6) to give a physical particle

spectrum. The unresolved difficulty of this approach is the definition

of a sensible (stereographic) limit whereby the 14 3-dimensional space

maps onto physical four dimensions.

In Section 2 we have tried to formulate yet another viewpoint, by

accepting the subgroup hierarchy as empirical in put. We have worked

with just the conventional S-matrix set-up in the physical space of four

dimensions; we have made a partial wave analysis based on the

existence of a complete set of functions in terms of which S( 6) can be

expanded - a purely mathematical procedure which must always succeed

provided the weak statement of the input hierarchy of s^grou^sis_guajanteed

by the choice of the expansion functions. The full symmetry of the S-matrix

under the higher group is not needed.
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FIGURE CAPTION

The master "boson t r a j e c to r y decomposed into Stf(6)

s a t e l l i t e s ( iden t i f ied "by Ox A , . . . , e t c . ) which are fur ther

decomposed into SU(3) p i ece s . Notice tha t there i s more than

one a a t e l l i t e t r a j ec to ry of a given SU(3) type . The symmetry

"breaking i s expected to sh i f t the t r a j e c t o r i e s from the posi t ions

shown • The known octets of J

a r e shown in the third pattern.

P - - + +
shown• The known octets of J = 0 , 1 and 2 (and possibly 1 )
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