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ABSTRACT

The Lorentz covariant, spin-s, Joos-Weinberg equations are derived

from a Lagrangian. This Lagrangian is written entirely in terms of an

auxiliary field <f> (x) and the Joos-Weinberg wave function î x) is defined

in terms of <ft(x) . The function ip{x) describes a free,massive, spin-s

particle, while $(x) describes a free, massive, spin-s particle "decorated"

with massless, spin-s neutrinos. The question of whether 0(x) or ^(x)

is the wave function corresponding to reality is discussed. The inter-

pretation of 0(x) as the actual wave function is favoured here.
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A LAGRANGIAN FORMULATION OF THE JOOS-WEINBERG WAVE

EQUATIONS FOR SPIN-S PARTICLES

I. INTRODUCTION

Equivalent, Lorentz covariant, spinor formulations of the theory

of a free mass-m, spin-s particle have been given by DIRAC , FIERZ and

PAULI2 , RARITA and SCHWINGER3, BARGMANN and WIGNER 4 , JOOS 5 ,

WEINBERG6 and WEAVER, HAMMER and GOOD7 . In fact it has been
Q

shown by PURSEY that an infinite number of covariant formulations

exist. These covariant formulations have the property that, for

s > 1 , the wave function must satisfy a wave equation plus one or more

auxiliary conditions which are required to guarantee a physical mass and/or

the correct spin.

Since the spin-s wave function must satisfy a set of auxiliary con-

ditions in addition to the wave equation, a simple Lagrangian approach to

these formulations does not work. Lagrangian approaches to the Dirac-

Fierz-Pauli equations, Rarita-Schwinger and tensor equations for hall-

integral and integral spin, respectively, and the Bargmann-Wigner equa-

tions have been given by FIERZ and PAULI2, CHANG11 and GURALNIK
12

and KIBBLE , respectively. These approaches all make use of one or

more auxiliary fields which appear in the Lagrangian, along with the wave

function, in order to get the wave equations and auxiliary conditions. The

auxiliary fields vanish in the free-particle case but do not in the presence

of an electromagnetic field.

Here a Lagrangian approach to the Joos-Weinberg equations is

developed. The Lagrangian is written entirely in terms of an auxiliary

field <£(x), and the wave function \p(x) is defined in terms of #x) . While

t//(x) is taken to be the actual wave function here, this question is open to

9
*) While the Hamiltonian form of the Weaver-Hammer-Good formulation involves a unique Hamlltonian

without auxiliary conditions, the manifestly covariant form does involve a wave equation plus an

auxiliary equation, in the form of the Klein-Gordon equation, to guarantee a physical mass.
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13
debate. HAMMER, McDONALD and PURSEY ' derive essentially the

same equations for ^(x) by a different method and interpret $(x) as the

wave function. The difference is this: For s > 1 , /̂(x) describes a

free, raass-m, spin-s particle; on the other hand, $(x) describes a free,

mass-m, spin-s particle with spin-s, massless particles mixed in; that

is, the massive particle is "decorated" with neutrinos. For s = 1/2, 1,

^(x) and 0(x) are identical and describe a simple massive particle with-

out neutrinos. The ^(x) used here is slightly different from the Hammer-

McDonald-Purs ey $(x) , but this does not affect the discussion for the

arbitrary spin case.

In the following, two a priori restrictions are made. The equa-
i /—r- 1
2 — ia/at/Htions are not to involve operators of the form (9 9 f or idfdt/ -^ + m^ ,

the energy sign operator. The former restriction necessitates slightly

different treatments for integral and half-integral spin. The latter pre-

vents the application of this method to the Weaver-Hammer-Good covariant

formalism for integral spin. The Joos-Weinberg and Weaver-Hammer-

Good equations are identical for half-integral spin and differ only by the

presence of the energy sign operator in the Weaver-Hammer-Good integral

spin equations. These restrictions are made because, while both operators

are well defined in the free-particle case, they may not be so when electro-

magnetic interactions are considered.

II. HALF-INTEGRAL SPIN

The Joos-Weinberg equations for a particle of mass m and half-

integral spin s may be obtained from the following Lagrangian:

L = i 3 . / . 8 ?(x)7 8 . . . 8 *(x)-

I s+2 1 2s s+j- 2s

a . . a i t a e . . . 8 * w ,
1 S-"2 1 S-2
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where x = (x, it) and d = - — . The 2(2s + 1) x 2(2s + 1) covariant

matrices 7 are symmetric with respect to the interchange of any
1 5

two tensor indices and are the generalizations of the Dirac y~matrices

discussed by WEINBERG 6 and BARUT, MUZINICH and WILLIAMS14.

The matrix ^(x) is a 2 (2s + 1) column matrix and

* ( x ) = ^ ( x ) T ,

where "t" denotes hermitian conjugation.

The function $(x) is the massive, neutrino "decorated", spin-s
13

particle wave function considered by HAMMER, McDONALD and PURSEY

Its transformation properties are complicated because of the mixture of

massive and massless particles. It transforms according to a generalized
13

Lorentz transformation A given by HAMMER, McDONALD and PURSEY

and

Ay A = a . . . a 7 ,
M 1- -^2 S V l w2a1/28 VV"V2s

where the a are the ordinary four-vector transformation coefficients.

Essentially A is an ordinary Lorentz transformation operator in which the
1/2

mass has been replaced by a mass operator, for example (-p p ) ' .

As a result then,the Lagrangian is a scalar and the derived wave equations

are covariant.

The Lagrangian implies the following equation:

[SM • • • % V.. .M, + » P , V * 1 * W O . (2)
I AS ± 2,S

The equation given by Hammer, McDonald and Pursey is their eq. (66),

This equation leads to spin-1/2 particles "decorated" with neutrinos while

eq. (2) reduces to the ordinary Dirac equation. The discussion will be

made in terms of eq. (2).



The covariant y-matrix has the property that

for arbitrary s = 0, 1/2, 1, 3/2, . . . ; so squaring up eq. (2) gives

- m2) ( ^ y 2 3 " 1 *(x) = 0 . (4)

This implies that

where

# ( x ) = ( 9 9 ) # ( x ) , (6 )
f*. A*

2s- lOperating on eq. (2) with (9 9 ) and using eq. (4) gives

(9 . ; .d y u + m S) 0(x) = 0 . (7)
1 2s 1**' 2s

Eqs. (5) and (7) a re the Weinberg equations.

A close look at eq. (4) shows that, in addition to the solutions ^ (x)

and 0n(x) , where

and

there are solutions such that

(3 3 ) n * ( x ) / 0

but

(a a ) n + 1 ̂ (x) = o

for 1 ̂  n^. 2s - 2 . So eq. (2) has massive and massless solutions plus

other solutions which cannot be so easily interpreted. The function ^(x)

is a simple mass m solution.

For the special case 8 = 1 /2 , ip{x) and 0(x) a re identical and

eq, (2) or (7) is the usual Dirac equation. The Hammer-McDonald-

- 4 -



Pursey equation does not reduce to the usual Dirac equation but retains

massless solutions in the s = 1/2 case.

III. INTEGRAL SPIN

For the integral spin-s case the Joos-Weinberg equations may be

derived from the following Lagrangian:

L = a . . . a £(x) y a . . . a «£(x) -
"l "a V--"2s * *

- t o V-Vi*"V"Vi' w - (8)

The wave equation is

[9 . . . 9 7 + (9 9 f"1 ("3 9 + 2m2)] 0(x) = 0 . (9)

This is eq. (101) of Hammer, McDonald and Pursey.

This equation may be treated in a slightly different way. Eq. (9)

matrix eigenvalue equati(

mute, eq. (9) may be rewritten as

is just a matrix eigenvalue equation. Since the components of 9 com-

9 . . . 9 y A (x) = ± (9 9 )S <4 (x) =

The eigenvalues of the operator matrix 9 . . ,3 7 are the

operators ± ( 3 9 ) . This was not done for half-integral spin because
^ ^ 1/2

of the a priori restriction concerning ( 9 9 ) ' .
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Eq. (10) implies that

and

and therefore that

m2(d 9 )S"%+(x) = 0

(3 9 - m2)(3 3 f ' 1 <*_(x) = 0
r* r* A* A*

(9 0 - m2)(3 3 ) S - 1 <£(x) = 0 . (11)

The wave function is defined by

\jj{x) = (9 9 ) S ~ <t>(x) , (12)

and so eq. (11) implies

(a 3 - m2) 0(x) = 0 . (13)

s-1
Operating on eq. (9) with (a 3 ) and using eqs. (12) and (13) we obtain

(a . . . 9 7 + m2 s) 0(x) = 0 . (14)

Here also, eq. (9) has solutions such that

(a a ) <f>(x) f o

but
n+1

(a a ) tf(x) = o

for lx<nN<s-2 . So eq. (9) has solutions which are not simple massless

solutions.

For s = 1 the y(x) and <£(x) are identical and eq. (9) reduces to

the spin-1 equation given in SPIAY and GOOD which was shown to be

equivalent to the two spin-1 Weinberg equations. This spin-1 equation has

no massless solutions.
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IV. MOMENTUM SPACE WAVE FUNCTIONS

It is instructive to take the Fourier transforms of eqs. (2) and (8)

and to look closely at the momentum space wave functions $(p) . For

half-integral and integral spin the momentum space wave functions satisfy

the following equations:

[p., . . . P . , y,. „ - i™( P ) , P j 2] +(p) = o (is)

and

"l "2s " l " ""2s " "

' V ••

respectively. These are simple matrix equations.

The eigenvalues of p . . . p 7 are ± (p p )' for

1/2
any s . Here (p p ) ' is simply a number and, except for an

arbitrariness in phase, is well defined. Since <£(p) is an eigenmatrix

of p . . . p 7 , eqs. (15) and (16) become

[± (p p ) - i m ( p p ) 2] $,(p) - 0 (17)

and

[± (p p )S - (p p )S - 2 m2 (p p )S~ ] <j>+(p) = 0 . (18)

The massive solutions of eq. (17) satisfy
i

I ± ( p p f - i m] 0+{p) = 0 .

In the rest frame, with a suitable definition of the phase of (p p )2 , one

can relate the ± signs in eq. (17) to the sign of the energy of the particle.

No such identification is possible in eq, (IB),

It follows then from eqs. (17) and (18) that the momentum space

wave functions have the general form

2 r o
*m(P) «<PA + » V L f— «(p p ) , (19)

( P P '
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where a = s-2 or s-3/2 for integral of half-integral .spin, respectively.

For the half-integral solutions of Hammer, McDonald and Pursey, one IUIH

a - s-l /2. Their integral solutions are the same as above.

It is clear that the 5(p p ) terms for n> 0 will cause

complications in the space-time wave function

1 n A i p x
<̂ {x) = ^ r - / d p -"-^ -

unless some restriction removes them or one extends the integrand into

the complex plane in a suitable way. This makes it difficult to interpret

^(x) and to have any idea how these singularities act when electromagnetic

fields are introduced. Note that the singularities are not present for

s = 1/2, 1, 3/2, 2.

The wave function ^(x) as defined in eqs. (6) and (12), may be

written as

where b= 4s-2 or 2s-2 for half-integral or integral spin, respectively.

The function ij/{x) corresponds exactly to the massive part of the Hammer,

McDonald and Pursey wave function.

V. DISCUSSION

The Joos-Weinberg equations have been derived from a Lagrangian, *

This approach involves writing the Lagrangian entirely in terms of an auxiliary

field <£(x) and then appropriately defining the wave function 0(x) in terms

of <f>(x) , The function 0 (x) , which is considered here to be merely an

auxiliary field without direct physical significance, is considered by Hammer,

McDonald and Pursey to be the wave function itself. The two formulations

where ^(x) or ^(x) is the wave function are inequivalent even in the free-

particle case. The function ^(x) is obtained by operating on <j>(x) with



a projection operator which has no inverse. Further, \fj{x) corresponds

exactly to the massive solution of $(x) .

For the case where $(x) is interpreted as the wave function one

should notice the presence of some arbitrariness in the half-integral spin

case. The $(x) given here is the simple Dirac wave function for s = 1/2 ;

zero mass solutions are present for s ij 3/2 ; and the "singular" solutions

appear for s ^ 5/2. The Hammer-McDonald-Pursey wave function has

zero mass solutions for s ^ 1/2 and "singular" solutions for s ^ 3/2 .

Both functions ^(x) are the same for integral spin, a simple spin-1 particle,

zero mass solutions for s >, 2 and "singular" solutions for s >, 3 . While

one can pick out the massive and massless solutions for free particles,

when electromagnetic fields are inserted by replacing p by p-eA the

"singular" solutions are mixed in also. The interpretation of these

"singular" solutions and their behaviour when electromagnetic fields are

introduced is a problem.

The interpretation of t//(x) as the wave function is simple. The

extension of the equations to include the electromagnetic interaction is not

simple, however. Certainly one can replace p by p-eA in the Lagrangian

without difficulty but it is no longer clear what the definition of 0{x) is in

terms of $(x) . This occurs because, since the components of TT do not

commute and therefore the eigenvalue property of 7r . . . TT y
Ml M2s M

cannot be used and squaring this matrix becomes complicated. The real

test of the usefulness of this Lagrangian approach to the Joos-Weinberg

equations is, however, the inclusion of the electromagnetic interaction.
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