ICTP Internal Report

21/1967
(Linited Distribution)

REGGEIZATICN OF INTERNAL SYMMETRIZES -~ II

R. Delbourge *
M.A. Rashid **T
Abdus Salam ¥¥*1

J. StrathdeeT

ABSTRACT

These notes‘(which will not be published in the present form)
are concerned with Reggeization of U(6,6) symmetry. Our major con=~
clusion is that if physical criteria could be formulated, the Regge-
ization procedurs could, in principle, . determine why physical
partibles correspond to parts of speocified non—compact towers and noi
to others., The paper is concerned with the details of construction
of different types of trajectories, though unresoclved is the specifi~
cation of the coriteria to select out, for example, a Regge generalized
trajectory with the content of,say, a Feynman tower. It is suggested
that Majorana~like infinite~dimensional équations provide a concrete
realizétion of Regge trajectories. These equations give rise to pro-
pagators for Regge trajectories, Using these one can develop a cal=-
culug in J=plane similar to the Feynman calculus which would represent

multiple exchange of Reggs trajectories.
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REGGEIZATION OF INTERNAL SYMMETRIES = 11

IXTRODUCTION

The nature of internal symmetries of particle physics is
mysterious. The exact U(l) symmetries which manifest themselves as
charge and baryon-number - conservation are presumably kinematical
in character, outside of space~time struciure, The broken symmetries
like SU(2) and SU(3) may resemble the U{l) symmetries mentioned above
or alternatively may be dynamical in character like shell model sym=
meiries in nuclear physice, manifesting themselves for some class of
phenomena and not for others, for some energy ranges and not for
others. Proposals of this wvariety have been mentioned from time o
time, among others by Yamaguchi 2) who has argued that SU(2)} and SU(3)
are really no deeper than 8, and S3 (permutation group) symmeiries,
with a superimposition of a particular type of dynamics; by Lipkin 3)
who, starting with jusi three quarks,bas claimed to obtain a number of
SU(3) results without SU(3) and by Chew from whose point of view tke
symmetries can possibly be no deeper than a manifestation of boot~
strap accidents. The successes of SU(2) or SU(3) algebra of currents
do not gainsay this type of reasoning in any fundamentzl sense., If
basic doublet or triplet fields (quarks) exist, the commutation
relations for the algebra follow from the quark commutation relations.
The successes of the algebra then only verify once again that within
a certain dynamical domain a (broken)rsymmetry exists among the

phyeical particle spectrum,

The hypothesis that SU(2) and SU(3) are dynamical symmetries
would, in an obtuse mannexr, perhaps be welcome, since it would placc
these symmetries onapar with the other dynamical symmetries SU(4) and
sU(6). One cannot say this of SU(2) in the presently explored energy
domain tut certainly so far as SU(3) is concerned it is equally ac
broken as SU(6). 4)

In the first paper of {this series, referred to as I,a beginning
was made to take gericusly the point of view of intexnal symmetries

being possibly dynamical in character for prediocting the physical
particle speoctrum. OCiven a rest symmetry (like SU(6)) to which known
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particles belong, one could assume that the dynamical interaction:

of these particles also exhibit SU(6) symmetry. One could then ex=—
pand the physical S=matrix in partial waves, using for the harmonic
analysis the group SU(6) rather than the conventional group SU(2)J.

A reggeization of the Casimir=invariants of SU(6) rather than the
Casimir J (angular momentum) of SU(2)J would self-consistently pre~
cdict a particle spectrum which would include, of course,the particles
wa started from, Also one may exploit the well=known connection of
Regge pole theory with asymptotic scattering limits and hope that
this may provide results in better accord with experiment than the
predictions of higher-symmetry theories in the low—energy domain. It
was found that, in general, the pariicles appearing on a generalized
Regge trajectory correspond to the content of appropriate non=compact
towers. The reggeization procedure therefore provided a link between
Coleman's 57 varieties of SU(S).S)

Although in this introduction we have so far stressed the
possibility that infternal symmetries may Ve dynamical in character,
“here is nothing in the formalism of Part I of this investigation to
maxe this absolutely essential to the development. In that paper,
attention was specifically devoted to the higher rest symmetry SCG{n).
These groups — the prototype of which is SO(6) combining J and I-spin -
aroved (fof somewhat accidental reasons, explained below) particularly
simple to handle., The rest symmetries like SU(6) or SU(6)@ SU(6) are
more complicated and, in a sense, much more interesting it¢ reggeize.
Unliike the case of SO{n) where there appeared just one Casimir which
could be reggeized, there now appear more than one, leading to distincs
itypes of trajectories, The distinet types can be placed in a one-to-
onne correspondence with some of the rungs of non-compact towers. It
is the principal aim of this paper to explain where new complications
urzice their appearance., Not resolved is the provlem of defining
physical criteria which should select one type of trajectory rather

vaan another.

What mekes the difference among the various cases?
The simplest way ‘Yo ses it is to make a partial wave expausion
based 6) not on the little groups for p2> 0, i.¢. the rest synmetry

groups O(n), SU(6) or SU{6) @SU(6), but based on the little groups
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for p2<(0,i.e. O(n=1,1)}, U(3,3) or SL(6,C). (In enumerating these
p2< 0 little groups we have assumed that the overall Lorentz group
containing the relativigtic structure we are dealing with ie O(n,1l),
SL(6,C) or U(6,6)e) The non-compact groups O(n=1,1), U(3,3) or
SL{6,C) possess a number of unitary irreducible representations with
Casimir invariants which take (for principal series) continuously as
well as discretely‘infinite set of wvalues. It is only the former,

the continuously infinite Casimirs,which can be reggeized. The
difference between O{n-1,1) and SL(6,C) lies in the simple circumstance
that 0(n=1,1) possesses just one continuous Casimir, while SL(6,C)

can have as many as five.

In Jel'fand and Naimark's clasgification 72 SL(6,0) possesses
one non=~iegenerate and nine 8) degenerate types of series., The
partial wave expansion,presumably, in general calls for inclusion of
all the ten types of series. Heromorphy agsunmptions for the amplitude
would give ten distinot types of Regge poles. The most degenerate
series, for example,leads to the reggeization of just the quark number.
For other series,not only the quark number but also other Casimir's

are reggeized.

Is there any physical criterion (besides simplicity ) by which
one could assert either ihat only one type of series conitritutes or
only one Casimir shows meromorphy! One may conjecture numerous types
of criteria; +to teke one, it may be hoped that the asymptotic be-
havicur of the expansion functions associated with each type of series
may be different; from the known asymptotic behaviour one may thus
Tind that one can limit oneself to just one series in the expansion.
Unfortunately we have been unable to find anything inthe literature on
the high=energy behaviour of the expansion functiocns., We feel that if
this problem could be solved one may eventually be able to determine
why certain classes of representations occur in the expansion giving
a clue to what type of particles might be physically realized, The
plan of these notes is as follows, In 8ec.l we formulate the problem
of ombedding a rest symmetry in a relativistic structure and show
sone of the arbitrariness which may arise. A4 particularly crucisl
role in all subsequent development is played by the We=spin subgroup
of ithe rest symmetry = this is the subgroup of the rest-symmetry
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which commutes with a Lorentz generator JO3,The ii=gpin subgroup equals
the helicity J,, when the relativistic group is 0(3,1); it may
with reason have been called "generalized helicity" for other cases.
Given a two particle rest state with total W~spin content w, the
Lorentz boost eﬁ:53t in the centre-of-mass frame generates from
it a2ll states of rest—symmetry {or in the brick=-wall frame, 211
states of the corresponding non—compact little group) whose Wespin
content equals w. This problem is solved inSec.2for U(V)H) U(V)
groups,. In Seoc. 3, we turn to the problem of construction of the
rotation functions for the most degenerate class of representations
of U(V) X U(V). The result,in spite of the complicated methods of
derivation,turns out to be remarkably simple; foxr example ti£;(9)=
C; (&me) for U(6,6) case. Here C is the Gegenbauer function.

A reggeization of N (the quark number) shows that the high=energy
behaviour is proportional to (COSG)N. In the last section we turn
vo a different topic. This topic concerns the possible use of
Hajorana~like infinite~dimensional equations for providing s .
ropresentation of Regge trajeotories. *

1.1 Relativiptic symmetlry groups

For systems at rest we have, to begin with, the group of
spatial rotations. This symmetry group is generabted by the ordinary
angular momentum J, In addition to this it is usual to include
space reflection as a symmeiry. Beyond these we can have the
various strictly internal symmetries such as SU(2)I or SU(3)F.

These groups are independent of the spatial rotations and reflections,
that is to say: the generators Ii, Fi’ ese otc, are positive parity
rotational invariants. A4ll of these symmetries operate on rest
states; they leave invariant the manifold of states with P = O,

This manifold will be finite dimensional i1f ithe symmetries are

compact ones, otherwige it musi be infinite dimensional,

It may be that we can reasonably extend the rest symmeiry
t0 iaclude transformations whioch are independent of neither the

internal symmetiries nor of the ordinary rotations., The generators

* DThis section has already been oirculated as ICTP?, Trieste, preprint

1¢/67/63.
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of such mixed transformations will be neither 0{3)J nor SU(Z)I
singlets but must belong to some non=trivial representation of
0(3)3 x SU(2)I (for example ). Again this overall symmetry group may

or may not be oompact.

Amongst the physioal observables we have the generators, Jdyi
of pure Lorentz transformations. ZEvidently these do not commute with
the generators of the rest symmetry, in particular, with J. Thus, if
we wish to keep an algebraic structure which includes the Lorentsz
transformationg then it is necessary to envigion an enlargemeni of
the rest symmetry. If the rest symmeiry is compact then this enlarge-
ment is essential, The "relativistic algebrs so obitained may or may
not be finite dimensional, It must at least contain the algebra of
the homogeneous Lorentz group, 0(3,1), and this means that all the
members of the algebra may be grouped into multiplets of 0(3,1). In
particular, all the generators of the rest symmetry =~ which of course
fall into O(3) multiplets = must be associated with (possibly broken )
0(3,1) multiplets. |

A given rest symmetry may be embedded ih more than one relativ—
istic group. For example, an 6perator which belongs to a triplet of
0(3); may belong to an axial veotor of 0(3,1) or to an antisymmetric
tensor, The physical consequences must vary accordingly. The simplest
example of this sort of thing ocours for the rest symmetry SU(4).
The generators of this symmetry také, in the quark representation,

the form

T 2 FT

Fi 1 ’ ‘,1.40'1 T,‘] ’ ivlé"ls 2, 3

J
where 9 and TS denote 2 x 2 Pauli matrices. Ome way to extend

this group is to regard these matrices as a subset of

%‘07,{\) 1] %%j y %G;Avtj ? %YS Tj

which 1s a representation of SL(4,G). Another relativistic extension

ig provided by the set

fope 0 T 5T

which is a representation of 0(6,1) ~ a smaller algebra than SL(4,C).
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That the physical consequences springing from two such dis~
tinct embeddings will differ bhetween the two models is not surprising,.
The distinctions are made clear at an early stage il we proceecd to
the W=subgroups. The W—group is defined as that part of the regi-
symmetry which is left invariant by a particuler Lorentz transformation,

This group does not include the spin but rather only one com=

Jane
03 -ix Jo3

poneant of.it, le. Since the Lorentz transformation & can
be used to boost a rest state into motion along the 3-axis we sece that
W=symmotry leaves the 3=component of momentum invarisnt. MNoreover,
the 2=particle product states with vanishing total momentum and with
relative momentum directed along the 3=axis can be classified into
W=representations. They constitute a manifold which ie invariant

under the W-group.

Usually it happens that an irreducible representation of the
regt symmetry will contain some W=representations more than once.
This leads to labelling problems. It will be necessary to introduce
extraneous operators into the system in order o obtain a complete
set of quanium numbers with which to label the sitates. These operators
zenerally will not commuie with JOB = otherwise they would belong to
the W=algebra = and so, for example, will not be conserved in forward
scattering where We=spin is conserved. TFor the case considered above,
where SU(4) was embedded in either SL(4,C) or 0(6,1) the W—groups are

regpectively,

SU(2) ©»su(2)®@U(1) and 0(5),

the one conteining 5 commuting operators and the other 6., Thus, the
constraints on forward scattering amplitudes ‘are sironger in the

second symmeiry than in the first.

Insofar as it is sensible to assume any algebraic structure
at all for the set of operators obtained from the generators of the
rost symmetry by applying Lorentz transformations to them we must
require this sglso for the displacement operators. Of course we can
always generate new operators from those of the rest symmetry by

commuting them with J,, and then commuting these new ones witk each oihor,

03

ave ; etce In genoral one has no reason to expeot the system so

generated to be a finite one =~ unless one is dealing with a system
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whose degrees of freedom are finite in number, such as the 3=
dimensional harmonic oscillator — and so one need not find any algebraic
gtructure. The assumption that one does find such a structure, how=
ever complicated, is a very restrictive one indeed. Having assumed

the existence of a finite-rank homogeneous relativistic group, one ig
faced with the problem of what to do about the displacements. Again

by applying homogeneocus transformations to the Poincaré displacements
Py y we will gonerate new operators, and if the get produced in this
way is finite, they must comprise a multiplet of the homogeneous group.
The simplest assumption we can make about these operators is that

they all commte with one another. This of course is & highly re-
striotive dynamical assumption. We bave no analogies from systems

of finite degree msuch as the harmonic oscillator or the hydrogen atom

on which to base it.

9)

this multi=-momentum situation. If one starts with & non=compacit rest

There is one rather special model (Fronsdal) which avoids

symmetry = one which contains the Lorentz group =~ then it is possible
to construct a relativistic group which has the form of the direct
product of 0(3,1) with the rest symmetry, and the Poinocaré 4=vector
r

e
such an interpretation there is no need 1o incorporate additional

in itgelf may be looksd upon as a mltiplet of this group., With

momenta when completing the algebra. Of course, with such a non-compact
group as rest symmetry, the manifold of rest states must always be
infinite dimensional and, moreover, this infinity of states will be

degenerate in mass.

- If we must incorporate the momentum in a higher dimensional
multiplet = as we chall have to if we wish to avoid the infinite
degeneracy of Fronsdal's model = then there are two essential require=~
nents to be met. TFirstly, this multiplet must contain a 4-vector
when decdmpoaed relative to the physical Lorentz group and, secondly,
the timelike component of this 4=vector must be a ginglet of the rest
symmetry groups The 4=vector can then be interpreted az the pbysical

d=qmonentun .

The next step, of ocourse, is ito associate particles with the
irreducible representatione of the inhomogeneous relativistic group.
If such a representation is decomposed relative to the Poincaréd group
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then, in general, & number of Poincaré representations will appear.
There will be a continuum of masses and a (possibly infinite) range
of spinss If we confine ourselves to the manifold which is generated
from the rest states by application of Loxentz transformations then
the mass continuum disappears and the range of spins becomes finite.
These are the only parts we shall use. That is,we shall proceed with
incomplete multiplets of the group theredby regarding it as a broken
gymmetry. The problem of how much symmetry to assign to the scatter~
ing operator is the cemtral one of the whole exercise.

1.2 Decomposition of direct products and the partial wave expamsion

To make a partial wave expansion we have to be able to de-
compose the direot product of two irreducidle representations. This
can be done largely by analogy with the Poincard group. It amounts
to discovering what representations of the rest symmetxry can be pro-
jected out of the manifold of product states wiith fixed total momentun.
We are not interested in the complete decomposition but rather only in
the parts receiving contributions from ocur physically truncated ststes =
those which are connected to the rest states by pure Lorentsz trans—

formations,.

The l-particle states with completely general momenta can
presumably be generated from the rest states by applying sufficiently
general boosts. However, we shall need only states of the form

Jre) Lol T |pES (1)

H: g > - aim'e)']'s' 3=ic Jo3 !«Eg’ > (2)

EAY
where 0 ¢ B £ 9T, 0 £ X <00 and the states |1> E> correspond to
particles at rest = gll components of ﬁ vanishing except for ﬂ)u M,

These rest states span a unitary irreducible representation of the

rast symmetry.




Prom the space of product states, Hg E , b E y let us
piok out those for which ! 2

(’Pl*"[?a) ". (E,0,0,0)

These can be written in the form

c W e oy KR “J
..EGJ_';;“ -t Jo3 e(7-0)5 "“‘z ba”’l

h )%'J. )% € € € "PJ- z>

B AP
£ 3’“' E':Pz$z>

"
©

£ (T = 7 )z [EMANNAL ‘”“ffb
(3)

| 1) . ;(2)
where J'3 "T31 +J'3l and

E=m oh; +m, ch¥X,, 0= my sh-o(l - m, sh0(2

_ A . ]
The states H)‘t £1 P £2> balong to the diresct product of two
irreducible representations of the rest symmeitry. This product could
be decomposed into irreducible parts by the usual Clebsch=~Gordan

method if that were needed. However, the operator 0(1 (l) - 0(23'5?

does not belong to the rest symmetry algebra and, moreover, it is not
a soalar of that alge'bra.. But it is 8 scalar of the W=group. There—
fore, the operator exp (O(l <l) - ¥, Jég) ), while being an infinite
sum of different represen'ta‘bions of the rest symmetry, is & scalar of

the Wesymmetry. We can efpeo‘b an expansion of the form
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where «i; = (£,0,0,0) and the coefficients {m ¢ [E,., ZZ> must
be proportional to coupling coefficients of the Wegroup. The label,
n, is generally needed to separate the multiplicity of rest symmetry
representations which appear. Its form can in principal be worked
out explicitly in any given case.

The "rest" states |h, ’BE} arrived at in this way belong
10 irreducible representations of the full relativistie group., Puiting
these things together we arrive at the desired decomposition. It has
the form

U’nf,,h z> ,,ﬂ 3::-\(5)

% |n p£><g;e N ESmE) & E<EIETTIEY

In order to apply thies formula to a given symmetiry there are
essentially two things that must be computed:

(1) the functions <& efieji\ 39%
(2) the coefficients <wé) &,, &,

At least one of these jobs is difficult: which one depends upon our
choice of basis vectors. If the labels. ’E" , are chosen so as %o
diagonalize the Casimirs of 0(3)J then (1) is trivial while (2) is
very complicated.s On the other hand, if E’, diagonalizes the Cazimirs

of the W-group = which does not contain J., ~ then (1) is complicated

while (2) is relatively simple. The idea.%lsolution, it would appear,
should be the construction of the transformation mairices whioch ocon=-
nect these two bases. Actually these will be needed if we are to
make any use at all of the W—labels sinoce the physiocal input will

always involve 0(3);.

The matrix elements of an invariant operator,S, will be
expressible in the form

S|mbES =T ™ bENCmI S(BE)INS (6)

2 “r - - )
the amplitudes {m | S(¥ %)[”) Sy, =+ TP E>i"“> being the
analogues of heliolty amplitudes in the higher symmetry model,




the helioity, A, being hers generalized to include the Casimirs of
the W=group., If the operator 8 is unitary then, of oourse, 80 are
the matrices (| 5[n> 5

Z <m] Sin") <m lS]n> * o ghn' (1)

™m

1.3 Various models

The rest symmetry contained in the Poincaré group is Just
0(3)s Ve shall consider a number of extensions of this,

0(4) = sU(2) @®5SU(2), 0(6) = 5U(4), sU(E), U(6)®TU(6) .

Each of these groups contains O(3) and so their irreducible represent=
ations generaliy will inelude a range of spin values. With the ex—
cepfion of the first example which is too small, these groups contain
also a rotationally invariant "infternal'" symmetry group. This means
that their irreducible representations contain multiplets of the in-
ternal symmetry each associated with a definite spin.

We oconsider firstly the relativietic extensions of these
groups, The first two examples have alternative extensions of come
parable merit., The last two are fairly unambiguous. In order to
treat these as unifofmly ag possible we shall exhibit the wvarious
generators in a representation by Dirac Y-matrices and 3&)3 X

matrices. They are

(1) 0(4) : O.ab’ iYaY5 y a;b = 1,2,3
(1)  o(6) s T Ty 0 T8 4 aybyi = 1,2,3
(113) SU(6) s St ¥ TN L =128

() SO@TE) + o, Vs, X, e YN N




Por all of these examples the Lorentz transformation JO3 is represented
by 0'03. Hence commuting the operators with 0'03 and with each other
will produce the relativistio extensions. We get

(i) o(4) +0(4,1) generated by v 'Lb(f*%
{ ¢ <
(i) 0(6) - sL(4,0) " n v s © 2 Tyl ,%5¢
i ot
(ii1) suU(6)->sL(6,C) " " Tav , N 5 0uv A ;93‘ 2

(iv) SU(6) & sSU(6)—~> SU(G,?) generated by .
Nov 00 G, G g A nadd, B Ny

From the example (iv) we see that in the course of extending SU(6) ®
SU(6) by applying Lorentz transformations we have been forced to
extend the rest symmetry itsmelf:

SU(6) ®sU(6) —> sU(6)®SU(6)@DU()

where U(1) is represenied by \{0. This did not happen in example (1)
because SU(2) &)SU(2) happens to be equivalent to an O-group. However,
if we arbitrarily extend the rest symmetry by including Yo, i.8.,

sU(2) @sU(2) —> sU(2) ©sU(2) UQ), or

0(4) = o(4)®o(2)

then the relativistioc extension coincides with the entire Dirac

algebra,

SU(2) ®sU(2)®@mU(1) —> sv(e,2)

or o(4)®o(2) — 0(4,2)
which is to be compared with 0{4) — 0(4,1), an entirely different

rodel.

Example (ii) provides an even sharper illustration of the
arbitrariness of this programme since here we have only to change the
interpretation of the rest symmetry = without increasing it -~ in order
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to change the reletivistio groupe. Thus, if we make the replacement

i . i
Or;b T —> l)/o }/5.C1

which leaves the rest algebra unmodified, then the relativistio
algebra hecomes

. . Iy

¢

o—-rw- ? T o, ¢t 3; YS-C
corresponding to the relativistic group 0(6,1)., Thus we have the
alternatives
/SL(4,G)
0(6)

0{6,1)

which are physically quite distinot.

Let us tabulate the groups together wiih their generators.
We list in tumm: +the relativistic group, the rest asymmeiry from
whioh it arose and the W=group.

(i) 0(4,1) H Jlu\, ’ Jf*s - -JS/‘* JJ,V = 0,1,2,3
0(4) : Tp &'a5 8y = 1,2,3
o(3) = T2 7 o5 1 I5p
(i) sU(2,2) = 0(4,2) JM y 'T_PS v T s J5
0(4)® 0(2) b Ty ,3;5 » g
(11)  0(6,1) . Vo ? ™, J'/u; ia1,2,3
1 i
0(6) : Tp 9 JaS
i i i
o(5) 3 Jip 097 315 , 325




(i1')  sL(4,C) SR AP SRR e J; im1,2,3
SU(4) = 0(6) : T 0 T, TN
SU(2) ® SU(2) ©UQA) » AP S

(111)  sL(6,¢) : Ty o i, J;jw .T; i 1,2, 0,8
SU(6) : S LR
SU(3)@ SUB)EDTR) » Tpp s T, 31,

(iv)  sU(6,6) Ty in Ty J’)u; g ,J; 2 s .:53_, gt
SU(6)DSU()@T() 1+ T s T 1, Tos s J'a; O O
53(6) REPE 312 29152 25 ‘71; ’ ‘72; Th

Let us consider next the labelling problem. Generally thers
are for each model two chains of subgroups whose Casimirs are useful
for labelling states. Botlk chains will include the purely internal
symmetry group bul one chain will include the W=group while the other
will include the spin group 0(3)J' Most of these chalns have the
awkward feature of providing inocomplete sets of labels whioh means
that their Casimirs must be supplemented by other operators con=—

atructed from the generators of the rest symmeiry.

Only for the cases (i)and (%), 0(4,1) and 0(4,2) are both ciains completely
sufficient. This case can be analysed completely. For case (ii),
0(6,1), the W~chain is sufficient but the J=chain is not. For the

other cases, (ii), (i11), (iv), neither ohain is adequate.

Taking the various models in turn we 1list the operators,
Imown oxr hypothetical,which will be needed to label the basia vectors

in an irreducible representation of the rest symmetry.




(1) 0(4,1)
We need 4 labels. These are given by the elgonvalues of the
following operators:

% Ja'b 'Ta.'b‘ + J'aS Jafu

ol
% €abo Yab o5

2 2 2 .
J 1p T J o5 * Ny 51 (W=chain)
2 2 2
Jig + Jo3 + Jqp (J=chain)
T12

The connection between the basis veotors of the two chains is pro=-

vided by the unitary transformation exp (i %; J35).

(i) 0(4.2) = su(2,2)

This model is labelled by the same ohains as in (i) with

addition of the single operator, J,, a Casimir of 0(4)x)0(2). There

is therefore a total of 5 labels. The conneotion between the two

chains is again provided by exp (i %F J35)a

(ii) 0(6,1)

Here we need 9 labels. The operators of the W=-chain are
complete. They are best given in terms of a straighiforward set of
0(6) generators, I8 (4B = 1,2,3,4,5,6), defined in terms of the old

set by




Jig0 939933 = Tip9 9030 9y

1

g, 52

3 , 33

4517561 964 =

3

1 2
'T15f‘ J15’ 'I15

‘716r314’315 =
1 .2 .3
To61924 0905 = Jo51 9551925

J

1 2 3
Y367 341935 = 350 V351935

The required 9 operators are,for the W-chain,

5T,p Ipp }
i
|
; .
%-_8_ GABGDE JAB 'TCD ‘TEF > Casimirs of 0(6)
T4 93¢ op Tma J
j]-
2% I )

Casimirs of 0(5),

Uy eos,8 = 1,2,4,5,6
Yg Ty I¥§ s

2
QJPv Jpv
Casimirs of 0(4),
1 }«‘-!V = 1’4’5v6



:%Jab Jab Caginir of 0(3),_ a,b = 4,5,6
364 ~ Casimir of 0(2)

Onthe other hand, the operators of the J=chain must include, in
addition to the 3 Casimirs of 0(6),the 4 Casimirs from 0(3); @0(3);
and its subgroup 0(2)& 0(2)s

2

2 2
512 + 523 + J

31
2 2 . L2
Ta5 + I56 + T54

J-12

T4

which make a total of 7. Thus it is generally necessary to consiruct
two other operators, Fl snd F2 say, which commute with each othex
and with these., ¥e bave no idea at this stage what would mske the

moat suitable candidates.

Algo, the problem of transforming from one basis to the other
would have to be solved,

(iiv)  sL{4,¢

Here again we need 9 labels. Neither chain is sufficient in
this case. For the W=chain we have, in addition to the three Casinirs
of 0(6) = SU(4), a set of 5 from the W=group and its subgroups. They

are

i 0d oy g A
@+ T35) 07+ 335)

i

(7 -3ty (& - Jiaj Casimirs of SU(2) ©SU(2) & TUR)

iz




which makes a total of 8, Therefore we must construct one more

operator G to complets the set.

For the J=chain we can adopt the same operators as were
used for case (2). Of course the transformation between W= and =

bases must be recalculated,

(11i) 51.(6,C)

‘ The rest symmetry SU(6) generzlly requires 20 labels. Of
these, 5 are provided by the Casimirs of SU(6) itself. In the W=chain
another 11 are provided by SU(3) ®SU(3)(@U(1) and its subgroups.

It is necessary then io supplement these with 4 constructs, EP"”H4
in ordexr to fill out +the Wwochain

20=5+11 + 4

The J=chain requires 8 new oconstructs

20a5+7+8 .

(iv) = su(6.,6)

The rest symmetry SU(6) @ SU(6) ®U(1) requires 41 labels,
The Casimirs give 5 + 5 + 1 = 11 of these. The W=chain yields another
20, leaving 10 to be made up:

41 =11 + 20 + 10
The. J=chain is even mors hopeless.

The momentum operators must be assigned to appropriate
representations of the homogeneous parts. The two fundamental require-
ments that; (1) the representation contain a Lorentz 4=vector and (2)
that the "timelike component of this veotor be a singlet of the resi
symmetry can presumably be satisfied by many different representations.

We list here the simplest choloe for eaoh case,




(1) o(4,1) P -5
(') o(42) P =15
(i1) 0{6,1) s Palf
(ii*)  sL(4,C) P = (4,4)
(ii1)  sL(6,0) P = (6,6)
(iv)‘ SU(6,6) 1 P = 143

Evidently the 4=-vector \glis always included and,moreover, the set

of matrices which commute with Y, can in each case be seen to be the

rest symmetry. In all of these examples the rost symmetry coincides
with the maximal oompact subgroup.

1.4 The ooefficien‘ts<n E ]é“l, £2>

We shall assume now that a complete set of labels has been
worked out for our relativistic group according to the W=chain., We
shall essume in addition that the various (lebsoh~Gordan coefficients
which arise can be domputed. Az a preliminary let us make some con=
jeotures concerning the Clebsch=Cordan prodblem.

Let us suppose that the states of an irreducible represent-
ation of the rest symmetry group can be written

fcru> o leFwr) (8)

where C denotes the set of Casinir invariants of the rest group, ¥
denotes the set necessary to label a representation of the W=group

and T denotes the set of supplementary labels which are necessary

when a given Wegroup representation ocours more than once., It is

algo ugeful on ovocasion to separate the set of labels W into two

parts, w-and A, where w denotes the Casimir invarianits of the Wegroup

=20~




and A the rest.

The direot product of two representations presumably de-—

composes into the form

le 7w AR AN >— Ic ;cm} <¢0lecl FH, CFV,

CCFW (9)

where C denotes a set of multiplicity paraneters. How many of thease
there are can be conjeotured on the basis of a simple counting srgu~-
ments the number of parameters in the gset C1 czii must equal the
nunber in CFW if none is to be lost in the decomposition. Thus, for
SU(n) where

nunbexr of Cl's = n=1
' nin +1 -1

"o nCFy =(1+2+3+uc+n)"‘l=
' 2

'H " C = Nq
z(n-:)“f' Ne =dnny)~ (10)

G =% (st

so that for SU(2): we have }IC' = 0, for SU(3): Nq =1, +o. 0tc,

The direct product of iwo W—representgﬁtions'preauma‘oly da=-

composes in like manner;

[0 2, Wy = Z }“\‘! W, T WAy {TA| W, W22y
T (11)

We shall sometimes write

Tw W, - <°"Wh'rl’ Wa> (12)

Pinally, we can define "W=acalar factors" in the rest symmetry Clebsch=

Gordan coefficients by writing




CSCEWIGRY, GRWS

2 LECFew | GF W, ¢, Bwy YW W, wod (13)
a .

Using these notions for decomposing the product of two re-
presentations of the homogeneous. group, we proceed as follows. Write
the product state in the form

L "3:”...\:{ W o R |
]hC,F; \A/': BCL F;W).>: U(G) e M : ZJBS)I’hC'hWI;PL "Fiwl} (14)

where G belongs to the rest group and the angles 0(1, 0(2 are chosen

so as to have

~
(Pl-i-‘f)z)/u = (E,OsO;O) = JP}.L : (15)
where E denotes the total energy. This is not always the most general
2=partiole centre-of-mass state but it is sufficient for our purposes.

Since J‘03 is a'I-I-group invariant we can make the multipole

decomposition

. ) 12)
"‘-(Nljz_; ~ofy B3 )
e

M~

= A%QOCE)

(16)

s}

L)

¢
where the operator Na ;;U\}(E) belongs to an irreducible representation
of the rest symmetry. Now

NC‘ 'ﬁo (E) },FJC] F}W| )?},Cz-F2 W:>

S L Mgy (O [he hG FER W WG R R

= |£,6,¢. FEE, SCRW DA Fw | & Fos CFWD X |
YCEW T oy
SCE (BT FWICRW, GFWS

-l D




Therefore,

[ h C,F,W,, Pacz szz._>

U6yl ¥ T jg,ca }E&\);CFW}X
CPBxR SCFW

.y

L Z<ECF it Fo,dFude s CRTwIC Py Co R ¢ oWiw vy
o

~

=T T |e,00, 588, 5 FW X SCrune o, dF vy x
CF W, CC
F

GT’w
- e C
« C¥CFoul CiF W, CuFadap DF'W',FW (6) L oW Wy, Wa)

- 2 7 |pcm CoFa, TR, CFWYD (8w, wad
CoFnFw Fw',Fiv

(18)

We have thereby constructed the expansion

LAM D --EE, b ED D @)nEILE) (09

where

o
Serc R (20)

Dg.a(c) -

<“ g | E,E:_> “'<°-W-]H1’ Wg} (21)



and
no= {ClFl“’l’ CF gz TFw (22)

The ooefficient<f(rW1W1, W2:7 implies a finite limit to the summations
over o and W. The restricted range of W implies further restrictions
on the summations over C and ¥, To find out what these are one must
learn something of the structure of the representations, IDC.

2
The scattering amplitudes (n'f T('P ) E)l H> corresponding
to a siriotly invariant S~matrix are now seen to ocarry the following
labels:

- - _ 4 C
<03;*3Uf3, C4I’4“£, oF w ‘T (s)’ ClFlw'l, Czebfé, OF W')‘ . (23)

They will appear together with the functions

< ldw’} (ev'v’| o™t | om > Cow [, W, ) (24)

and assorted Clebsoh=Gordan coefficients.

2.1 Enumergtion of generalized partial wave amplitudes

The representation funotions

D

¢ ; ,/
N , \

;o 153 (CFW UG) ICFW 2
P B A&/ {CF } (G)ICFW> | (25)
which appear in the partial wave expansion remain to be computed in
general. DBut vefore one can even begin to calculate them there is
the fundamental problem of enumerating all C labels which contain

the ¥ and W' sublabels appearing above, i.e. one has to determine and

clacaify all rest representations which include the particular W

spin representations. Depending on the character of the rest symmetry,

=2/~




the problem alters its complexion so we aro forced to proceed from
the general to the particular. =~ Tn +this gection we determine &ll
the representations;inthe next section we turn to the classification

provlea,.

Since the solution has already been given for all O(v)
representations by Salam and Strathdee in I, we shall restrict our
attention to the ocase of the relativistic SU(Vv, V) group where the
rest symmetry is SU(V )Y@SU(V )@ U(1) and the W-group is SU(V),

Lot us labsel the rest representations by (HI’N2; ") whexe N, ,¥, and
" serve as labels for the SU(V ), SU(v ) and U(1) groups; and let
us label the SU(V )W representation by N. Thus N,Nl and N2 could be
regarded as the dimensionalities of the representations. OCur problem
consists in seeing what (Hl N3 ") contain a given N, In fact I
is totally irrelevant to this question since its generator commutes
with the SU(‘V)W generators (but of course not with the Lorentz boost )
and we can assert that all the spectrum of [ values are allowed.

Thus we shall ignére it henceforth. For the rest we must have

Ny ® N, = N@® .. (26)

The constraint on Nl and N2 are readily obiained if we invert the

relation to read

W, ® N = IN, (27)

for we have only to vary'Nl in order to discover with what H2 it must
be associated. Thus szimple multiplication solves thes enumsration

problem,

To exemplify the procedure take the case V= 6 . One knows

then that the gommonly occurring baryons and mescns can be acCom
modated into the (6,8) and (56,1) multiplets (with [ = 0 , 3). Two-
particle states require the compositions

1®35, 1@56, 335@35 56@5%, 35@56
of U=~spin representations and in the reduction one meets the W=
maltiplets

¥Nasl, 35 189, 405, ... ; 56, 70, 700, ...

=25
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These, then, bave to be contained in (I\Tl,Na) levels of SU(6) & 3U(6),

which can be found directly from the rule

N @®Nan,

Thus for I = 1 (W=ginglet) we have all the rest states of the wvariety
¢ = (¥,),
For ¥ = 35 one obitains ithe sequence

(1,35), (35,1), (6,8), (3,6), (6,84), (%,84),

(6,180), (8,180), (35,35), (189,1), (1,189),

(_405v1)! (1’405) F I

and 80 On.

Tt ie important however to remark that in general this
multiplication problem leads to a Vv=fold infinity which ie connected
to the single degraee of freedom in M and the V=1 parameters which
characterize a given Nl representation (N2 is thereby limited in its

range ).

We bave not discussed the model where the relativistic
group is SL(2V , C) and the rest symmetry SU(2V ). The enumeration
problem ig rather more difficult here in that the W-spin symmeiry
ST(V)Y®@SU(V)®@U(1) does not immediately lend itself to the above
technique. Presumably, though,some variation of the method is possible.

9)

2.2 Clesgification of the amplitudes

We now turn to the problem of ordering the resti=-symmetiry
representations into various well=defined caitegories. This is al~-
together a more difficult problem to solve than that of enumeration
as we must first define what precisely distinguishes one class from
the nexi; and our guide can nmost simply come from the theory of
unitary representations of non—compact Froups. The roason wiy wWe
use non=compact groups is that their unitary infinite-dimensional
representations can be grouped into various sets characterized by
differing degrees of "degeneracy", to each degree of which is

associated a special content of the representations of the maximal




compact subgroup. The olue for the choice of non=compact group is
obtained from the "crossed channel" analysis where the rest symmeiry
is "continued" (rather like O0(3)— 0(2,1) in ordinary partial wave

analysis), Thus for our models the continuations are to

Relativistic Rest . Orossed chanmel
symmetry : symmetry W_symmetry symmetry
SO(M1) Sov) So(v-1) SO vty
SLC) SUY sum @ su@un SV, v)
SumY) Ssum@sSURBU)  SUY) SLALE)® O0)

Notice that, in general, the W group is the maximal compact

subgroup of crossed channel symmetxy.

Hereafter we shall coniine our consideration to the last of

these models.

The unitary representations of SL{V, C) will be distinguished
by their SU(V ) content and with these distinctions .we shall be able
to arrange the corresponding SU(V )(&)SU(V) representations into
different classes. Ii may be that this classification of SU()))()
5U( V) sequences can also be achieved through the use of SU(V, V)
classes of unitary representations, This is a matter for speculation
és at the present time one does.not:have available the full series

of SU(V, V) representations.

The decomposition of SL(‘v,C)‘ unitary lrreducible representi-—
ations with respect to the maximal compact subgroup SU{V )} is a
clagsic problem which has been completely solved by Gelf'fand and
Yaimark. They have given necessary and sufficient conditions for the
occurrence of an SU(V ) representation in an SL{V,C) one. 3Before
we state them in Naimark's language, let us give rules of thumb for
working out the content of irreducible SL(y ,C) representation of
the principal degenerate and principal non—degenerate series.lo) Wa
start with the well-known case of SL{2,C) and observe that the con=-

tent of the prinocipal series representation (jo, &)

jo:: o, ji,1,37/2, v

T IR g [T —————— . ————— = 6w e o e o L e ——




relative to the SU(2) subgroup is the same as resulis from the rulti-

plication of two irreducible SU(2) representations

AL e L !

x 2j +

as X -> OO . Above, x and 2]‘°+ X denote the number of boxes in
in the Young tableau. This special case is highly suggestive and we
show below how we can generalize it to SL(3,C) and then to SL(n,C).

SL{3,C) . There é.re two types of prineipal series = the principal nonw

degenerate and principal degeneraie.

i) Principal degenerate series are characterized by two numbers (mp)
m 2> O integral, — o0 & ¢ £ o0, the content of the representation
being given by the product

@[L ! J-when h = 20

L4 e

.

- Yo LTI

RR—Y

v
These SL(3,C) representations are the so=called Feynman

towers and in their decomposition each SU(3) representation occurs
just once, Note that, as for SL(2,C),the content does not depend

upon P, a. common Teature of 03 ~dimensicnal representations.

1© 521D -~ -
®35@s® - -

Examples (o,f)

(3,9

ii) Principal non-degenerate series are characterized by 4 numbers

4

Gy g, Py By )y, m,m, non-negative integers and -o0 & QP < .
The content of the above representation is obtained from the produot

! 1 ® T

2 ‘ Rt m,

-28=-




&gy By + 8, 2T non-negative integers

i

?-'ZQ“ such that 0 & Q4 + 2&, = 0 (mod 3)
'M-,+m,_+a,.

aa;

m,j-a,,_

where o ig the multipliéity which can be different from l. DNote the
appearance of the double o3, a characterisiic which immediately dis=
tinguishes this case from the principal degenerate series representi-—

ations.

SL{V,C). Here the degeneraoy types are défined by the partition of
v of the form

[

I 28KV, ¥ (28)

and the representations are characterized by 2(T—=1) numbers

ha1 mz, ¥n

. m. inte
o e -1 3 1 .gers

| _ (29)

To find the content we again draw the diagramss:

i) Most degenerate type: This is given by -

Viz V=i, Y, =1

If a roprescntation of this type is characterized by (mjo), then its

content is determined from

Yot e

g ® R
L'a*m gt

e

4s for SL(2,C) and SL{3,C) cases, this can be calculated explicitly

to give




[ o]

i
Z @ Y-! | ‘ atm
Co ! ’ .

S

A
each representation occurring Jjusi once.

Text most degenerate types: There are many different series here

given by different partitions of v into two parts. The first is

given by
V= Vo2 > Vo2

A representation of this type still reguires 2 independent

Casimir operators. Denoting a partioular one of this type by (m,p)

its content is depicted in

-2

oty

3 .

T =p 00

ab vy

:Z®{ L :B+m

Bach representation is again occurring once. The olasses

given here all have this characterisiic.,

This process oan be continued step by step. To see what
the general structure looks like, we describe below the case of the

less degenerate representations.

o
Indeed the procedure is to draw two large”diagrams which
- _
are conjugate to each other 11) and add the diagram

~30-




(ml +m2_+. . +mT_, » ml+m3+-- 'f'm?_‘) e >m.ﬁ_|)

to the second one and multiply symbolically

) | G
| ey
A {i e LY {i TR P

MWt
St Yot

: . M2 .

W’ith nl, n2’ s a9 (ﬂ N

The distinction between the different degrees of degeneracy
is simply in the possible equality of the rows of the two SU(V)
diagrams separately which also necessitates equality of the corres—
ponding m's, The partition:

Ve V4V e v, |
which Tixes the degeneracy type,restricts the second diagram such

that all n; are zero except forx

n

v’f‘ 2 yy'{‘}’y-; 2 2 ?v-kvr-)*" -"VI

- In otker words,for this type, the first ¥, rows of the second diagram
are equal, then the next\%ulare equal, etc. The V-th row is alwaye

taken to have zero lengtih.
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Finally we state Gel'fand and Naimaxk's theorem on the content,

To obtain the content of the SL{V,C) representation character—

ized by the partition
V=¥,*V.+ - TV, 1LY, Vit

and & set of 2(¥=1) numbers

i)

m Le /] e )
( $y 2). P 'f'—}\

S N NN

(mi integers, =00 £ Pi £ oo)

(all the 2(\?—1) Casinmir operators are functions of Jjust these 2(1'-1)

numbers ), -search for the weight

<m!;?’>”j_,~' 270, My g e e, L )
~———— - ~ —n ’
' Vo

in represeﬁ’tations of SU{V). The number of times this weight appears
in a representation of SU(V) as a singlet of the subgroup SU(\G_ x
SU(‘;)Z)@ cue ®SU(V1"-1) is the multiplicity of occurrence of the

SU(V) representation in the SL(V,C) ropresentation.

The trick that we have used to conneeit a weight with =
Youns pattern is the following. If an SU(V) representation includes
a partioular weight, it also includes all its Weyl transforms. One
of these isthe highest weight of some irreducible representation and

hence is associated with a Young diagram,

The prool ol ihe rules that we bave given for the general
casoes has not yet been rigorousl:)‘ cstablished., ZIEssentially it lies
in identifying the multiplicity of a weight in an SU{V) representation
with the mu_l'biplici'ty of its ococurrence in a particular decomposition.
dowsver, for the most degenerate and the next most degenerate caces

that we have described (in all these cases the multiplicities wexe




just one), the 1rales are undoubtedly exact. These rules are very

plausible and wo believe they are generally correct.

Casev=6, The most degenerate series follows from the multiplications
| e | |
- I l—l—— ‘ mesons
L ’ e
[
}.,ﬁf___ ¥
O
"
T T T eI 11
F ety baryons
e
o
which correspond to the Feynman towers Z( N, /'\_,) and
Z(N , N13 ) respectively.
iIn detail,
(1vl)’ (3,6), (Ei ,21)_.-. . mesons
(1956)’ (g ,126), e bary'ons

A typical next most degenerate series would correspond to

®

|
|

e

and would yield
(1,1), (8,6), (1I5,15) ueo mesons

This particular variety of next most'degenerate representations ig doviously
(for the baryons at least) not useful. And se on for the least
degenerate series. Based upon the (1,56 and (1,1) fundamental




diagrans we oan generate the series

(w,N) mesons
(1,56}, (8,126), (35,504) ... baryons
3.1 lleson anéd barjon'supermultiplets

The lowest—-lyin hadron states can bhe accommodated into
she (56,1 and (6,8) representations of SU(6)@® SU(6). Upon that there
is unanimous agreement; but whail is far leas sefiled is into which
multiplets one should place the higher mesons and baryons,linked to
which doubt is the possibility that the orbital excitation scheme
SU(6)Y® SU(6) ©®0(3) with its smaller multiplet structures (56,1,%)
and (6,8,X) may be preferred to the SU(6)® SU(6) scheme with its
widely increasing multiplet dimensionalities. The A=oxcitation
scheme haa agite bagisthenon~relativistic gquark bound-state picture
and gives rise to only ootets and decuplets of SU(3) whereas the
scheme SU(6) ®SU(6) we are presenting will differ from the A= excit-
ation essentially in predioting the existence of SU(3) 10, 27 and
35's.

FProm the theoretical point of wview there exists a sequence
of mezon and baryon representations, the TFeynman toweré, which is

characterized by a single Casimir operator,e.g.

(1,1), (6,3}, {(21,21) cee for the meson tower,
and |
(56,1), (126,8) «.. for the baryon itower.

These towers belong to the most=degeherate series of unitary
ropresentations of SU(6,6); they are thus the most rudimentary of
the clagses and for that reason are theoretically amongst the most
favoured. At first glance the series would seem to be experimentially
discredited as it unquestionably predicts an alarming multitude of
new particles in ever larger SU(3) representations(..;27, 35, eee)

which shows no signe of being established., 3But recently, fairly

3l




convincing argumenis have been advanced which show that the W=spin
selection rules inhibit the productiorn of these higher states in
simple 2 or 3~body channelsj 12) tkhe preveniion of their observation
then largely destroys the most direct evidence against the Feynman

13)

series, There may of course be other objections why the degenerats
series should not be sericusly considered and we may be unable to
meet them. For the present, however, let us pursus the study of the

series if only on grounds of mathematical simplicity.

The important characteristic of these particular towers is
that they are sPedified by a single label, the quark number N. 1f
wo negleoct the mass differences within the supermulitiplets, we may
plot the mass2 vergus the integer N, fThe points when oonnected

make the generalized Regge trajectories.

Pogsible Regee trajectories in the auarlc number plane

[ A] -1

3.2 Reduction of the N—trajectory into J-trajectories

Here we shall study the implications of the E=trajectory
bypothesis with regard to the propsrties of the resuliing J-plane
trajectories belonging to various SU(B) maltiplets. The clue to
obtaining the J-plane families is t0 examine the content of the
integer N representationsrwhich correspond to the particle poles.

We oan follow the chain
SU(6) @ sU(6) ~ sU(6) = sU(2)® SU(3)

to determine the spin which is associated with a particular SU(3)
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representation for any given (N,F) state.

In the first stage of the chain it is easy to see that one

obtains an infinity of SU(6) families.

Decomposition of N-trajeciories into SU(6)-—'bra,jecto£ies

N B=es ‘ B:
2{; K T * /‘ ,_"'— N / ’

S

ees]! | / / |
| /////;// Lee] 1//{;///;///

[ssJ
/// o
—>— [ / N

J!

by simply drawing-trajectories‘through the resulting SU(S) particle
poles. The residues associated with these trajectories must vanish
for ‘negative integer" (] simply because we only'enoounter positive
dimensions in the reduction SU(6) @su(6) — sU(6).

Examples: (6,6) = 1 35
{21,21) = 1 35 @D 405 etc.

Likewise for the baryons. Thus alrsady at the level of the

rsv chain we encounter an :{._fﬁ‘ln:.te family of trajectories; it is
Satedlsies
important to note that these/ are a consequence of the interual sym-
14)

and have nothing to do with the daughter trajectories

15)

metry group
¢f Toller, Freedman & Wang.

Let us proceed to the next and final stage of the chain.
Here one Tixes on a particular SU(6) trajectory, say the leading
trajectory I, and where it passes through "integer" N we perform the
SU(6) reduction into SU(3)(® SU(2) multiplets. For example,wiik

the mesons, in an obvious notation
1= (1,1)
352 (1,3) + (8, 1 +3)
405 = (1,5) + (8, 3 +5) + (10 + 10, 3) + (27, 5+ 3 + 1)
+ (1,1) + (8, 1 + 3)
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2695 = (1,7) + (8, 5 + T) + (10 + 10, 5) + (27, T + 5 + 3)
' +(1,3) + (8, 3 +5)+ {(10+10, 3+1)+ (27, 5+ 3 +1)
ok (8,1+3) . + (27: 3)

+ (35435, 5+3)+ (64, T+5+3+1)

we can trace out the families of parallel trajectories for any

© particular SU(3) multiplet.

Four observations are in order about the proverties of these J-
trajectories;

l. All residues for negative J should vanish,

2. For sufficiently high SU(3) representations all residues occur—
ring below a certain critical mass should vanish,e.g. with the

27 fold, no pariicles with masses<fh2 can materlalizs.

5e A1l self adjoint SU(3) multiplets of ihe variety (X,)) have
associated the leading trajectory I. The less self adjoint they
becone [i.e. in the notation ()\,)1) as i)\-/-tf :’mcreases] the
lower the leading trajectory. B.g., with the 10 fold, the first
trajectory which gives rise to particle poles lies one unit below

the leading 8 trajectory.




4, The number of members in succeeding generations of trajectories
increases. Indeed it ie convenient to enumerate the number of

trajectories occurring in each generations

1 has the sequence (1, 1, 2, 2, ...)
8 has the sequence (1, 3, 5y Ty ees)
21 has the sequence (1, 3, 6, 10, ..)
10 has the sequence (0, 1, 2, 3, .,)

of the first, second, third,etc.,generations.

Evidently a parallel set of Temarks and method of enumeration
can be applied to the baryon hypermuliiplet.

3.3 Calculation of the d—functions for the most degenerate case

Super=-singlet scattering is the basic process for providing
the representation funciions d‘c;:o (9) , ‘the analogues of PJ. (tes &)
for 0(3). Actually we shall treat the case of SU(V) x SU(V) rest
symmetry as this is no more difficult to work out than SU(8)&@ SU(E);
the meson tower of the most degenerate seriss may be tensorally

répreaented by the sequence

T U’.;Ez) _ m’u‘il,- bn)
? ? ¢°Lr ? KQJ)QL) . A (q,)‘rq\v._ﬁﬁfﬁ)\’

and the baryon tower by

I\ -
N ~
b, (§,, 5, 0+ ba)
? P 4
B % ay, (- M %304 \a, 4y, - RV,




corresponding %o particles at rest. The boosiing to arbitrary
momentum # may be effected in the standard manner by imbedding these
tensors into finite SU(V, V) representations subject to the subsidiary

Bargmonn=Wignerequations; thus we will obtain the relativistic set

of states 5 ’?’”"J (
: B .. - P) o
VORI TR
& T »
"f’,, (P), ‘)L/ . L’LJ\ b NJ N
[Nm’,ﬁy (ﬁ/ﬁ}ﬁ]ﬁlfy > {ﬁ’ . /}/b'.) S)

with [SU(™W)® su(v)] p @8 the littloe ‘group at arbitrary p.

We shall thereby frame all calcoulations in the M=funciion
basis so that after coniraction over the external particle wave
functions we will obtain the doo(e)f‘unctions. As we shall show later,
the more general o \w/ (#) functions are derived from the doo (&)
by appropriate differentiations. However there are a few conclusions
which we should asnticipate: 1, For H4 O we can only expect SU(3)(D
SU(3) selsction rules,i.e. equality of the SU(3) & SU(3) labels within
Wand W' in dWw.(B). Also,since J'31 transforms as a 35 of the W=group
we chould expect that when W and W' differ o the extent that the first
non=vanishing C.G, coefficient derives from 3535 ®@~® 35 @Nw - NW' ‘
then - d}m.’,(ﬁ)wenfor snall 8. »,

2. When 6 0 the selection rules enlarge to SU(6)W and in fact we
lmow that d, (0)C Sy

3,4 Iivaluation of doo_(_(_s‘_)

To evaluate doo (9) we can adopt the usual rule of in-

homogeneous SU(v,V) thoory which reduce the vertex s)symmetry to just
16) B
tums out to be a very simple Gegenbauer function exhibited later

SU(V)W through inclusion of the momentum factors This answer

in eq. (43)s We will have two different STJ’(V)W groups operating at
sach end (they can be related to each other by the rotation e ¢97a

which become identical for collinearprocesses (§=(),

(yl)
()

90 N
\5)!)

1)




We make use of the veritex function

‘(H.Q;. ) L, ﬁN}
PR g, @ = T, B”)(M/)
(30)
and the propagator
Bibr Puy, B )
(ol TEb, - gy P55 190 (31)
31

(B,...BW) U}," .- ﬂ/(i)

< A : p)
= ) ) Ay

If we retain only the pole contribution to the a.mpiituda we can safely
nake use of the subsidiary conditions on A . Then from symmetry and

covariance requirements we get

&L - Bn) (ﬂ//‘ T ﬁ:‘v’,\

( ﬁ/v) (B) |
- U”””)n, (P+~> (P~m) (- M) ¥ (32)
Pe\,m;:?ﬁemm _ LN{) .(lm) _( P— )
and
. ﬁy HN
r(a.... Aw) (P9 = 3 > o+ %&)--- U aw
8- A3 me(m (33)
™ A
whence we have the amplitude
po _ | A B - y
LN') L).m) (p-m\j P%A tewa |
. % ﬂr R, Bas (34)
W' m ). ~mJ
s SV VL %
3 ! By
' [Péwwm&rbwa j’&,’ T Y 8/,
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The reduction of the numerator is a combinatorial problem invelving -

the partitioning into the sets +
+ . v
Frv ()] TP 083} 0 LT W™

wWhere -
N = o+ 29, + - - -rN?lN') -‘Lu-f'a.._,-" W non negative

and K stands for the matrix Ks 9(p+ *h)%,(?“"“) .

The number of times a particular partition occurs is

7!.
’f} }LL . N
wif o O (LAt

S IR DA TR (35)
, -
N Wi
7 P NTN ORISRV
To see what this mulitiplies we need to evaluate
427
A
T (k)= Te (F (B Fl-m) oo e (LpEmIEN ) ] (363
3

This is more easily done in the rest frame of 'F since the expression

re&uqes to

T s ey LT LYY 5 Y)")

(37)

~ A

i

+ s/ n N
V(-4 \917)\%)) Coa v 8 Db G

Thus a given partition coniributes

{ !)L { =4 F g })N ® b Ly
AV - g™ . L
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10 the numerator and in totowe get

9y (-18119 3 « - L""-’“‘g)(“’@sw*» ()"
T = N ( fZ? W
2 L Cpe e
P WA fecdidens. T %] L ! (38)
Upon meking +whe series expahsion
0 .
e (%t VY n F(n~v)
Grdz Z A=) 2 Ly o(p) — (39)
Yeo FeA+1) Tlnear31)
the expression simplifies remarkably to the series
1 N o
| In (- 19%) Y+ A=y =
T. 2LE I iGN (40)
P P 10 Tiypr1) T(N-22+1)
which can in turn be recast in hypergeometrio form:
-9 1% - ) ¥ N
+. W BIYD) UNTED wey
bom” G ASRIGUS) (41)

x LE(-E;N) TIN L L N = B Cof &)

and is nothing.else but a Gegenbauer funciion:



i~ \ = / N Ji?. A Ag
L= 3 SNUH%\AEHL C N ( % c‘??)
Pemiea) (42)

Thue we have obtained -

do (8) = cé" (cos6) . o (43)

We now presume that the analytical continuation to the "Regge

amplitude" replaces T by
ot p°)
. E\}Q’J?fﬁyl) p £ oA
Y Blp) ~— c ., (% %) (44)

T- /_
Ain ARG AP

4
e

This is the master formula we wero aiming for.

Of particular interest is the ordinary J-plane trajectory
1
roduction of the N-plane trajectory. 7) This may be obiained from

the series

J)) o0 . -
2 (5v+Y) (N +5V-7)
C, (wb)= 3 2 - G (v=-20 (45)

vzo T(¥+1) ]‘(Y\-)W;)Q‘(.;ivfo):.

and

°Z° (2v1 = 4EtD) Fi{k~4) r(n»k)

_ (Cerd)
K=o [LX+D) Tin~k+3d)

ORI %
C&Sﬂé - ‘b‘-rn Pﬂ"-}.i( (46)




29 &4
2 N X)
Hence C N ( :C) - Eo aN}; P PN- ZJC( ’
where (47)

q o BWO) B e 0p o K)o
NEY )J veo FOVHD T{N=-Fa)y  T{R-PaD) vy ol )

(48)

is a finite series (for fixzed K) in I functions. (One may directly
show for V = 1 that ay., = Oy ).

Ve then‘ continue our results to complex N =X , still
writing
' x) = 7 & P X 49

and keeping the same (finite) series definition of W yyxv. This

relation provides us with the J-Regge decomposition of the amplitude

= 4 W 7] 0) g S a (%) (50)

Aty Tk K=o Ky A-2k

gorresponiGing o the exchange of an infinity of (equal signature)

SU(3) singlet satellite trajectories spaced out at

with residue ratios
2y Ao ky
) -
3 Q,d K’y _ (51)



Yotice,however, that the K'th sateilite has aszociated the threshold

r LS ' i
factor lkiéff!gb[) of the parent, not the expected centrifural

- oY » . .
factor fhgl E%fj} . . This mus? be so since the ratio of residues

(at the integers at loast ) are prescribed numbers which must be
independent of'pL; hence the "kinematical" factors must cancel
exaoctly.

3.5 Secattering of higher representations

The simplest examples where the generalized representation
functions make an appearance (generalized in the sense PJ—a-Gigx
for the 0(3) case) are the processes

(1,1) + (6,6) ~» (1,1) + (1,1)

oer (611) + (1:3) —> (1,1) + (1,1)
Y ’1!‘*’/_)
B t_ <::/
oy 70 L1V

In the invariant amplitudes’language which we have been using, this
is simply understood as the faoct that the M~function acquires a

valr of free indices Ti which remain to e contracted over the B.W




wave functioné representing the external particles. After contraction
: ')

we obtain the generalized 1i;w(9)' funotions appropriate to SU(6) &

SU(6). |

There exists a simple iechnique for discovering the structure
of Ti due to the exchange of the (W,F) multiplet. It is a simple

: 1
generalization of the usual method for J=reggeizing invariant amplitudes

and consists in carrying out differentiations over the momentum 15=
veotor before projection onto the 4~dimension physical subspace.

' Thus; Ti a 617&%Vg where T represents the scalar scattering amp-

litude. One might imdgine that this procedurs, involving the 15
momenta'with consequent difficulties in multiplication, tracing
operations, eto. would rapidly become prohibitive as the number of
indices increases. Fortunately this is not the case if we Ffollow the

simple rules

Tt . G2
) - 3
Tl 4m g F o= 4m %G
then
v .?Z_T- _[@)-&-m) 1( -.m)jﬁp I ;.,.h (P‘”"JBBG
?ﬁ/g - CV r A +L.(F ) T/ . (53)

The proof of this rule is established by noting that

- :
_.;\ 2T () = L—-er H%I) &P*M) ‘*J(P“"“)]ﬁ Al d }
ac‘% Ain 8 ch £LF"”‘)7/(P+mﬂAnn(n-l)G (54)

in direct relation to the naive differentiation procedurs

8)
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From the above rule applied to

<. \\971\%1) c E

P": >~ (56}
we directly deduce
s 19/
_ . }i/_) 2 / T -
R -1(I%M’ NJ&NV")%I Cp * % C, ] I
- q/. %..’_..P_V-} C-}l-v, PQ:'}“L
© s TN (57)
i /7 A=) ’ 2oy /
- ¢ \QV]PGI / J{-\)-\ A 1—”):\/\'
zvjzutp_ﬁj [‘h CN (3%'%) - ‘b%’,cm-. =9 j

whenos we immediately obtain




Finally we have only to contract out indices over the external wave

functions such as

8 | 5
B (o [l po e m) (b - %]

(59)

to discover the d‘\:’o (6) funotions. The answer for the Wesinglet
state is already known(it would be obtained by dropping the

5351,-2, components above). Let us instead evaluate the function
for the SU(3) @ SU(3) singlet piece of the 35-dimensional represent=

ation by perféming the traca.

o~

: 2 Nana' , iw /

Tv[T(JiP'* ‘i/-!—m)k‘}: - 3%@) ‘1,1 C"v( %'3/;)
$- N

"

(60)
Thus we conclude that
v, £y’
dw"’: 3, Ws ;(9 )% Aino CN (Cs0) (61)

in agreement with the small £ behaviour one should have expected
on general grounds. By similar techniques it should be possible vo
derive more complicated d functions for SU(V )®@SU(V ).
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