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ABSTRACT

These notes (which will not be published in the present form)

are concerned with Reggeization of U(6,6) symmetry. Our major con-

clusion is that if physical criteria could be formulated, the Regge-

ization procedure could, in principle, . determine why physical

particles correspond to parts of specified non-compact towers and not

to others. The paper is concerned with the details of construction

of different typeB of trajectories, though unresolved is the specifi<-

cation of the oriteria to select out, for example, a Regge generalized

trajectory with the content of, say} a Feynman tower. It is suggested

that Majorana—like infinite—dimensional equations provide a concrete

realization of Regge trajectories. These equations give rise to pro-

pagators for Regge trajectories. Using these one can develop a cal-

culus in J-T?lane similar to the Feynman calculus which.would represent

multiple exchange of Regge trajectories.
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REGGBIZATIOH OF IKTEBML SYMMETRIES - II

INTRODUCTION

The nature of internal symmetries of particle physics is

mysterious. The exact U(l) symmetries which manifest themselves as

charge and baryon-number conservation are presumably kineraatical

in character, outside of space-time structure. The "broken symmetries

like SU(2) and SU(3) may resemble the U(l) symmetries mentioned above

or alternatively may be dynamical in character like shell model sym-

metries in nuclear physios, manifesting themselves for some class of

phenomena and not for others, for some energy ranges and not for

others. Proposals of this variety have been mentioned from time to

time, among others by Yamaguchi ' who has argued that SU(2) and SU(3)

are really no deeper than S 9 and S_ (permutation group) symmetries,
3)with a superimposition of a particular type of dynamics; by Lipkin '

who, starting with just three quarks, has claimed to obtain a number of

SU(3) results without SU(3) and by Chew from whose point of view the

symmetries can possibly be no deeper than a manifestation of boot-

strap accidents. The successes of SU(2) or SU(3) algebra of currents

do not gainsay this type of reasoning in any fundamental sense. If

basic doublet or triplet fields (quarks) exist, the commutation

relations for the algebra follow from the quark commutation relations.

The successes of the algebra then only verify once again that within

a certain dynamical domain a (broken) symmetry exists among the

physical particle spectrum.

The hypothesis that STJ(2) and SU(3) are dynamical symmetries

would, in an obtuse manner, perhaps be welcome, since it would place

these symmetries cnapar with the other dynamical symmetries SU(4) and

SIT(6). One cannot say this of SU(2) in the presently explored energy

domain but certainly so far as SU(3) is concerned it is equally a~

broken as SU(6). ^'

In the first paper of this series, referred to as I, a beginning

was made to take aeriously the point of view of internal symmetries

"aoing possibly dynamical in character for predicting the physical

particle spectrum. Given a rest symmetry (like SU(6)) to which known
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particles belong, one could assume that the dynamical interactions

of these particles also exhibit SU(6) symmetry. One could then ex-

pand the physical S—matrix in partial waves, using for the harmonic

analysis the group SU(6) rather than the conventional group SU(2)-.,

A reggeization of the Casirair-invariants of SU(6) rather than the

Casimir J (angular momentum) of SU(2), would self-consistently pre-

dict a particle spectrum which would include, of course,the particles

we started from. Also one may exploit the well-known connection of

Eegge pole theory with asymptotic scattering limits and hope that

this may provide results in better accord with experiment than the

predictions of higher-symmetry theories in the low-energy domain. It

was found that, in general, the particles appearing on a generalised

Regge trajectory correspond to the content of appropriate non-compact

towers. The reggeization procedure therefore provided a link between

Coleman's 57 varieties of

Although in this introduction we have so far stressed the

possibility that internal symmetries may be dynamical in character,

there is nothing in the formalism of Part I of this investigation to

make this absolutely essential to the development. In that paper,

attention was specifioally devoted to the higher rest symmetry SO(n).

These groups - the prototype of which is SO(6) combining J and I-apin-

proved (for somewhat accidental reasons, explained below) particularly

simple to handle. The rest symmetries like SIT(6) or 3IT(6)(x) SU(6) are

more complicated and, in a sense, much more interesting to reggeise.

Unlike the case of S0(n) where there appeared Just one Casimir which

could be reggeiaed, there now appear more than one, leading to distinct

types of trajectories* The distinct types can be placed in a one-to-

one correspondence with some of the rungs of non-compact towers. It

is the principal aim of this paper to explain where new complications

r.:r-c3 their appearance. Hot resolved is the problem of defining

physical criteria which should select one type of trajectory rather

another.

What makes the difference among the various cases?

The simplest way to see it is to make a partial wave
6) 2

based ' not on the little groups for p > 0v i.e. the rost symmetry
groups 0(n), STJ(6) or SIl(6) <x)SU(6), but based on the little groups
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for p <O,i,e. 0(n-l,l), U(3,3) or SL(6,C). (in enumerating these
2

p < 0 little groups we have assumed that the overall Lorentz group

containing the relativistic structure we are dealing with is O(n,l),

SL(6,C) or U(6,6).) The non-compact groups 0(n-l,l), U(3>3) or

SIJ(6,C) possess a number of unitary irreducible representations with

Casimir invariants which take (for principal series) continuously as

well as discretely infinite set of values. It is only the former,

the continuously infinite Casimirs, which can "be reggeized. The

difference between 0(n—1,1) and SL(6,C) lies in the simple circumstance

that 0(n—l,l) possesses just one continuous Casimir, while SL(6,C)

can have as many as five.

7 1
In Gel'fand and Ifaimark's classification , SL(6,C) possesses

one non-degenerate and nine ' degenerate types of series. The

partial wave expansion^ presumably, in general calls for inclusion of

all the ten types of series. Meroraorphy assumptions for the amplitude

would give ten distinct types of Regge poles. The most degenerate

series, for example, leads to the reggeiaation of just the quark number.

For other series, not only the quark number but also other Casimir1a

are reggeized.

Is there any physical criterion (besides simplicity) by which

one could assert either that only one type of series contributes or

only one Casimir shows meromorphy? One may conjecture numerous types

of criteria; to take one, it may be hoped that the asymptotic be-

haviour of the expansion functions associated with each type of series

may be different; from the known asymptotic behaviour one may thus

find that one can limit oneself to just one series in the expansion.

Unfortunately we have been unable to find anything in the literature on

the high-energy behaviour of the expansion functions. We feel that if

this problem could be solved one may eventually be able to determine

why certain classes of representations occur in the expansion giving

a clue to what type of particles might be physically realized. The

plan of these notes is as follows. In Seal we formulate the problem

of embedding a rest symmetry in a relativistic structure and show

sor.e of the arbitrariness which may arise. A particularly crucial

xole in all subsequent development is played by the W-spin subgroup

of the rest symmetry - this is the subgroup of the rest-symmetry
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whioh commutes with a Lorentz generator J0_rTiie ir-spin subgroup equals

the helicity J , 2 when the relativistic group is 0(3,1); i t may

with reason have "been called "generalized helicity" for other cases.

Given a two particle rest state with total W-spin content w, the

Lorentz boost e l °* ^ in the centre-of-mass frame generates from

i t all states of rest-symmetry (or in the brick—wall frame, all

states of the corresponding non-compact l i t t l e group) whose W-cpin

content equals w* This problem is solved in Sec. 2 for U(v)(x)TJ(v)

groups. In Sao. 3, we turn to the problem of construction of the

rotation functions for the most degenerate class of representations

of U(v) (x)TJ(v). The result, in spite of the complicated methods of

derivation,turns out to be remarkably simple; for example d.0Q ($) -

/M 5^) f o r u (6 36) case. Here C is the Gegenbauer function,

A reggeization of N (the quark number) shows that the high-energy

behaviour i s proportional to (to$&) * In the las t section we turn

to a different top ic . This topic concerns the possible use of

Majorana-like infinite-dimensional equations for providing a

representation of Regge trajectories. *

1.1 Kelativiatic? symmetry

For systems at rest we have, to begin with, the group of

spatial rotations. This symmetry group is generated by the ordinary

angular momentum J_, In addition to this i t is usual to include

space reflection as a symmetry. Beyond these we can have the

various str ict ly internal symmetries such as SU(2)y or SU(3)p*

These groups are independent of the spatial rotations and reflections,

that is to sayi the generators 1 ^ P., . . . etc. are positive parity

rotational invariants. All of these symmetries operate on rest

states; they leave invariant the manifold of states with P a 0,

This manifold will be finite dimensional if the symmetries are

compact ones, otherwise i t must be infinite dimensional.

It may be that we can reasonably extend, the rest symmetry

to include transformations which are independent of neither the

internal symmetries nor of the ordinary rotations. The generators

* This section has already been circulated as ICTP; Txieste,proprint
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of such, mixed transformations will be neither 0 ( 3 ) T n ° r S U ( 2 ) T

singlets but must belong to some non^trivial representation of

0(3)j x STl(2), (for example). Again this overall symmetry group may

or may not be compact.

Amongst the physical observables we have the generators, oQ{

of pure Lorentz transformations* Evidently these do not oommute with

the generators of the rest symmetry, in particular, with J_. Thus, if

we wish to keep an algebraic structure which includes the Lorentz

transformations then it is necessary to envision an enlargement of

the rest symmetry. If the rest symmetry is oompact then this enlarge-

ment is essential. The'relativistic algebra so obtained may or may

not be finite dimensional. It must at least oontain the algebra of

the homogeneous Lorentz group, 0(3,l), and this means that all the

members of the algebra may be grouped into multipleta of 0(3,1). In

particular, all the generators of the rest symmetry - which of course

fall into 0(3) multiplets - must be associated with (possibly broken)

0(3,1) multiplets.

A given rest symmetry may. be embedded in more than one relativ-

istic group* For example, an operator which belongs to a triplet of

0(3)j may belong to an axial veotor of 0(3,1) or to an antisymmetric

tensor. The physical consequences must vary accordingly. The simplest

example of this sort of thing occurs for the rest symmetry SU(4).

The generators of this symmetry take, in the quark representation,

the form

£ o - i , £ T . J , i- <r± T j » i » o - i > 2, 3

where <r. and f . d e n o t e 2 x 2 P a u l i m a t r i c e s . One way t o e x t e n d
J •

this group is to regard these matrices as a subset of

which is a representation of SL(4»C). Another relativistic extension

is provided by the set

which is a representation of 0(6,1) - a smaller algebra than SL(4,C).
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That the physical consequences springing from two such dis-

tinct embeddings will differ "between the two models is not surprising.

The distinctions are made clear at an early stage if we proceed to

the W-subgroups* The tf-group is defined as that part of the rogt-

symmetry which is left invariant "by a particular Lorentz transformation,

J-.J. This group does not include the spin but rather only one com-

ponent of i t , J-ij>« Since the Lorentz transformation G ol can

bo used to boost a rest state into motion along the 3-axis we see that

¥—symmetry leaves the 3—oomponont of momentum invariant. Moreover,

the 2-particle product states with vanishing total momentum and with

relative momentum directed along the 3-axis can "be classified into

W-representations. They constitute a manifold which is invariant

under the W-group,

Usually it happens that an irreducible representation of the

rest symmetry will contain some W-representations more than once.

This leads to labelling problems. It will be necessary to introduoe

extraneous operators into the system in order to obtain a complete

set of quantum numbers with which to label the states. These operators

generally will not commute with JQ~ - otherwise they would belong to

the "-algebra - and so, for example, will not be conserved in forward

scattering where W-spin is conserved. For the case considered above,

where SU(4) was embedded in either 3L(4,C) or 0(6,1) the W-groups are

respectively,

STJ(2)g)SC(2)®TT(l) and 0(5),

the one containing 5 commuting operators and the other 6. Thus, the

constraints on forward scattering amplitudes are stronger in the

second symmetry than in the first.

Insofar as it is sensible to assume any algebraic structure

at all for the set of operators obtained from the generators of the

rest symmetry by applying Lorentz transformations to them we must

require this also for the displacement operators. Of course we can

always generate new operators from those of the rest symmetry by

commuting them with JQ, and then commuting these new ones with each other,

.*. , etc. In general one has no reason to erpeot the system so

generated to be a finite one - unless one is dealing with a system
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whose degrees of freedom are finite in number, such as the 3-

diraensional harmonic oscillator - and so one need not find any algebraic

structure. The assumption that one does find such a struoture, how-

ever complicated, is a very restrictive one indeed. Having assumed

the existence of a finite-rank homogeneous relativistic group, one is

faced with the problem of what to do about the displacements. Again

by applying homogeneous transformations to the Poincare displacements

Pĵ  , ve will generate new operators, and if the eet produoed in this

way is finite, they must oomprise a multiplet of the homogeneous group.

The simplest assumption we oan make about these operators is that

they all commute with one another* This of course is a highly re-

strictive dynamioal assumption. We have no analogies from systems

of finite degree such as the harmonic oscillator or the hydrogen atom

on which to base i t .

There is one rather special model (Fronsdal) ' which avoids

this multi-momenturn situation. If one starts with a non-compact rest

symmetry - one which contains the Lorentz group - then i t is possible

to construot a relativistio group which has the form of the direct

product of 0(3,1) with the rest symmetry, and the Foxnoare 4~vector

fy, in itself may be looked upon as. a multiplet of this group. ¥ith

such an interpretation there is no need to incorporate additional

momenta when completing the algebra. Of course, with such a non-compact

group as rest symmetry, the manifold of rest states must always be

infinite dimensional and, moreover, this infinity of states will be

degenerate in mass.

• If we must incorporate the momentum in a higher dimensional

multiplet - as we ohall have to if we wish to avoid the infinite

degeneracy of Fronsdal's model - then there are two essential require-

ment e to be met. Firstly, this multiplet must contain a 4~vecior

when decomposed relative to the physical Lorentz group and,.secondly,

the timelike component of thiB 4"vector must be a singleti of the rest

symmetry group. The 4-vector can then be interpreted as the physical

4-moiaentum.

The next step, of course, xa to associate particles with the

irreducible representations of the inhotnogeneous relativistic group.

If such a representation is decomposed relative to the Poincare group
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then, in general, a number of Poincare" representations will appear.

There will be a continuum of masses and a (possibly infinite) range

of spins. If we confine ourselves to the manifold which is generated

i'rom the rest states "by application of Lorentz transformations then

the mass continuum disappears and the range of spins "becomes finite.

These are the only parts we shall use. That is, we shall prooeed with

incomplete multiplets of the group thereby regarding it as a "broken

symmetry. The problem of how muoh symmetry to assign to the scatter-

ing operator is the central one of the whole exeroise.

1,2 Decomposition of direct products and the partial wave expansion

To make a partial wave expansion we have to "be able to de-

compose the direct produot of two irreducible representations. This

can "be done largely by analogy with the Poincare' group* It amounts

to discovering what representations of the rest symmetry can "be pro-

jected out of the manifold of produot states with fixed total momentum.

We are not interested in the complete decomposition "but rather only in

the parts reoeiving contributions from our physically trunoated states •

those whioh are connected to the rest states by pure Lorentz trans-

formations.

The 1-particle states with completely general momenta can

presumably be generated from the rest states by applying sufficiently

general boosts* However, we shall need only states of the form

- e

or

.

where 0 4 0 4 IT, 0 \< <X < oo and the s ta tes J -p P y correspond to

par t io les at res t - a l l components of ji vanishing except for j>o » m

Those rest s ta tes span a uni tary irreducible representation of the

rest symmetry*

-9 -



Prom the space of product s tates , \<h t * t \ le t us
1 n TI * u S i 7

piok out those for which

(f1 + | 2 ) - (Bf 0, 0, 0 )

These oan "be written in the form

(3)

where J ^ - J ^ + J ^ and

E - m. oh<X- + m2 oh (X , 0 » m̂  shiX, - m2 shO(«

The states ta c, ., P C / helong to the direct product of two

irreducible representations of the rest symmetry. This product could

he decomposed into irreducible parts "by the usual Clebsch-Gordan

method if that were needed. However, the operator 01̂  JQ-S " 2̂*̂ 03

does not "belong to ths rest symmetry algehra and, moreover, i t is not

a scalar of that algehra. But i t is a scalar of the tf-group. There-

fore, the operator exp y ^ l ^03 ** ^2 J03 X w l l i l e ^ i ^ S an infinite

sum of different representations of the rest symmetrŷ  is a scalar of

the K-syiametry. We can eipeot an expansion of the form

(4 )
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where -i> - (t,0,0,0) and the coefficients <ffi *C £ fc* \ roust

"be proportional to coupling coefficients of the If-group. The label,

n, is generally needed to separate the imiltiplicity of rest symmetry

representations which appear. ItB form can in principal he worked

out explicitly in any given case.

The "rest" states jft, p ̂  ̂> arrived at in this way "belong

to irreducible representations of the full relativistio group. Putting

these things together we arrive at the desired decomposition. It has

the form

44
In order to apply this formula to a given symmetry there are

essentially two things that must be computed!
(1) the functions < S ] £ 1 S >

(2) the coefficients <Y>

At least one of these jobs is difficult: which one depends upon our

choice of "basis vectors. If the labels t , are chosen so as to

diagonalize the Casimirs of 0(3)_ then (l) is trivial while (2) is

very complicated. On the other hand, if £; diagonalizes the Casimirs

of the W-group - whioh does not contain J,, - then (l) is complicated

while (2) is relatively simple. The ideal solution, it would appear,

should be the construction of the transformation matrices whioh oon-

nect these two bases. Aotually these will be needed if we are to

make any use at all of the W-labels sinoe the physioal input will

always involve 0(3)j.

The matrix elements of an invariant operator,S, will be

expressible in the form

V (6)

the amplitudes <w> ) 5 ( ^ 1 ) 1 ^ ~ ^» M = •*<*" |T(/>* ̂ ) | >"')> "being the

analogues of he l io i ty amplitudes in the higher symmetry model,
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the helioity ; 2\ , "being her© generalized to include the Caaimirs of
the tf-group. If the operator S is unitary then, of oourse, so are
the matrioes <̂  fa | S | M \ f

(7)

1.3 Various models

The rest symmetry contained in the Poincsre group is just
0(3)« We shall oonsider a number of extensions of th i s ,

0(4) » SU(2)@SU(2), 0(6) - SU(4), SU(6), U(6)

Each of these groups oontains 0(3) and so their irreducible represent-
ations generally will include a range of spin values. With the ex-
ception of the f i rs t example which is too small, these groups contain
also a rotationally invariant "internal" symmetry group. This means
that their irreducible representations oontain multipleta of the in-
ternal symmetry each associated with a definite spin.

We oonsider f i r s t ly the relat ivist io extensions of these
groups. The f i rs t two examples have alternative extensions of com-
parable merit. The last two are fairly unambiguous. In order to
treat these as uniformly as possible we shall exhibit the various
generators in a representation by Dirao y-matrioes and 3 © 3 A**
matrioee. They are

(*) °<4) s 0" . , i Y Y , , a,b -1 ,2 ,3

(")• 0(«) ! ^ a b ' ^ ' ^ a b ^ ' a,b,i - 1,2,3

(iii) SU(6) i &., y? , T. \$ , o - 1,2,..,8

(iv) Stf(6)(x)SU(6) t ^ , iYaYc , ^ ,
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For all of these examples the Lorentzs transformation JQ, is represented

by &~QY Henoe oommuting the operators with (To, and with each other

will produoe the relativistio extensions. We get

(i) 0(4) -> 0(4,1) generated by (^v ; ^ ^ s

(i i) O(6)-vSL(4,C) » «. °/V;X > ^ V ^ >r5Z

( i i i ) SU(6)-»SL(6,C) '• « ^ v ^ ^ A ^

(iv) SU(6)(g)SU(6)-»SU(6,6) generated by

From the example (iv) we see that in the course of extending SU(6)

SU(6) "by applying Lorentz transformations we have "been forced to

extend the rest symmetry itselfi

SU(6)©SU(6) - > SU(6)(g)SU(6)(g)U(l)

where U(l) is represented "by YQ« This did not happen in example (I)

"because STJ(2) ® SU(2) happens to be equivalent to an 0-group. However,

if we arbitrarily extend the rest symmetry by including Yn> i«e*>

or

0(4)

then the relativistio extension coincides with the entire Dirao

algebra,

SU(2)<x)SU(2)®U(l) -> SU(2T2)

or 0(4)(S)0(2) -* 0(4,2)

which is to be oompared with 0(4) -> 0(4,1)̂ 811 entirely different

model.

Example (ii) provides an even sharper illustration of the

arbitrariness of this programme sinoe here we have only to change the

interpretation of the rest symmetry - without increasing it - in order

-13-



to change the relativistio group* Thus, if we make the replacement

1 "

which leaves the rest algebra unmodified, then the relativistio
algebra "becomes

corresponding to the relativistio group 0(6,1). Thus we have the

alternatives

whioh are physioally quite distinot.

Let us tabulate the groups together with their generators•

We list in turn; the relativistio group, the rest symmetry from

whioh it arose and the W-group.

(i) 0(4,1) i J^v , j _ -3 ^i,v „ 0,1,2,3

0(4) * Jal) , S&5 a,b - 1,2,3

0(3) . J12 , J25 , J51

SH(2t2) - 0(4,2) t

0(4)<g)0(2) t

0(3) :

«• J/v f J
1 J» J,5 i -1,2,3

0(6) . Jab , J
1 , J^

0(5) : J12 , J
1 ,

-14-



S L^»c) . j ^ , j i , j ^ , j i i - 1 , 2 , 3

SU(4) - 0(6) 1 J a b , J1 , j ^

J 12 » J ' J 1 2

(iii) SL(6,C) i J , J1 , j j v , Ĵ  i » 1,2,...,8

su(6) i j . , j 1 , A
ab ' ab

SU(3)®STJ(3)(g)U(l) i J 1 2 , j 1 , j j 2

SU(6,6) t

Let us consider next the labelling problem. Generally there

are for eaoh model two chains of subgroups whose Casimirs are useful

for labelling states. Both chains will include the purely internal

symmetry group but one chain will include the W-group while the other

will include the spin group 0(3)j. Most of these chains have the

awkward feature of providing incomplete sets of labels whioh means

that their Casiinirs must be supplemented by other operators oon-

3truoted from the generators of the rest symmetry.

Only for the caseg (i)and (i«), 0(4,1} and 0(4,2) are both chains completely

sufficient. This case oan be analysed completely. For case ( i i ) ,

0(6,1), the ft—chain is sufficient but the J-chain is not. For the

other cases, ( i i ) , ( i i i ) , (iv), neither ohain is adequate.

Taking the various models in turn we l i s t the operators,

known or hypothetical,which will be needed to label the basis vectors

in an irreducible representation of the rest symmetry.

-15-



(i)

We need 4 labels* These are given "by the eigenvalues of the

following operators:

ab

/_ 2
J12

T

12 23 31

(tf-chain )

(J-ohain)

'12

The oonneotion "between the "basis veotors of the two ohains is pro

vided by the unitary transformation exp (i -^ ̂ 35)*

This model is labelled by the same ohains as in (i) with

addition of the single operator, JQ, a Casimir of 0(4) © 0 ( 2 ) . There

is therefore a total of 5 labels. The conneotion "between the two

ohains is again provided "by erp (i 31 J^c)«

(ii) 0(6,1)

Here we need 9 labels. The operators of the ¥-chain are

coaplete. They are test given in terms of a straightforward set of

0(6) Generators, J ^ (A,B - lt2,3,4,5>0, defined in terms of the old

set "by

-16-



J12 ' J23 ' J31 ' J23 '

45 64

Jl6 t J14 ? Jl5

J26 > J24 » J25

' J34 »

J 1, J 2,

1 T2 T3

l5 ; Jl5 ; 15
1 T 2

J

T1 T 2 J3

J35 ; J35 ' 35

Che required $ operators are, for the W-ohain,

~ V Casimirs of 0(6)

JBC JCD

Casimirs of 0(5),

tf, .../ - 1,2,4,5,6

1
8

V
Casimirs of 0(4),

/^,V . 1,4,5,6

-17-



_"-|j J ̂  Oasimir of 0(3), a,b « 4»5»6

J64 Casimir of 0(2)

On the other hand, the operators of the J-ohain must inolude, in

addition to the 3 Casimirs of 0(6), the 4 Casimirs from 0(3)T@<

and its subgroup 0(2)(x)0(2):

* ? 2 *

J 12

J64

j 2

J 2

+ J

i T2

* J64

whioh make a total of 7» Kius it is generally neoessary to construct

two other operators, F_ and ?„ say, which commute with eaoh other

and with these. He have no idea at this stage what would make the

most suitable candidates.

Also, the problem, of transforming from one "basis to the other

would have to be solved,

(ii1) SL(4,C)

Here again we need 9 labels. Neither chain is suffioient in

this case. For the ¥-ohain we have, in addition to the three Casimirs

of 0(6) • STJ(4), a set of 5 from the W-group and i t s subgroups. They

are

(J1
 + j j 2 ) (J1

 + j j 2 )

- j* )1 2 ' v" V 1 2 '

J 1 2

Casimirs of SU(2) g)SU(2) (g)TJ(l)
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which makes a total of 8. Therefore we must oonatruot one more

operator G to complete the set .

For the J-chain we can adopt the same operators as were

used for oase (2), Of oourse the transformation "between W- and

"bases must "be recalculated*

(iii)

The rest symmetry SU(6) generally requires 20 labels. Of

these, 5 are provided by the Casimirs of Stf(6) itself. In the W-chain

another 11 are provided by SU(3) (5)SU(3)(5)11(1) and its subgroups.

It is neoessary then to supplement these with 4 conatruots, H-,. .»,H,

in order to fill out the W-ohain

2 0 - 5 + 1 1 + 4 •

The J—ohain requires 8 new oonstruots

20 - 5 + 7 + 8 .

(iv) . SU(6,6)

The rest symmetry SU(6) ®StJ(6) (£)U(l) requires 41 labels.

The Casiiairs give 5 + 5 + 1 « 11 of these. The W-ohain yields another

20, leaving 10 to be made up:

41 - 11 + 20 + 10 .

The, J-ohain is even more hopeless.

The momentum operators must be assigned to appropriate

representations of the homogeneous parts. The two fundamental require-

ments that; ( l) the representation contain a Lorenta 4-*vector and (2)

that the timelike component of this veotor be a singlet of the rest

symmetry oan presumably be satisfied by many different representations.

We l i s t here the simplest ohoioe for eaoh case.
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(i) 0(4,1) * P - 5

(i«) 0(4,2) : P - 15

(ii) 0(6,1) * P - 7

(ii») SL(4,C) t P - (4,4)

(iii) SL(6,C) t P « (6,3)

(iv) SU(6,6) : P - 143

Evidently the 4-*vector Y^is always inoluded andrmoreover, the set

of matrices which commute with Yo can in eaoh case he seen to he the

rest symmetry. In all of these examples the rest symmetry ooincides

with the maximal oompaot subgroup.

1.4 The coefficients <jn <•

We shall assume now that a complete set of labels has "boon

worked out for our relativistic group according to the W-chain* We

shall assume in addition that the various Clehsoh-Gordan coefficients

which arise can he computed. As a preliminary let us make some con-

jeotures concerning the Clehsoh—Gordan problem.

Let us suppose that the states of an irreduoihle represent-

ation of the rest symmetry group can he written

|C? If/ m | C F W h / (8)

where C denotes the set of Casimir invariants of the rest group, ¥

denotes the set necessary to label a representation of the K-group

and F denotes the set of supplementary labels which are necessary

when a given W-group representation occurs more than once. I t is

also useful on oooasion to separate the set of labels TT into two

parts, ur and A, where w denotes the Casimir invariants of the W-group
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and X the rest.

The direct product of two representations presumably de-

oomposes into the form

P W , C J L \
x x i. t <L d./

^

where C, denotes a set of multiplicity parameters. How many of these

there axe can be conjectured on the "basis of a simple oounting argu-

ments the number of parameters in the set C. C 2 ^ must equal the

number in CFff if none is to be lost in the decomposition. Thus, for

SU(n) where

number of C's » n-1

» » CPW -(l + 2 + 3 + - + n ) - l - n^n + ^ -1

(10)

i .e. 9 "~ 2. *" •*• '

so that for SU(2): we have H- -> 0, for SU(3)j IT- - 1, . . . e t c .

The direct product of two H'-representationa presumably de-
composes in l ike manner;

(11)

Fe shall sometimes write

(12)

Finally, we can define "¥-3calar factors" in the rest symmetry Clebsch-

Gordan coefficients by writing
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Using these notions for decomposing the produot of two re-

presentations of the homogeneous, group, we prooeed as follows. Write

the product state in the fona

f.W, ac*FaWj>riW e —'ih^>wh^^wo (14)

where Q belongs to the res t group and the angles 0(̂ » (Yg a r e o^osen

so as to have

).. - (33, 0 , 0 , 0 ) H - jv (15)

where E denotes the total energy. This is not always the most general
2"Tt>artiole oentre-of-mass state 'but i t is sufficient for our purposes.

Since JQ, is a Tf-group invariant we oan make the multipole

decomposition

-~
CF

where the operator 1T££^(E) belongs to an irreduoible representation

of the rest symmetry. Now

r I

"- I
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Therefore,

« u(6)Z I T

where

-23-

(18)

We have thereby oonstruoted the expansion
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and

f l¥l' W^' ^Fwi (22)

The coefficient ^(jVJJW-, W^ implies a finite limit to the summations

over cr and US, The restricted range of \1 implies further restrictions

on the summations over C and P, To find out -what these are one must

learn something of the struoture of the representations, D »

The scattering amplitudes <̂ K\'J T(j> , ^ ) | n̂ > corresponding

to a striotly invariant S-raatrix are now seen to carry the following

labels;

2 2 , crpur>

They will appear together with the functions

(24)

and assorted Cle"bsoh-Gordan coefficients.

2.1 Enumeration of generalized partial yaye amplitudes

The representation functions

(3 ) "- < C r V | OLG) 1CF W> (25)
F v v

which appear in the partial wave expansion remain to be computed in

general. But "before one can even "begin to calculate them there is

the fundamental problem of enumerating all C labels which contain

the 'il and ft1 sublabels appearing above, i . e . one has to determine .and

classify all rest representations which include the particular ff

spin re-presentations. Depending on the character of the rest synmetry,
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the problem alters its complexion so we are forced to proceed from

the general to the particular. ' Tn this section we determine all

the representations; in the next section we turn to the classification

problem.

Since the solution has already "been given for all 0(v)

representations by Salara and Strathdee in I , we shall restrict our

attention to the case of the relativistio StT("v , V>) group where the

rest symmetry is SU( V )(5pSU(V ) (x)U(l) and the ¥-group is SU(v).

Let us label the rest representations by (IT- ,1T - P ) where I X and

T serve as labels for the SU(v ), SU( V ) and U(l) groups; and let

us label the SU(v )TJ representation by IT. Thus i',11, and IT could be

regarded as the dimensionalities of the representations. Our problem

consists in seeing what (IL TK-', P) contain a given IT, In fact P

is totally irrelevant to this question since i t s generator commutes

with the SU(v),, generators (hut of course not with the Lorentz boost)

and we oan assert that all the spectrum of P values are allowed.

Thus we shall ignore i t henceforth., For the rest we must have

Is/, (g) Nz « U 0 ... (26)

The constraint on U. and 2T- are readily obtained if we invert the

relation to read

^ © N = Xl^ (27)

for we have only to vary N, in order to discover with what l^ i t must

be associated. Thus simple multiplication solves the enumeration

problem.

To exemplify the procedure take the case V = 6 . One knows

then that the commonly occurring baryons and mesons can be accom-

modated into the (6,Z) and.(56,1) multiplets (with P a 0 , 3). Two-

particle states require the compositions

1<S)35I 1<S>56, 35® 35, 56® 56, 35© 56
of U-cpin representations and in the reduction one meets the w -

raultiplets

IT - l , 35, 189, 405, . . . ; 56t 70, 700, . . .
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These, then, have to "be contained in (IL ,10 levels of STJ(6) (£} 3U(6),

-which can "be found directly from the rule

Thus for IT a 1 (W-singlet) we have all the rest states of the variety

C - (N,£).

For N = 35 one obtains the sequence

(1,35), (35,1), (6,3), (3,6), (6,54), (6,84),

(6,l~So), (o\l80), (35,35), (189,1), (1,189),

(405,1), (1,405), -• ,
and so on.

It is important however to remark that in general this

multiplication problem leads to a V-fold infinity which is connected

to the single degree of freedom in P and the v—1 parameters whioh

characterize a given K", representation (U- ia thereby limited in i t s

range) .

We have not discussed the model where the relativistic

group is SL(2V , C) and the rest symmetry SU(2V). The enumeration

problem is rather more diffioult here in that the W-spin symmetry

SU( V )©STT(V )®U(l) does not immediately lend itself to the above
9)technique. Presumably, though^ some variation of the method is possible. '

2.2 Classification of the amplitudes

We now turn to the problem of ordering the rest-symmetry

representations into various well-defined categories. This is a l -

together a more difficult problem to solve than that of enumeration

as we must first define what precisely distinguishes ono class from

the next; and our guide can most simply come from the theory of

unitary representations o"x non-conpact groups, "he reason why we

use non-compact groups is that their unitary infinite-dimensional

representations can be grouped into various sets characterized by

differing degrees of "degeneraoy", to each degree of which is

associated a special content of the representations of the maximal

- 2 6 -



oompaot subgroup. The olue for the choice of non-compact group is

obtained from the "crossed channel" analysis where the rest symmetry

is "continued" (rather like 0(3)-* 0(2,1) in ordinary partial wave

analysis). Thus for our models the continuations are to

Relativistic Rest • Crossed channel
symmetry • symmetry \J symmetry symmetry

S0(i>-0

Notice that, in general, the W group is the maximal compact

subgroup of crossed channel symmetry.

Hereafter we shall confine our consideration to the last of

these models.

The unitary representations of SL( V, C) will be distinguished

"by their SIl(v) oontent and with these distinctions we shall be able

to arrange the corresponding SU( V ) (x)STJ( V ) representations into

different classes. It may be that this classification of STJ( V ) (z)

SU( V ) sequences can also be achieved through the use of STJ(V, V)

classes of unitary representations. This is a matter for speculation

as at the present time one does hot have available the full series

of STJ( V , V ) representations.

The decomposition of SL(v,C)' unitary irreducible represent-

ations with respect to the maximal compact subgroup1 STJ(v ) is a

classic problem which has been completely solved by Gel'fand and

ITaimark. They have given necessary and sufficient conditions for the

occurrence of an SU(V) representation in an SL(v,C) one. Before

we state them in ITaimark's language, let us give rules of thumb for

working out the content of irreducible SL(y ,C) representation of

the principal degenerate and principal non-degenerate series. ' We

start with the well-known oase of SL(2,C) and observe that the oon-

tent of the prinoip.al series representation (] , cr)

i o = o , k , 1 , 3/2, •••
-00 4 cr «
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relative to the STJ(2) subgroup is the same as results from the multi-

plioation of two irreducible Stl(2) representations

as x -> oo - Above, x and 1~\ + "X- denote the num"ber of boxes in
Jo

in the Young tableau. This special case i s highly suggestive and we

show below how we oan generalize i t to SL(3,C) and then to SL(n,C).

SL(3,C) , There are two types of principal ser ies - the principal non-

degenerate and principal degenerate.
i ) Principal degenerate ser ies are characterized by two numbers (ftp)
m ̂ - 0 in tegra l , — oO 4 P 4- °Q > the content of the representation
being given by the product

- 1 ©

!

I ;

w h e n

These SL(3rC) representations are the so-oalled Peynman

towers and in the i r decomposition each SIl(3) representation occurs

just once. Note that , as for SL(2,C),the content does not depend

upon p , a common feature of oo-dimensional representations.

Example; fO.P) =

i i ) Principal non-degenerate ser ies are characterized by 4 numbers

O'.i, i;i pp), mn mj, non-negative integers and -oo 4 9^ PL •$• °^

The content of the above representation i s obtained from the product

vt-,

with
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a-, m_ + a£ are non-negative integers

such that 0 £ CLi + 2OL^ S 0 (>oci 3)

where <st is the multiplicity which can he different from 1. Mote the

appearance of the double 0^, a characteristic which immediately dis-

tinguishes this oase from the principal degenerate series represent-

ations*

SL( V TC). Here the degeneraoy types are defined "by the partition of

V of the form

(28)

and the represent at ions are characterized hy 2(t"—l) numhers

m. integers

To find the content we again draw the diagrams*

i ) Most degenerate type: This is given by •

(29)

If a roproDentation of this type is characterized hy

content is determined from

, then i ts

V-I !
i

!

w+yn.
•A. - > 00

As for SL(2,C) and SL(3,C) cases, this can he calculated explicitly

to give
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CO

i

i

c a.
\

V-j

each representation occurring just onoe#

ITe:rt most degenerate types; There are many different series here

given "by different partitions of v into two part a« The first is

given "by

A representation of this type still requires 2 independent

Caaimir operators. Denoting a particular one of this type "by (ttîp

its content is depicted in

V-l

>W- MO.

1 *

Each representation is again occurring onoe. The olasses

given here all have this characteristic.

This process can "be continued step hy step. To see what

the general structure looks like, we describe "below the case of the

less degenerate representations.

Indeed the procedure is to draw two large diagrams which

are conjugate to each other "*• ' and add the diagram
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to the second one and multiply symbolically

.-•• rt>

with

The distinction "between the different degrees of degeneracy

is simply in the possible equality of the rows of the two SU(v)

diagrams separately which also necessitates equality of the corres-

ponding m's. The partition

which files the degeneracy type,restricts the second diagram such

that all n. are zero except for

In other words,for this type, the first Vy rows of the second diagram

are equal, then the next y are equal,etc. The v-th row is always

taken to have aero length.
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Finally we state Gel*fand and ITaimark's theorem on the content.

To obtain the content of the SL(V,C) representation charaoter-

ized by the partition

and a set of 2(f-l) numbers

/

fl

m. integers , - &o 4 p.

(all the 2(v-l) Casimir operators are funotions of just these 2(t-l)

numbers), search for the weight

in representations of SU(\>). The number of times this weight appears

in a representation of SU(V) as a singlet of the subgroup SU(Vi) x

SU(V Z)@ ... ©SUfV^^) is the multiplicity of occurrence of the

STJ(v) representation in the 3L(V,C) representation.

Tho trick that we have used to connect a weight with a

Youn£ pattern is th'e following. If an 3T7(V) representation includes

a particular weight, it also includes all its Weyl transforms. One

of these is the highest weight of some irreducible representation and

hence is associated with a Young diagram.

The proof of the rules that we have given for tho general

cases has not yet been rigorously established.- Essentially it lies

in identifying the multiplicity of a weight in an SU(V) representation

with the multiplicity of its occurrence in a particular decomposition.

However, for the nost degenerate and tho next most degenerate cases

that we have described (in all these oases the multiplicities were
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just one), the rules are vmdoubtedly exact. These rules are very

plausible and we believe they are generally correct.

Case v = 6 • The most degenerate series follows from the multiplications

tr

® LI-lID mesons

•n.

—

—

baryons

which correspond to the Feynman towers Tf A/, ,v }

^ J respectively.

In detail,

(l,l), (£,6), (21,21) _»... mesons

(1,56), (Z jl26), ... baryons

A typical next most degenerate series would correspond to

TO.

and would yield

(1 ,1), (5,6), (15,15) mesons

This particular variety of next most degenerate representations 33 obviously

(for the baryons at least) not useful. And.so on for the least

degenerate series. Based upon the (if^tysxxd. (l>l) fundamental
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diagrams we oan generate the series

(IT,if) mesons

(1,56), (5,126), (15,504) .-. baryons

3.1 Keson and baryon supermultiplets

The lowest-lyinf; hadron states can "be accommodated into

the (56,1) and (6,6) representations of SU(6) ® SIT(6). Upon that there

is unanimous agreementj but what is far less settled is into which

multiplets one should place the higher mesons and baryons. linked to

which doubt is the possibility that the orbital excitation scheme

SU(6)(g>SU(6) © 0 ( 3 ) with its smaller multiplet structures (56,1,J2)

and (6fZt^) may be preferred to th© SU(6)(£)SU(6) scheme with its

widely increasing multiplet dimensionalities. The A-excitation

scheme has as its basis ike non-relativist ic quarlc bound-state picture

and gives rise to only octets and decuplets of SU(3) whereas the

scheme SU(6) (£)SU(6) we are presenting will differ from the J- excit-

ation essentially in predicting the existence of SU(3) 10, 27 and

35's.

Prom the theoretical point of view there exists a sequence

of meson and baryon representations, the Feynman towers, which is

characterized by a single Casimir operator,e.g.,,

(1,1), (6,0), (21,21) ... for the meson tower,

and

(56,1), (126,£>) ... for the "baryon tower.

These towers belong to the most-degenerate series of unitary

representations of SU(6,6); they are thus the most rudimentary of

the classes and for that reason are theoretically amongst the most

favoured. At first glance the series would 3eem to be experimentally

discredited as it unquestionably predicts an alarming multitude of

new particles in ever larger SU(3) representations(.,,27» 35» •«•)

which shows no signs of being established. But recently, fairly
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convincing arguments have "been advanced whioh show that the V—spin

selection rules inhibit the production of these higher states in

simple 2- or 3-"body channels)
12)

the prevention of their observation

then largely destroys the most direct evidence against the Feynman

series. ' There may of course be other objections why the degenerate

series should not "be seriously considered and we may be unable to

meet them. For the present*however, let us pursue the study of the

series if only on grounds of mathematical simplicity.

The important characteristic of these particular towers is

that they are specified by a single label, the quark number N . If

we neglect the mass differences within the supermultiplets, we may

plot the mass versus the integer N . The points when oonnected

make the generalized Regge trajectories.

Possible Regge trajectories in the quark number plane

3.2 Reduction of the U-trajectory into J-trajectories

Here ve shall study the implications of the U-trajectory

hypothesis with regard to the properties of the resulting J-̂ plane

trajectories belonging to various SU(3) multiplete. The clue to

obtaining the J-plane families is to examine the content of the

integer H representations which correspond to the particle poles,

¥e oan follow the chain

SU(6)<g)SU(6) -*• SU(6) ~> STT(2)@ SU(3)

to determine the spin which is associated with a particular SU(3)
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representation for any given (U,1JO s t a t e .

In the f i r s t stage of the chain i t i s easy to see that one

obtains an inf in i ty of SU(6) families.

Decomposition of IT-ti»a.ieotories in to STT(6)-trajectories

"by simply drawing t ra jec to r ies through the resul t ing SU(6") par t i c le

poles. The residues associated with these t ra jec tor ies must vanish

for "negative integer" [^3 simply "because we only enoounter posit ive

dimensions in the reduction SU(6) 0SU(6) —* StT(6),

Bxanrplosi (6 t6) - 1 (3? 35

(21,21) => 1 © 35 ©405 e t c .

Likewise for the "baryons. Thus already at the level of the

first chain we encounter an infinite family of trajectories; it is
tatsatiates

important to note that these/ are a consequence of the internal sym-

metry group ' and have nothing to do with the daughter t ra jec tor ies

of Toller, Freedman & Wang. •?'

Lot us proceed to the next and f inal stage of the chain.

Here one fixes on a par t icular SU(6) t ra jectory, say the leading

trajectory I, and where i t passes through "integer" IS we perform the

SU(6) reduction into SU(3) (5) SU(2) mul t ip le ts . For example, with

the mesons, in an obvious notation

1 o (1,1)

35 - . (1,3) + (8, 1 + 3) __
405 - (1,5) + (8, 3 + 5) + (10 + 10, 3) + (27, 5 + 3 + 1 )

+ (1,1) + (8, 1 + 3)
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2695 - (1,7) + (8, 5 + 7) + (10 + 10, 5) + (27, 7 + 5 + 3)

+ (1,3) + (8, 3 + 5) + (10 + 10", 3 + 1) + (27, 5 + 3 + 1)

•+ (8, 1 + 3) + (27, 3)

+ (35 + 35, 5 + 3) + (64, 7 + 5 + 3 + 1)

we can trace out the families of parallel trajectories for any

particular SU(3) multiplet.

Four observations are in order about the properties of these J-

trajectorie3:

1. All residues for negative J should vanish.

2. For sufficiently high SU(3) representations all residues occur-

ring "below a certain critical mass should vanish,e.g. with the

2J fold, no particles with masses^fa- can materialize.

j. All self adjoint SU(3) multiplets of the variety (A,A) have

associated the leading trajectory I. The less self adjoint they

•become [i.e. in the notation (A,/-0 a s i-̂ *"/l| increasesj the

lower the leading trajectory. E.g., with the 1£ fold, the first

trajeotory which gives rise to particle poles lies one unit below

the leading 8. trajeotory.
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4. The number of members in succeeding generations of trajectories

increases. Indeed it is convenient to enumerate the number of

trajectories occurring in each generation:

1_ has the sequence (l, 1, 2, 2, ...)

_8_ has the sequence (l, 3, 5, 7> • ••)

2J_ has the sequence (l, 3» 6, 10, .*)

10 has the sequence (0, 1, 2, 3, ..)

of the first, second, third,etc., generations.

Evidently a parallel set of remarks and method of enumeration

can "be applied to the "baryon hypermultiplet.

3.3 Calculation of the cL-functiong for the most degenerate case

Super-singlet scat ter ing i s the "basic process for providing

the representation functions CLQ0 (@) , the analogues of Pj. (c*s#)

for 0(3) . Actually we shal l t rea t the case of SU(v) x SU(v) res t

symmetry as th i s i3 no more diff icul t to work out than SU(6) (SE)STJ(6);

the meson tower of the most degenerate ser ies may "be tensoral ly

represented "by the sequence^ ^ . A

d> 3 f . . . <b

and the haryon tower hy
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corresponding to par t i c les at r e s t . The boosting to arbi t rary

momentum £> may be effeoted in the standard manner by imbedding these

tensors into f in i t e SU(v, V) representations subject to the subsidiary

Bargmann-Wigner equations; thus we will obtain the r e l a t i v i s t i o set

of s ta tes 'p, - fi^.

with [SU(V)<2> SU(V)J as the l i t t l e group at arbi t rary f.

We shall thereby frame a l l calculations in the M-function

basis so that after contraction over the external par t i c le wave

functions we will obtain the dO(/0)functions, As we shall show l a t e r ,

the more general d w w ' ^ functions are derived from the d0o (&)

by appropriate di f ferent ia t ions . However there are a few conclusions

which we should ant icipate: 1. For Q£ 0 we can only expect SU(3)(^)

Stf(3) selection ru le s ; i . e . - equality of the SU(3) (x) 3U(3) labels within

W and W in dWw)(0). Also} since J-., transforms as a _3_5_ of the W-group

we should expect that when W and ¥• differ to the extent that the f i r s t

non-vanishing C.G, coefficient derives from 35 (x)35 (x)-<g) 35 ( D ^ T - 2?w,

then ' d^., (&) ~ £)Mf or small Q. " ^

2. When 0~>- 0 the selection rules enlarge to SU(6)T,. and in faot we
know that d^^t(0)oc <

3.4 35valuation of

To evaluate d0o (&) we can adopt the usual rule of in-

homogeneous SU.(v,v) theory which reduce the vertex symmetry to just

SU(V),j. through inclusion of the momentum factors ' P A # This answ

turns out to be a very simple Gegenbauer funotion exhibited later

in eq. (43). We will have two different SU(v),j groups operating at

each end (they can be related to each other by the rotation e"l0J3>

which become identical for collinearprocesses (O-C).
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We make use of the vertex function

(30)

and the propagator

I ' ' ' $AJ

(3D

If -we retain only the pole contribution to the amplitude we can safely

make use of the subsidiary conditions on A . Then from symmetry and

oovariaoaoe requirements we get

(

{fir

and

(A--- M ^^fi^vc^l.^ (33)

whence we have the amplitude

A,

fl" -40-



The reduction of the numerator is a combinatorial problem involving

the partitioning into the sets

where

and K stands for the matrix K ~ <V ( f> +• '^J'V (f"1^^ -

The number of times a par t icu la r par t i t ion occurs i s

\ ... IK.)
"• "' ( 3 5 )

To see what this multiplies we need to evaluate

(36)

This is more easily done in the rest frame of i sinoe the expression

reduces to

(37)

Thus a given partition contributes
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to the numerator and in totowe get

Upon making the series expansion

OO

the expression simplifies remarkably to the series

-r~ JM

whioh oan in turn be reoast in hypergeometrio form:

* *F,

and is nothing else "but a Gegen*bauer function.'

-42-
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p-- ̂ y ) (»*** X) V > (3S)

ny-+o f*'*'-"1^̂ ^ ^ ° ^
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(42)

Thus we have obtained

We now presume that the analytical continuation to the "Begge

amplitude" replaces T "by

(44)

This is the master formula we vere aiming for.

Of particular interest is the ordinary J-plane trajectory

reduction of the K-plane trajeotory. J This may be obtained from

the series

(45)

and
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Hence

(47)
where-

(48)

is a finite series (for fixed K) in F functions. (One may direotly

V « 1 that a.NKf - &KO)-

We then continue our results to complex IV - 6C > still

show for V « 1 that a.NKf

writing

C (*) » Z CC ? (*) (49)

and keeping the same (finite) series definition of a . ^ y . This

relation provides us with the J-Hegge decomposition of the amplitude

corresponding to the exchange of an infinity of (equal signature)
SU(3) singlet satellite trajectories spaoed out at

with residue ratios

(51)

etc,
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Ilotice, however,_ that^ the. K'th satellite has associated the threshold

faotor ( ¥%_[ [% /) of the parent, not theoxpected centrifugal

factor ]%''l±^_ . . This rausi he so since the ratio of residues

(at the integers at least) are presorihed numbers which must he

independent of •£> j henoe the "kineraatioal" factors must canoel

exaotly.

Otz-N

3.5 Scattering of higher representations

Q?he simplest examples where the generalized representation

functions make an appearance (generalized in the sense J\-~^ ^>X

for.the 0(3) case) are the processes

(1,1) + {6,1) -> (1,1) + (1,1)

(6,1) + (1,5)—> (1,1) + (1,1)or

In the invariant amplitudes' language which we have "been using, this

is simply understood as the faot that the M-function acquires a

pair of free indices T. which remain to "be contracted over the B.¥
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wave functions representing the external particles. After contraction

we obtain the generalized d ̂ (®) functions appropriate to SU(6)(£)

StX(6).

There exists a simple technique for discovering the struoture
Tk <•»

of T. due to the exchange of the (JT,H) multiplet. It is a simple

generalization of the usual method for J-reggeizing invariant amplitudes

and consists in carrying out differentiations over the momentum 15-

veotor before projection onto the 4~dimension physical subspace.
"R / f a

Thus, T. 5 d V ̂ a where T represents the scalar scattering amp-

litude. One might imagine that this procedure, involving the 15

momenta with consequent difficulties in multiplication, tracing

operations, etc, would rapidly become prohibitive as the number of

indices increases. Fortunately this is not the case if we follow the

simple rule;

I f - / (52)
1- —•• •-— ^ •— t f- tY> C\ 11 f~- — it. Vyi ^ J J V2)

y n/ • " if ^

then

The proof of this rule is established by noting that

a.
* ^ 6

in direct relation to the .naive differentiation procedure
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i %

Prom the at>ove rule applied to

p -

we directly deduce

whenoe we immediately obtain

AW

(56)

(57)

(56)
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Finally we have only to oontraot out indices over the external wave

functions suoh as

g

' l A ^ 'A4 ^ teJjfi (59)

to discover the d. ._(#) functions* The answer for the W-singlet

state is already known (it would "be obtained by dropping the

p^ o _ components above). Let us instead evaluate the function

for the SU(3) ^).SU(3) singlet piece of th© 35~^ime!flsional represent

ation "by performing the trace.

(60)

Thus we oonolude that

,, : I A/ • ^ (61)

in agreement with the email 0 behaviour one should have expooted

on general grounds. By similar teohniqu.es it should bo possible

derive more complicated d functions for SU(V){S)SU(V ).
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