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ABSTRACT

The quasipotential type equation for the relativistic

scattering amplitude is obtained with the help of a special

kind of perturbation theory.



QffASIPOTEHTIAL TYPE EQUATIO1T FOR THE RELATIVISTIC
SCATTERING AMPLITUDE

1 . INTRODUCTION

In n o n - r e l a t i v i s t i c quantum mechanics the two-par t i c le

scattering amplitude T(p*,q) = ^(^StA2) off the energy shell

p = q » 2mE is known - under definite conditions - to satisfy

the Lippman-Soh-winger equation j\J

(1-1)

where V(p,"q) is the Fourier transform of the potential (in the case of

looel spherical symmetrical field V(p*,l£) = V [(p-q) J ).

Here the function T is assumed to be normalized,as usual»

to the differential cross-section of the elastio scattering

In the following sections when we consider Lorentz-invariant amplitudes

we shall use another fmore convenient for the relativistic case ) nor-

malization t

\

(s is the square of the total energy in CMS). The corresponding

integral equations will then involve factors which do not tend to uni-

ty in the non—relativistic limit. This circumstance must "be taken into

account when comparing relativistic and non-relativistic approaches. T!

shall not decide upon normalization since only the essentials ox the

problem are of interest to us.

*) All variables are related to the centre-of—ir.ans system. The
masses of the scattered particles are considered to be identical
and equal to m.
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Further, i t will "be oonvenierit to have eq,. ( l . l ) also written
in terms of the energy and the scattering angle variables• After
introducing the notations

F , I!E
Xrrv

F.I 1
7 ^ ^ ~ Zrru

T*l

(1.2)

one gets

(1.3)
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In quantum field theory the system of two interacting

particles may "be described in the framework of the Bethe-Salpeter

formalism [2.J, Then the invariant scattering amplitude satisfies the

equation (we write i t in operator form)I

T « I + I GQ T (1.4)

where I is the interaction operator given by the sum of all irreducible

(in B.-S« sense) Peynman diagrams with four ends and GQ is the "free"

two-Tparticle propagator equal to the product of two full one-particle

Green funotions.

In eq*(l*4)» contrary to (l*l), the amplitude T is considered

off the mass shell, and the energy as well as the momentum are

conserved. * This fact provides the relativistic invariance of (1.4).

However, another way of relativization of ( l . l ) is logically

admissible. That i s , the amplitude T may be retained on the mass

shell but now simultaneous conservation of all the four components of the

energy-momentum vector should be dropped. Then,evidently, the four-

dimensional symmetry of (l#l) will be kept.

It is clear that in such an approach the usual non-relativistic

perturbation theory has to be suitably changed so that the non-

conservation of the 4-momentum also holds in the intermediate atates*

The corresponding oovariant form of the old-fashioned per-

turbation theory is developed in /3»4»57« He shall outline below the

results of these papers,which will be necessary for us in what follows.

2. COVABIANT FORMULATION OF THE OLD-FASHIONED PERTURBATION THEORY

Let S « 1 + iR be the r e l a t i v i s t ! © s c a t t e r i n g amplitude and

H(p) the Four ie r transform of t he Hamiltonian dens i ty H(x) \

*) All operators are considered in the interaction representation.



H(p) - j • ipxH(x)d*x . (2.1)

Then

(2.2)

where ^ is an invariant parameter, X is an arbitrary four-dimen-

sional vector having' the properties of a 4-trelooity

and the operator S(A'Jt) is determined "by the equation **J

It is easy to see that (2.4) is equivalent to the Tomonaga-Schwinger

equation for the scattering "half-matrix S(<r,-«w) defined on the

space-like plane Ax » <r

**) Farther on we shall alao need the equation of a more ganeral form

whioh reduoee to (2«4) when « ' - 0. (2.5)
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S(cr,-oo), (2.6)

The oonneotion "between S(<T »-°°) and R(J\&0 is given by

Let ua now turn to eq.. (2.4) for the operator R(A?f). The sur-

face a€ '• 0 will "be called the energy-moraentum shell, since for

9C. =/ 0 the 4-raomentum of the system is conserved only up to the

quantity l^yt* I t is important to stress that the scattering matrix

does not depend on components of "A on the energy-momentum shell,

i .e . , i t is a completely relativistio invariant quantity *) • There-

fore, for ?e jt 0 the vector "\ may "be chosen to "be collinear to any

time-like vector occurring in a concrete problem. Each ouch choice

will correspond to a completely definite way of going off

the energy—momentum shell* I t i s , however, clear that the most

suitable and symmetrical one is based on the assumption that

(2.3)

9where J ia the total 4-momentuin of the system*

In this case, in virtue of the translational invariance, the

4-*velocity vector of the syBtem is a conserved quantity outside the

ishell tt « 0 as well.^he invariant "mass" \J / « v s alone is not

conserved*

*) This is guaranteed by the local character of the interaction
Hamiltonian fej

[H(x) , H(y)] « 0

for
( x - y ) 2 - ( x Q - y 0 ) 2 - (2-y*) 2 < 0.
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Let us now describe the diagram technique in our formalism.

For Bimplioity we shall ohoose the interaction Hamiltonian in the form;

\[ ( x) « 00:

where ^ (x ) i s the f ie ld operator of neutral scalar partioles with

mass jm , and 5^(x) and ~X-(x) are non-herraitian f i e lds , corresponding

to two typee of charged scalar particles with mass m. Let us introduce

the Fourier-decompositions in the standard way

- 6 -



(2.10)

Here 0(+, Ot , a+ , a, . . . , d are the creation and annihilation

operators of partioles and antipartioles described "by the

corresponding fields*

With the help of (2.1), (2.9) and (2.10) we find

-XX*e x IX
4
X =

- fr

The operator

manner

(2.11)

is represented graphically in the following



A dotted line which carries the 4—roomenta 'Aie and

and corresponds in this case to the plane waves e " and

o J will be called,in the following,a quasiparticle. In

higher orders of the perturbation series this line can have "internal"

parts, i .e . , can go out from one vertex and come in another. To such

a virtual quasipartiole we put in correspondence a propagator

( )

and a 4~momentum "KTC* TO the usual particles in intermediate stance we

assign the functions. S$\) - e(p°) 6(p2 - in2) and A(+)(P) «, e(pO

sinoe when the iterations of eqs.(2.4) and (2.5) aro reduced to
tha normal form i t is necessary to apply the Wick theorem for the
usual product of normal products (see for instance jJ>J} and to use
the following pairings:

(2.13)

Let us now suppose that we have solved eg. (2.5) and we have

written the operator RfAvtjA^1) in the normal form

)
= w=

x.

<£kv.. «*p . (2.14)

- 8 -



The coefficient functions F, appearing in front of the

normal products in (2*15)» determine at %, » M'« 0 the probability

amplitudes for different physical processes. They can he constructed

in terras of a series in the coupling constant by means of a diagram

technique. The corresponding rules are formulated in the following

mannert

gA Draw the Feynman graph corresponding to the given process in

the usual approach. Arbitrarily number i t s vertices and orient

each internal line from the vertex with the larger number

to the vertex with the smaller number assigning to i t some

4"~momentura p.

t) Connect with dotted lines the first vertex with tho second,

the second with the third, the third with th© fourth,etc. Orient

them in the direction of the increasing numbers and assign to

eaoh of them a -̂-momentumA^ , where s a 1,2, . . . , n-1 is the

number of. the vertex which the given dotted line leaves. In

addition, attach to the first vertex an incoming external dotted

line with a 4~momentum?\-3e and to the last vertex (with nunber n)

an outgoing external dotted line with a 4"̂ notnentumA ĉ'.

c) To each internal dotted line with a 4-momenturaA-ae, put. in

correspondence a function G^f^s) » -^= ——ry and
" * •5

to each solid internal line with 4*-momentum p a function

D ( + \ p ) - e(p°) <5(p2 - m2) andAf+)(p)=e(p°)S(p2 - J ? ) (depending
upon the kind of part icle).

d) To each vertex of the diagram put in correspondence a factor

(- Q/V2.T) and a four-dimeneional 6-function, which takes

into account the conservation law of tho total 4-monentum of

the incoming and outgoing particles and quasiparticles in the

given vertex.

a-, Integrate between infinite limits over al l the variables ac
e; . 3

and over all the independent momenta among the vectors p .

f̂  Repeat the operations called for in items a) * . . e) for all

nl numberings of the vertices of the gi'ven diagram, and sum
*)the resulting coefficient functions . Multiply the result by

*) Praotioally only the coefficient functions corresponding to topo-
logically non-equivalent diagrams (dotted lines being taken into
account) occur to be essentially different.



the factor l/h , where h is the number of permutations of

the external vertices, appearing in the diagram in a symmetrical

way. The perfo3*mance of operations a) . * • f) leads to the desired

ooeffioient function.

Let us illustrate this procedure "by concrete examples.

i) The eelf-energy of the y?—particle in the second order of

the perturbation theory (for simplicity we shall not take into

aoooirat the interaction with the X-field).

Fig. 2

F

.15)

V/ithout loss of generality here we may put x1 - 0« If» in

addition, w& take into account the conservation law of the 4~

momentum

(2.16)
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-then after simple calculations we obtain the following results

I - 2
c

where

(2.17)

ii)

(2.18)

It is clear that the divergent part of (2.15) is con-
*)

centrated in 5T (0), to which a subtraction procedure must be

applied. Evidently the form of £.{0) is exactly the same as in

the usual formalism, that means,the mass counter-terms O/A

are identical in both approaches.

Elastic scattering of ^* and X-particles (second order).

>*•

Fig. 3

*) Let us emphasize that the subtraction point here is «•, = 0. ?or this
reason the relativistio invariance holds after removal of the
divergences*
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M

(2.13)

Simple calculationt! give

M - -t-

(2.20)

where

putting^
If we choose the direotion of A in accordanoe with (2.8),

(2.21)

It is clear that owing to the conservation of the 4-momontum
in (2.19), the vector /\ defined "by (2.21) coincides with the

vector £p. + pA/v (Pn + P2) " ("P-t + P V / S • Therefore, the

4—velocity does not vary in the interaction process.

-12-



the amplitude M "beoomes

M -
\

(2.22)

The quantities se., It* , \/~B , \/B are evidently connected "by

the following "conservation law"t

(2-23)

iii) Some higher order diagrams.

Fig. 5

,-•-.

Fig. 6

-13-

• v - r



* ^ ~ _ ~ \ *

. 7 Fig. 8

One should Eitress that in the diagram technique considered

the ordinary physical particles in intermediate states are real (and wot

virtual ones as i t occurs in the Feyntnan technique). However, due to

the presence of virtual quasiparticles in these states, the *otal

4̂ nomentum of ordineiry particles is no longer conserved.If there are

external dotted lines in the diagram then, following the ^erminoloGy

adopted, the physical system in question is off the cnergy-raoraentun

shell. In the case of emission or absorbtion of quasiparticles with

zero 4~tnomenta C\lde™ Aâ = 0) the system is on the energy-momentum

shell. I t follows that this diagram technique is general enough to
*)

describe physioal processes on the shell as well as off the shell.

3. EQUATION FOR THE SCATTERING AMPLITUDE OFF THE
SHELL

In this section we proceed to the solution of our main problem

the construction of an equation for the scattering amplitude ? off

the energy-momentum shell (see See. l ) . We shall consider the elastic

scattering of /"- and ^-partioles. By definition

T

(3.1)

Similarly, the Foynman diagram technique is also suitable for
calculations of physical quantities off the mass-shell.

-14-



where the index "c" symbolically indicates that in the perturbation

theory decomposition of (3»l)jthere are only diagrams connected with

respect to the solid lines. Under the condition (2,21) the amplitude
*)

T is a function of three independent variables

T -Tf'fcjt ,s ) . T(s ,t ,s ) (3.2)
pq. q. p pq. q. w»*;

where, as "before,

Sq " K + ^ ' Bp

1 -p ' qq.

By passing to the oentre-of-maas system ~$. + cL » ?-, +
and putt ing (compare with Sec, l )

P 2

<JLt (3.6)

*) Eq..(3.2) can also "be written in the form

T =. T(s , t ,u ,s )
v p ' pq' pq' <iJ

where u •» (p - q ) i s re la ted to s ,s , t by
pq 1 Z p q pq

• 2
s s + t + u a 4m (3.4)

p q pq pq V J * ^
I t is evident that on the shell # - v^ - \fe m 0,(3.4) is identical

p ' q. f

with the well-known equality

SP
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ve have

8p - 4^p " 4 ^m + P

\

t = 2(m2-E E + \ / B 2 -m2 . / E 2 -m2

pq p q p " q

u - 2 (m2-E E - W E2 -m2 VE 2 -m2 oos
pq P O V P q

2 (mE E
pq PO.

Finally

, 0 0 3 ^ ,E )
p q (3.3)

From (3»8) i t can fce seen that the relativistio amplitude T wliich wo

consider ia a diretst generalization of the non-relativistic Lippraann-

Schwinger amplitude,.

Tho equation for T can "be obtained in two different ways. The first

one is oonneoted with the use of the "basic operator equation (2,4)

(or (2.5)). The second one resembles the procedure applied in tho

- derivation of the B-S equation [2.J»

In tioth cases i t is convenient to go over to matrix notation

in the ae-apace [iy^J "by putting formally

In new notations the "basic operator equation 156001)168

R «. - H - H GQ E. (3.10)



It is useful to introduce the "full" propagator G of the

quasiparticle. We define it in the following way:

G - GQ - Go R GQ • (3.11)

From (3*11) and (3.10) it is easy to find an equation for G.

0 - 0 0 - 0Q H 0 (3.12)

from where

G . - ^ 1 = 1 ^ •

Let us recall that here H is an operator in the space of tho

physical particle states as veil as in the spaoe of the quaai-

particle "states". A concrete realization of this operator is

given in

H - ^«-(«) H (-*«.)<*-*- (3.14)

where the quasiparticle1 s wave function a(x) is defined "by

To derive the equation for the scattering amplitude from

eq..(3.10)» let us make in (3*10) one iteration

R - - H + HGQS + HGQHG0R (3.16)

and make the substitution

The result is

R1 » HGQH + HGQEIGQR1 (3.13)

-17 -
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or

R' „ K2 + K2GQRl (K2= HGOII) . (3.19)

In virtue of (2,11) and (3.17) one may conclude that the matrix

elements of the operators R and R are indentical with one another for

the transit ions between states which do not involve the ^-par t ic lco .

Since we are interested in the elast ic scattering of the JA"— and

"X-particles which represents the transit ion of this kind, the "prime"

in (3.18) and (3.19) iri.ll be omitted.

Let us now take from both sides of (3.19) matrix elements

of the form (3.1)

The summation in the right-hand side of (3.20) is carried

over a complete set of ""bare" states of the considered fields, ex-
3a+(ltcluding the two-part:icle state | 2> = [ k -^k^ = (2T^3a+(lt, )c+(JT ) | o)

•whose oontri"bution we have separated explicitly.

The equality (3.20) is only one of the equations amongst the
**)

infinite system of linked integral equations • , which is equivalent

to the operator relation (3.19 )• Successively excluding the matrix

elements < n' | R I ̂ cfg) from (3.20) with the help of other equations

of the given system>we can obtain, for the quantity <"p* ,p I R I q <j >

the folloxfing closed integral equation:

v This statement is also valid in the case when we add to the
Ilamiltonxan (2.11)} counter-terms quadratic in the field (£ ,

**) Such kind of linked integral equations connscting amplitudfis of
different processes are the subject of investigation" in the Tamir.
Danooff method and also in Ref. JJ

-18-



v (3.21)

where wo have introduced the notation

KY(TT2 is the .projection operator onto two particle states [2) =] K^

Eq.« ( 3«21 ) is an operator equation in 9e-apace. If we write i t in
*)

matrix form, we shall have, taking into account (3»9),

or for t 'a 0,

(3.24)

* ) H e r e we i n t r o d u c e a s u p p l e m e n t a r y d e f i n i t i o n : ( j )
< T « 1 K t *3e' > • I t s u n i q u e n e s s f o l l o w s f r o m ( 3 . 2 2 ) a n d t h e e q u a l i t y

- 1 9 -
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Eq,.(3.2l) cannot yet lie considered as the one required

for the scattering anplitude since, according to (3.1), the latter
must "be expressed in terms of connected diagrams whereas the expression

for Kv-^o I ̂ TA *ae) S "5T»^2 involves contributions from the vacuum

loops and unconnected graphs of the form shown in Figs-. 7 and 8 as well.On

the other hand, however, (3.24) possesses a number of properties which

will "be characteristic for the final equation too. Therefore, it is

reasonable to study (3*24) more thoroughly.

Let us introduce an "unconnected" amplitude I-I corresponding

to the matrix element ^P-^Po ^ ̂ (^^5 I ̂ i&o^ ^ y dG:E'ininS i-t in

complete analogy with the "connected" amplitude T (see (3.1))

(27r)4 S^hv-L + P2 ~

(3.25)

As in (3*25) let us explicitly take,' into account the con-

servation of the 4"faomentum in the kernel and in the free term of

eq.(3.24)

-20-



Substituting (3.25) and (3.26) in (3.24) and cancelling the

&-function common for Tooth the parts, we find

M V

(3.27)

The graphical interpretation of (3.27) is as follows:

ft,

ig. 9

On imposing the condition3 (2.21), eq.(3.27) can be written

in the form

V?
(3.28)

where s ,t ,3 are the invariant variables defined in (3.3) and

s . t and u, quantities defined hy similar equalities
k' kq Kq

-21-



(3.29)

and (cf. (3.4))

/ s sk q 4m (3.30)

Further, i t is natural to consider (3*28) in CMS. Introducing,,in
addition to (3.6) -. (3.8)^the notations

(3.31)

*} From (3.29) and (3.31 )Tit evidently follows (compare with (3.7))
that

V

- 2 2 -



ve have

(3.33)

or

If, as before, we abstain ourselves from questions of

normalization and connectedness of the matrix element (3.25)» we may

say that (3.33) is the relativistic analogue of the Lippmann-Schwintter

eq.. (!.!)• This analogy is clearly seen in the spherical co-ordinate

system (eqs.(l.3) and (3.34)), since the factors \/2k/m and. \ (\ " m

in front of the integrals are the modulae of the particle's velocities

in the non-relativistic and relativistio cases, correspondingly.

On the other hand, the equation we have obtained is very close

in form to the equation for the scattering amplitude in the quasi-

potential approach proposed several years ago "by Logunov and Tavkhelidae

<«,

*) At present there is much literature devoted to the analysis and
applications of the quasipotential approach (see for instance A)-
207).

- 2 3 -



The difference "between (3«35) sncl (3*33) is that the denominators in

these equations do not have the earn© dependence on the energy, Tie have

to stress that the quantity V , playing the role of a potential

in Tooth (3.33) and (3#35)» is in general a complex function of the

energy 2 . This fact is the main feature of the equations oonaiderod

and for this reason wet shall call, after Logunov and Tavfchelidza, Vthe

quasipotential, and "eg. (3.33) the quasipotential equation.

In 0 J i t has "been proved that,for a real quasipotential,

eq»(3*35) leads to the relativistic two-particle unitarity condition

(3.36)

Let us show now that,under the same assumptions,from eq.(3*33)

for the amplitude M;a,lso follows the condition (3.36). To do this let

us introduce matrix notations

A

and rewrite (3*33) in the form

where

(3.39).

-24-



From (3.38) it follows that the operator

(3.40)

satisfies the equation

Hence, the quantity N is real when V is real and due to this,

from (3»4O),we have.

-i

(3.42)

In the spinless case under consideration one has,owing to the T-

invarianoe^,

Taking this relation into account, we find from (3.42)>

or

(3.43)

-25-
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Returning,in the las t equality, to the old notations, taking

into account (3.39) arid going to the energy-shell*) E . E =* 33L =.33,
p q ic

i t is easy to check that the condition (3.36) for the amplitude M

is valid.

So far we have investigated only the kinematical structure of

eq. (3.240 for the matrix element <"&1,p2J R("hit) i ^ > ^ ) • Doing this ,
we completely ignored the existence of "unconnected" parts in this

quantity. How we shall partially make up this deficiency, postponing

the detailed analysis until the next section, where an equation for

the scattering amplitude of the type (3.33) will "be derived without

the help of eq.(3.1O)..

According to (3.22) in order to construct the quasipotential

it is necessary to sum infinite series of terms of increasing powers
2

in g • Then,evidently, each term of the series, owing to the presence

of the operator ( 1 ~ IT ), multiplied "by the quasipartlcle's propogntor,
has the property that i t cannot "be split into two parts connected with
each other by two £y+' — functions and the function CfQ(Te ) (irreduc-
ibility condition).

Direct calculation shows that unconnected parts in (3.22)

already appear in a -order. Let us demonstrate how eq.(3*33) must

"be rebuilt in order that unconnected parts in the scattering amplitude

do not appear. Here again i t is reasonable to use the matrix

notations (3*37) in the space of the functions, "but now instead of the

"matrix" <Cp j gl k y i t i s more convenient to consider the matrix

= J_ S(?-tQ (3.44)

keeping as a whole the invariant form d ^ / t y / k ^ ^2 of the three-dimensional

volume element in momentum space. As a consequence,oq.(3.33) becomes

M - v + v a H i . - (3.45)

*) In fact (3.43) la a continuation of the unitarity condition off the
energy shell*

-26-



Let us introduce now the Green function Q, for the given two

partiole system putting by definition

" f) <3

From (3.46) and (3.45) we find

and taking into aooount (3.44) we have

- V

1
(2-rr)J 8 + t + u - 4tn - ^ 3 V - i f (3.40)

2
Therefore, the combination s + t + u = 4 r a of the Handelstam

variables s , t , u , in our soheme coincides with the inverse free Green

function of the two-particle system (compare with the Klein-Gordon
2 2operator p — m for one p a r t i c l e ) .

Defining the wave function of the system by the relation

2
s + t + u -4m —it
p pq. pq

we can obtain for H»(p )̂ an analogue of the Schrbdinger equation in the

p-representation (compare with

( SP

ra(2ir)3 J 2JPT

- 2 7 -
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Let us now suppose that we have separated all the unconnected
parts V in the quasipotential so that

V - V + V° (3.50)

Substituting (3.50) in (3.48), we have

A *

G - -

where the function of0^ - ,rt , — — obviously satisfies the

elation') * ^ " V

In virtue of (3.51) we can also write

We shall further define the connected amplitude M

f . 5" M- i}'-
From (3.52) and (3.53) it is easy to see that the equation for M is

MC
 B V ° + Y ° &> H° , (3.54)

*) The operations we perform are usual prooedure in the many-
body scattering problem.

- 2 8 -



(3.55)

We see , th-as, tha t the rebui lding of eq. (3»33), whose aim was

to separate the connected par t of the sca t t e r i ng amplitude, has led

to a change of the kernel and the free Green function ("the energy

denominator") keeping the main feature of (3.33) , i . e . > a thrfce-

diraensional in tegra t ion in thekr-space with an invar iant volumo ©lenient.

4 . DERIVATION OP THE EQUATION FOR THE SCATTERING AMPLITUDE OK TH2
BASIS OP THE DIAGRAM TECHNIQUE

As mentioned at>ove, in t h i s section we shal l ohtain the equation

for the sca t t e r i ng amplitude without using eq«(3.1O)»

Let us suppose tha t we know the decomposifcion (2.15) and tha t i:e have.

separated from these i n f i n i t e s e r i e s the terms which do not contain vacuum

loops . Let us denote these terms Toy

r

(4.1)

.. Ik .

with the condition that

F = 0
t >

Putting
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wo shall define the total Green function of the quasiparticle

corresponding to R (c:f. (3«11))

(4.3)

Further,it is convenient to consider the "full" normal pairings

of the Y'- and X-fields in the p-representation. Let us define them as

(4.4)

where the 4~niomenta on which the fields depend are denoted "by num"bor

arguments, N is the synTbol of the normal product and in the vacuum

expectation value the vacuum of non-interacting fields is used.

Substituting (4*3) in (4*4) we obtain^,taking into account (4.2)

end (4.3),
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(4.6)

It is evident that in the perturbation theory the functions

(4.5) are represented "by self-energy type diagrams (see,for instancet

FiG«5)» slid the expression (4.6) corresponds to diagrams describing

the scattering of ty- and X-particles (see, for instance,Figs. 5 and 8).

The funotion ^^(pja^q^q.,) is naturally split into two parts

^
Fv

where the first one correspnnds to unconnected graphs (for instanoe,

Fig. 3) and the seoond one to connected graphs (Fig.6), Introducing the

notation

(4.3)

- 3 1 -



we shall have from (4.6)

If we carry out all the reasoning done in the usual formalism

when one derives the "Dyson equation for the one-particle propagators

or the Bethe-Salpeter equation for the two—particle Green function, we

can write the relation (4.9) in the form of an equation for the function

Ŝ y,̂ , . Essentially we have only to introduce a convenient definition

of irreducible diagrams. Let us consider all connected diagrams with

four external lines of "V a21|3. 'X- types and two dotted ends. Let us

suppose that all linos are oriented in the same way as Figs* 3 and 6 and

that the 4-momenta of the Y' and "X particles satisfy the
£ 2

condition p = m , ;pQ> 0, We shall call a diagram "belonging to this

class, irreducible, if i t cannot be split into two connected parto

which are linked by one dotted line, oriented from left to right and by

a pair of ~\f> and "X. lines, oriented from right to left . Tor instance

the diagrams in Figa, 3» 6b, 6c, 6d are irreducible in this sense,

and the diagram in Fig, 5a is reducible.

The set of all irreducible diagrams we shall denote by V .

Then from (4.9) follows

( 4 # 1 0 )

whfere, aa before, all the quantities are operators in the "at-space and

an integration in the momenta space is carried over the repeated number

arguments . The sign (-) at V shows that in oq.. (4.10) i t is

possible to omit the diagrams which have in the external y

Sue to the epeoifio kind of the diagram technique this integration
is in faot carried over the three-dimensional ¥-spaoe.
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and X lines, self-energy parts, connected with the rest of the

diagram "by no more than one dotted line (these parts are taken into

aocount in A^,^.). Examples of diagrams of this kind are given in

Fig. 10.

\

Fig. 1Q

Defining the scattering amplitude T "by the relation

(4.11)

we shall have from (4.10)

n (4.12)

Although this equation looks like an analogue of the Lippmann-

Sbhwinger eq. (l.l)jit has a more complicated structure, "because the

function A-w,-y (5»6»7»8) is not diagonal in the momentum representation

(compare with eq.(3.55)). However, it is clear that in (4.12) wo oaa

use the diagonal "free" function

(4.13)

instead of A-^-^(5,6,7»8) if one simultaneously substitutes V "by V
Finally, we obtain

- 3 3 -
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(4.14)

which is completely analogous to ( l . l ) and as is not difficult to

verify, coincides,under condition (2,21),with (3.33)*$,

The derivation of the quasipotential equation for the scattering

amplitude given in the present Section shows that in our formalism this

equation plays the same role as the Bethe-Salpeter cq. (l«4) in the

usual approach. Correspondingly;the kernel of the equation obtained — the

quasipotential —̂ can also be built with the perturbation theory using

specific irreducible diagrams.

To each choice of A corresponds an invar isr.t quasipotential

and an invariant energy denominator (Green function)* For this reason,

the form of the quasipotential on the energy-momentum shell,contrary

to the scattering amplitude,in general depends on the choice of A .

The only exception is the quasipotential V in the Born approximation.

For inatance;in our case, Vp is given by ths expression (cf. (2.22))**/

(4.15)

which at E =. E, = E reduces to the invariant pole term
"0 -K Q

p"--

*/ Let us recall that in (4.14)^ contrary to (3«33),only connected
diagrams contribute to the scattering amplitude.

**) Eq.(3.33) with the kernel (4.15) bas been studied in Ref.^2g7.
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5. CONCLUSION

The formalism developed h e r e , i s s imi l a r t o the quas ipo ton t i a l

approach, of Logunov and Tavkheldiae and can "be appl ied in s c a t t e r i n g

and bound state problems of relativistio particles for quantitative

calculations as well as for purposes of phenomenological description.

From our point of view i t is very interesting to connect this approach

with the recent investigations where decompositions of the scattering

amplitude in terms of matrix elements of the lorontz group are studied.
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