

IC/67/73

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

QUASIPOTENTIAL TYPE EQUATION FOR THE RELATIVISTIC SCATTERING AMPLITUDE

V. G. KADYSHEVSKY

INTERNATIONAL ATONIC ENERGY ACENVY INTHRNATIONAL CENTRE FOR THEORETICAL PHYSIGS

QUASIPOTENTIAL TYPE EQUATION FOR THE RELATIVISTIC SCATTERING AMPLITUDE ${ }^{\text {" }} \dagger$

V.C. Kadyshevaky**

TRIESTE

OCTOBER 1967
\dagger To be sumitted to "Nuclear Physics".

* A preliminary version of this paper appeared as ITF preprint, N7, Kigv (1967).
** On leave of absence from Joint Institute for Nuclear Research, Dabna, USSR.

ABSTRACT

The quasipotential type equation for the relativistic scattering amplitucle is obtained with the belp of a special kind of perturbation theory.

1.
 INTRODUOTION

In non-relativistic quantum mechanice the two-particle scattering amplitude $T(\vec{p}, \vec{q})=T\left(\vec{p}^{2}, \vec{p} \vec{q}, \vec{q}^{2}\right)$ off the energy shell $\overrightarrow{\mathrm{p}}^{2}=\overrightarrow{\mathrm{q}}^{2}=2 \mathrm{mE} \mathrm{E}^{*}$ is known - under definite conditions - to satisfy the Lippman-Sohwinger equation [I]

$$
\begin{gather*}
T(\vec{p}, \vec{q})=-\frac{m}{4 \pi} V(\vec{p}, \vec{q})+ \\
+\frac{m}{(2 \pi)^{3} \int \frac{d \vec{k}}{\vec{q}^{2}-\vec{k}^{2}+i \varepsilon} V(\vec{p}, \vec{k}) T(\vec{k}, \vec{q})}, \tag{1.1}
\end{gather*}
$$

where $V(\vec{p}, \vec{q})$ is the Fourier transform of the potential (in the case of looal spherical symmetrical field $V(\vec{p}, \vec{q})=V\left[(\vec{p}-\vec{q})^{2}\right]$).

Here the function T is assumed to be normalized, as usual, to the differential cross-section of the elastic scattering

$$
|T|^{2}=\frac{d \sigma}{d \Omega} \quad, E_{p}=E_{q} .
$$

In the following sections when we consider Lorentz-invariant amplitudes we shall use another (more convenient for the relativistic case) normalization:

$$
\frac{d \sigma}{d \Omega}=\frac{1}{(8 \pi)^{2}} \quad \frac{1}{B} \quad|T|^{2} .
$$

(s is the square of the total energy in CNS). The correspondine integral equations will then involve factors which do not tend to uni-ty in the non-relativistic limit. This circumstance must be taken into account when comparing relativistic and non-relativistic approaches. We shall not decide upon nomalization since only the cosentials of the problem are of interest to us.

[^0]Further, it will be convenient to have eq. (1.1) also written in terms of the energy and the nattering angle variables. After introducing the notations

$$
E_{p}=\frac{\vec{p}^{2}}{2 m}, E_{q}=\frac{\vec{q}^{2}}{2 m}, E_{k}=\frac{\vec{k}^{2}}{2 m}
$$

$$
\cos v=\frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|} \quad, \quad \cos \theta=\frac{\vec{k} \cdot \vec{q}}{|\vec{k}||\vec{q}|}
$$

$$
\cos \psi=\frac{\vec{p} \cdot \vec{k}}{|\vec{p}||\vec{k}|}=\cos v \cos \theta+\sin v \sin \theta \cos \varphi
$$

$$
d^{3} k=k^{2} d k \cdot d \Omega=k^{2} d k d \cos \theta d \varphi
$$

$$
\begin{aligned}
& \text { one gets } \\
& T\left(E_{p}, \cos v ; E_{q}\right)=-\frac{m}{4 \pi} V\left(E_{p}, \cos v, E_{q}\right)+ \\
& +\frac{m^{2}}{2(2 \pi)^{3}} \int \sqrt{\frac{2 E_{k}}{m}} d E_{k} d \Omega \frac{V\left(E_{p}, \cos \psi, E_{k}\right)}{E_{q}-E_{k}+i \varepsilon} T\left(E_{k}, \cos \theta, E_{q}\right)
\end{aligned}
$$

(1.3)

In quantum field thoory the system of tro interacting particles may be described in the framework of the Bethe-Salpeter formalism [2]. Then the invariant scattering amplitude satisfies the equation (we write it in operator form):

$$
\begin{equation*}
T=I+I G_{0} T \tag{1.4}
\end{equation*}
$$

where I is the interaction operator given by the sum of all irreducible (in B.-S. sense) Feynman diagrams with four ends and G_{0} is the "free" two-particle propagator equal to the product of two full one-particle Green funotions.

In eq. (1.4), contrary to (1.1), the amplitude T is considered off the mass shell, and the energy as well as the momentum are conserved. "This fact provides the relativistic invariance of (1.4).

However, another way of relativization of (1.1) is logically admissible. That is, the amplitude T may be retained on the mass shell but now simultaneous conservation of all the four components of the energy-momentum vector should be dropped. Then, evidently, the fourdimensional symmetry of (1.1) will be kept.

It is clear that in such an approach the usual non-relativistic perturbation theory has to be auitably changed so that the nonoonsarvation of the 4 -momentum also holds in the intermediate states.

The corresponding covariant form of the old-fashioned perturbation theory is developed in $[\overline{3}, 4,5]$. We shall outline below the results of these papers, which will be necessary for us in what follows.
2. COVARIANT FORMULAMION OF MHE OLDWASHIONED PERTURBATION THISORY

Let $S=1+i R$ be the relativistic scattering amplitude and $\tilde{\mathrm{H}}(\mathrm{p})$ the Fourier tranaform of the Hamiltonian density $\mathrm{H}(\mathrm{x})^{*}$ *

* All operators are oonsidered in the interáotion representation.

$$
\begin{equation*}
\tilde{H}(p)=\int \theta^{-i p x} H(x) a^{4} x . \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
R=\left.\mathbb{R}(\lambda x)\right|_{x=0} \tag{2.2}
\end{equation*}
$$

where \mathcal{H} is an invariant parameter, λ is an arbitrary four-dimensional vector having the properties of a 4-velocity

$$
\begin{equation*}
\lambda^{2}-\lambda_{0}^{2}-\vec{\lambda}^{2}-1, \quad \lambda_{0}>0 \tag{2.3}
\end{equation*}
$$

and the operator $R(\lambda x)$ is determined by the equation **)

$$
\begin{equation*}
R(\lambda x)=-\tilde{H}(\lambda x)-\frac{1}{2 \pi} \int \tilde{H}\left(\lambda x-\lambda x_{1}\right) \frac{d x_{1}}{x_{1}-i \varepsilon} R\left(\lambda x_{1}\right) \tag{2.4}
\end{equation*}
$$

It is easy to see that (2.4) is equivalent to the Tomonaga-Schwinger equation for the scattering "balf"-matrix $S(\sigma,-\infty)$ defined on the space-like plane $\lambda x=\sigma$
**) Further on we shall also need the equation of a more general form

$$
\begin{gather*}
R\left(\lambda x, \lambda x^{\prime}\right) \mathrm{m} \\
=-\tilde{H}\left(\lambda x-\lambda x^{\prime}\right)-\frac{1}{2 \pi} \int \tilde{H}\left(\lambda x-\lambda x_{1}\right) \frac{d x_{1}}{x_{1}-i \varepsilon} R\left(\lambda x_{1}, \lambda x^{\prime}\right) \tag{2.5}
\end{gather*}
$$

which reduces to (2.4) when $x^{\prime}=0$.

$$
\begin{equation*}
i \frac{\partial S(\sigma,-\infty)}{\partial \sigma}=\left(\int H(x) \delta(\sigma-\lambda x) d^{4} x\right) S(\sigma,-\infty) . \tag{2.6}
\end{equation*}
$$

The connection between $S(\sigma,-\infty)$ and $R(\lambda x)$ is given by

$$
\begin{equation*}
S(\sigma,-\infty)=1+\frac{1}{2 \pi} \int_{-\infty}^{\infty} R(\lambda x) \frac{e^{i x \sigma}}{x-i \varepsilon} d x \tag{2.7}
\end{equation*}
$$

Let us now turn to eq. (2.4) for the operator $R(\lambda \mathcal{X})$. The surface $x=0$ will be called the energy-momentum shell, since for $x \neq 0$ the 4 -momentum of the system is conserved only up to the quantity λx. It is important to stress that the scattering matrix does not depend on components of λ on the energy-momentum shell, ie., it is a completely relativistic invariant quantity *). Therefore, for $x \neq 0$ the vector λ may be chosen to be collinear to any time-like vector occurring in a concrete problem. Each such choice will correspond to a completely definite way of going off the energy-momentum shell. It is, however, clear that the most suitable and symmetrical one is based on the assumption that

$$
\begin{equation*}
\lambda_{n} \sim \rho_{n} \tag{2.8}
\end{equation*}
$$

where Ω_{n} is the total 4-momentum of the system.
In this case, in virtue of the translational invariance, the 4 -velocity vector of the system is a conserved quantity outside the shell $x=0$ as well. The invariant "mass" $\sqrt{\rho_{n}^{2}}=\sqrt{s}$ alone is not conserved.
*) This is guaranteed by the local character of the interaction
Hamiltonian $\left[\frac{3}{3}\right]$:

$$
[H(x), I I(y)]=0
$$

for

$$
(x-y)^{2}=\left(x_{0}-y_{0}\right)^{2}-(\vec{x}-\vec{y})^{2}<0
$$

-5-

Let us now describe the diagram technique in our formalism. For simplicity we abel choose the interaction Hamiltonian in the form:

$$
\begin{equation*}
H(x)=g: \psi^{*}(x) \psi(x) \varphi(x):+g: X^{*}(x) X(x) \varphi(x): \tag{2.9}
\end{equation*}
$$

where $\varphi(x)$ is the field operator of neutral scalar particles with mass μ, and $\psi(x)$ and $X(x)$ are non-hermitien fields, corresponding to two types of charged scalar particles with mass m. Let us introduce the Fourier-decompositions in the standard way

$$
\begin{aligned}
\varphi(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int \varphi(k) e^{i k x} d^{4} k= \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{k}}{\sqrt{2 k_{0}}}\left[\alpha^{+}(\vec{k}) e^{i k x}+\alpha(\vec{k}) e^{-i k x}\right] \\
\psi(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int e^{i q x} \psi(q) d^{4} q= \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{q}}{\sqrt{2 q}}\left[e^{-i q x} a(\vec{q})+e^{i q \times} b^{+}(\vec{q})\right] \\
\psi^{*}(x) & \left.=\frac{1}{(2 \pi)^{3 / 2}}\right) \\
& e^{i p x} \psi^{*}\left(p^{*}\right) d^{4} p= \\
& \left.=\frac{1}{(2 \pi)^{3 / 2}}\right)\left(\frac{d^{4} \vec{p}^{2}}{\sqrt{2 p_{0}}\left[e^{i p \times} a^{+}(\vec{q})+e^{-i p x} b(\vec{p})\right]}\right.
\end{aligned}
$$

$$
\begin{align*}
X(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int e^{i q x} X(q) d^{4} q= \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{q}}{\sqrt{2 q}}\left[e^{i q x} d^{+}(q)+e^{-i q x} c(\vec{q})\right] \\
X^{*}(x) & =\frac{1}{(2 \pi)^{3 / 2}} \int e^{i p x} X^{*}(p) d^{4} p= \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int \frac{d \vec{p}}{\sqrt{2 p_{0}}}\left[e^{i p x} c^{+}(\vec{p})+e^{-i q x} d(\vec{p})\right] \tag{2,10}
\end{align*}
$$

Here $\alpha^{+}, \alpha, a^{+}, a, \ldots, \mathbf{d}^{a}$ are the creation and annihilation operators of particles and antiparticles described by the corresponding fields.

With the help of (2.1), (2.9) and (2.10) we find

$$
\begin{align*}
& \tilde{H}\left(\lambda x-\lambda x^{\prime}\right)=\int e^{-i \lambda x x} H(x) e^{i \lambda x^{\prime} x} d^{4} x= \\
& =\frac{g}{\sqrt{2 \pi}}\left(\delta\left(-\lambda x+\lambda x^{\prime}+p+q+k\right): \psi^{*}(p) \psi(q) \varphi(k): d^{4} p d^{4} q d^{4} k+\right. \\
& +\frac{g}{\sqrt{2 x}}\left(\delta\left(-\lambda x+\lambda x^{\prime}+p+q+k\right): x^{*}(p)\right)(q) \varphi(k): d^{4} p d^{4} q d^{4} k \tag{2.11}
\end{align*}
$$

The operator $\tilde{H}\left(\lambda x-\lambda x^{\prime}\right)$ is represented graphically in the following manner

Fig. 1

A dotted line which carries the 4 -momenta λx and λx^{\prime}, and corresponds in this case to the plane waves $e^{-1 \lambda x}$ and $o^{i \lambda x^{\prime} x}$, will be called, in the following, a quasiparticle. In higher orders of the perturbation series this line can have "internal" parts, ie., can go out from one vertex and come in another. To such a virtual quasiparticle we put in correspondence a propagator

$$
\begin{equation*}
G_{0}(x)=\frac{1}{2 \pi} \frac{1}{x-i \varepsilon} \tag{2.12}
\end{equation*}
$$

and a 4 -momentum $\lambda \boldsymbol{x}$. To the usual particles in intermediate states we assign the functions $D^{(t)}(p)=\theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right)$ and $\Delta^{(+)}(p)=\theta\left(p^{0}\right) \delta\left(p^{2}-M^{2}\right)$, since when the iterations of eqs. (2.4) and (2.5) are reduced to the normal form it is necessary to apply the Wick theorem for the usual product of normal products (see for instance [67) and to use the following pairings:

$$
\begin{align*}
& \psi(q) \psi^{*}(p)=\delta(q+p) D^{(t)}(p) \\
& \psi^{*}(p) \psi(q)=\delta(p+q) D^{(+)}(q) \\
& X(q))^{*}(p)=\delta(q+p) D^{(t)}(p) \\
& X^{*}(p) X(q)=\delta(p+q) D^{(1)}(q) \\
& \varphi\left(k_{1}\right) \psi^{*}\left(k_{2}\right)=\delta\left(k_{1}+k_{2}\right) \Delta^{(t)}\left(k_{2}\right) \tag{2.13}
\end{align*}
$$

Let us now suppose that we have solved eq. (2.5) and we have written the operator $R\left(\lambda x, \lambda x^{\prime}\right)$ in the normal form

$$
\begin{align*}
& R\left(\lambda x, \lambda x^{\prime}\right)=\sum_{n=m=\mu=0} F_{n, m, \mu}\left(\lambda x, \lambda x^{\prime} ; p_{1} \ldots p_{m} ; p_{1}^{\prime} \ldots p_{m}^{\prime} ; q_{1} \ldots, q_{n} ; q_{1}^{\prime} \ldots q_{m}^{\prime} ; k_{1} \ldots k_{\mu}\right) \\
& \left.\left.\left.x: \Psi^{*}\left(p_{1}\right) \ldots \Psi^{*}\left(p_{n}\right) X^{*}\left(p_{1}^{\prime} \ldots\right)^{*}\left(p_{m}^{\prime}\right) \psi\left(q_{1}\right) \ldots \psi\left(q_{n}\right) \chi_{\left(q_{1}\right.}^{\prime}\right) \ldots\right)_{\left(q_{m}\right.}^{\prime}\right) \varphi\left(k_{1}\right) \ldots \varphi\left(k_{\mu}\right): \\
& d p_{1} \ldots d p_{n} d p_{1}^{\prime} \ldots d p_{m}^{\prime} d q_{1} \ldots d q_{n} d q_{1}^{\prime} \ldots d q_{m}^{\prime} d k_{1} \ldots d k_{\mu} . \tag{2.14}
\end{align*}
$$

The coefficient functions F, appearing in front of the normal products in (2.15), detemine at $x=x^{\prime}=0$ the probability amplitudes for different physical processes. They can be constructed in terms of a series in the coupling constant by means of a diagram technique. The corresponding rules are formulated in the following manner:
a) Draw the Feynman graph corresponding to the given process in the usual approach. Arbitrarily number its vertices and orient each internal line from the vertex with the larger number to the vertex with the amaller number assigning to it some 4-momentum p.
b) Connect with dotted lines the first vertex with the second, the second with the third, the third with the fourth, etc. Orient them in the direction of the increasing numbers and assign to each of them a 4 -momentum λx_{s}, where $s=1,2, \ldots, n-1$ is the number of the vertex which the given dotted line leaves. In addition, attach to the first vertex an incoming oxtermel dotted line with a 4 -momentum λx and to the last vertex (with number n) an outgoing external dotted line with a 4 momentum λ ré.
c) To each intermal dotted line with a 4-momentum \mathcal{Z}_{5} put in correspondence a function $G_{0}\left(x_{s}\right)=\frac{1}{2 \pi} \frac{1}{x_{s}-i \varepsilon} \quad$ and to each solid intermal line with 4-momentum p a function $D^{(+)}(p)=\theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right)$ and $\Delta^{(+)}(p)=\theta\left(p^{0}\right) \delta\left(p^{2}-\mu^{2}\right)$ (dopending upon the kind of particle).
d) To each vertex of the diagram put in corrospondence a factor $(-g / \sqrt{2} \pi)$ and a four-dimensionel δ-function, which takes into account the conservation law of the total 4-momentum of the incoming and outgoing particles and quasiparticles in the given vertex.
e) Integrate between infinite Imits over ell the variables \mathscr{e}_{5} and over all the independent momenta among the vectors p.
f) Repeat the operations called for in items a) ... e) for all n! numberings of the vertices of the given diagram, and sum the resulting coefficiont functions* . Iultiply the result by

[^1]the factor $1 / h$, where h is the number of permutations of the external vertices, appearing in the diagram in a symmetrical way. The performance of operations a) ... f) leads to the desired coefficient function.

Let us illustrate this procedure by concrete examples.
i)

The self-enerey of the φ-particle in the second order of the perturbation theory (for simplicity we shall not take into account the interaction with the χ-field).

Fig. 2

$$
\begin{align*}
F_{0,0,2} & =\frac{1}{2!} \frac{g^{2}}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \frac{d x_{1}}{x_{1}-i \varepsilon}\left\{\int d ^ { 4 } p D ^ { (t) } (p) \left[D^{(t)}\left(\lambda x_{1}-\lambda x+k_{1}-p\right)+\right.\right. \\
& \left.\left.+D^{(t)}\left(\lambda x_{1}-\lambda x^{\prime}+k_{2}-p\right)\right]\right\} \delta\left(\lambda x-\lambda x^{\prime}-k_{1}-k_{2}\right) \equiv \\
& \equiv \delta^{4}\left(\lambda x-\lambda x^{\prime}-k_{1}-k_{2}\right) \sum\left(\lambda x, \lambda x^{\prime}, k_{1}, k_{2}\right) \tag{2.15}
\end{align*}
$$

Without loss of generality here we may put $x^{\prime}=0$. If, in addition, we take into account the conservation law of the 4momentum

$$
\begin{equation*}
\lambda x=k_{1}+k_{2} \tag{2.16}
\end{equation*}
$$

then after simple calculations we obtain the following result:

$$
\Sigma=\Sigma(x)=\Sigma(0)+x \Sigma_{\text {reg }}\left(x^{2}\right),
$$

where

$$
\begin{equation*}
\sum(0)=\frac{g^{2}}{2^{5} \pi} \int_{4 m^{2}}^{\infty} \frac{d z}{z-\mu^{2}-i \varepsilon} \sqrt{\frac{z-4 m^{2}}{z}} \tag{2.17}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\text {reg }}\left(x^{2}\right)=\frac{g^{2}}{2^{6} \pi} \theta\left(x^{2}-4 \mu^{2}\right) \int_{4 m^{2}}^{\infty} \frac{d z}{z-\mu^{2}-i \varepsilon} \frac{1}{\sqrt{z^{2}-\mu^{2}+\frac{x^{2}}{4}}} \sqrt{\frac{z-4 m^{2}}{z}} \tag{2.18}
\end{equation*}
$$

It is clear that the divergent pert of (2.15) is concentrated in $\Sigma(0)$, to which a subtraction procedure ${ }^{*}$ must be applied. Evidently the form of $\Sigma(0)$ is exactly the same as in the usual formalism, that means, the mass counter-terms $\delta \mu^{2}$ are identical in both approaches. Elastic scattering of ψ and X-particles (second order).

Fig. 3

[^2]\[

$$
\begin{align*}
& F_{1,1,0}=\frac{g^{2}}{(2 \pi)^{2}} \delta^{(4)}\left(p_{1}+p_{2}-\lambda x-q_{1}-q_{2}+\lambda x^{\prime}\right) \times \\
& \times \int_{-\infty}^{\infty} \frac{d x_{1}}{\partial x_{1}-i \varepsilon}\left[\Delta^{(+)}\left(\lambda x_{1}-\lambda x^{\prime}+q_{1}-p_{1}\right)+\Delta^{(+)}\left(\lambda x_{1}-\lambda x+p_{1}-q_{1}\right)\right] \equiv \\
& \equiv \frac{1}{(2 \pi)^{2}} \delta^{(4)}\left(p_{1}+p_{2}-\lambda x-q_{1}-q_{2}+\lambda x^{1}\right) M \tag{2.19}
\end{align*}
$$
\]

Simple calculations give

$$
\begin{align*}
M & =\frac{g^{2}}{2 \sqrt{\mu^{2}-t_{p q}+\left[\left(q_{1}-p_{1}\right) \lambda\right]^{2}}}\left\{\frac{1}{x^{1}-\lambda\left(q_{1}-p_{1}\right)+\sqrt{\mu^{2}-t_{p q}-\left[\left(q_{1}-p_{1}\right)\right]^{2}}}+\right. \\
& \left.+\frac{1}{x+\lambda\left(q_{1}-p_{1}\right)+\sqrt{\mu^{2}-t_{p q}+\left[\left(q_{1}-p_{1}\right) \lambda\right]^{2}}}\right\} \tag{2.20}
\end{align*}
$$

where $\quad t_{p q}=\left(q_{1}-p_{1}\right)^{2}$.
If we choose the direction of λ in accordance with (2.8), putting*

$$
\begin{equation*}
\lambda=\frac{q_{1}+q_{2}}{\sqrt{\left(q_{1}+q_{2}\right)^{2}}}=\frac{q_{1}+q_{2}}{\sqrt{5_{q}}} \tag{2.21}
\end{equation*}
$$

*) It is clear that owing to the conservation of the 4-momentum in (2.19), the vector λ defined by (2.21) coincides with the vector $\left(p_{1}+p_{2}\right) \sqrt{\left(p_{1}+p_{2}\right)^{2}}=\left(p_{1}+p_{2}\right) \sqrt{s_{p}}$. Therefore, the 4-velocity. does not vary in the interaction process.
the amplitude M becomes

$$
M=\frac{g^{2}}{\sqrt{\mu^{2}-t_{p q}+\frac{1}{4}\left(x-x^{\prime}\right)^{2}}\left(\frac{x+x^{\prime}}{2}+\sqrt{\mu^{2}-t_{p q}+\frac{1}{4}\left(x-x^{\prime}\right)^{2}-i \varepsilon}\right)^{(2.22)}}
$$

The quantities $x, x^{\prime}, \sqrt{a_{q}}, \sqrt{\beta_{p}}$ are evidently connected by the following "conservation law":

$$
\begin{equation*}
x+\sqrt{s_{q}}=x^{\prime}+\sqrt{s_{p}} \tag{2.23}
\end{equation*}
$$

iii)

Some higher order diagrams.

Figs. 4

a)

b)

Fig. 6

One should atress that in the diagram technique considerod the ordinary physical particles in intermediate states are real (and not virtual ones as it occurs in the Feynman technique). Fowever, due to the presence of virtual quasiparticles in these states, the total 4-momentum of ordineary particles is no longer conserved. If there are extermal dotted lines in the diagram then, following the jerminology adopted, the physical system in question is off the enerey-momentum shell. In the case of emission or absorbtion of quasiparticles with zero 4 -momenta $\left(\lambda x=\lambda x^{\prime}=0\right.$) the system is on the enereymomentum shell. It follows that this diagram technique is general enough to describe physical processes on the shell as well as off the shell.
3. EQUATION FOR THE SCATTERING ANPLITUDE OFF TIIE ENERGY-TOMGTTUT SHELL

In this section we proceed to the solution of our main provica the construotion of an equation for the scattering amplitude I off the energy-momentum shell (see Sec. I). We shall consider the elastic scattering of ψ - and χ-particles. By definition

$$
\begin{align*}
& \left\langle\vec{p}_{1}, \vec{p}_{2}\right| R^{c}(\lambda x)\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle=(2 \pi)^{6}\langle 0| a\left(\vec{p}_{1}\right) c\left(\vec{p}_{2}\right)\left|R^{c}(\lambda x)\right| a^{+}\left(\vec{q}_{1}\right) C^{+}\left(\vec{q}_{12}\right)|0\rangle= \\
& =(2 \pi)^{4} \delta\left(p_{1}+p_{2}-\lambda x-q_{1}-q_{2}\right) \frac{T}{\sqrt{\left(2 p_{1}^{0}\right)\left(2 p_{2}^{0}\right)\left(2 q_{1}^{0}\right)\left(2 q_{2}^{0}\right)}}, \tag{3.1}
\end{align*}
$$

[^3]where the index "c" symbolically indicates that in the perturbation theory decomposition of (3.1), there are only digecrams connected with respect to the solid lines. Under the condition (2.21) the amplitude T is a function of three independent variables ${ }^{*}$
\[

$$
\begin{equation*}
T=T\left(x, t_{p q} ; s_{q}\right)=T\left(s_{p}, t_{p q}, s_{q}\right) \tag{3.2}
\end{equation*}
$$

\]

where, as before,

$$
\begin{gather*}
a_{q}=\left(q_{1}+q_{2}\right)^{2}, a_{p}=\left(p_{1}+p_{2}\right)^{2}, t_{p q}=\left(p_{1}-q_{1}\right)^{2} \tag{3.3.}\\
\sqrt{\rho_{p}}=\sqrt{a_{q}}+x
\end{gather*}
$$

By passing to the centre-of-mass system $\vec{q}_{1}+\vec{q}_{2}=\vec{p}_{1}+\vec{p}_{2}=0$ and putting (compare with Sec. 1)

$$
\begin{align*}
& \vec{p}_{1}=-\vec{p}_{2}=\vec{p} \\
& \vec{q}_{1}=-\vec{q}_{2}=\vec{q} \tag{3.6}\\
& \cos \vartheta=\frac{\vec{p} \cdot \vec{q}}{|\vec{p}||\vec{q}|}
\end{align*}
$$

*) Eq. (3.2) can also be written in the form

$$
\begin{align*}
& T=T\left(s_{p}, t_{p q}, u_{p q}, s_{q}\right) \\
& \text { where } u_{p q}=\left(p_{1}-q_{2}\right)^{2} \text { is related to } s_{p}, s_{q}, t_{p q} \text { by } \\
& \sqrt{s_{p} s_{q}}+t_{p q}+u_{p q}=4 m^{2} \tag{3.4}\\
& \text { It is evident that on the shell } x=\sqrt{s_{p}}=\sqrt{E}_{q}=0,(3.4) \text { is identical } \\
& \text { with the well-known equality }
\end{align*}
$$

$$
\begin{equation*}
s_{p}+t_{p q}+u_{p q}=4 m^{2} \tag{3.5}
\end{equation*}
$$

$$
-15-
$$

$$
\begin{align*}
& g_{p}=4 E_{p}^{2}=4\left(m^{2}+\vec{p}^{2}\right), \\
& s_{q}=4 E_{q}^{2}=4\left(m^{2}+\vec{q}^{2}\right), \tag{3.7}\\
& t_{p q}=2\left(m^{2}-E_{p} E_{q}+\sqrt{E_{p}^{2}-m^{2}} \sqrt{E_{q}^{2}-m^{2}} \cos V\right) \\
& u_{p q}=2\left(m^{2}-E_{p} E_{q}-\sqrt{E_{p}^{2}-m^{2}} \sqrt{E_{q}^{2}-m^{2}} \quad \cos v\right)
\end{align*}
$$

Finally

$$
\begin{align*}
T & =T\left(\varepsilon_{p}, t_{p q}, B_{q}\right)=T(\vec{p}, \vec{q})= \\
& =T\left(E_{p}, \cos \vartheta, E_{q}\right) \tag{3.8}
\end{align*}
$$

From (3.8) it can ba seen that the relativistic amplitude T which wo consider is a direct generalization of the non-relativistic LippmannSchwinger amplitude.

The equation for T can be obtained in two different ways. The first one is connected with the use of the basic operator equation (2.4) (or (2.5)). The second one resembles the procedure applied in tho derivation of the $B-S$ equation $[\overline{2}]$.

In both cases it is convenient to go over to matrix notation
in the x-space $[3,57$ by putting formally

$$
\begin{align*}
& H\left(\lambda x, \lambda x^{\prime}\right)=\langle x| R\left|x^{\prime}\right\rangle, \\
& \tilde{H}\left(\lambda x-\lambda x^{\prime}\right)=\langle x| H\left|x^{\prime}\right\rangle, \\
& \frac{1}{2 \pi} \delta\left(x-x^{\prime}\right) \frac{1}{x-1 \varepsilon} \quad=\langle x| G_{0}\left|x^{\prime}\right\rangle . \tag{3.9}
\end{align*}
$$

In new notations the basic operator equation becomes

$$
\begin{equation*}
R=-H-H G_{O} R \tag{3.10}
\end{equation*}
$$

It is useful to introduce the "full" propegator G of the quasipaitiole. We define it in the following way:

$$
\begin{equation*}
G=G_{0}-G_{0} R \quad G_{0} \tag{3.11}
\end{equation*}
$$

From (3.11) and (3.10) it is easy to find an equation for G.

$$
\begin{equation*}
G=G_{0}-G_{0} H O \tag{3.12}
\end{equation*}
$$

from where

$$
\begin{equation*}
G=\frac{1}{G_{0}^{-1}-H}=\frac{1}{2 \pi} \frac{1}{x+\frac{1}{2 \pi} H-j \varepsilon} \tag{3.13}
\end{equation*}
$$

Let us recall that here H is an operator in the space of the physical particle states as well as in the space of the quasiparticle "stateg". A concrete realization of this operator is given in $[5]$

$$
\begin{equation*}
H=\int a(x) \widetilde{H}(-\lambda x) d x \tag{3.14}
\end{equation*}
$$

where the quasiparticle's wave function $a(\mathscr{P}$) is defined by

$$
\begin{equation*}
\left\langle x_{1}\right| a(x)\left|x_{2}\right\rangle=\delta\left(x_{1}+x-x_{2}\right) \tag{3.15}
\end{equation*}
$$

To derive the equation for the soattering anplitude from eq. (3.10), let us malre in (3.10) one iteration

$$
\begin{equation*}
R=-H+H G_{O} H+H G_{O} H G_{0} R \tag{3.16}
\end{equation*}
$$

and meke the substitution

$$
\begin{equation*}
R=R^{\prime}-\frac{1}{1-H G_{O} H G_{O}} H \tag{3.17}
\end{equation*}
$$

The result is

$$
\begin{equation*}
R^{\prime}=H G_{0} H+H G_{0} H G_{0} R^{\prime} \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{R}^{\prime}=\mathrm{K}_{2}+\mathrm{K}_{2} \mathrm{G}_{0} \mathrm{R}^{4} \quad\left(\mathrm{~K}_{2} \equiv \mathrm{HG}_{0} \mathrm{I}\right) \tag{3.19}
\end{equation*}
$$

In virtue of (2.11) and (3.17) one may conclude that the matrix elements of the operators R and R^{\prime} are indentical with one another for the transitions between states which do not involve the φ-particles. Since we are interested in the elastic scattering of the ψ - and χ-particles which represents the transition of this kind, the "prime" in (3.18) and (3.19) will be omitted.

Let us now take from both sides of (3.19) matrix elenents of the form (3.1)

$$
\begin{align*}
& \left\langle\vec{p}_{1}, \vec{p}_{2}\right| R\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle=\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K_{2}\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle+ \\
& +\int\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K_{2}\left|\vec{k}_{1}, \vec{k}_{2}\right\rangle \frac{d \vec{k}_{1} d \vec{k}_{2}}{(2 \pi)^{6}} G_{0}\left\langle\vec{k}_{1}, \vec{k}_{2}\right| R\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle+ \\
& +\sum_{n^{\prime} \neq\left|k_{1}, k_{2}\right\rangle}\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K_{2}\left|n^{\prime}\right\rangle G_{0}\left\langle n^{\prime}\right| R\left|\vec{q}_{1} \vec{q}_{2}\right\rangle \tag{3.20}
\end{align*}
$$

The summation in the right-hand side of (3.20) is carried over a complete set of "bare" states of the considered fields, excluding the two-particle state $|2\rangle \equiv\left|\vec{k}_{1}, \vec{k}_{2}\right\rangle=(2 \pi)^{3} a^{+}\left(\vec{k}_{1}\right) 0^{+}\left(\vec{k}_{2}\right)|0\rangle$ whose contribution we have separated explicitly.

The equality (3.20) is only one of the equations amongrt the infinite system of linked integral equations ${ }^{* *}$), which is equivalent to the operator relation (3.19). Successively excluding the matrix elements $\left\langle n^{\prime}\right| R\left|\vec{q}_{1} \vec{q}_{2}\right\rangle$ from (3.20) with the help of oticer equations of the given system, we can obtain, for the quantity $\left\langle\vec{p}_{1}, \vec{p}_{2}\right| R\left|\vec{q}_{1}, \overrightarrow{\mathrm{a}}_{2}\right\rangle$ the following olosed integral equation:
*) This statement is also valid in the case when we add to the Ilamiltonian (2.11), counter-terms quadratic in the rield φ.
**) Such kind of linked integral equations connecting amplitudes of different processes are the subject of investigation in the TammDancofr method and also in Ref. 47$]$.

$$
\begin{align*}
& \left\langle\vec{p}_{1}, \vec{p}_{2}\right| R\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle=\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K\left|\vec{q}_{11}, \vec{q}_{2}\right\rangle+ \\
& +\frac{1}{(2 \pi)^{6}}\left(\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K\left|\vec{k}_{1}, \vec{k}_{2}\right\rangle G_{0}\left\langle\vec{k}_{1}, \vec{k}_{2}\right| R\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle d \vec{k}_{1} d \vec{k}_{2}\right. \tag{3.21}
\end{align*}
$$

where we have introduced the notation

$$
\begin{equation*}
K \equiv K_{2} \frac{1}{1-G_{0}\left(1-\Pi_{2}\right) K_{2}}=K_{2}+K_{2} G_{0}\left(1-\Pi_{2}\right) K_{2}+\cdots \tag{3.22}
\end{equation*}
$$

(Π_{2} is the projection operator onto two particle states $|2\rangle=\left|\vec{K}_{1}, \vec{k}_{2}\right\rangle$). Eq. (3.21) is an operator equation in x-space. If we write it in matrix form, we shall have, taking into account (3.9), ,

$$
\begin{aligned}
& \left\langle\vec{p}_{1}, \vec{p}_{2}\right| R\left(\lambda x, \lambda x^{\prime}\right)\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle=\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K\left(\lambda x ; \lambda x^{\prime}\right)\left|\vec{q}_{1} \vec{g}_{2}\right\rangle+ \\
& +\frac{1}{(2 \pi)^{7}}\left\langle\left\langle\vec{p}_{1} \overrightarrow{2}_{2}\right| K\left(\lambda x, \lambda x_{1}\right) \mid \vec{k}_{1}, \vec{k}_{2}\right\rangle \frac{d \vec{k}_{1} d \vec{k}_{2} d x_{1}}{x_{1}-i \varepsilon}\left\langle\vec{k}_{1}, \vec{k}_{2}\right| R\left(\lambda x, \lambda x^{\prime}\right)\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle,
\end{aligned}
$$

$$
\text { or for } x^{\prime}=0 \text {, }
$$

$$
\left\langle\vec{p}_{1}, \vec{p}_{2}\right| R(\lambda x)\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle=\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K(\lambda x, 0)\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle+
$$

$$
\begin{equation*}
+\frac{1}{(2 \pi)^{7}}\left(\left\langle\vec{p}_{1}, \vec{p}_{2}\right| K\left(\lambda x, \lambda x_{1}\right)\left|\vec{k}_{1}, \vec{k}_{2}\right\rangle \frac{d \vec{k}_{1} d \vec{k}_{2} d x_{1}}{x_{1}-i \varepsilon}\left\langle\vec{k}_{6} \vec{k}_{2}\right| R\left(\lambda x_{1}\right)\left|\vec{q}_{1}, \vec{q}_{2}\right\rangle .\right. \tag{3.24}
\end{equation*}
$$

*) Here we introduce a supplementary definition: $K(\lambda x, \lambda x) \equiv$ $\langle x| K\left|x^{\prime}\right\rangle$. Its uniqueness follows from (3.22) and the equality $\mathrm{K}_{2}=\mathrm{HG}_{0} \mathrm{H}$.

Eq. (3.21) cannot yet be considered as the one required for the scattering amplitude since, according to (3.1), the latter must be expressed irk terms of connected diagrams whereas the capression for $\left\langle\vec{p}_{7} \vec{p}_{2}\right| R(\lambda x)\left|\vec{q}_{i_{2}} \vec{X}_{2}\right\rangle$ involves contributions from the vacuum loops and unconnected graphs of the form shown in Figs. 7 and 8 as well. On the other hand, however, (3.24) possesses a number of properties which will be characteristic for the final equation too. Therefore, it is reasonable to study (3.24) more thoroughly.

Let us introduce an "unconnected" amplitude in corresponding to the matrix el mort $\left\langle\vec{p}_{2} \vec{p}_{2}\right| \mathrm{R}(\lambda x)\left|\vec{q}_{1} \vec{q}_{2}\right\rangle$ by defining it in complete analogy with the "connected" amplitude T (see (3.1))

$$
\begin{gather*}
\left\langle\vec{p}_{1} \vec{p}_{2}\right| \mathrm{R}(\lambda x) \left\lvert\,{\left.\overrightarrow{q_{1}} \vec{q}_{2}\right\rangle=}_{=(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}-q_{1}-q_{2}-\lambda x\right) \times} \begin{array}{c}
\frac{1}{\sqrt{\left(2 p_{1}^{0}\right)\left(2 p_{2}^{0}\right)\left(2 q_{1}^{0}\right)\left(2 q_{2}^{0}\right)}} M\left(\lambda x ; p_{1}, p_{2}, q_{1}, q_{2}\right)
\end{array} .\right.
\end{gather*}
$$

As in (3.25) let us explicitly take' into account the conserration of the 4 momentum in the kernel and in the free term of eq.(3.24)

$$
\left\langle\vec{p}_{1}, \vec{p}_{2}\right| k\left(\lambda x, \lambda x_{1}\right)\left|\vec{k}_{k_{1}} \vec{k}_{2}\right\rangle=(2 \pi)^{4} \delta^{(4)}\left(\lambda x_{1}+p_{1}+p_{2}-\lambda x-k_{1}-k_{2}\right) \times
$$

$$
\begin{equation*}
\frac{1}{\sqrt{\left(2 p_{1}^{0}\right)\left(2 p_{2}^{0}\right)\left(2 k_{1}^{0}\right)\left(2 k_{2}^{0}\right)}} \sqrt{\left(\lambda x, p_{1}, p_{2} ; \lambda \dot{e_{1}}, k_{1}, k_{2}\right) ;} \tag{3.26}
\end{equation*}
$$

$$
\left\langle\vec{p}_{3} \vec{p}_{2}\right| K(\lambda x, 0)\left|\vec{q}_{1} \vec{q}_{2}\right\rangle=(2 \pi)^{4} \frac{\delta^{(4)}\left(p_{1}+p_{2}-\lambda x-q_{1}-q_{2}\right)}{\sqrt{\left(2 p_{1}^{0}\right)\left(2 p_{2}^{0}\right)\left(2 q_{1}^{0}\right)\left(2 q_{2}^{0}\right)}} \sqrt{ }\left(\lambda+, p_{1} p_{2} ; 0, q_{1}, q_{2}\right)
$$

Substituting (3.25) and (3.26) in (3.24) and cancelling the δ-function common for both the parts, we find

$$
\begin{align*}
& M\left(\lambda x ; p_{1}, q_{1}+q_{2}+\lambda x-p_{1}, q_{1}, q_{2}\right)=V\left(\lambda x, p_{1}, p_{2} ; 0, q_{1}, p_{1}+p_{2}-\lambda x-q_{1}\right)+ \\
+ & \frac{1}{(2 \pi)^{3}}\left(V\left(\lambda x, p_{1}, p_{2} ; \lambda x_{1}, k_{1}, p_{1}+p_{2}-\lambda x+\lambda x_{1}-k_{1}\right) \frac{d x_{1}}{x_{1}-i \varepsilon} d^{4} k_{1} D^{(+)}\left(k_{1}\right) \times\right. \\
\times & D^{(1)}\left(q_{1}+q_{2}+\lambda x_{1}-k_{1}\right) M\left(\lambda x_{1} ; k_{1}, q_{1}+q_{2}+\lambda x_{1}-k_{1}, q_{1}, q_{2}\right) \tag{3.27}
\end{align*}
$$

The graphical interpretation of (3.27) is as follows:

Pig. 2

On imposing the conditions (2.21), eq. (3.27) can be written in the form

$$
\begin{align*}
& M\left(s_{p}, t_{p q}, s_{q}\right)=V\left(s_{p}, t_{p q}, s_{q} ; s_{q}\right)+ \\
& +\frac{1}{(2 \pi)^{3}}\left(V\left(s_{p}, t_{p k}, s_{k} ; s_{q}\right) d^{4} k_{1} D^{+}\left(k_{1}\right) \frac{M\left(s_{k}, t_{k q}, s_{q}\right)}{s_{k}+t_{k q}+u_{k q}-4 m^{2}-i \varepsilon}\right. \tag{3.28}
\end{align*}
$$

where $s_{p}, t_{p q}, s_{q}$ are the invariant variables defined in (3.3) and s_{k}, $t_{k q}$ and $u_{k q} q u a n t i t i e s$ defined by similar equalities

$$
\begin{align*}
& s_{k}=\left(k_{1}+k_{2}\right)^{2} \\
& u_{k q}=\left(k_{1}-q_{1}\right)^{2} \tag{3.29}\\
& u_{k q}=\left(k_{1}-q_{2}\right)^{2}
\end{align*}
$$

and (of. (3.4))

$$
\begin{equation*}
\sqrt{s_{k} s_{q}}+t_{k q}+u_{k q}=4 m^{2} \tag{3.30}
\end{equation*}
$$

Further, it is natural to consider (3.28) in CNS. Introducing, in addition to (3.6) \quad (3.8), the notations

$$
\begin{aligned}
& \vec{k}_{1}=-\vec{k}_{2}=\vec{k} ; \quad 4 E_{k}^{2}=S_{k} ; \quad \cos \theta=\frac{\vec{k} \cdot \vec{q}}{|\vec{k}||\vec{q}|} ; \\
& d^{3} k=k^{2} d k \sin \theta d \theta d \varphi=k^{2} d k d \Omega ;
\end{aligned}
$$

$$
\begin{equation*}
\cos \psi=\frac{\vec{p} \cdot \vec{k}}{|\vec{p}||\vec{k}|}=\cos v \cos \theta+\sin \theta \sin \theta \cos \varphi \tag{3.31}
\end{equation*}
$$

$$
\begin{align*}
& V\left(S_{p}, t_{p q}, S_{q} ; S_{q}\right)=V\left(\vec{p}, \vec{q} ; E_{q}\right)=V\left(E_{p} \cos \theta, E_{q} ; E_{q}\right) \\
& V\left(S_{p}, t_{p k}, S_{k} ; S_{q}\right)=V\left(\vec{p}, \vec{k} ; E_{q}\right)=V\left(E_{p}, \cos \psi, E_{k} ; E_{q}\right) \tag{3.32}
\end{align*}
$$

*) Prom (3.29) and (3.31), it evidently follows (compare with (3.7))

$$
\begin{aligned}
& t_{p k}=2\left(m^{2}-Z_{p} M_{k}+\sqrt{E_{p}^{2}-m^{2}} \sqrt{E_{k}^{2}-m^{2}} \quad \cos \psi\right) \\
& t_{k q}=2\left(m^{2}-F_{k} E_{q}+\sqrt{E_{k}^{2}-m^{2}} \sqrt{E_{q}^{2}-n^{2}} \quad \cos \theta\right)
\end{aligned}
$$

we have

$$
\left.M(\vec{p}, \vec{q})=V\left(\vec{p}, \vec{q} ; E_{q}\right)+\frac{1}{\left(4 m^{3}\right.}\right) V\left(\vec{p}, \vec{k} ; E_{q}\right) \frac{d^{3} \vec{k}}{\sqrt{\vec{k}^{2}+m^{2}}} \frac{M(\vec{k}, \vec{q})}{E_{k}\left(E_{k}-E_{q}-i \varepsilon\right)},
$$

or

$$
\begin{aligned}
& M\left(E_{p,} \cos v, E_{q}\right)=V\left(E_{p}, \cos v, E_{q} ; E_{q}\right)+ \\
& +\frac{1}{(4 \pi)^{3}}\left(V\left(E_{p,} \cos \psi, E_{k} ; E_{q}\right) \sqrt{\frac{E_{k}^{2}-m^{2}}{E_{k}^{2}} \frac{d E_{k} d \Omega}{E_{k}-E_{q}-i \varepsilon} M\left(E_{k} \cos \theta, E_{q}\right)}\right.
\end{aligned}
$$

If, as before, we abstain ourselves from questions of normalization and connectedness of the matrix element (3.25), we may say that (3.33) is the relativistic analogue of the Lippmann-Schwincer eq. (1.1). This analogy is clearly seen in the spherical coordinate system (ops. (1.3) and (3.34)), since the factors $\sqrt{2 \mathrm{~F}_{\mathrm{k}} / \mathrm{m}}$ and $\sqrt{\left(\mathrm{H}_{\mathrm{c}}^{2}-\mathrm{m}^{2} / \mathrm{n}^{2}\right.}$ in front of the integrals are the module of the particle's velocities in the non-relativistic and relativistic oases, correspondingly.

On the other hand, the equation we have obtained is very close in form to the equation for the scattering amplitude in the quasipotential approach proposed several years ago by Logunov and Tavkhelidze [3.7*)

$$
\begin{equation*}
T(\vec{p}, \vec{q})=V\left(\vec{p}, \vec{q}, E_{q}\right)+\frac{1}{4(2 \pi)^{3}}\left(V\left(\vec{p}, \vec{k} ; E_{q}\right) \frac{d \vec{k}}{\sqrt{\vec{k}^{2}+m^{2}} \frac{T}{E_{k}^{2}}-(\vec{k}, \vec{q})}\right. \tag{3.35}
\end{equation*}
$$

*) At present there is much literature devoted to the analysis and applications of the quasipotential approach (see for instance $/ \overline{9}-$ 207).

The difference between. (3.35) and (3.33) is that the denominators in these equations do not have the same dependence on the energy. We have to stress that the quantity V, playing the role of a potential in both (3.33) and (3.35), is in general a complex function of the energy I_{q}. This fact is the main feature of the equations considered and for this reason wo shall call, after Logunov and Tavkhelidze, V the quastpotential, and eq. (3.33) the quasipotential equation.

In 697 it has been proved that, for a real quasipotential, eq. (3.35) leads to the relativistic two -particle unitarity condition

$$
\begin{align*}
& \operatorname{Im} T(\vec{p}, \vec{q})=\frac{1}{(8 \pi)^{2}} \sqrt{\frac{E^{2}-m^{2}}{E^{2}}}\left(d \Omega_{k} T(\vec{p}, \vec{k}) T(\vec{k}, \vec{q})\right. \tag{3.36}\\
& \left(E^{2}=\vec{p}^{2}+m^{2}=\vec{q}^{2}+m^{2}=\vec{k}^{2}+m^{2}\right)
\end{align*}
$$

Let us show now that, under the same assumptions, from eq. (3.33) for the amplitude M, also follows the condition (3.36). To do this let us introduce matrix notations

$$
\begin{align*}
& M(\vec{p}, \vec{q})=\langle\vec{p}| M|\vec{q}\rangle ; V\left(\vec{p}, \vec{k} ; E_{q}\right)=\langle\vec{p}| V\left(E_{q}\right)|\vec{k}\rangle \\
&\langle\vec{p}| g\left(E_{q}\right)|\vec{k}\rangle=\bar{\delta}(\vec{p}-\vec{k}) \frac{1}{E_{k}^{2}\left(E_{k}-E_{q}-i \varepsilon\right)} \equiv \\
& \equiv \frac{\langle\vec{p}| \vec{I}\left|\vec{k}_{k}\right\rangle}{E_{k}^{2}\left(E_{k}-E_{q}-i \varepsilon\right)} \tag{3.37}
\end{align*}
$$

and rewrite (3.33) in the form

$$
\begin{equation*}
\left.M=V\left(E_{q}\right)+\frac{i}{(4 \pi)^{2}} V\left(E_{q}\right) I m g\right) M+\frac{1}{(4 \pi)^{3}} V\left(E_{q}\right)(\operatorname{Req}) M \tag{3.38}
\end{equation*}
$$

where

$$
\begin{align*}
& \operatorname{Im} g=\hat{I} \frac{\pi}{E_{k}^{2}} \delta\left(E_{k}-E_{q}\right) \\
& \operatorname{Reg}=\hat{I} \frac{1}{E_{k}^{2}} P \frac{1}{E_{k}-E_{q}} \tag{3.39}
\end{align*}
$$

From (3.38) it follows that the operator

$$
\begin{equation*}
N=M\left[1+\frac{i}{(4 \pi)^{3}}(\operatorname{Im} g) M\right]^{-1} \tag{3.40}
\end{equation*}
$$

satisfies the equation

$$
\begin{equation*}
N=V\left(E_{q}\right)+\frac{1}{(4 \pi)^{3}} V\left(E_{q}\right)\left(R_{e} g\right) N \tag{3.41}
\end{equation*}
$$

Hence, the quantity N is real when V is real and due to this, from (3.40), we have.

$$
\begin{equation*}
M^{*}\left[1-\frac{i}{(4 \pi)^{3}}(\operatorname{Im} g) M^{*}\right]^{-1}=M\left[1+\frac{i}{(4 \pi)^{3}}(\operatorname{Im} g) M_{1}\right]^{-1} \tag{3.42}
\end{equation*}
$$

In the spinless case under consideration one has, owing to the Iinvariance,

$$
\langle\vec{p}| M|\vec{q}\rangle=\langle\vec{q}| M|\vec{p}\rangle
$$

Taking this relation into account, we find from (3.42),

$$
M^{*}\left(1+\frac{i}{(4 \pi)^{3}}(\operatorname{Im} g) M\right)=\left(1-\frac{i}{(4 \pi)^{3}}(\operatorname{Im} g) M^{*}\right) M
$$

or

$$
\begin{equation*}
M-M^{*}=\frac{2 i}{(4 \pi)^{3}} M^{*}\left(I_{m} g\right) M \tag{3.43}
\end{equation*}
$$

$-25-$

Returning, in the last equality, to the old notations, taking into account (3.39) and going to the energy-shell*) $E_{p}=E_{q}=E_{k}=E$, it is easy to check that the condition (3.36) for the amplitude M is valid.

So fax we have investigated only the kinematical structure of eq. (3.24) for the matrix element $\left\langle\vec{p}_{1} \vec{p}_{2}\right| R(\lambda x)\left|\vec{q}_{1} \vec{q}_{2}\right\rangle$. Doing this, we completely ignored the existence of tunconnected" parts in this quantity. Now we shall partially make up this deficiency, postponing the detailed analysis until the next section, where an equation for the scattering amplitude of the type (3.33) will be derived without the help of eq. (3.10).

According to (3.22) in order to construct the quasipotential it is necessary to sum infinite series of terms of increasing powers in g^{2}. Then, evidently, each term of the series, owing to the precence of the operator ($1-T_{2}$), multiplied by the quasiparticle's propogator, has the property that it cannot be aplit into two parts comnected with each other by two $\mathcal{D}^{(+)}$-functions and the function $G_{0}(x)$ (irreducibility condition).

Direct calculation shows that unconnected parts in (3.22) already appear in g^{2}-order. Let us demonstrate how eq. (3.33) must be rebuilt in order that unconnected parts in the scattering amplitude do not appear. Here again it is reasonable to use the matrix notations (3.37) in the apace of the functions, but now instead of the "matrix" $\langle\vec{p}| g|\overrightarrow{\mathbb{K}}\rangle$ it is more convenient to consider the matrix

$$
\langle\vec{p}| g^{(0)}|\vec{k}\rangle=\frac{1}{(2 \pi)^{3}} \frac{\delta(\vec{p}-\vec{k})}{4 E_{p}\left(E_{p}-E_{q}-i \varepsilon\right)}=\frac{1}{(2 \pi)^{3}} \frac{\delta(\vec{p}-\vec{k})}{s_{p}+t_{p q}+u_{p q}-4 m^{2}-i \varepsilon}
$$

keoping as a whole the invariant form $d^{3} \vec{k} / 2 \sqrt{k^{2}+m^{2}}$ of the three-dimensional volume element in momentum space. As a consequence, eq. (3.33) becomes

$$
\begin{equation*}
A=v+v g^{(0)_{N}} \tag{3.45}
\end{equation*}
$$

*) In fact (3.43) is a continuation of the unitarity condition off the
enerey shell.

Let us introduce now the Green function Q for the given two particle system putting by definition

$$
\begin{equation*}
\theta=q^{(0)}+q^{(0)} M q^{(0)} \tag{3.46}
\end{equation*}
$$

From (3.46) and (3.45) we find

$$
\begin{equation*}
g=g^{(0)}+g^{(0)} v g \tag{3.47}
\end{equation*}
$$

and taking into account (3.44) we have

$$
\begin{gather*}
\frac{Q}{}=\frac{1}{\left[g^{(0)}\right]^{1}-v}= \\
=\frac{1}{(2 \pi)^{3}} \tag{3.48}\\
\frac{1}{s+t+u-4 m^{2}-\frac{1}{(2 \pi)^{3}}} v-i \xi
\end{gather*}
$$

Therefore, the combination $s+t+u=4 \mathrm{~m}^{2}$ of the Mandelstam variables s, t, u, in our scheme coincides with the inverse free Green function of the two -particle system (compare with the Klein-Gordon operator $p^{2}-m^{2}$ for one particle).

Defining the wave function of the system by the relation

$$
\begin{aligned}
& \Psi_{q}(\vec{p})=2(2 \pi)^{3} \sqrt{\vec{p}^{2}+m^{2}} \delta(\vec{p}-\vec{q})+ \\
& +\frac{M(\vec{p}, \vec{q})}{s_{p}+t_{p q}+u_{p q}-4 m^{2}-i \varepsilon}
\end{aligned}
$$

wo can obtain for $\psi_{\vec{q}}(\vec{p})$ an analogue of the Schrödinger equation in the p-representation (compare with [87)

$$
\begin{array}{r}
\left(s_{p}+t_{p q}+u_{p q}-4 m^{2}\right) \psi_{q}(\vec{p})= \\
=\frac{1}{(2 \pi)^{3}} \int \frac{d \vec{k}}{2{\sqrt{\vec{k}^{2}}+m^{2}} \quad V\left(\vec{p}, \vec{k} ; F_{q}\right) \psi_{q}(\vec{k}) .}
\end{array}
$$

Let us now suppose that we have separated all the unconnected parts \tilde{V} in the quasipotential so that

$$
\begin{equation*}
V=\widetilde{V}+V^{c} \tag{3.50}
\end{equation*}
$$

Substituting (3.50) in (3.48), we have

$$
\begin{equation*}
G=\frac{1}{\left(g^{(0)}\right)^{-1}-\widetilde{v}-V^{c}}=\frac{1}{\left(\widetilde{g}^{(0)}\right)^{-1}-V^{c}}, \tag{3.51}
\end{equation*}
$$

where the function $\tilde{g}^{(0)}=\frac{1}{\left(g^{(0)}\right)^{-1}-\tilde{v}}$ obviously satisfies the
equation*)

$$
\tilde{g}^{(0)}=g^{(0)}+g^{(0)} \tilde{V} \tilde{g}^{(0)}
$$

In virtue of' (3.51) we can also write

$$
\begin{equation*}
g=\widetilde{g}^{(0)}+\widetilde{g}^{(0)} v^{c} g \tag{3.52}
\end{equation*}
$$

We shall further define the connected amplitude M^{C}

$$
\begin{equation*}
g=\tilde{g}^{(0)}+\tilde{g}^{(0)} M^{c} \tilde{g}^{(0)} \tag{3.53}
\end{equation*}
$$

From (3.52) and (3.53) it is easy to see that the equation for M^{c} is

$$
\begin{equation*}
\left.n^{c}=v^{c}+v^{c} \tilde{g}^{0}\right) u^{c} \tag{3.54}
\end{equation*}
$$

*) The operations we perform are usual procedure in the manybody scattering problem.

$$
\begin{equation*}
M^{c}(\vec{p}, \vec{q})=V^{c}\left(\vec{p}, \vec{q} ; E_{q}\right)+\int V^{c}\left(\vec{p}, \vec{l} ; E_{q}\right) \frac{d \vec{l}}{2 \sqrt{\vec{l}^{2}+m^{2}}} \tilde{g}^{(0)}\left(\vec{e}, \vec{k} ; E_{q}\right) \frac{d \vec{k}}{2 \sqrt{k^{2}+m^{2}}} M^{c}(\vec{k}, \vec{q}) \tag{3.55}
\end{equation*}
$$

We see, thus, that the rebuilding of eq. (3.33), whose aim vas to separate the connected part of the scattering amplitude, has led to a change of the kemel and the free Green function ("the energy denominator") keeping the main feature of (3.33), ie., a threedimensional integration in the k-space with an invariant volume element.
4. DERIVATION OF THE FQUATION FOR THE SCATTERING ANPIIMUDE ON TH Z BASIS OF THE DIAGRAM TECHNIQUE

As mentioned above, in this section we shall obtain the equation: for the scattering amplitude without using eq. (3.10).

Let us suppose that we know the decomposition (2.15) and that we have. separated from these infinite series the terms which do not contain vacuum loops. Let us denote these terms by

$$
\begin{aligned}
& \hat{R}\left(\lambda x, \lambda x e^{\prime}\right)=\sum_{n=m=\mu=0}\left(\hat{F}_{n, m, \mu}\left(\lambda x, \lambda x^{\prime} ; p_{1}, p_{n} ; p_{1}^{\prime} . . p_{m}^{\prime} ; q_{13} . . q_{n} ; q_{1}^{\prime}, \ldots q_{m}^{\prime}, k_{1}, . . k_{\mu}\right) \times\right. \\
& x: \psi^{*}\left(p_{1}\right) \ldots \Psi^{*}\left(p_{n}\right) X^{*}\left(p_{1}^{\prime}\right) \ldots X^{*}\left(p_{m}^{\prime}\right) \psi\left(q_{1}\right) \ldots \psi\left(q_{m}\right) X\left(q_{1}^{\prime}\right) \ldots X\left(q_{m}^{\prime}\right) \varphi\left(k_{1}\right) \ldots \varphi\left(k_{\mu}\right):
\end{aligned}
$$

$d p_{1} \ldots d p_{n} d p_{1}^{\prime} \ldots d p_{m}^{\prime} d q_{1} . d q_{n} d q_{1}^{\prime} . d q_{m}^{\prime} d k_{1} \ldots d k_{\mu}$.
with the condition that

$$
\hat{F}_{0,0,0}=0
$$

Putting

$$
\begin{equation*}
\hat{R}\left(\lambda x, \lambda x^{\prime}\right)=\langle x| \hat{R}\left|x^{\prime}\right\rangle \tag{4.3}
\end{equation*}
$$

we shall define the total Green function of the quasiparticle corresponding to \hat{R} (cf. (3.11))

$$
\begin{equation*}
\widehat{\mathrm{Q}}=G_{0}+G_{0} \widehat{R} G_{0} \tag{4.3}
\end{equation*}
$$

Further, it is convenient to consider the "full" normal pairings of the ψ_{-}and X-fields in the p-representation. Let us define then as

$$
\begin{aligned}
& D_{\psi}=\frac{1}{2 \pi}\langle 0| N \Psi(1) \hat{G} \psi^{*}(2)|0\rangle \\
& D_{X}=\frac{1}{2 \pi}\langle 0| N X(1) \hat{G} X^{*}(2)|0\rangle \\
& D_{\psi X}=\frac{1}{(2 \pi)^{2}}\langle 0| N \Psi(1) X(2) \hat{G} \psi^{*}(3) X^{*}(4)|0\rangle \\
& e t_{c}
\end{aligned}
$$

Where the 4 -momenta on which the fields depend are denoted by number arguments, N is the symbol of the normal product and in the vacuum expectation value the vacuum of non-interacting fields is used.

Substituting (4.3) in (4.4) we obtain, taking into account (4.2) and (4.3),

$$
\begin{align*}
& 2 \pi D_{\Psi}(1,2)=G_{0} U^{U}(1) \Psi^{*}(2)+ \\
& +\int G_{0} \Psi(1) \Psi^{*}\left(p_{1}\right) \hat{F}_{1,0,0}\left(p_{1}, q_{1}\right) \Psi\left(q_{1}\right) \Psi^{*}(2) G_{0} d_{p_{1}} d q_{1} \\
& \left.2 \pi D_{X}(1,2)=G_{0}\right)\left((1) X^{*}(2)+\right. \\
& +\int G_{0} X(1) X^{*}\left(p_{1}^{\prime}\right) \hat{F}_{0,1,0}\left(p_{1}^{\prime}, q_{1}^{\prime}\right) X\left(q_{1}^{\prime}\right) Y^{*}(2) G_{0} d p_{1}^{\prime} d q_{1}^{\prime}
\end{align*}
$$

$$
\begin{aligned}
& (2 \pi)^{2} D_{\Psi X}(1,2 ; 34)=G_{0} \Psi(1) \Psi^{*}(3) X(2) X^{*}(4)+ \\
& \left.+G_{0} \int \Psi(1) \psi^{*}\left(p_{1}\right) \hat{F}_{1,0,0}\left(p_{1}, q_{1}\right) \Psi\left(q_{1}\right) \psi^{*}(3) d p_{1} \alpha q_{1}\right) \underbrace{X(2)} X^{*}(4) G_{0}+
\end{aligned}
$$

$$
\begin{align*}
& +G_{0} \int \Psi(1) \psi^{*}\left(p_{1}\right) X(2) X^{*}\left(p_{1}^{\prime}\right) \hat{F}_{1,1,0}\left(p_{1}, p_{1}^{\prime}, q_{1}, q_{1}^{\prime}\right) \times \\
& \times \Psi\left(q_{1}\right) \psi^{*}(3) \underbrace{X\left(q_{1}^{\prime}\right) X^{*}(4) d p_{1} d p_{1}^{\prime} d q_{1} d q_{1}^{\prime} G_{0},{ }^{*}(4)} \tag{4.6}
\end{align*}
$$

It is evident that in the perturbation theory the functions (4.5) are represented by self-energy type diagrams (see ,for instance, Fig.5), and the expression (4.6) corresponds to diagrams describing the scattering of ψ - and χ-particles (see, for instance, Figs. 5 and 8). The function $\widehat{F}_{1,1,0}\left(p_{1}, p_{1}^{\prime}, q_{1}, q_{1}^{\prime}\right)$ is naturally split into two parts

$$
\begin{equation*}
\hat{F}_{1,1,0}=\hat{F}_{1,1,0}^{(0)}+\hat{F}_{1,1,0}^{c} \tag{4.7}
\end{equation*}
$$

where the first one corresponds to unconnected graphs (for instance, Fig. 8) and the second one to connected graphs (Fig.6). Introducing the notation

$$
\begin{align*}
& (2 \pi)^{2} D_{\Psi X}^{(0)}(1,2 ; 3,4)=G_{0} \Psi(1) \psi^{*}(3) X(2) X^{*}(4)+ \\
& \left.+G_{0} \int \Psi(1) \Psi^{*}\left(p_{1}\right) \hat{F}_{1,0,0}\left(p_{1}, q_{1}\right) \Psi\left(q_{1}\right) \Psi^{*}(3) d p_{1} d q_{1}\right) \underbrace{X(2) X^{*}(4) G_{0}+~+~+~ . ~} \\
& +G_{0} \int X(2) X^{*}\left(p_{1}^{\prime}\right) \hat{F}_{0,1,0}\left(p_{1}^{\prime}, q_{1}^{\prime}\right) X\left(q_{1}^{\prime}\right) X^{*}(4) d \varphi_{1}^{\prime} d q_{1}^{\prime} \Psi(1) \Psi^{*}(3) G_{0}+ \\
& +G_{0} \int \Psi(1) \Psi^{*}\left(p_{1}\right) X(2) X^{*}\left(p_{1}^{\prime}\right) \hat{F}_{1,1,0}^{(0)}\left(p_{1}, p_{1}^{\prime} ; q_{1}, q_{1}^{\prime}\right) \Psi\left(q_{1}\right) \psi^{*}(3) \\
& \times X\left(q_{1}^{\prime}\right) X^{*}(4) d p_{1} d p_{1}^{\prime} d q_{1} d q_{1}^{\prime} G_{0} \tag{4.8}
\end{align*}
$$

we shall have from (4.6)

$$
\begin{align*}
& D_{\psi X}(1,2 ; 3,4)=D_{\psi X X}^{0}(1,2 ; 3,4)+ \\
& +\frac{1}{(2 \pi)^{2}} G_{0} \underbrace{\psi(1) \psi^{*}}\left(p_{1}\right) X(2) X^{*}\left(p_{1}^{\prime}\right) \hat{F}_{1,1,0}^{c}\left(p_{1}, p_{1}^{\prime} ; q_{1}, q_{1}^{\prime}\right) \Psi\left(q_{1}\right) \psi^{*}(3) \times\left(q_{1}\right) \times{ }^{*}(4) d p_{1} \ldots d q_{1}^{\prime} . \tag{4.9}
\end{align*}
$$

If we oarry out all the reasoning done in the usual formalism when one derives the Dyson equation for the one-particle propegators or the Bethe-Salpeter equation for the two-particle Green function, we can write the relation (4.9) in the form of an equation for the function $\mathscr{D}_{\psi \chi}$. Essentially we have only to introduce a convenient definition of irreducible diagrams. Let us consider all conneoted diagrams with four extemal lines of ψ and X types and two dotted ends. Iet us suppose that all lines are oriented in the same way as Figs. 3 and 6 and that the 4 -momenta of the ψ and X particlos satisfy the condition $p^{2}=m^{2}, 9_{0}>0$, We shall call a diagram belonging to this class, irreducible, if it oannot be aplit into two conneoted parta which are linked by one doteded line, oriented from left to right and by a pair of ψ and χ lines, oriented from right to left. For inatance the diagrams in Tige. 3, 6b, 60, 6d are irreducible in this sense, and the diagram in Fig. $5 a$ ia reducible.

The set of all irreducible diagrams we shall denote by V. Then from (4.9) follows

$$
\begin{equation*}
\chi_{\Psi X}(1,2 ; 3,4)=D_{\Psi X}^{0}(1,2 ; 3,4)+D_{\Psi X}^{0}(1,2 ; 5,6) V(5,6 ; 7,8) \mathcal{D}_{\Psi X}(7,8 ; 3,4) \tag{4.10}
\end{equation*}
$$

where, as before, all the quantities are operators in the x mpace and an integration in the momenta space is oarried ovor the repeated number arguments* ${ }^{*}$. The sien (-) at V shows that in eq. (4.10) it is possible to omit the diagrams which have in the external ψ

[^4]and X lines, self-energy parts, connected with the rest of the diagram by no more than one dotted line (these parts are talcen into account in $\Delta_{\psi X}^{0}$). Examples of diagrams of this kind are given in Fig. 10.

Fig. 10

Defining the scattering amplitude T by the relation

$$
\begin{equation*}
D_{\Psi X}=D_{\Psi X}^{0}+D_{\Psi X}^{0} T D_{\Psi X}^{0} \tag{4.11}
\end{equation*}
$$

we shall have from (4.10)

$$
\begin{equation*}
T(1,2 ; 3,4)=V^{(-)}(1,2 ; 3,4)+V^{(-)}(1,2 ; 5,6) D_{\Psi x}^{0}(5,6 ; 7,8) T(7,8 ; 3,4) \tag{4.12}
\end{equation*}
$$

Although this equation looks like an analogre of the LippmanSohwinger eq. (1.1), it has a more complicated structure, because the function $\Delta_{\psi \chi}^{0}(5,6,7,8)$ is not diagonal in the momentura representation (compare with eq.(3.55)). However, it is clear that in (4.12) wo can use the diagonal "free" function

$$
\begin{equation*}
\frac{1}{(2 \pi)^{2}} G_{0} \Psi(5) \psi^{*}(7) X(6) X^{*}(8) \tag{4.13}
\end{equation*}
$$

instead of $\Delta_{\psi}^{0}(5,6,7,8)$ if one simultaneously substitutes $V^{(-)}$by V. Finally, we obtain

$$
\begin{align*}
T(1,2 ; 3,4) & =V(1,2 ; 3,4)+\frac{1}{(2 \pi)^{2}} V(1,2 ; 5,6) G_{0} \Psi(5) \Psi^{*}(7) . \\
& \cdot X(6) X^{*}(8) T(7,8 ; 34), \tag{4.14}
\end{align*}
$$

which is completely analogous to (1.1) and as is not difficult to verify, coincides, under condition (2.21) ,with (3.33)*).

The derivation of the quasipotential equation for the scattering amplitude given in the present Section shows that in our formalism this equation plays the same role as the Eethe-Salpeter eq. (1.4) in the usual approach. Correspondingly, the kemel of the equation obtained - the quasipotential - can also be built with the perturbation theory using specific irreducible diagrams.

To each choice of λ corresponds an invariant quasipotential and an invariant energy denominator (Green function). For this reason, the form of the quasipotentiel on the enercy-monentum shell, contrary to the scattering amplitude, in general depends on the choice of λ. The only exception is the quasipotential V_{2} in the Born approximation. For instance, in our case, V_{2} is given by the expression (cf. (2.22) ***)

$$
\begin{equation*}
V_{2}\left(\vec{p}, \vec{k} ; E_{q}\right)=\frac{g^{2}}{\sqrt{\mu^{2}+(\vec{p}-\vec{k})^{2}}} \frac{i}{\left(E_{p}+E_{k}-2 E_{q}-i \varepsilon+\sqrt{\mu^{2}+(\vec{p}-\vec{k})^{2}}\right)}, \tag{4.15}
\end{equation*}
$$

which at $E_{p}=F_{k}=E_{q}$ reduces to the invariant pole terra

$$
\frac{g^{2}}{\mu^{2}-\left(k_{1}-p_{1}\right)^{2}}
$$

*) Let us recall that in (4.14), contrary to '(3.33), only connected diagrams contribute to the scattering amplitude.
**) Eq. (3.33) with the kernel (4.15) has been studied in Ref. $[\overline{2} 27$.

The formelism developed here, is similar to the quasipotential approach of Logunov and Tavkheldize and can be applied in scatterinc and bound state problems of relativistic particles for quantitative calculations as well as for purposes of phenonenological description. From our point of view it is very interesting to connect this approach with the recent investigations where decompositions of the scatterine amplitude in terms of matrix elements of the Liorentz group are studied.

ACKNOMLEDCTITNTS

The author is grateful to Professors D.I. Blolenintsev, Fin. Bosolubov, M.A. Karkov, A.N. Tavkhelidzo and I.T. Todorov, Drs. B.B. Babikov, G.V. Efimov, A.V. Efremov, R.N. Faustov, A.T. Filipnov, R.M.Mir-Kasimov, R.M. Muradyan, N.B. Skachkot and A.D. Suchanov and all the participants of the seminar of Professors A.S. Davydov and D.S. Parasiuk at the Institute for Theoretical Physics of the Ukranian Academy of Sciences for useful discussions.

The author expresses his gratitude to Professors Abdus Salam and P. Budini for their hospitality at the International Centre for Theoretioal Physics., Trieste. He also wishes to thank Profecsors P. Budini, T. Charap, C. Fronsdal, I. Incraham, Abcus Salam, J. Tiomno ani Dr. M. Mateev for helpful discussions.
[1] B.A. LIPPMANN and J. SCHNINGER, Phys. Rev. 72, 469 (1950).
[2] E.E. SALPETER and H.A. BETHE, Phys. Rev. 84, 2239 (1951).
[3] V.G. KADYSHEVSKY, Zh. ZRoperim. i Teor. Fiz. 46, 654 (1964), translation in Soviet Phys.-JETP , 12; 443 (1964).
[4] V.G. KADYSTEEVSKX, Zh. Eksperim. i Teor. Fiz. 46, 872 (1964), translation in Soviet Phys.-JEPP, 12, 597 (1964).
[5] V.G. KADYSHHVSKY, Dokl. Akad. Nauk SSSR 160, 573 (1965), translation in Soviet Phys.-Doklady 10, 46 (1965).
[6] N.N. BOGOLUBOV and D.V. SHIPKOV,"Introduction to the Theory of Quantized Fields"; Interscience Publishers, New York (1959).
[7] V.J. GRIGORIFV, Zh. Eksperim. i Teor. Fiz. 30, 873 (1956), translation in Soviet Phys.-JETP, 3, 691 (1956); V.T. VAVILOV and V.J. GRIGORIEV, Zh. Eksperim. i Teor. Fiz. 39, 794 (1967), translation in Sovjet Phys.-JMYP, 12, 554 (1961).
[8] A.A. LOGUNOV and A.N. TAVKHELIDZE, iNuovo Cimento 29, 380 (1963).
[9] A.A. LOGUNOV, A.IT. TAVKIELIDZE, I.T. TODOROV and O.A. KIHUSTALEV, ITuovo Cimento 30, 134 (1963).
[iO] A.A. LOGUNOV, A.N. TAVKHEIDZE and O.A. IMRUSTALEV, Phys. Letters 4, 325 (1963).,
[12] B.A. ARBUZOV, A.A. LOGUNOV, A.N. TAVKHELIDZE, R.IT. FAUSTOV and A.T. FILIPPOV, Zh. Eksperim. i Tear. Fiz. 44, 1409 (1963), translation in Soviot Phys.-JETP 17, 448 (1963).
[12] B.A. ARBUZOV, A.A. LOGUNOV, A.T. FILIPPOV. and O.A. KHRUSTALIVV, Zh. Bksperim. i Teor. Fiz. 46, 1266 (1964), tranglation in Soviet Phys.-ïnIP 19, 861 (1964).
[13] A.N. TAVKHRLIDEE, Lectures on Qasipotential Method in Field Theory, Tata Institute of Funaamental Research, Bombay, 1964.
$[14]$ A.T. FILIPPOV, Phys. Letters 2, 78 (196́4).
[15] R.N. FAUSTOV, Dokl. Akad. Nauk SSSR 156, 1329 (1964), translation in Soviet Phys.-Doklady 2, 482 (1964).
[16] NGUYEN VAN HIEU and R.N. FAUSTOV, Nucl. Phys. 53, 337 (1964).
[17] Proceedings of the Intemational Winter school for Theoretical Physica, Vol. II, Dubna (1964).
[18] R.N. FAUSTOV, Dubna preprint P-1572 (1964).
[19] G.J. DESIMIROV and D. STOYANOV, Dubne preprint P-1658 (1964).
[20] R.N. FaUstov, Nucl. Phys. 75, 669 (1966);
Yu.N. TYUKHTYAEV and R.N. FAUSTOV, Soviet J. Mucl. Phys. 2, 629 (1966); Yu. N. TYUKHTYAEV and R.N. FAUSTOV, Dubna preprint P-2-2949 (1966).
[21] G. DESIMIROV and M. MATEEV, Nucl. Phys. B2, 218 (I967); G.M. DESIMIROV and M. MATEEV, ICTP Internal Report No. 22 (1967), Trieste.
[22] A.V. IVKIN, Theses, Faculty of Physics, Hoscow University, Dubna (1964).

Available from the Office of the Scientific Information and Documentation Officer, International Centre for Theoretical Physics, Piazza Oberdan 6, TRIESTE, Italy

[^0]: *) All variables are related to the centre-of-mass systen. The masses of the scattered particles are considered to be identicai and equal to m.

[^1]: *) Praotioally only the coefficient functions corresponding to topologically non-equivalent diagrams (dotted lines being taken into eocount) oocur to be essentially different.

[^2]: *) Let us emphasize that the subtraction point here is ac. $=0$. For this reason the relativistic invariance holds after removal of the divergences.

[^3]: *) Similarly, the Foynnan diagram teohnigue is also aritable for calculations of physioal quantities off the mass-shell.

[^4]: * Dre to the speoific kind of the diagram technique this integration is in fact carried over the three-dimensional \vec{k}-space.

