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(REEN'S FUNCTIONS FOR REQGE TRAJECTORIES

That Regge trajectories arise from sums of infinite segquences
of Peynman diagrams in oconventional field theory is well known.
Equivalently, they arise also as solutions of Bethe-Salpeter sguations
for two~-particle Green's funotions. The problem we wish to oonsidex
is the oconverse; given the trajectory funotion describing the path
of a Regge pole in the J—plane, J = & (W), where (Y(VW) satisfies a
dispersion relation, we wish to write a {causal) Green's funoction,
G(p), in momentum space, which should desoribe the propagation of
the trajeotory. -

Since G(p) should have poles at the values p2 = W? where W

is given by o((wJ) « J for J = integer or half-integer, it is

evident that in the rest frame we must have

G(p) ~ G(ow) « ‘ (1)
T -o(w)

The problem is to fix on suitable proporiionality faoctors.

The essential olue is contained in the recent work on infinite-
dimensgional equationsl). In thersimpleat example the idea exploited
there is to incorporate the muccession of J values in a single
unitary irreducible representation of SL(2,C) an&, in partiocular,
in the Majorena representationsz) (%4,0) and (0,%4). We make the
same assumption about the trajectory in question. This serves to
fix ocompletely the propagator, G(p), in terms of the rest frame

quantities, G(J,W):
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by

where LV denotes a {generally complex) Lorentz transformation whioch

boosts the 4~vector, (W,0,0,0), into Py = W‘iu where V, is the

2

{-velooity, V2 = 1., The functionaz) Dj?t j')\'(/\) are matrices of
3]

the Majorana representation referred to a basis whioch diagonalizes

z
4 and J3o
If the function G(J,W) has suitable analytiocity properties
in the J-plane then we can perform a Watson-Sommerfeld transform-

ation on (2), replacing the sum over J by a contour integration

in the wusual way,
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+ disorete terms (3)

where the disorete terms have their origin in ocomplex J-singularities

cof O(J,%).

Now it is of course possible to invent many funotions G(J,W)
all of whioh oontain the faoctor (J-—o(('ﬁ))"l. However, there is a
partioularly simple one avallable in the Majorana representation.

If we require G_l(p) to be of the form

-2—




GUp) = Twd + bulu (4)
where f;‘denotes a oonstant matrix satisfying

DN T DIN) = ATy, (5)

then we oan caloulate G(J,W). The result isB)

/W
qE,w) = ’ (6)
J - o (W) |
vwhere
- ‘ riw?)
o (W) Tl vl (1)

If one is interested in infinite-dimensiocnal local field
equations then it is neocessary to choose for P(Wz) a polynomial.
We shall mot pursué this line however, Our programme is to
develop a propagator for a Regge trajeoctory and this much has been
achieved (at least for the half-integer spins) by employing a

Ma jorana-like equation.

In order to make use of this propagator in a Feynman
caloulus of Regge poles we must define the vertex functions. The

requirement of Lorentz invariance evidently forces these to be




proportional to the Clebsch=Gordan coefficients of SL(2,C). With the
expressions for these coefficients given by various authors 4)
we oan coupl three Regge trajeoctories or two Regge trajeotories and

a finite representation (fixed pole) if necessary.

The physioal relovance of the assumptions sketched here can
only be decided by reference to experiments). We wish merely to
point out that one ocan proceed as in the usual Feynman caloulus to
compute mass corrections, form faotors, eto., and, in particular, the
positions and weights of Regge outs. It may be expeocted that this
quasi-~-Peynman theory which subsumes strings of normal graphs is
more convergent and has fewer infinities than the normal perturbation

theoryé).

To sunmarize we list the Feymman rules for computing the
contribution of any diagram. Denote by ]V A 3N the l-paTtiole
state with 4-~velooity TF y intringic spin J and heliecity A . The
romaining quantum numbers, A, inolude the mass m, and Lorentz

2)

representation labels doA ’ Gk together with any other distinguish-

'ing labels which may be required. The rules are:

(1) Internal liness

b= WV A Ay
: = (3 ' »
:——~—>—'—-—°1 G‘Ali\mnp‘llt}l{{a) J’ZM Dﬁla"IM(LV) GIAiAz W) -D\TM. ﬂz(Lv)
(2) Vertices:
: “ A, A A
>-‘V : < S (W.V, +W1% ) \N,‘J} ) QA;AJ‘: (31;‘1 Jlaz 13;‘5 )




(3) External lines:

v vap = D)
1 Jlralgi
A
VAJA-—+f1 ! IEN;&“ (Lv)

Sun over all intermal quantum numbers and integrate over all
internal momenta. The hypothetiéal information whioh must be fed

into these presoriptions includes the oocupling constants, %r AA?
Arhghy
and Regge propagators GAB(J,W). Evidently we must ohoose GAB

such that

dit Gy o G- WXT -0 (W) o (T -apw) ,

wheTe dl(W), ces o un(w) are the trajeotories we wish to propagais.

These rules inolude only non-derivative couplings involving

the SL(2,C) C~G coeffioients, (_Al 4 A

%Al jz)z 33)3
eagy to allow also for derivatives by coupling in additional 4-veotors.

). It would be quite

Questions ooncerning the disorete symmetries, T,C,P and also

signature will be oonsidered in a more detailed expoasition of these

ideas.
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If the Majorana model fails then a more general (reducible)
representation is bound to succeed., This is just a question

of having sufficient parameters,

Notice that the numerator of the propagator (2) contains not
polynomials in P. = va‘ , but the more convergent unitary

r
representations plo (LV) .
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