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INTRODUCGTION

The inhomogeneous Loreniz group in Wigner's classification possesses

essentially four distinct classes of unitary representations; these are
(A) Timelike representations pa)'o s (little group S0(3)).
(B) Spacelike representations p2< 0 3 (little group SO(2,1)}).
(C) Llightlike representations p2 = 0 (little group T2 x 0(2)).
(D) Null representations p2 = 0, p, = 0 (little group s0(3,1)).

In the conventional harmonic (partial wave ) analysis of scattering prob-
lems the significance of using time-like representations is well appreciated.
For a fixed time-~like vector - total c.m. energy squared, s = p2> 0O -
an expansion of the (two-body) amplitude F(s,0) is made in the associated

s(t-w)
los 6 = [5-Cm+pO%] [S-Cm-pu¥]
whioch is the parameter ocourring in the representation theory of the appropriate
little proup 50(3); gpecifiocally the expansion empldys the complete set of
rotation functions di& (@) which correspond to the unitary representations

angle

of S0(3).

less well appreciated has till recently been the use of the other
representations (B), (C) and (D). Through the work of Joos, Toller and
Sertorio and Had jioannou, since 1964, it has come to be realiged that if
theifgpgoelike) momentum transfer t O is held fixed, a partial wave analy-
gis of the same amplitude F( ,t) ocan be made in the associated (hyperbolio)angle

chf = - t(s-u\/ [tt-pnd) £t - (map)H(t - (m-p0'l] *
the aipansion enploying unitary representations of the corresponding non-
compact little group S0(2,1). Specifically it uses functions df;-((s)
with J complex of the form J = & + ip,-o0 ¢ p<oo. The great merit of this
expansion is the direct passage it provides to complex angular momenta.

Its use pupplants completely the ocumbersome conventional three-steps
prozecure for passing to complex J representations which uses 50(3) partial
wave analysis in the orossed channel, makes a. Sommerfeld-Watson transform

and then finally oontinues analytically to physical s and t valuesn,




When momentum transfer vanighes it is clear from the above that tho
natural group-theoretic procedurs for a partial wave analysis should employ
represontations (C) and (D). For the unequal mass oaBe,as shown in what
follows, the appropriate expansion functions for cage (G} turn out to
be the Bessel functions J,_y [2,04-1: (m _#2)-11 . For forward scatter-
ing of equal-mass particles, not only does the momentum transfer vanish
(p2 = 0), but alsc each component of Py = 0. The little group - the
invariance group of the S-matrix -~ in this exceptional case is the
homogeneous Lorentz group S0(3,1) itself - a much larger structure than
$0(3). Corresponding to this larger symmetry, the principal wmitary re-
presentations of 90(3,1) are labelled not by just one quantum number J,
but by two mmbers, one disarete label (;jo) and one oontinucus pure imag-
inary number O, -i90 O £ {00, The corresponding representation functions

are n!{ﬂ. (§) (on{~ ’—:ﬁ'é‘-ﬂf) Group theory would

specify a pariial wave expansion for forward scattering in terns of thess
funotions. Using these, wo pass onoe again directly to the complex

O'-plane +~ the variable o now taking over and generalizing the role of
complex J. This O—plane was introduced into the subject by Toller®) in 1965,
who notedthat if theRegge lhypothesis of poles in the complex J plane is
carried over to the complex O—plane, to one U—pole there corresponds an
entire family of integrally spaced J-poles = a result foreshadowed earlier
in the works of Gribov, Volkov, Domckos and Suranyi and redisoovered by
- Freedaan and Wang in ocomnection with situations involving light-like ro-
preasntations (C).

The present articls (rm I)1s an attompt at a systematic and self-
omntained presentation of the group theore$ic basis of harmonis analyeis
waing the four types of Tepresentations™™){1), (B), {(C) sd (D): In Part II we
extend these rosults} in partioular wa show how an expangion of the ampli-

*} 411 expansiona (B), (C) and (D) apply to square integrable functions,
" In Part II we show how one circumvents this limitatiom.

¥%) 7o our knowledge representations for olass (C) have not been previously
studied.

it



g
tude may be carried through, using ihe functions DZ; 5\ y not orl

in the forward dirsction but for all) momentum transfers and for all

values of nelicity flip. This type of expansion,with its new separation

of the kinematical factors, will allow a more systematic use of analyt-
iecity in the g—plane for all procemses at all momentum transfers,
possibly giving a further insight into what may be learnt from a

deeper analysis of the Poincard group.

. The material in thie paper is going to be issued in two parts. The con-
tents of the first part are in the nature of a review and .are indicated
on the next page. This pari egsentiaily asovers the basgis of the group
theoretic approaoh. The second partv wili deal with generalizations, a
etudy of the complex U-plane and applications. The authors would weloome

suggestions for improvement of the material.
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1. THE UNITARY EEPRESENTATIONS OF THE POINCARE GROUP

Definitions and general discussion

The orthogonal transformatioms of space-time together with the
translations comprise the Poinoar$® group ? » The elements of this
group take the form

’ |
Xy = Xy F Ay X, + Ry (t.1)

where Aﬂ\? satisfles the orthogonality oonditions

Aww Apy = pp (1.2)
Throughout this paper we use the swumation convention A, B, =

Ay By - A]_ B - A, By = Ay By . The metrio tensor, g,, s takes the

diagonal form (+ ~ = —). All quantities appearing in (1.1) and (1.2)
are real. '

We are conocaerned with properties of the unitary representations
of ? denoted by

(4, ,Auy) > U(a,A) .9
where U 3is an operator valued funotiom of a, and.A,, satisfying
U+U = UU‘. e 1.

The supoeasive application of two transformations
K=k = Ay Xy +ly > X, = A’,.,(A,Pxf,+q,) +ay,
‘Swplies the basio requiremant
U(a,A) V(a,A) = VU(o'4A, A'A) (1.4)

The Mfinitesinal'tmafonatims of this 10-parameter group
nay be repressnted in the form

Vi tve) = 14 i, Bu-f ey Ty s ... (1.5)




where &, and Euy = ~ €vy denote infinitesimal quantities. The

hermitian generators ¥, and .I)_n,. which determine the entire

representation satisfy the algebra,

[Pp.er] =0
(v, B e ':(ﬂva Pu‘_, ?p)-Pv) (1.6)

i(ﬂw\ Jnp = 9 5[,» + Gpp T2 = GypTr)

—
oy
A
g
By
)
L

These commutation relationas which can be deduced® from (1.4) and
(1.5) aspure, in partioular, that under finite homogeneous irans-—

formations of the group P, and J, . tranaform respectively as a
4=vootor and an antigymmetiric tensor.

UMY B ULA)Y = AL, T

-1 a.n
U A D VA = Ay Age Toe -
For axample, corrospomding ta the spaoce rotation,
> cosa ~ X, Sl
17 % T ’ (1.8)

X, > X, Sna + X, Cosd ,

we have, through integrating the ocorresponding infinitesimal transe

* A simple way to derive the commutation rules is to write (1.4)
in the form

YAV (WA UA) - U, AT

heking f{a', A') oorrespand to an infinitesimal transformation
and comparing first order terms ylelds immediately the relations
(1.7). Taking A infinite@imal in theass equations gives the second
snd third lines of 1.3}, The firat line of (1.6) ig cbtained
very aaeily 9y ibe same method.




‘variant,.

formation, the operatsor axp(—iu le) and, therefore

aed - g ,
e n P a iz -P' cos ol - E Swmd, (1.9)

= P, sl + B casa

taJ 1 i
etd Y ?‘_ e vt Jia 1

Similarly, corresponding to the pure Lorent:z itranaformation,

X, > %, tha 4+ x, cha

3 (1.10)

X, % X%, sha + X, cha
we have the operator sxp(—i qu) and, therefore ,
eu&T.; ‘P e—thu - .Ed‘i + T;S'M

: . (1.11)
etdIog ‘P3 e-tdg]}; = RS‘\G + 'R..,d‘“

Relationa of this sort will be usmed repeatedly in the following,
Phe principal Oesimir operato::js of ?m the two invariasnts

Pl sm* o W, Wy = -m"j(jﬂ) . (1.12)
where
w}; * "%epvlp J;x.PP , (1.13)

The vector W, has the useful proparty of being tramslstion in~

[P, W,]: 0 o (1.14)

The eparators P2 and li2 do not always provide a complete
specifiocation of the’ irredunible representations. When mz-so
several different types of representation are possible, Before
going on to their olaseification we oongider some general proper-
ties of the representations of @ .



For the construction of representations ws follow the method
of Wigner. It is advantageous to label, in part, the dbasis vectors
of a represeniation by the eigenvalues, p "y of the Casimir operators
of the tranalstion subgroup

P»"P"\> = Pﬂl?"\>

where 1 denotes those remaining labels whioh are necessary for a

complete specificatiom. In view of the vector bebaviour of P‘_

noted above (1.7), we see that under s homogeneous transfoxmation,
A , the basis veoiors must transform according to a relation of

(1.185)

the form

VA $,2) = );M?’}t) Cux (1.16)

which simply states that the transformed state must be an eigen—
state of momentum with eigenmvalue p;_- Aﬁvpv « To evaluate the
coeffioients C Ap it im nocessary to fix, in some oconventiomal
fanhion, the definitiom of the basis weotora. Thiz is done most
direotly by meana of the Wigner "boosts".

Ist us denote by I'r a l-parsmeter family of Lorents trans—
formations, the boosts. The boost Lp transforms a given momentum
vector f:ﬁ-whioh'etmuuatm-mto Pu '

(Lo P, =ba wih P =p=w (.11

There are various altemative speoifications of the fumotion I.p
whioh are useful in different ciroumstances, They are discussed
in ISao.- 2.

Since, in an irredusible re;pmnéntatim, it ia by definition
posaible to obtain u‘ng veator in the representation space by apply-
ing appropriate transformations of the group to a fixed ome, we
oan formally define the p~dependence of the basis by

|ps2y - U(L?)If:)\> (1.18)

-5-




There is a subgroup, G , of the homogeneous group 350(3,1)
which leaves inveriant the manifold of states with p = fs\ « This
is called the little group. Thus if we define 6 as the set of
transformations E,‘w satiafying

R}"V ﬁ\’ = %I.'L (1.19)
then it follows from (1.¥) that
R B.AS =) )b udy € .
UCRY] $.45 ;}?;O.N (1. 20)

and it is implied that the coefficients Cﬂ must belong to a re-
A
prosentation of the litile group G ,

G * (R (1.21)

It is now a simple matter to shov that the transformation E(p,A)
defined for eack p amad A by

ALy = Lap R{psA) @.22)
ia contained in G , i.e.,

Ruw ($2A) By = B -

This means that

VA p3) = V(ALY 1B -

UL R (p4) ] §2

= ULy ); | s 1> Dua(R(p))

S e apee—



UM | pA> = ;MP'/‘Q D, (R(p,A) (1.23)

The coefficients € A introduced in (1.16) are thus identified with
matrix elements of a representation of the little group. Moreover,

the unitarity and irreducibility of W (A)is tied to that of D(R).

Firstly, wmitarity is guaranteed by the invariance of the

(positive ) sum over states

j.dp 6(1»‘..#)%”» <A |

and this follows if

AZD,ua ])::\ = 4

i.0., from the unitarity of D . Obviously the converse also is

true,

Secondly, if U(A) is reducible then so is D(R) (provided
'of course that p° takes only one valus in the representatiom
space). This follows mince & is a subgroup of S0(3,1). On the
other hand, if D(R) 1is reduoible, it is poseible to divide the
states Ip,).) into two or more sets which do not mix wmder
Lovents transformations, i.g., U(A) also is irreducible., It
would be a simple matter to spell oui in deiail proofs for these
olaima. However, we do not do this but merely state the basic

theorem:

The representation of § carried by the siates '2,12

ig unitary and irreducible if and only if

(i) tbo wass’ p° ie wnigque, arnd

(11) 1be associated little group representation R->D(R)
is unitary and irreducible,

So far our Lorents group inclwies only the so-called proper,
orthochronous transformations. Space and time reflections will '
be deslt with separately at a later stage.

-7




2, CLASSIFICATION OF IRREDUCISLE REPRESENTATIONS.

A ooneequence of the theorem stated in Sec. 1 is that the unitaxy
representations of ﬁj can be classified by means of the unitery
representations of the l1ittle groups with which they correspond.

There are four distinct types of lititle group whioch apply'écccrd—
ingly as P23 0 , p?¢o , 220 or Py = 0 which we shall refer
to respeotively as the timelike, ampacelike, lightlike and null
oages. This mection is deveted primarily to ths construction of
oompletehorthogonal bapip systems for the representations of ?’ .
In the course of doing this we shall have to discuss the little
groups and their :Eepreaents.tima as they arise.

Following the procedure outlined in Sec, 1 we diagonalige the
4-aomentum Py in sddition to the basio invariants P> end WO
which of course must be pure numbers in any irreducible represent=
ation, In an irreducible repressntation any veotor can be carried
into any othsr by applying a motion of the group. To begin with,
the vectors with arbitrary 4—mmnt-um Py oan be obtained from a
given one with fixed 4-momentum pp_ s She “gtandard monanjum" .
lloreover, a.ll vectors with momentum ﬁp oan be obtained from the
given one by applying transfoxmations of the little group 6 since
these are the only motions whioh leave Qu unchanged, Bvidently,
then, the representation of G contained in the irreducible re-
presentation of I must itself be irreducible. We shall denocte
~ the basis veotors of this irreducible representation by ,p JA >

or, in the case p2 =0 , by IP'P Ay where j and p label

the representation of in question and A gmerves to different-
iate the individual basis veotora. Since, by tha basio theorem of Seo.
1. the irreduoible mpmaentatims of ?) and G are corxrelated, .

it sugt be that j and P are Poinoard invarisnts. In faot,

as we shall show for cach case omgidered bolow, W- = <p> 3(J + 1)
for pz,l 0 end v - _Fz for p2 =0 . The remaining label,

A, is not generally dmveriant, We find:it oonvemient to
'aasqciata it alweys with J10 » 1eesy

-
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(2.1)

LI i = ABid>, w T peA>:-AlbeAr.

It happens, however, that when p2 = 0 and Pz = 0 +then -A has

invariant significance, namely

Wlpod> = Apfpord, peo @

Generally, then, we have the structure

hil)g U(Lf)lﬁjl-) (2.3)

go that, under an arbitrary motion of the group ?
Ipid> > vealpin> = T EA 2 %

where R . belongs to the appropriate 8 + The precise choice of
boost L, depends upon what spplications ere to be made. We shall
discuss for each typs of p, (p2>0 ’ p2<0 ’ p2 = 0) three
different cholces of Lp which serve to diagonalize one of LAY

‘3 or H_o- H3 « Tha null case, Pp = 0 , is logically distinot
since no Lp is defined for it and wo shall have to consider it
poparately.

Firstly, howevar, we deal with the gubapaves p = f and the
little group representations ocontained therein.

(1) Timelike cage, p2>o

For the standard momentum it is always poseible to take

4

b (+ .0, 0,0) (2. 5)

where the sign of f)o is invariant., There is no transformation
in ? which can reverse the sign of Pqg when pz)o « Suoh




improper transformations belong to the "extended" group which will
be oconsidered separately iater.
¥hen aoting in the subspace p = 13 the componenis of Wy

reduce to the form

W, = t(0, Tu, 3., , T,) /65 (2. 6)

M

which moans that the little group @ is in this case generated by
.1'23 ’ J31 ’ J12’ which obey the commutation rules

[Iu: J;f] = i. 7Y
[Ty I I N | (2.7
[‘Tlt ’ Ju ] 2 t 3

A .
so that O 4is simply the well-known rotatian group S0(3)., The
irreducible representations of (f) are therefore characteriged by

WIB i - T L+ T BA)> e
S FICIU AR FPY

corresponding to the representations I or S0(3) with

I = 0,5, t, «v (2.9)

The representations corresponding to half-integer values of
are of oourse 2-valuag. '

(i1) Spacelike ocase p2<0

_ For the standard momentum we can take

b. = (0, 0, 0, Fp°) (2.10)

-10-
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where the root im positive. The sign of 33 hag no invariant
gignificance. When acting in the subspace p = ; the components

of EF reduce +o thg form

We = (T, Tos Jo , 0) [+ < (2.11)

A
whioh means that the little group G is in this case generated by
and JO&’ which obey the commutation rulss

[Jﬁ ' J;:] - 4 ot
[sz ' Ju ] = "‘Jn. (2.12)
[];n ' Jﬁ-) = 1 J;o

A «
so that G becomes the non—ocompaot rotation group S0(2,1). The
irretucible represantations of q) are characterimed as before by

J12 * J20

i

WP iay = - (Ja- T J.:)IHU
< iG] PN

(2.13)

corresponding to the representations pd or 80(2,1). In this
ocase, however, the possible values of j are quite different
from (2.9), It ie usual to group the unitary representations
of 50(2,1) into four distinot families: ‘

(a) Principal series

R;(i) s =t , ~w < Im(i)(oo  (2.14)

These reprosentations are all infinite-dimensional with A +taking
all integer values or &ll half-integer values between = 00 and + o0,

x = D, 1'1 » '_.:z’ ()

-11-




{2.15)

or U S S L

Striotly speaking there are additional many-valued representations
We are in effect restricting
Another

are

with A +taking fraotional values.

ourselves to the one-valued representations of SU(1,1).
point to note is that the representations DY and p~d-1

weakly equivalent. This will be made clear in Segq. 4,
whore the structure of these representations is disoussed in some.

detail.

(b) Supplementary geries _
“tC(Re(f) <O , Du(j) =0 (2.16)

Thepe representations also are infinite—dimensional with A taking
all integer values,

A= O, £1, £2, .. (2.17)

(¢) Disorete geries

5’ '.'*n -1, “a‘_‘a e (2.18)

These axe semi-infinite of two types dopending au the ign of X

" .
D}.i A= ‘ja-ja-i PR K NPT (2.19)
‘]>i.: A" j ) {" 1 » i-l 3 v (2-20)

(d) Scalsr representation

(2.21)

i =0
Thies is the only finite-dimensional unitary representation of
50(2'1) 4 A=0,

2

(444 ) Lightlike case p° = O

Por the standard momentum we can take

-12-
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13#=(w,o,o,w) (2.22)

whore ¢J 1is arbitraz-_y up to sign. As for the timelike ocase there
is an invariant distinotion between w70 and <0 ., When acting
an the Bubspace p = fy the components of W, xeduce to the “form

W

w = (Jy, =T, Ty, T,) e . (2.23)

where

e T - T,

m, - ‘Tzo - ‘Tzs

(2 .'_'724) |

. :
The gxoup G is generated in this case by J12 ,Tfi and ',Il"a,
which obey the oommutation rules:

[T, , ] = i,
[Iu , Wy ] ® ""-Tr1 ‘ (2. 25)
['Tr‘l' * z ] = 0

so that & becomes the Euclidean group in two dimensions,
80(2) A ™(2) . The irreducible representations of P are
oharaoteriged by :

W’ Ippl} P CANTIY

= -plppad> (.29

oorresponding to the representation DP/ < ot S0(2) AT(2) . The
parameter o is of course a Poincaré invariant while the little

group Jasimir (p /GJ) is not. Thie simply reflects the faot
that our standard momentum f) was not specified in terms of

-13-




invariants as was the case in (i) and (ii)., There is in faot a
loparameter group of transformations ~ the lLorentz transformations
in the O3-plane - which preserves the form of (2.22). Thus

et [ pa> = (e¥5,p0) @.27)
or w -+ elew
while . :
I‘L (“- +Tr) "‘T-! . e‘é‘(]’l‘:*‘n’:) . (2. 28)
so that the pmdunt
s+ Tl't) « tnveriant. | (2.29)

!hn mﬂary represeatations of 80{2) It '1'(2) can de grmxped into
two families:
(a) Prinocipal sexies, )2

0<p <o , Tmp =0 (2. 30)

These nj)remtationn are infinite-dimensiomal with A taking all
integer values or all half-integer valuss between -~ o0 and + ody

A= o, +1, 2, ...
A=, 3, . | (2. 31)

(v) Disorete geries, :!Jl"l

Thede mgm'ﬁatim are l-dimensicnal and coxrespond to
P =0 . : (2. 32)

Bvidently in this case we have 'tri‘- Tf.z = 0 go that the algebra
reduces to J;, whioh becomes the Casimir operator. Setting

-14-
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- M, =0 in (2.23) gives the relation

w"‘“;‘n‘? - ?’*‘ ,,_If;o)\) (2. 33)
s AR |s0X
andtl;e equality
Wy = XPy (2. 34)

is evidently Poincaré covariant thus exhibiting A as a Casimir
jinvariant, To each integer or half-integer value of A\ there
corresponde an irreducible representation Do‘\,

Az0, td, 21, .. | (2. 35)

(iv) Full oase P = O

Hore the representations of the Poinca®d group coincide with
those of the homogenecus Lorents group. There is no standard
momontum in this case and the little group G becomes 80(3,1)
generated by the six J,, . There are two invariants,

£ Jov = j;-crz-ri (2. 36)
#eﬂ"ll’ J.pl\‘ J;P sz 2 i jo a | (2. 37)

It is possible to label a oomplete set of basis veotors ) l j, a } )>,
with two additional quantum numbers j and ) defined by

(J’,:-t T +J:,)I§°o-".\> = 1'(1'1-1)]3',0']')\} (2. 38)
Ju Ljpojdd> = Ajoi2 > (2. 39)

The unitary irreducible reprasentétions' ph® of S50(3,1) oome in
two series, both infinite-dimensionals

-15-




(a) Principal series

Re () =0 -0 < Im@ <0

_ ' (2. 40)
10::0,-3,1,...
with J and A tsking the valuea
1= 4, L F1 4.+ 2, -
1% 1. 4 (2.41)
A= -5, o R NELEEE 1
(v) Supplementery series |
0< Re(@) <1 , Imfe)eo0 (2.42)
with § and A taking the values
i= 0, 1 2 .ea
i Yo (2. 44)

‘l= 'I-'.' "'1"1 "..q’ j
It will be showm in Sec. 4, where those representations

are discussed more fully, that the representations D;joc‘- and
D~9%“% are weakly equivalent.

. To summarige the disoussion so far, we have found the
following clasgses of umitary irreducible rep:faaenta.tim of the

Poinocaré group:
(1) Timelike

| bi(b‘): fr $r0, sn(p) =21, feo, 1,1, ...

-16-
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(11) Spaoelike

(Principal)

ﬂ)}(p‘); ‘fﬂ' Pg<0, Re,J' = -%,-00 <Iu.J' ¢ o0
“i(ch <o , Im(jso (Supplementary )

j =0 (Scalar)

bjt“"): fyf P’*(o , S:n(“): t'l 3 d:-é,-1, -i-’ ces (Discmte)
(11i) Lightlike _

'ﬂ;(o): {,,- P‘:a, sr(ﬁ). +1, 0<p <0 (Principal)

(Disorete )

Sjtd(o);-furp‘go, sr.[f.)a t1,A=0, t+, 1,

(iv) Huld .
| _Dﬁ'or: {o‘r Bu.’o’ Re(@) 20 =00 < Im(a) <a-o,4'°= 0,,1,..(Principal)

0« 'Re (®_<1 R Iln(tﬂ': o, J.o' 0 (Supplementary)

Consider now the problem of defining the funotional form of
the boost matrices I.P e« It is degired, firstly, that the

variables in Lp provide a suitable parametrigation of the "mass-
shell™ or orbit of p . Sinoe

ALTES RN A IEY

= (Li’)l"f" U(LP) ﬁjl) (2. 45)
= ?Pl?ik> ’
we require that
P = (L?),w {;v J (2. 46)
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that is,

P
P
P

u
+
o~~~
P
-’
L .E-.J
[+
-
A4
Q

(2.47)

i
! |
' o
‘ﬂp (]
—~
W
~v,
A
o

"
E
[
r
o
1
£
N
F
*
“®
[}
—.o.
o

be such as to diagonalize
It turms out that
a8 the product of a

Seoondly, it is desired that Lp
ane of the operators '0’ H3 or Wy - 3 e
this requirement is met by constructing Lp
Lorents transformation in the O3=plane with transformations

belonging to one of the little groups 80(3), 80(2,1) or S0(2)AT(2).
This structure will prove advantageous when we oome to the problem
of deoamposing products of irveduoible representations. We shall
therefore dofine three disbinot bscst fmotimms, LY , Lo and Lg.
employing operations drawm, Tespectively, fwem 50(3), 50(2,1) and
W(2) A 2(2). They are A

U(Lf) e-i'PIn e-iaJ;' e"' e FCdJ (2. 48)
or .
(L,,),u', =
cha 0 o ~shd A

mf“"‘am S Poast ~ Sinlep ~Sintpiarplatd-1) ~casipsi. @ chd
s..qu-as&d.  Singpoop(asd-1) -S2piso-coly. -Smpsiodka

cosOshd 3PS shosp . —asgkd 5 49)
\ . H _“_XI
u(L,) - I I AL A (2. 50)
?
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(1), =
f oﬁpoﬁa’ —'skpmcg -s\n'ss.;..cp —c&-{sskf \
cospshachy  -cfypchn-Sidp  Sagesp(i-cka) - - cospshpshy |
s‘..c,sl'eaﬁx Sw peasep (1 - dhg) -So'..‘?d’o-w@ - S gpshBsh Y

| sk o o ~hY | (2.51)
u(s) - SR T R gk (.52)
or
(L?)N s {nﬁ)dx-ﬁs‘kz Feosg LS idm_,(.q;)sl.x 1
Eceap(shz-chx) ~\ 0 luSp(shi-chz)
;s{.,f(shz-cﬁz) o «1  Esup(shx-ch®)

l-Gisheeghe  Fosp g Gdcha- fyshr ]
(2. 53)

Thus we have the following parametrisations:

(1) Timelike case p°> O

? = i-JP (d\d sha Swmé tos¥ , sha sind sinp, Sha msﬂ)
f't‘ (d,x chp etqr sl.p eostf, cl.y shﬂ sm‘f, ShX)
= +“: (CLX +-e "'Ee ts¥ , §e sinf, SLX* )

(2. 54)

where the parameters’take the respective ranges
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0 ¢ ¥ <1T , ©O0s € 7 0
0 €Y <2 \ 6§ B oo 4, =~ & Y & 20 (255

0 & ¥ <2 , .m0 ¢ B g0, -e €Y €00

Comparing the three expressions (2 .54) we get the relations between

the different parametrizations:

shy = sha ctos@ cha = chy chg
: | (2. 56)
fﬁp = Sin® tho fam,s E_A
c"'x - d“Y Chg -ﬂ‘r _ Slor -] th 'l'
£ =- chy shg he :- (2.57)
“chy chp -shy ct.7(+
[
cha = chX + _gs, e,_x e.x z cha - sha cosé
b oo Ee” E . sha Sin & (2.58)
. th-tg e.-x d\d slm Casf

(11) Spacelike case p-< O

Pu ™ ,/-p‘ (sha , cha sine c&s? , Chd Swmb sin'P, cha wsé)

H

ﬁ‘(s&y chg , Shy sh@ cosf, shy shg swf, chy )

Y X X . ¢ X
2 COS'P, EQ SM!'P, C“X'E—e )

=z ﬁr(shx-ge ,:»;e

-20-
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PP R (R~ T ¥ m el
* = B YA

o e i




Comparing these expressions we get

chy = c¢hd coso sha = shy chg )
i v (2.60)
thp = 30 to 6 = sh th ¥ i
i o £
e* . chy - shychg chy = ¢hX - ; e_x
-X (2. 61)
e . e —ES
chy - shychf sh - _E;c X
shd = shX - -5— e-z e'x = cha tosh - shat
=X . o
Tme - Ee - g . Cl'd Smb (2. 62)
ch) - 5‘ e cha cos# - sha

Bvidently only the first parametrigation in (2.59) serves to cover
the entire orbit p>< 0 with

0&Y <¢ 2w 0 £6 ST , <00 <& <90 . (2,63)
The other two cover only parts of the orbit. Thus

0¢Y ¢ 2w |, 0£g <0 , -0 <Y <00 (2. 64)
corresponds to the region oo0sf # 1/cha and

0¢¥P <¢2m , 0¢&com , ~o0< <o (365

oorresponds to thd region ocosf > tha . These regions' are, as
it happens, sufficiently large for the applications we shall be
making in the next meotiom.
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(iii) Lightlike case p2=0

A we“(‘r. Snbeesf, mbsimyp, cosd)
= we¥(chg, e cosy . sme Sim 9, cos8) . (2.86)
e we (1,0, 0, 1)
This parametrization evidently fails rather drastically in the lasat

line., However, if we apply the boosts L; ’ L; and Lg to a

different lightlike wvector, namely

b o= (0,0, 0, -0) (2.67)

whioch is the one that will be concerning us in practioe, we get

P = w(L?)ﬂ“‘ t (L?)M

= e (1, cinBes, Smdsinp, cos )
. (2. 68)

we™ (chg, shgeasy, skpsiu?, -1)

weX (1 +t;'!, ~2E s, —zgmy, -1+{')

These expressions contain one parameter too many. To eliminate
this redundancy we may rTegard & (say) as a constant scale factor.,
Then the oonneotions between different parameotrizations can be

derived as before:

~ : Y
e ¥ . e ésd e™ = e chg

‘ (2.69)

thpg = - &% g, = - thy

-22-
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e")':= e"oq'\-‘(% ¥ - (1—5“‘)€x )

; (2. 70)
€ - - thehy thitgy = -% i
ez (Q—; r1)% e* . ety ?
' (2. 71)
t"""elz = § g = t'ome/z

The first parametrization servas to cover the orbit p2 =« 0 with

d<s ¢ <2T 048 €TC , -0 Lot ¢0 (2.72)

The saoon‘d parametrisation ocovers the ragion %/2 € 6 < T with

OLypea™ ,-0lBgo , (X oo , (2. 73)
and the third covers the same region with
0¢Pea™ , o0 € ¢™ ~m< X oo - (2. 74)
With theso parametrisations it is easy to verify that
WMQ)=WQ(%M+%*O
W, U (L) - (L, ) (W, shy + W, chy) (2. 75)

(w,-W) L) = V(LR (M, -M) ™ .

Defining the respefrtive basis systems By




T U R0

2y -
BjAY = UMD (2.76)
BRI CANITRY

and uging the formulae (2.6) and {2.11)and (2,23),which give the action
of ll}', on states with siandard momentum _

(o, W) |B4A) » (o,uf;.‘l)”,“)' B30

(Wo. ‘”l?ﬂ) QWA ) $4Ar, pco (2.77)
W BpAY ¢ (whmwd) [ BpA) . §-o

we obtain for p2> 0 and p2< 0 the eigenvalue equaticms

W gAY = Ae /f,"rf{f P,’ﬁ ,.pj.\)*
Piry

Wpiry = Xe/g-p-g
(W Wolpias = -Alph-p)pj 13

(2.78)

vhere € denotes an jmveriant sign fastor, € = - &(p,) tor p?> 0
and € = 1 for p<'0 Forp -Othaoorrespondingfomula.e

are




wlpeay = Ap|ppr>
W P2 = p|pery
(W25 = X(h- p) [ 2pAY (2.78')

The p2 = 0 states are defined here by

pA> = U(LlE P

N U(Ly) e x> (2.79)

H
where I.p denotes one of L; ’ I.; s o L° ., The four-momentum p
takes the standard form (w, O, O ,@) . The helicity A is con-
ventionally defined as the eigenvalue of 312 on states with four-

momentumn 5 ’

N ETSOEDY Y2V (2.80)

It remains only to oonstruoct the wmitary matrices whioh
traneform one basles systfem to another, what might be called the
"gpin rearrangement matrices", Since, for any pair of boosts

Lp and I.; s Bay, Wo have the equality
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(L-‘P)}J.V ?’v = (L;))w l;v

-1 - A
then it must be that (L;) : Ly belongs to the little group G
Thus,for any repreaentation,we have

- - ) a - Y 4. &
U-l(ff) U(Lf) s e % emJ—“ e ® % e p o PR

e“‘l’qze":@Isl e“?a;i , ?:.> 0

. e:;q,I,e L ®1, Cup:fn

. P‘ 0 (2. 81)
¢ vl -1 O 3“);“'1", #a.0

whoere, since the ¥ dependence: factors out we have been able to ex-
olude frqm the form (2.81) those Juv With & or V =2, The
angle (® depends on 1)‘ « Similarly, we have

U"([?} U(L'?) . Cti?:rueiﬂ’eip‘rﬂ e t§Mh e~ X 4‘-?‘1’:
(o B el 50

| %187, iede

[ or% a0

]

o, (2.82)
, $<0

y P =0

U-‘.( L.f) U u‘;’) ® 2 0‘1 :Lei ET[, et 0Jy e ta Ty ‘g‘:?Jll.

ré.@;,e-i'lfl,, &593’“ ' Px s o |
= é‘ﬂ'e"if"-- &“?Ju , Pa < o (2.83)
‘ é"‘ﬁle iy (Juo"':_ru) e“l'Ju , P‘ | - 0




In terms of the three angles @,& and V¥, we can write the sought-

sfter relations in the form

1

P> = L eip) &y (o) SVt

FER > L) ip> .d,’;,\ @) WY (2.8
| A

lpi Ay = L ednd dh b et NY

for the variocus cases, p2}0 ’ p2(0 and p2 a 0 . The functions
dik are matrix elements of the little group transformations,

. <f’;j}1,e-i®1"l$jA> ’ #>o

dl, (@)

<%1P'e-t®3¢n'%ix> , 'f;(o (2.85)

Biple OB 5000, peo
No oonfusion can arise from using the same aymbol 6.j for the

different representations since the actual range of J will
distinguish them. For the p2 = 0 oase, of oourse, wo should

read fl ingtead of J .

To evaluate the angles @, @ ana \P’. it will be sufficient
to work in a two-dimensional representation of the J uv e

T. = +oy S o, (2.86)

where the O'i are Pauli matrices, In this representation we have

S (P e gD
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and . ‘

8Ty wsOf2 -5in6f2 LT 1 -E

¢ = , e §h (2.87)
sime/z\ tos a/i 0 1

Thenfore,

e':‘]:ﬁ e 875 il YT, =

R (conbfz chpfa +<ingf2 :A‘@/z) é'd_zﬁ(m Gz shBR +sin Bf2 cLF/i))
T (-im g2 chgfo + mo/z shﬁ/z) X (cmbfe she/z + wcsf2 ch B2

[ (ws@/z -:h@/z) Cgro

Sim qu ¢S @/z

chop  sh®f2 . 2 ¢
Y(éﬁ@/z m/z) e
\ |

(o)

oomparing which gives, for p2> o ,

(2.88)

ws® e o' @/z - s’ ®[a.
- (;;s o/a ch gz. Jrs\Q e/z s._kp/z) (~ s of2 sln(s/z Hos'e/z CLF/I)—

| + (o e/z sL(i/z. +3w e/,_ 'cl\(./i) (- ::m &/z cl\(i/a + (o8 o/z ng/z):

28




- ((D_r,’e/;_ cth/Z -55“16/?. sl."s/z) + (Ca$79;"2 SLZ(?;,."'Z. - S'u\zB/?. cL"(g 2.)

s (ostof2 ~swiefz) (chglz + sl g2)

= csh ch§ (2.89)

and, for p2< 0

ch@d = cos® cf\g (2. 90)

and, for p2 - Q

3

® s e‘"Y(:-mo) (|.+ chg) - (2.91)

With the help of relations (2.56), (2.60) and (2.69) these results
may be expressed in the form

Similarly,

we - ' -"5?- a
chad :f% ("h“'i “sthxfi %) for p>e
o :
shd ﬁe‘ ﬂx g‘a’){shz i'g‘z)ﬁl.r <°
a®  =_e'thp . z2te” Lo oo

'3‘ eie Iot e"i g Lo e‘il ;,

N e _(#X
e "kl -e T (Ehgla 4 shih)
= sh g2 & (Eshgfz -du(!/z)
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< s §/1 -Sm §/?- .
' 'Pl >0

Sw B2 s G2
{ch 3 sh %2
% g2 d.;,_] » Pl

1 o
{_é., ; } y‘P:O

Thus, for p2>0

|

s = §s||$-d-p
.anl, for p2<0
chP = Eshp-chg

and, for p2 = 0

t} P QI;L.Skg/I

Shislces®-shachoicason  chy- shychg
3 i . _ chd O = shp
il cos'B-shot chcasB-4 Shy - da’dp
o . ¥
= e tnm.ez = ﬁ..ﬁ&
2 Sw’§ - cas"® *
m” . z . .
e X0y i§Th 10
=

In the pama way as before one geta

=30-
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. {(2.93)
_; i
cﬁx—%}i"’" PHro
- -t (2. 94)
- Esi_ =0
-4

eﬁa'—&(a’sq{z + Esnofe) S5 (-u'm‘a/z + EcosO/z))
X8 o op e** cas of2




s § = tos® +& ymd . p0

h¥ = o:B+Esmb , Pp<O (2. 96)
o

¥ - -el“!—s&nq’z , PO

whioch become on using (2.58), (2.62) and (2.71):

tnm S-- 8 = —M’L = E
P Shot - cRacor®  UIDIRIP-1  sha-T et
hy = -8 _Shxshp E (2.97)

Chdt - ShiCss® _sk‘toﬁ'i!-wd-s&pﬂ~ c&u%‘e""

¢ = by _ e‘ﬂ‘&z .-;__E_F::_A
CK$£44§3 2 §‘+-l

Thig completes the discussion of basis vectora. A check on the
computations is provided by the consistency requirement derivable

from (2.84), namely,

® + ¢ + ¢ - 0 (2. 98)

3. REDUCTION OF THE DIRECT PRODUCT,

It is well known that the direct product of two unitary
representations of the Poincaré group can be completely reduced
into a direot pum of, irredusible representationa. This reduction
has been discussed by many authors using various formalisma. We
shall adopt here the physioipnt's attitude: ignoring any of the
more.intrioate mathematical questions that may arise, proceeding
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as it wore, in a atate of innocense.

Before we start, however, it may be worth mentioning that

there is at least one important distinction between the finite=

and the infinite-~dimensional problems. In dealing with a non-

compaot group one's intuition may fail to warn that the direot
produot of an infinite-dimenzsional unitaxry representation with a
finite-dimensional non-unitary one may contain unitary.-as well as

non~-unitary irreducible representations, This is indeed the oase.

That is to say, there do exist invariant oouplings beitween two
unitary rephesentations and a non-unitary ome. On the other hand,
the reduotion of the direot produot of two unitary representations,
as usually fomulated, contains only wnitary irreducible represent-
ations - the non-unitary ones are exoluded by convergence require-
ments, This means that the 'problem of reducing direct products is

not always equivalent to the problem of finding invariant couplings
or Clebeoh~Gordan coeffioients.

Disregarding, for the present, this gquaestion of possible
finite~dimensional representations, wo proceed with the reduotion
in the light of the fofmaliam developed above, Consider the

" problem

DeD, - LoD, (3.1)
ory, in terms of basis veotors, |

. Ih‘.vlthi!xz ? s Z d?[ ,NPI A>‘<h Pk lP" j‘h'?‘j’)‘>
DR 2.2)

In Eq.(3.2) the index, n , is supposed to ooﬁpriae all of the
necesgary labels which are not showm explioitly. An expliocit
realization of n as indeed of the coupling ocoeffioclent,

(np 3A|p §;A; P I3 Ay ) s iteelf, will be developed in
‘the following. '
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The bagic invariances of the coupling coefficients can be
discovered by applying an arbitrary tranaformation of the Poincaré
group to both sides of (3.2) while requiring the index , n, to be

invariant. For the states ’n P J A) one can assume a trannform-

ation law of the form

Wahnpids < € Dinapjpy Dby ALY @

which agsuresg the invariance of n , Translation invariance alone

gives

(nPi)\lﬂﬂ:&RYPt‘.z Az) ~ 6(?1*"1 "P) (3. 4)
while invariance under the homogeneous tre;nsfomations glves
CYIRNLPR N PR

i ~1 N . . .' il
= DM(R ) <hA 1’1}""/‘1’1 41 My A'Pa fa Mo ? J)i.a, (Ru) bhk;(Ra)
(3. 5)
where R , Rl and R2 denote the appropriate little group rotations.

In view of the conditions (3.4) and (3.5) it will be sufficient

for us to take p = pl + Py and to fix p 1in one of the standard

direotions. 3 + Consider now the possible values of p"2 COT-
responding to given pf ’ pg and, where relevant, sgn (plo) and
sgn (PZO)‘ There are ten cases to be distinguished but only four

of these need be examined explicitly, the othera following rather
trivialiy.

(i) m+(mf)®'.‘b+(m§) ¢ Where

femao, Kemao o salh) sspulb) 41 o0

L

There ig only one type of representatiom in this product,

§)+(#) wik (m,*i- ml); £ ‘P‘ ¢ ©0 (3.7

=33~




The masses are non-negetive in (3.7), m oy my2

(i1) D,(n7) @ D_(n3) , whore

| B
Poem

Ir my > m, there are three types of representation in the

product

B8 wbh 0 < g (wmm)
D, wih p =0 (bt h £0)

DHF) wh -0 <P <0

Ir wy < m, the p2 content is the same but 5D+ becomes
in (3.9)s The representations (3.7) and (3.9) must be further

:>,O @;:m:»ﬁ ’ S?n(f)w)=+1,53ﬂ”“

'(iB)

(3.9)

H_

classified -according to their j-valwes but thie we shall postpone.

I m =m, there are two types,
oo .
D wik P“
D(P) whk -0 < P <o

(111) D (22)@ D(-n2) , where

Piau:»o, P:--nl;‘(O amd snn(‘:”)..,.‘_

There are always three types of represemtaiiom here,

D (ff) with 0<$ <o
D, (o with  p=0 (lt$, #0)
D (H) with -0 ¢ 4 <0

!

(iv) 'i)(-mi ® ﬂ)(—mg) , Wwhere

Pre -miCO0 oamd ff=-m <O

'3
|
33
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(3.10)

(3.11)

(3.12)

(3.13)

(% ]



Ir my A m, there are five types of representation in tkis product,

D, (") and D (8 with 0 < ?‘" < oo
D, © and  D_(o) with 3= 0 (bt 2 £0)

i
:D(‘Pn: with —~ o0 <‘P < 0
(3.14)
1t n, = m, there is, in addition, the Tepresentation
;ﬁj"‘r with 0
Pu - (3.15)

The remaining six cases need not be listed explicitly., They
are: D @ D_and H_ & D which follow from (i) and (iii) in an
obvious way; ‘13: 3] ;bi.." and ;5® 1)14:"' for which p = Py j and
H*°® D3 gor which p = O .

Hore difficult to aselve is the problem of discovering what

values of j can appear in the various cases. This cannot be

dealt with merely by considerations involving the basis vectors
in isolation. Strietly, one has to use scalar products of thenm
with normalizable states in the Hilbert space — i.e., wave packets =
and take caroful account of the asymptotic behaviour of these
functions. Since, for the applicetions we have in view, this
agyupiotic behaviour is not alweys known in advance we shall have

to proceed in a rather formal manner and discard any pretence of A
rigour., Hore specifiocally, we ghall asgume that any function £(G)
defined over one of the little groups G can be expanded 28 an
integral over the umitary representations of ﬁ ’

S i g
f(e) = Bd,tt(é}g fxy.('j) D"f" (G) (3. 16)

with

fl,*(j) = d}l(&‘) R“’P(Car)* £(6) (3.17)




where, in {3.16), the integral extanda over the unitary represent—
ations DY with Plancherel measure dp(j) and, in (3.17), the
integral extends over the group O with Haar measure d ;1(6) .
The formulae (3.16) and (3.17) are a valid group—iheoretiocal result
only if f 1is square-infegrable,

gd}k(&) l {(é) Il - J}Lu)z i 'f)')‘ (j) lz { oo , (3.18)
‘ I

but we shall apply them formally to basis veotors whioh are ‘
oartainly not square~integrable, This can be rigorously justified
if the basis veotors are employed only in the specification of those
matrix elements which are square-integrable.

In oxder to be able to define the basis vectors as funotions
over tha little groups it is necemsary to take for the states
IP]__ 3 A, and !PE 3o A,y those defined with the boostwm ut,
1° or 1~ accordingly as Py + Py is timelike, lightlike or space-
like. This will gonerally necemsitate the imtroduotion of the spin
rearrangement matrices (defined in Sec. 2) in order to oover
the ocomplete range of representatioms oomtained in a given product,

Notioe that there are essentially three independent para-
meters determining the components of P and Py subjeot to the
constraint p, + p, = D . These ave, for the timelike, lightlike
and spacelike cases, the masa p2 and a peir of angles, (¥, &) ,
(¢, E) and (¥, ), respelgtivaly. For the null ocase they are
three angles, (¥, &, ). The unifying characteristic of these
peremetrisationglie. in that while the total momentwm p, + P,
is fixed in one of the standard directions, the "relative"
momentum is specified by angles whioch relate o the appropriate

little group for each case,

1

B rimpeiatt i e i s . - bl P
R e T e St 1 R e

- T T R Ty T T




(1) Pimelike ocaas (pl + P2)2 >0

The paramsters (tp’ 8, &,) and (¥, 6,%) associated with the momenta
Py and P, must be so chomsen that the total four-momentum Py + Py is
aligned with the zero-axis. This requires

i shal, costly + m, shd, o568, =0
m, shat, smB, Casty + m, sha, Simg s, =0

My sk, smby sinf, +m, shd, sind, Sin'fy = 0

Those ocanditione are met by iaking

¥af, - {‘f;-w.'os?cn:
hiX mgPQT

6, = Tm-6,

mysh, =y shat,

[

]

The angles ul and u2 are expresseible in terms of the total mass

2
s = (p; +P,)" by

Semt b o .
th' = ' s cldla-‘ S
ZM|E am JS_

The product states may be written in the form

,
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uy . m W )
e"‘f‘]-lz. e"BJ—:l e“f’:rlz e—iof,-],,_; °,

u)

2) 2
e.;(‘f’grr).-]fz e.(('Jr-B)J;,) (‘PHL)J. -tda o3
e !‘ﬂ],lﬁ,s?]z 1>

()

)]
c—i?:l;" e-(BTsl "'Ld1 J‘ it dj

inJy, t‘PJn. i P QA
- T T s G HANE (3.19)
where |
o> = -m,J‘;)Hd, :ru’ in'.l',‘,“l-ﬁ ik ’%.a\‘ TN (3.20)
The total J,,1is of course defined by
Iy = .;fvl) + J)Ef) | - (3.21)

We are now in a position to projeot out the irreducible re-
pr:senta.tions simply by applying the formula (3.17) to the vectors
U(G) Jd>. The result is

IA.IA&;%JA) splll—ll= de (a') D:A(GA').’ U(G') ,K) (3.22)
Sofs)

where J takes the values |X\,-)f, A,-),[+1, A=A [+2,00e o
The integration extends over the compaot group 50(3). The Kromecker
symbol 6,1, ,\'.;\2 appears as a conseguence of the condition

J12|0(> = ()‘1')‘1)|°<> (3.23)
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For brevity we have neglected to show in the states |\ A, | fgj A
. 2 2 2 2 . . .

the invariant labels Py =3y 5y Py o, and Jp v Jp which are common

to all.

The inverse formula to {3.22) is obtained by applying (3._16),
u(e)|«) = Z(zjn), XA, 510D Dl') Y (&) (3.24)
7 ,

The formulae (3.22) and (3.24) oan, with the help of (3.19), be expressed
in the more useful form,

2m h.g
A : R LRI N Oy
l)‘1 )\Li P AV = gd'f jdﬂmﬂ,-ﬂd'qxﬁ P: 5 7&7 A L{A+A) di_;!,,\ (_9) . X
o (3+235)
\ 1 . 4 . P\ Iy 4
'1’151 Moh Y = X @j ¢ PgR) € dz,n.-), () o {O2Y
d | (3.26)

Wo have in (3.26) an explicit realisation of the Clebsoh-Jordan oco-
effiocient introduced in (3.2), vis.,

(F:Pa..i f’jklﬂhk’ ’P‘jtl’l; =

Py , - 1 A0 (f
= 8(P- Pf' Pl) § Ay 6)‘:“! (IJ{.') ed?d:sl.‘ L (@e (el (3.27)

A
which is valid for p, = (/s, 0, 0, 0), Its value for any other frame
oould be obtained by dpplying ths appropriate Lorentz transformation.

The representatiomns &i(pz) with p2 - (p1 + p, )2 >0 ocan appear

2 B o, . 2 2
not only in the product 1)2‘ (n1)® ﬁ+ (mz) with m),m; > O, but also in

-3%-



3 ] J J J
312)32f0) , D D) @b 2xd) , D, ad) @B% ) ,

J J J jo
ml(—mi)@)—bz(-mg) and i)_'_l(pz)@:b © , In each case the Clebsch-
Gordan coefficients can be calculated by following the teohnique out-

lined above, i.e.,by '-rrn.tlng the produci state with pP; + P, = p
. in the form U(G)ld) where G belongs to the little group and projecting
from these the various Jj values by integration over the group.

(ii) Spacelike case (p1 + D, )2 <o

Let us consider the exiraction of representations :f)j(pz) with
2240 from the produotiﬁf(mi)@ j)iz(mg). Using the -type boosts of

Seoc. 2 we have

= om, (CLY.,J;Q, , chY, shg, was¥y , ch] shg,sin?, , ShY;)

P
‘pm i (d"rzd‘Fl ’t"‘K S‘\& w‘sg » C“); Sh@a 5"'“?: \ 9{1)‘\.)

and the states with te = fo = (0, 0, 0, J:‘-b) are picked out by

choosing -
"l m-t m'_-m..;.t

R R S e
(3.28)

The produoct states may be written in the form

B dado bty = U R AR

[(3]

m o)
-t'fI -iGJ'Ol ei?Jr’_ e"'i-*.j-ot;) .

R TR L N S @ . 4 -
‘ .e"*‘f"ru e,"ﬂ“ el‘rjn édza-o,l%131xt’i’thh>

et e_""N:n ,Y) ei(xl"')z)‘f (3.29)
~40-
o : :"?—=}‘-"-- R : ‘ - .} . o w _::;* ;

gy — gt sainib o L q" w-.d- -unum- TR TN B
T oo . . VU PRI SV AP VUV o




where
W . -+, .
'Y> _ e—i\’,fos"‘-yx_.JoJ ,ﬂ]i/\l yPohe /‘z> (3.30)

A
By applying (3.17) to the states U(G)h’) we projeot out the irrdducible

representations,

M B3AY uaen = § da(@ DL, @ U@V (3.31)
| 50(2,)
where the integration extends over the non-oompact group S0(2,1). The

Kronecker symbol 5,,;’ M), appears because

32 1Y) = A+ (3.32)
The invariant J takes wvalues oorresponding to all of the unitary re-
presentations of S0(2,1) in the prinoipal series,
j + & = imaginary

and a finite number of those in the disorete series,

= beead, Dyl o Gre )
(3.33)

This is exhibited in the inverse formula to (3.31) obtained by spplying
(3.16),

U(ET)IY) = Z © (i A HA)D’J\X 2,

S INITYe
Pishel€p et (3.34)

*Z g d h,..Tr IA x’-!P3A>]&Aﬂl(G)

A 0




The representations D9* appear for X, +2;50and D9~ for X +X,<0,
The formulae (3.31) and (3.34) can, with the help of (3.29), be written
in the form

2.6

l)l1 Az.; ﬁjk> =§ Kd@ ShF'Pndi Avy 'P,_JL)‘ >' ~L(M +)\;§qu 1-)\‘,)\( 6)
' ) (3.35)
4 )lf
pinnias - Y e <00
| AN A, K 1€ 3.36)
+ X g dl ﬁ:;" 'AA‘ PJA) 4}7 “,as'{lii‘)?

A o

We have in (3.)6) an explicit realisation of the Clebsoh-Oordan co-
effioient for this case,

<M.Fa}1~’1.4\ l ‘qu' A1 t‘P;j‘l 1;>—l-

- 4 (3.
-Jf A:A‘-,.@ e'(AI*A&) (3.37)

-5(? ﬂ fl)‘)"‘-le Mx zﬁi;rj

The mmmtatims ‘b’(p ) with p < O appear a.lao in the products

1331(-;) ztf(0) , D 1(:-1) z ii"’(-tnz) :bjl(-nl) x ijz(-ag) sad

3
P 1(p“') x ;f) o’ . Again the teolmiqus for dbtaining the Clebmsoh~
Gordan ocoeffioclents is the same as for the case outlined here,.

(141) Iightlike oase (p, + p,)2 =0

The extraction of ‘lightlike representatians bg(O) from the

J J
product ﬂ),l_l(lli)@ ;‘)_2(m§) prooeeds as follows, Use the O-type boosts
and write .




l

R g *,x .
by m(cﬁx,*sz'- ™, "En""x' st | -6 €N Gl X e )

2

El

'K; =, . ‘ -
Pu= M (X, + 5= 2 ) -§ e cod‘;,-ﬁtcx‘wf,shxu% ex‘)'

2

The estatems with

ﬂy"'ﬁ.p: PP = (w’ 0,0, w) (3.38)
are ploked out by choosing
kA L3 1 H
- M -m
= = - = 'X|' ml‘ mt —xl — 1 T
Yo=Y, = E‘ 'tn.;: y € = m » € Zm, o (3.39)

We shall take ml) m, so that @W>0. The product states may be written
in the form

IP«J! 1:?11: z> m(L )Uw(L )lﬂhhnf’z 312 7=
) -m"‘ SETY 010 T

. ﬂ) . () cy A
. -L?Jn_ S R !” "‘xtL IF-JIA'?z]z'\x)

L'P-Tn, -tﬂ'X) (A, +?t;)'l° (3.40)

where

& e e T b 1 '
IX> = X ToXados | £33 20 P2 TaAe? (3.41)

In the same manneor as bafm wo can projeot out the irredunible o~
presentations by :lutag:mt:l.ns over the little group d=- 80(2)A T(2).

Ihas 22 dunon, 5 an(é) Of); (& U(Gm( > 0w
0)ATR)

the oonverse relation being

U(&!)IWQ = g [ll A PPA> D nm (G) (3.43)

The representations DP, which appear here belong to the prinoipal series
of unitary representations of S0(2)AT(2). Subetituting for |X>from (3.40)

these formulae becoms

-y -




y, o .)‘r’ o
L\llzi PPAY - ‘Sd\‘ jdE i9,3,2,, szahz > (A f/h,,a\ ¢ l-;)
v (3.44)
) : o 2 A -t A ;
lpdo pday - (4 _Zh,/\z;pp)\) \F ““ (B)iA AP
’ ? (3.45)

These formulae represent a Bessel transform sinoce, as will be showm in

Seo. 4, P/""
dy, (€)= T, (Ep/w) .

Thus we have an epr:ioit roaligation of the Clebsch~Gordan coeffiocient
coupling DHF(0) to Dl kI)i‘ .

<F:F13§PA"P13-1A" 'szz’\¢>° = (3.46)
= ‘S(P P Pa-) 6#.'\ ‘SF-: -d‘? a-x.-h(gi’/“’) ei Arh¥

expreased in the frame for whioh

F.y

b = (0,0, 0, @) |

The same technique can be used for caloulating the Clebsoh-~OJordan
ooeffiolents ooupling the lightlike representations to other produocts:

(iv) llull oase (pl + pa)” = 0

This oase is in some respeots simpler than the previous ones sinoe
there is only one independent four-veotor in the problem. Also, since
the little group oompromises the entire homogeneous group S0(3,1), the
oholoce of parametrization is governed by the nature of Py = =P (time~
like, spacelike or lightlike). Again we shall oonsider only one of
. the pomssible situations in whioh the null representations ocan appear, vis.,
the product P(a)@ DH(n?). The other situations can be dealt with in

similar fashiom. .
Using the +type boosts we can write
», =P, = n(chd, sha sind cas¥, shu snbsin?, shd cosd)

The produoct states with p, + p, = O can then be written in the form

i h————

E

e
|

|

|

|

|

|
il 4




[pgdo s = UG U [ RaM B A
%f j.j A1 ] 131 izhl >

e_;pju é—iﬂ:ﬁl ei‘PJn e-i"‘J;s
.. " (AN ¥
e-i‘PJ'.; e—iOTu e-idfaslf'g §t A ’PIJ'-A;> e’ :

(3.47)

A, A
By applying (3.17) to the states U(/\)H)I| }‘) :1’]le>“ can projeot out
irreducible representations of SO0(3,1). Befaore doing this, however, it
is oonvenient to define the new states

I‘P"j"‘p‘-it':rh> Z "Pllt'\"?zh) ><1' 111:. zI\TA> (3.48)

where (j A, .1,) I]o\)denotes an S0{3) Clebsch~Jordan coeffivient. The states
80 definod satiafy two conditioms:

@ e Tr W v hisDo - 3@ [ RickiiTy
Folbidhs fudes W = Aldin fuies 102

whioh are the analogus for the null case of (3.23) for the timelike.ocase.
Applioation of (3.17) gives :

155,013 by by = (gl D87, O VAR, Bufis T >, .50
so(3,1)

the oonverse relation being
T

A . A . j
U(/\)IP.L. ‘P;‘]-.-JI}A) =2_:_ S do (o) Z I3 JoT1A) 'DA ;r},w(:, 52)
The representations Di wwhich appear here belong to the principal series

of unitary representations of S0(3,1):
0" = pure imaginary, 3 = o 5w 1y see ¢ 7o The matrices :D A J\(A)
aere defined in the basia (2.38), (2.39) by !

UNIgeiay = ) lgoix) D,,, L)
7% 7
45~




The matrix for a transformation in the C3-plane is defined by
JRRLE Y Hofj)t> = 5_—7 'j'co'j’,\) djf;"_ (o) .
Thege functians will be discussed in geoj. 1.
Using (3.47) and (3.48) to eliminate l‘?l.lt . 13‘ 3.&5‘])"> thése
formulae beocome

._IJ;j,f;f)‘? Sd‘l’ demﬂfdasl,' Z IP,J.)‘,,ML,\Z)

A 7‘;}*
¢ J.Aph" [T e “""’ -(—ar) d,,,H)e‘ (3.52)
Ifsji I:?t]z z.) E i da(jo -a")ZIJ-’JoO'j,\>

Teh] f-3 '
oy ° i (3.53)
e d‘\p d> (.o e™ ¢aulini A

p
- Formula (3.%3) prmridea an jioit rezliveddan for the Olebsch-Gordan
coefficlent coupling I ®$"‘=

fl-'. "\ 1.A1s1l'\+= ‘
< 2371 I'an Poda A (3.54)

= e ({-o0) €™ dy 0,0 6, 0 M anan g in0

Thés compivtes the list of Clebeoh~lordan ceaffioients that wo ghall

‘eametruct explicitly. Al of the obhess with cme exception can be found

by the mathods used hege. The exosptianal case is i)""-@ DI ynion requires
sowe MWG. ¥t ns Bocu doalt with in great detail in

 4he Rusaiam Itoretaro (o.g.,W.A. NATMANY, An. Math, Soo. Trans. 36, 101 (1964).

In emolusion i% may perhaps be imgtructive to examine the above
manipuiations from the viswpoint of complete ocommuting sets of operators,
The problem of decomposing a Qirect produst can of course be looked upon
as one of finding the transformation that takes one basis -~ whioh
diagonaliges certain of the operaters P.”, T} PX T®_ into another

t(h +A,)

MV
which diagonalizss certain of the operators 'P -ptl) +'Pm and
W
R
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Since all of the states met with above diagonalize the four Casimir
b A
operators N (33 0y (2)
(P}A):(P}J)$(wﬂ)3(wﬂ s

we oan omit them from the following discussion. Of the remaining operators,

inzl). These include

2

eight are diagonalized by the product siates H’ zi, 1)
and (P
(I‘L

six independent momentum components contained among P ) and two
helicities, e.g.,w(l) a.nd “(2

On the other ha.nd., the irreduoible states P\ )\l;P]’\> diagonalize
(L
the four independent momenta Py = Pm+ gtand in addition the four operators

(W) W, |, WeR w R,

)
again eight in all (at least when P P ;‘ 0, the null case muat be treated

separately.) The total W is defined by
o 2) Y
W = - T & T P = '-éuv?\f (I, + ( )(Pm+ 'P[ ).

It is a simple matter to venfy (for the case p > o) the relations
B 9320 = pulangs piay
WIaA p1dy = - Fili0 A piad
N A piAY = A SFrren D I
WO AN 32 = X Emm o D piA)
WEBIAAL; piA> = A & [ (F-m e Pk A, 502D (3:55)
The important point to notice here is thatA,,A,and j are all Poincard

invarianta;
The irreducible states |J;},T jA) diagonalize the total four-momentum,

P,h = 0 3 but +this aocounts for only three independent operators since this
) = (2% i..,B = O inplies P_ = 0, The remain-

oase arises only if (P
ing five operators are given by
kN

LJ;I.\IJ’-;VI *Ey\ﬂfj‘mijxr ' 31:{-1;'1'33:-'!- l ’ II‘L:

and the "total spin"

{ (2"
(W, + Wp)

M
The eigenvalues of the total spin operator cam be found by applying it to

tbe state (3.60).

=68




WS+ W) | 75 4,054 -
- an(A SERQIUAT ST OIS S R
fdp (A)D, o (N U(A) (W, + w,ﬁ")’l B geyPeles T
but from (2.6)
(W WY | e bodes Tuy = -wt(T 0+ IV B Bt Tud
"|M1- T(‘J‘H) 11311.1 ) f’g ]2} Iﬂ}

go that
‘“+w n) IJ,J.U"‘)? = =M J(J+1)[J-,JOG'JA> . (3-_56)

'l'hia shows that J is a Poincaré invariant.

T T ) -=uw-- ? o .*. L O




4 ANALYTICAL PROPERTIES OF LITTLE GBOUP REPRESENTATIONS.

Differential equations

It proves convenient to parametrige gll) the finite transformations
of the little groups in the"Bulerian’ menner, namely for

o LFhy =103y, -i¥7,

So(3): u(e,e,v) - '
1)y UHBY) = o-tlTh o bl oVl

so(2)Ar(2): U(¥, §,¥) = o ~t¥Ta o~fT o-(¥Iy

so3,2):  U(9,0,¥,%;0,8,%) = | (4.1)

PR 0Ty ¥Tn | il Tes e-i9%, & T

’
because 2ll the essential information is ocontained in the real

represontations d,

d:)(e) = (U(9)> = <d,‘, ,e'iay"',jl ) ;
dh® = CU@@> = (Gple b Ay,

da(B) = (U E)> = (wp|etf™ )wb,
@)=V - Gojpl T s

Thus we require the properties of the d's in oxder to study the
analytical proper_t:l.es of the S-matrix iteelf. '

The normal way of anaiyaing the d-fimotions is 0 set up
differential equa.t:lons for them with suitable boundary oonditions,
like d(0) = § . There are several equivalent ways for obtaining
these differential equations but the simplest way, from ocur point of

view, is the following:

(4.2)

-




A A
Express the operators U(X ) J - where X = 6, ﬁ;{or ; and J

are all the generators of the little group - in terms of ax UJ'3
and  J,U (and UJ, , LU for the case of S0(3,1)). There-

by express the bilinear inveriants U@ C(T)in those same

terms, C(J') being a Casimir operator for the little group, and
take little group representatives. Tbis gives the scught-after

differential equations.

Consider sach ocase in tumn,

S0(3) U(o) = e 1%
UJ, = t%
1
U.I23= Y [UJ'3 Cosf - J;”]
: T t_ 2
ui's - &8 - e 4V, UG ac:;fe:r,UJ;+J'. v
whence the representative equation,
[ v ctogh sicion) - d2AWON Tyi g,
(1) + U = o P
&
un;l j’ do
VT~ -35 [VUT,chg- 3v]
: _ dw. dU _ UJ'- 2¢hg JUT, + 32V
UI' = g relp gy - = sﬁlg At
giving ‘
dd’ d . Yo2ud chR + A2 ‘
N i CCRUI




Observe that 8->10 gives the S0(3) equation.

SO!22AT!2! : U({) - e‘i{"-!
. dU
UTrl - L TET
VT, = U3~ T,0)
e -4}y _ L dU JU-2J,UJ, + UT,
vE d-E'I- E Y — !El -
The matrix elements of thia relation are
d* 1 d (-2 x
['g‘éz‘ + E ﬁ + g; ] dm(ﬁ) =0. (4.5)
50(3,1) v(g) = "G oy

Uie = g (hGUT; - 330)
{4V
Ul,= ige

VI, I = U T, - T, - )

Fvs+ug?
+zeoltq K_ —_sﬁri;_;—
UJ+°'\‘; UL + TUJ,)

)
dg?

Hoe de) %

and .
UG €wer T T = - 20 (00 0+ T Ty # Tn )

- (--gq-ooﬂ\l‘;)UJ; +;&—§(~T;UJ:*J_UJ',)

Taking mairir elements of thess diffarentia.i relations and using the

S0(3) subgroup propertiess,

~49-



Jz”:;‘f}*} = ﬁ?p) (it;.un)' “’oa‘j/ut1)

we get the ooupled equatians.

[T‘%{‘}JCO 1; q (joz+ 01_1-P*)_ M1)'3:\{L;+J_(a+1) f';j (q)
h‘; [vﬁ}f}-‘) (G-p e NG+ W “p 1) d ”, ¥ () + (4.6)
,\./(1 P (epen) (i I, (4 +;1+l) ((“L“ ({)]
and
[p( rid + oh) - j,d"] djflj' (?")
:.skg [\/(1 ) Gmpe) (4 pd (e pea) d 1,., e (L) - (4.7)
= /(1 )")(1"’/‘+1)(1 -M) (‘J "‘f"‘"') dﬂnlj (t(‘)]
Completeoness relations and expansion formulse
The irreduocible repreeentative functions D( 6) corresponding
to the unitary transformations U( 6 } of the little group, cobey the
orthogonality relations '
PCILENGCE! @) = (400 6§51 e |
(4.8
\ Di (@D, (&) SPRWATVIECe) 56, &) | (o)

oy

generally, p{c) dG is the Haar measure over the group & while
'Q..\g&)d‘ is the Plancherel measure over the nitary basis.

If wo are given a funotion f£( G )} of the group parameters
whioh is square integrable ower the group manifold,

glf(ea | p(Dd& < 00 |




then it is possible to expand it in terms of the umnitary irreducible
representations (those which axre square integrable ) according to

£@ - § 6 (@D (&) p(jp,N) dj (4.10)
e

and the expansion cosffiocients will be given by

(- (£@DL7(6) p(6)aG . (4.11)

Wo illustrate these remarke with the speoifio cases below:

SO§32 s

(2l (2o vIvd, (hoy) dbd@ddt & bur b (o)

li + 4

] (2j+0 D{Lm 8,¥) DL*(S"', 0, ¥) = sn*4(¥-¥') §(00s0-cost) S(¥- ")

fAp - (4.13)
£(5,0,7) = 1_; (zj+v £h D4 DA (% 6,¥) (410)
£ = g'*"’ (e d¥ £y, 0,¥) DAy (% 6,¥) (4.15)

providing £(8) is Tegular in the regim -1 € ¢osé < 1 . {

50!2:1! ]

Fere the situation is somewhat more complisated in that we have three

types of representation. However, the supplementary series can be
safely neglected hecause the oorresponding representations are not
square integrable, Thus, for the principal seriest




dip d(ch®)d¥ _ 2tunT(f-p) §(:5-if") d,, cg,,,u
gx* 1(21 +1)

YDg*('Pé "‘P) A'p :(‘P:(‘)”V)
(4.16)

and for the discrete series:

(0i (e, 0ff" (v, ) PALR) LY difr Spp Enx (4.17)

:.1"-1

Integrals over cross representations vanish. Conversely,

i

S (zj+1 D (1,8:¥) n,u\ (¥, 8, ¥

~§ +ioa

al ) Dﬂm,vwﬁ. (7" 6. Y= gmt 6(9-#) 8(chi-chp)

b (s s(¥-¥) (4.18)

Providing that £( '} B, ¥ ) is square integrable in the regiom
th@ »1 , 1., £« 0((ehp)) ; < -3,

then we can prooeed with the expansion formula,

14,6, Z g+ i, i (9.6,

2§41 o4 pi |
U ) A4 £ 0, (1)
-t_w”u—u’p) wa G (H6 | G
Vioce versa,ws must have 1;{,‘ square integrable along the imaginary
axis j = -iwi’to write

g = [ e0a(284Y se,6,v)00f (n6P)

ix

fit = g‘“(‘m ¥ ¢(e 6, %) DIt * (¥.8,%)
M g Pa . p (4.20)

- . T R ...,,‘l“ﬁ T - - ; T TS A, TR vy
R - Lo ARl B s . . ' o ™ i P ! * '




so(2)AT(2)

We ghall regard the finite-dimensional representations as

special cases of the infinite-dimensional ones (W= p/co » 0)

JACELELY (M E W) W) (08 0) « Brtore®) d by D)

f ) D (FE,Y) DIy (¥, 8, M ax? - Bt (P-¢)§ S(F) S(r-v)(4-22)
AtX

being essentially the oxrthogonaliiy properties of Bessel funotions.
The expansion formuzlae just correspond to the Hankel transformations

gy, - | ariefey AN IR ARD (4.23)

g’ oot
AR {d p_‘z; £f ])P/“ (£.5,%) (4.24)
and are permissible for all equare integrable f,
()i

Adhering to the Naimark definitions of the representation
funotions, the orthogonality propertia are

4¥d (s d ¥ . skr.d(dt') gtge'z ¥ i o
\[‘ gt DP 1’ ")-D,..u st m(: 17’)

(4 25)

g : 2 -1
= [(24e0) @f+0) (-] by 8o i0) Giu e Gpm 6

and

S 'Lid‘z "-_ 1) (ZJ{-‘l) (21 .|..1) l"('f 'QPJ)DJG ' . (? vm)
-L00 [ V) /"
' (4.26.)

Sl AR T (S B (R

=53




u.{ .
and providing that f(f.',) is of order € 'for large § with o« < 1
then it can be expanded in these irreducible representations:

£(%,..,Y)= j-tdﬂ' Z(j -d') § ;;‘_ i D"’ (‘f’...,’f") with (4.27)

'l”

tlg tP

3.® . i . ’ ' Ja .
i - [ dth 4¥ f(h., w0 D] )1.,,_ (¥ 4 ey

Representations of the first kind

The solutions to the differential equations for the d-funotions
which are regular in the vicinity of the fdentity transformation will
be called the representations of the first kind. It is these group
representations which enter basiocally in the "Pourier expansion' of
any funotion defined over the group manifold and which is non-singular
at the "origin". A complete dincusn:on of the differential equation
neverthaless requires the "ropreaentations of the second kind";
although these functions are singular at the origin, they do have
simpler asymptotic characteristics than functions of the firat kind,
and of oourse there exist certain integral relations between the two
types of representation. (This is analogous to the ocommection between
the fy and Q;). For the present lot us analyse the properties of the
firat kind representations,

80‘}! and 3012,1! funotions

These can be treated at onoce owing to the faot that the
substitutions Z= chf = cos@ -lead to identioal equations

[(1 Z‘)—\." 2z & dz + ’(1*1) f“' z}-l).Z‘l-h ]dlﬁ(z)‘— (4.29)

with the boundary oondition d,fﬁ (3) = 6“«'
. By displacing singularities to 0,1 and 02 +the equation can be cast
in hypergoometric form and the solution with the correct boundary

- walue is (for }-I-IW)O)
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o () = [T’(ﬁ-ry”\ f‘(a] Xs1) ]% (_}_) £y (1_._2_)5(}*"”
2 N I"(j +A +1) P(j Af‘) 2 z

Fljrpsjeprey pox et 5 EE) /(e (4.30)

for the SO{3) functions and the principal series of S0(2,1). The
discrete series of S0(2,1) are obtained by analytic continuation,

x

i* o Pljepe) Tlp-4) r- (Hz)‘t(i“") 17 $(p-A)
) [ Plgex s T2~ §) -1 Q )

-z (4.31)
xF(oj-lf‘l *j"t\ ) ;.L-lfi)‘ —5_-) P(I“"A «1) ,

as  df (1)"«!‘ (2) .

I+ is immediately possible, frem the properties of the hypergeometric
and gamma functions, to state the equivalenos relations and index

symmetry properties:

(4.32)

d:;‘&) = A_i'_p (2) = (-0 d.i @ = .g:;(z) S (4.33)
di‘;(z)- ) e cgf;_(z) d.' - *( ) ato,

For all disorete representations (J-4 « integer) docan be
related to the Jacobi polynomiale and in that case one may deduoe

the inversion property

d;;(.z) = ("')?‘A di.a(z):' ' 4 j- wax ({pf, Ill) r 0,1, 2, ..
-7 &1, (x) g 3
Y 4 j-mee{juls A= -1,-2,...

More generally however ‘»(z) is a branched funotion, Thus in the
2 -plane, the branohes (1 + s) and (1 - ss)i give cuts from ~o
to =1 and 1 to 00 while the hypargeonetrio function gives a cut from

-6 to -1 again {defining the principal sheet thim way). On the
other hand, in thae j-plane, the hypergeometric function is an entire




function of j and the only branches derive from the r functions;
these j=tuts have a finite extension if we let the principal sheet
be defined positive for j *> 1. The asymptotic properties and integral
representations must be deferred to later since the second type

functions need first to be defined.

s0{2)AT(2) functions
The representation funoction Just satisfies Bessel's equation
for if we substitute x = 7T § the equation reads

(4.34)

e, dy (€)= Julmf), etapdy, (4.35)

It is interesting to notice that solutions are just the p2 -> 0
limits of the S0(3) and S0(2,1) functions because

I . .36
il:” G = T, (4.36)
from Hansen's formula,

» c ‘ -

1.y (2) = &:_’“ (£2)° Fla b ;¢ ; -Z/La@-)/ NG

In a sense this also dictates the cboice of Bossel fumotion. .
The symmetry properties are then well.Xknown,

a;;tg) = =l @
- MDD = (0" d 0 (8) (4.37)

and the fact that there exists a branch point at 5- 0. Moreover it is known
that d is an entire function of m-A.
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S0(3,1) functions

The situation here is more involved than in the previous three cases
because we have a set of coupled differential squations to solve
in general., However, these equations can be simply ocombined in the
extreme limit where M = min (j,j'); supposing for definiteness that

€ J' we get

£ NG S - A2 e @Dy, ] oS
[f v 2t RS e |42 0

= -2 hﬂkz; [1(trq + Coﬂ\t;) 10 ]

coth §

=7 sh

e oG ¢ (a0 ) ek | W00

d.q,-rz(JH ae + {4 31, ‘; 13y’ & (4.38)
_.11. q’c.o'ﬂ\‘;-(j:‘i"’}") + j'(j'i-‘l) +q

iy ©

AIGepU-e a0 (5)

or

which must be solved subjeot to djjj.(o) - 8

The subatitution x = € q allows us to cwnve,rl: the equation into hyper-
goometric form, and up to normaligation faotors the solutiors which

are rogular at x = 1 are:

- W -
-3 a7 .46“) -~ . . - ot
87 0 @ 0T EGy o, e s 100
i1y (4.39)
A j.o i
The general d’:’ (q ) ocan in principle be obtained from &% ( C) by
repeated application of the operator ).l(—g + oothq ) =§, and leads to
a sum of hypergeometrio functionsj; but this is a tedious procedure which
is avoided by the integral representation method which gives *

L4

* We are grateful to Dr. M.A. Rashid for correcting oertain errors in
the first draft.
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[(34",1)(23"1_,)]* [P(j tpr1) P(J'-/u 11} r'{1+1'° +1) I"'(j'— J'ofﬂ. t
i T rlejren) )

TP ) PO DT o 00) Pl 00

it ’f O PO+ 4o PG - g e pe)
k0 K20 - P4, epmtice) P4~ pric+1) l"(']'- Jom W 49) [-'{1".1'0- w1 1)
) o + =)
11(1’(+1qu+°' M F(i"' T, KA H et 1 f4q'42 2 1-X)
Plc) PO Plippm- k41 Pfep- e )

(4.40)

that ocorreotly satisfies d in J. (x = 1) = C:j 4o - Note that the

unitarity of the representations gives d".; * -dg;'j' so that d
is "not quite real', unlike the earlier three cases.

The above form can be used to discuss the analyticity and
symmetry properties of the d-functions. Thus it' is straightforward,
if rather tedious, to obtain the index symmetries

(‘:) = diﬂ;‘i () = ,“ ‘: €y (4.41)

and the weak egquivalence relation

(i;} Plireged d."'“' (©) Pl§’- @+

1)“1 f'(f-cﬂ-") 4“1, ['(a",, o) (4.42)
The enalytioal properties in the j,.¢ plane ave extremely complicated

and we will not describe them here; however in the qume they are

quite simple. In fact,let us define 2 = ohg as a convenient

variable, Then since d is an analytio funotion of e? out from-

0 to -00 say, it will be an analytio funotion of g = 4 (eq +e (?)

cut from -] to-~o0, {We avoid stating the inversion property

2 -» =g a8 this is only simple for funoctions of the second kind

« whioh will presently be acmsidered).
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Representations of the second kind

In the theory of legendre's equation we know that the i3
must be supplemented by the Qf. in any complete diascusesion.
Likewise with the differential equations given earlier we must
consider the solutions of the mecond kind ¢, in addition to the
functions, d, of the first kind; and as with Py and Qg s € and
d are linearly related and commected by integral formulae,
Although they are singular in the neighbourhood of the identity
trangformation the E functions nevertheless have quite simple
inversion properties and asymptotic behaviours - in contrast to
the D - which makes them very useful in physical applications

as we shall subsequently see.

s0(3) and 50{2,1) functions

A simple rule of thumb method for seeing how the E funotions
arise is, where possible, to use the oontinuation property of the

hypergecmetric functioni
Pley P h-a) -a
l"((cfi)l‘(( n.) (-2) F(CL, ta-c IHL-L-', ')
e (4.43)

F(m,fr; c,z) -

PO F(a-b) |, b _
* M (e 1) D Flb, 13k-c 14 br-a; 7
which is useful for determining the s — o0 behaviour, and to

identify the e with each of the asymptotic texrms. As applied
to the d.i }l( %) representation this method gives

3{;(2) = % twar(§-p) [, -e.',‘:.l (2) ] where (4.44)

=jl(?-) . i[r'(j'*)“ 1) Pj- pae) Clgers) f'(d'-h +1)]¥/r(}j +2)

R A . (4.45)
ipad) gq_pyHp- z-t\ 370 :
EATTER)TTT G ey &




1 1
Again the factors {1 + z)~ and (1 - z)* produce cuts from -oo to -1
and 1 +to 64, and the remaining cut of the 2 plans, from 1 to - o9,
derives from the hypergeometrie function. There is of course the

inverse formula whioch expresses e as a linear function of two d :
an..-wqf) ed (2) = 1t [ez"’r(‘l"’“’ d ) - o (-z)J
xh e m-A (4.46)

where ¥ is to be taken whenImZ% 0o .

The 'pr0perties of the e-functions can now be deduced; the
inversion property has been eimplified at the expense of the

sgwivalence Telation
] M'k : .
@)= (V@ = & @,

e:x(z) . _etiw(i')*).ei_*(-z)‘ ; .f,fImz 2 0 . (4.47)

In addition we now have simple asymptotic behaviour,

e}a(z) ~ i[f‘('j ] 1) l"(j-p 0 P{{+ae9) Plf-a +9) ]i/r'(z"+1) (4.48)
.etlw-l‘ﬁ. (%Z)‘i"

as ,s,-—b °0 and for fixed j , A, A . Vioe wersa, for fixed

LI 'A “1”80'.1"

o -(D) TN [ oty
o 2 it G- ¥ : (4.49)

providing -1r+e-<an2 j <w-¢e .
Turning mext to the integral comection between e and d, we

know that in the region -1 { z {1 +the square root funotions are
innocuous, so that the disocntinuity acroms the z—ocut comes as

1 7,.. g i b
e!" (zaie) ~ ep)(z—(e) = -4 d}il (z) , 1<z <1,

50~




Also for the region z > 1, and taking Rejymax ([A], [u] ) in
order to ciroumvent the j-plane singularities, we also find
that the ewcut discontinuiiy is related to e itself upon

extracting suitable square root factors, The Cauchy formula then

gives the integral connection,

TN (zeqy A z-1)t('\;ﬂ) ]
€ —_— =
( ) ( e’m(z)

L a
| Qg (i o
Sw T (4-2) S (a) (z.) e_}rug)dz'
7T . -z 7
, AR RRRY 14 N 4 e
+{_e-nr)\ [ (ZI") (o0 (zij') d}'{:ﬁ (Z') dx'
z'- 2 (4.50)

-1

which is the simple generaligation of the Pg y Qp formula.
In any ocase, the completeness relation can be restated through
the biorthogonality of the d and e funotions:

~L +ico

§(z-2') = {;K dj (zju) o\‘f»&) efﬁ(z'))- 1<2,2" < o0 (4.51)
k-l
as
3 S(P-¥") S(chp~chg’') S(y-¥') - ZDL(";#.V’) Dj{(tﬂ,‘p‘.?')
o
_{.},g'oa 1
= 51,?,; X dy (ljﬂ) D:,‘ (¢, 8,%) Eﬁ;(‘ﬁ,'(s','v") (4.52)

-l.lea ‘

where

1 . _eipP 4 (AP
E'z" (%.6.%) = ™ &‘i’ @< (4.53)

50(2 !A T{ 22

The ordinary Bessel functions J,_,(z) , 2z = W{ were
identified with the representations of the first kind d, (£).

~51~




It ia natural to identify the second kind represantations with the
p(;mplementary Besgel functions Y)\_}l (z) which are logarithmically

gingular at the origin. Viz.,

efl(ﬁ’) = Yh_},, (z) (4.54)

The oonnections between J and Y ocan be rewritten as the linear
relations between d and e ,

T s {A-p) df}{g) *d:;(l,")
@) = S X (A - 1) (4.55)

4™ (1) &) cexon) e, (B
Ap ST (A ~ ) (4.56)

' to be taken in the limit as A-M —>integer.
The e-functions satisfy the symmetry relatioms,

Fu§) = eL,\(8) - 0™ L) (457
TR = L@ - o [0 20 0] s

' The asymptotic babaviouxs of d end o as jal » co for |arg sf <0
are gimilar ginoe ‘

Tonl ~ ()" e fzn £(0-p37 - ) (4,59)
N-pl2) "("t'r;z_)i sw (2-F(A-M) 7 - £ ) (4.60)

It is only the imaginary Bessel funotions whioch have a more Ydragtic”
agymptotic character,
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S0(3,1) functions
The decomposition of a function of the first kind into a linear

combination of two representations of the gecond kind which have simple

asymptotic characteristics is a complicated problem which has been
solved by Toller directly from the integral representation for d({ ).

Wo quote the non-trivial regult:

1” (;) - el | t‘;) + (-1)“ e.}L (Q) (4.61)

ird 1)

where

hprl8) = Lajeaaye . [ Pjoped Plpadd Teg, o0 Tlgeg, 4 9 J {

-l"'(-j'i'p--l‘) [‘(j'-p.ﬂ) F(‘J"" 1'0+1) f'(,j'.j‘-f 1)

(-1.)’.'-»”{ P(‘.iﬂ"*‘}“i‘.‘ K-«'+1) r'(j.."}" +FED
o TjomwtITl- powe) rec-men) P4 1- W +1) I"{oj’q;-lc'n) r‘("f K'-pa 1)

e:(if i‘f}t "/l.. ’Q“'z)) / r.( kl"1) r'(k/+ ’) (ﬁ..'.‘ 1.-6)
Pt +9) T(§'rc-4 - -4 1) r'(j' ' [*1-4- K-A+1) P(zj‘,-p-j'm'du'n‘)f

*

(4.62)
is a polynomial in e? . We shall find it convenient to regard it as
& funotion of the variable z = oh{ at times.
Wo note firatly the imlex oymmetries,
“§o T pe
e. s - 30
?( ) = el p@) = it €9) < (2)*
- (—T)i-j. f:{1 re e 1' pos & r(l-n+c+‘)
Plj-o+1) ey P(j' - a+1) (4.63)

and secondly the inversion property,
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Iy = Ut T i
m( ) - ew" ) (4.64)

Also we have the asymptotic behaviour

é.

: 5 \‘
2
1}1‘ ) -

o, (z a6 Z—> o0 . (4.65)

The analyticity of e in the gz-plane is the same as that
of d, visz., it has a cut from ~oco to =l. The discontinuity
across the cut can be obteined from the inversion property:

i" ,(z-1€) = eum e"c., (zvried ; 2<-4
“Iry o]
Upon applying Cauchy's theorem we get the integral relation,
-1 1
1 T @) dy e R,
os 2'- % -ie SnHO 1}“
or . .
1 (7 ek (z)dx e, (2-cO)
- S B Vv R 1. 4 ( : (4.66)
1 A £ | sﬁ.r(,.fo'-,un)

Finally, le$t us note the inverse linear ocomnection between the first
and seocond kind functions,

WAL +1(a +&Hp- )W ‘.

Joer RO 3.5
cm ((x)= T T [ m ()- dam'( )] (4.67)

where + refer to Imz 2 0.
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5 IMPROPER TRANSFORMATIONS

Parity and time reversal
If one adjoins the space and time inversion operations to the

homogeneous Lorentz group and the translations, one obtains the go-
This is completely descoribed by the

called axtended Poincaré group.
ad joined algebra,

fp € =-p , f2, @71 - »,
1 6 -3 , fx & -x
te Tt -2, TR U7 -
(A S A S zZx 7' -k (5.1)

The effeot of improper Lorents transformstions on the representations
of the Poincaré group is completely determined fyrom their aotion on
the "etandard” states., Since the standard momenta always correspond

to linear combinations of PO and P3 one @elects im preference to
® ana T , the operators

9 - e—i‘ng P , J - e:l.‘!'J; z (5.2)

because they ocommute with Po and P3 « That these are the “matural "
operators from our point of view oan be sppreciated from the fact that

witk all of our boosting procedures,

Huo,p)\fl - ()
5'0(1,],)3"1 - oln,)

Y’ - (’09 plgu'gzl PJ) (5.3)

Moreover, in oontradistinotion to 6) snd. Z , they alwaye induce
outer automorpbhinms ‘on the little group goneratorst
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b y= - -, 3y, g -4

xf}fz::t B"l o g, Szi g . X,
‘é“t 15.,-1 - "ﬂ':; , 31{& g -1 "'Tfi
\JJS lJ'l el 3 I §= - I, (5.4}

With suitable phase oonventions for the little groups we cen

choose without loss of generslity the phases of our discrete irans—

formations such that
Slop> = lerd v yjepwr = 1Y 7 [ap>
$ligoip>= lig=ip> ,

Ylap cdp> = ¥ H gy 0§ -p> (5.5)

where & stands for any of the Casimir operators of S0(3) , 50{2,1)
or 0(2) AT(2). ™Te invariant factor Y assumes for each of

the following cases the valuest

0(3) 02,1} | o(2) A 7(2) 0(2,1) . 0(2) » 1(2)
discrete disorete continuous continuous

{ 0 for M integer

Y= 5 8
I)kl . $ for % odd integer

Nl is the intrinsio parity of the state and equals + 1 . The eigen-
value '9? = £ 1 according as we have single-valued or double-valued

repregentations.

The simplioity of the scheme is evident from the generzl proper-~

T:“Ps)\> = ‘JH(LP)H-L‘J ‘f) 82D
= Y™ |wm e -2
Jipsad = | B> . (5.6)
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Note that the complete reversal operator Ra G)Z ™ 1’5 for which
R RT=g, , R R cn |, gives

Ripsr) = "\(-l)v"\lps'-z\>

Rl 3o Tdp) = RWEDTH|ogy e =pd (5.7)

Improper transformations of two-particle states

We have geen that it is most suitable to take the two basic
discrete operations as 11/ and 3 because of their uniformly simple *
action on all boost operators. Thus we can follow through their action
on two-particle states by means of ihe reduction formulae,

‘ ]5 sSP, 8 A By A = Saap('&) X @ o -(Gl}plsl Ay » Pa8y A, >z ,('5-8_)

and noticing that only tbe seimuthsl engle in & is reversed. We shall
treat eaoh cese in turn but will simplify the notetion by neglecting the

obvious labels 591 and 8, -
S0 states
iy = fdtpa(mse)bj’;(v,e D] Pern,y
Y [y = (4t vii (9,6,0) 0207 g 0™
[t aeso) B2, (4,6,0)0,6,-3-0,) 1,4, (- »*

s. +5 "M

1§

= R, (1) PR FU')" AN Y (5.9)

. 3 I{P)')n = gd?o\‘(casml)'{;(‘f,e,())|-$09A,)«l)
[40d (w0 D5 (48,0623,
= lipd N (5.10)

i
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0{1) A T(2) states
Ay = [aeda (DI 4 8,00 [PEXN,Y .

Y [padid) = gd‘f-f-; d(é—) D}{’,"(v,ﬁ,o?[-‘fﬁ,\i,\L),",,Z(_,)S'“z-ﬂ

- (avd a@ s (og 2l YEx 0 07

1 5= .
= i E0YT e o n -, (5.11)

g 'P}‘)rla) = |P}1 Ay 7\17 , similarly. (5.12}

S0(2,1) states
The results for the principal series follow exactly {the pattern
of Op) since one only makes use of the reality of the d matrices amd

their symmetry property,

(2 = (@)*Ma_

A__}‘_(s) .

LI

Thus we obtain for the prinoipal series,

Ylaad > =y @ e - x> 5

3"3}“'\;‘\2> mlapany o (5.14)

However for the dinorete series we mmst instemd use

di; (z) = (_1)#-/\ dz;_‘\(é) becdnse lé reverses D' and D~

representaiions?
By 8y = - i
Wap A A = Mt (D7 P emaa a2 (5a5)

fliturnry = |:i*p)\1)\2). however. (5.16)

= - e o e o 4-" - C-
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50(3,1) states

“oo-“a,b =) S d¢d {ews®) sh?_jd(cm;)‘p}f;(tﬁa,o)d’o (C)
A
JvetTa)

The effect of \3 and 3 comes directly from the properties

e (0" - 1.0‘(3;)

-,,0’ Jo
'J"J C ! (q) di"ﬂ |
"‘ﬁl']o“'j}*':r>=§: gd?... ’J.“(:),-vez;’:r A>"l'i;(1) (5.17)
= n,n, 0 l-mw,n s
5l%¢jﬁ'y>=l$—aiﬁ'y7 ' (5.18)

Note that from the weak equivalence relation, we have the connection

-4 - Sl er)) PEresn) | 19"
Jo “IpI2 NG + o+ 1) P@=-o+1) Iaocj}l’J> (513,

Parity and time raversal :lnvariance'reatriotions.

Actually it is muoh simplexr not 4o apply @ and 'C as guch
direotly, but instead the equivalent operations lj and y to the

Setmatrix
ljs\j"l -5 Js§2 . st (5.20)

Without reducing the matrix elemenis under the Poincaré group, the con-

ditions on the soattering amplitudes (with the scattering oonfinaed to

the 013 subspace) can be stated immediately:;
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g <?35;A,,P45¢3‘4'5"P|5M,,;az A7 =Kp sk ST hsidy pes, 2
.2

s‘ 0/
[ f&. (F 1)\
L] A&' -

{.-i) h 1+ )

¥

H . <?153 .\jl'ﬂ sh)d-\s“?| 511.’ }151 )ql> = 1‘]"‘)11‘]‘]"
X < Pysyimh Py tv M Slys-a, Ko N5

(5.22)

The conditione are perhaps easier {c aralyse when the two-particle states

are broken up into irreducible componentst

:3_‘- {87y @ AL TS RN RO 2)“2"1'3]?3‘\3 sa N (5.23)
for 50(2,1) and S0(3) components
Ty ’\;4]"1‘f'l51)~1 8, A0 = (o A s, A, | of Loy Ay s,2,) (5.24)
o Tj°°-] I = <JlT:jo—°—l I > for S0(3,1) components. (5.25)
‘lj-. (93)\ s4J\4|T \a Ap 5050 = Ny M My i, (<)% Y8y =63-5,
=23 =X | P |=2p =ap>  (5.26)

Fote that j _—> jr for the disorete S0(2,1) sories and that J has
to be interpreted as P for the light-like case. Also

Gl el 5y Moty 07 IR D (5.27)
-7 (' et
M Yz M3 a2 P (o s U:‘l';' x

Jomar MT + o+1)
x| T T e )

by weak equivalence.

It is useful to construct overall eigemrstates of fixed Y-parity
rt by taking appropriate linear combinations of the reduced two~particie
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states. (The comneetion of this Y=factor \\ with the signature and the

conventional definition of the intrinsic parity will be given later.)
v
We can treat all p # O poesibilities by using the phase factor (-1)

defined earlier for those Poincaré representations.

Define
Z o A0, = [ap A %) o qny (pal™a™2 [ap- A 4> (5.20
whereupon,
) P~£1-8;
ljﬁ [R3m 2 200 = npna(D) ERTERICRPH I

U MRl PRV WP

"jl'”l*"\l)\z) =Yk Iﬁj‘)*')‘1"e> (5.29)

showing that the state |W.- ) has Y-parity W(= £1) . There is of
course no change for the operation of Viime revereal ™

S qap AAD = [RaIpd A, (5.30)

Fo such elaborate constructicn is nee@ed for the p = O states which
are smtomatically of the corragt types

H':io cip Iy = NP cgerd cp, IOy =y ()T (5032)
5]300'JP-J)- [3gcap >
- P”i-g'—ll _ !!J'-a--l-lz ,-Jod'jﬁJ> .

P(j = o+1) T+ o+1)
(5.32)

Inversely we can of oourase express the basic two-particle states as linear
combinations of parity eigemstates,
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J2lipa X, ) = %-“U"&%}

<)‘3)‘4’sd '>\1>‘2> N %Z. O NISJ" I A Ay Y " (5.33)
ul

with

(As)\d,sm [ M 2z) - <;\1)\2]53'] IV VP (5.34)

by g —invariance and N diagonal by y, invariance,




6. PARTTAL WAVE ANALYSIS OF S-MATRIX ELEMENTS
The main purpose in developing the theory of Poincaré group re-

presentations is the application to partial wave analysis., BEveryone is
femiliar with the ordinary partial wave decomposition of scattering
amplitudes into angular momentum compcnents S(j,E) by using an expansion

in terms of Legendre functions P, or generalizations thereof. However,

it is not always well appreciate&‘ that this analysis has a siraightforward
group theoretic meaning, being precisely the decomposiftion of the S-matrix
into irreducible components of the Poincaré group. Basically, the gquantities
of physical interest contained in an S-matrix element such as, for example,
{pyS3Ny 0,8, A4 Is} P; 8, Ay » P, S, A, P ave the relativistic in-
variants. The isolation of these invariant quantities corresponds, group
theoretically, to the extraction of scalars from a direet product of ir-

reducible representations,

DI @ DY O:b” NER AR

the operator S5 itgelf being a scalar operator. Under the usual procedure

the two-particle in-states, ]pl S; X » Py S, A, , which transform accord-
ing to a direct product representation, are decomposed into a sum of com-
ponents which belong to irreducible representations,ﬁl((l’l + P, )2) A

similar decomposition is made for the out-states, (p3 83 )\3 ’ p4 4/\4l .

Now, the matrix elements of the scalar operator, S , between states whickh
belong to irreducible representations of the Poincaré group are simply
expressible in termsa of a "reduced mairix element". Thus

W b S B b g a0

6({"”’» B B) &y Spep <X WSG, () [ >, (6:1)

where n and n' demote the additional quantwm numbers which are neocessary
to distinguish among the representations @3 which generally ocour in the
decomposition with some multiplioity. Using the Clebsch~Jordan coefficients
whioh were evaluated in Sec. 3 we can express the original matrix element,

T3




(p3 S3 00 7y 54,\4'Slp1 5,0 s Py Sy, ), 1o terms of the invariant
quantities (0 || S(}','p')ﬂh > . It is these quantities whioh are physically
significant.

Having recognized tke group-theoretiéal nature of the problem one can
- immediately cantemplate some generalizations. PFirstly, it is evident that
the techniques for extraoting scalare from products of reprcsentations may
be applied to matrix elements of £ involving any number of particles.
Secendly, they ocan be applied tt_: form factor decompositions where the scalar

operator 3 is replaced by, for example, the veotor iu(Q)' For tfle present,
however, we shall be ocomoerned with yet another generaligzation: one which
exploits the varisty of coupling sohemes between products of four represent-
ationa.

A8 is well known from the theory of angular momentum, tbe procedure
for exiracting invariants is not wmique. Thus it is possible to couple Tbl

» »
firstly with any one of 1)2 ’33 orﬁ4 and secondly to couple tosether the
remaining pair and then extract 'the socalars. There are three such schemes

which we indicate by

(D, D,)H,, x (1); x D:) 1)3*
(D1 X ‘D;) bns X (bz x b:) 32.\,
(b. X b:) Dw' (bz *b:) 323

»
Beyond this, we oould oouple 1)3 to 1)12 to give ]3,,,ana tken extract the
soalars from the produst of L, with b4. This scheme we indicate by

» r
There are many such sohemes. It is of course necessary.that the set of
invariants obtained under ome coupling scheme sho_uld be expressible in

terms of those obtained ‘under any other. The connection is made by means
of recoupling ococefficiemts. The recoupling coefficients of the Poincaré

group are better known as orossing matrices. Some of these will be computed

in a later section.




A problem which should be faced here and which does not arise in
the familiar theory of angular momentum is thai of convergence. The
procedures developed in Sec. 3 for expreseing the product states [pl 8, A

P 82 A? \  in irreducible components was valid only insofar as these

states wore employed specifying square-integrable functions. It is not

clear that, in the applications we shall be making, this condition can

always be met. We shall simply assume that there exists some region in

t+s complex planes of a8 and it where the amplitudes can be expanded in

the relevant irreducidle representations and that this expansion can be
continued to the physical region. This attitude can always be justified

by relating the expansion in question to the well-known partial wave expansion

by means of recoupling coeffiocients.

In the following we smhall deal with only two coupling schemes for

the process I + 223 + 4. Thene are

(6.2)

(I)1 :bz) Dy (:b;;bh') ‘bS\\

and

B, ) b, O, B, (6.3)

of which the fixst corresponds to the well-known partial wave expansion.

In order to apply the formalism of Seo. 3 it is neocessary for us
first to demonstrate the equivalenoe

D) = Diw) (6.4)

This follows with the help of tho equivalence between the 80(3) represent—
ations pd and Dd y Vis., i

bl @)" - S TN (TRt (6.5)



i o+
We can set up a correspondence betwean the basis veotors of I}f(mz) and

those ofj)f(mz). Since for ﬂ)f_(mz) we have

[pird> — et} |Ap§¥> DL (R, p>o0 (6-6)
)’
then for'bf(mz )* we must have
_ i e ® *
‘[?1A>*—*Q‘P“>A_:|/\PJA> D, (R, 4 >0 . (6.7)
Defining a new get of basis vectors by
[ -pi-2>'= [pIT (6.8)
it follows that the transformation becomes
Ii}j)?“""? QLPQZIA?".X’SD;)(R) , 'ﬂ’(o (6.9)
il
which is oharacteristio ofbi(nz). Thus the equivalence is proved.

Consider now the ooupling soheme ( 7.2). We choose the reference frame
such that Py +Py = Py + p4 is aligned with the time axis and all momenta

are contained in the 0 1 3 subspace. Specifically we choose

p, = m(ohX, , shX, sinf, O, shot, cos § ')
P, = n.i,(ohc(a s —shet, ind, 0 , -sho(, cos8 )
Py = my(ohety o ,0, ehot, )
Py ||14(t'.1h0(4 y =+ O s O, -Ihﬁ‘ ) {(6.10)

where the angles satisfy the conditions
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oy cho(l-a-mz chof, = my oho(3+m4 oho(4 = /5

m, sho, - m, ahofa = oy sdm(3 ~m, sho(4 = 0 (6.11)
whioh are solwved by
A 1 t 2 ul-f H!l
ctmi-m S - My + my S+~ Y7y
chot; = ———=, chd, = s chty = = —2—*, c‘m{‘l 2m, 2m 5
1 2“""5 . :lm,_ s zm E
(6.12)

The angle §is fixed in terms of the momentun tranafer, t, by

. 2 2 2
t = (P1 - 93) =y = 2 my m3(ch°l1 ohol3 - shptl ahor3 cos P ) + my
(6.13)

€0 that
(s+mi-m,) (s+my-m)- 25 (t - >~ m )
[((sm -my)- l,m,‘s) ((s+m3- ‘) g™ 5)]

With the momenta (7.10) we can oxhibit tho decompositions of the in- and
out~gtates regpectively as. '

“’,Sﬂ\n?‘s)\> = [ Z(z,n)‘)\, ) P]A> d,” J‘(9) (6.15)
#FINM A

(6.14)

& . A
<‘P353-x31?.,5,‘)\,‘ = Z (21‘“) (J\,k‘t;'fajls—)«,‘_\ (6.16)
A LY

where we have left implicit some of the invariants, m i S'l, mg By9 eee otc.,
showing only the important mmbors Ay )\ and )\ )\4 which - themselves
invariant - serve to enumerate the uu.ltipl:.oity w:lth which the represent-
ation appoars o decompos on x an L respeotively.
tion B in the d ition of % x DPana H*x D ti
The total four-momentum of the resulting states is denoted by



5= {5 0, 0, 0) . (6.17)

Defining the matrix elements of the T operator by extracting the
four-momentum conserving &-function from S-1, we have,since T is a
scalar operator,

< .“‘lx,-"l),\.“',\ -
AS)\.’P] 12 ) P} >
, (6.18)

1
A 3}:1

=&, ONJTADIA A,

i) dy

where the reducsed matrix element, ()\3 A,,'TJ(S’I A| Az ) y iB @
Poincaré invariant. From (7.15), (7.16) and (7.17) we obtain the required

decomposition
+ +
(?353).3,1a,,s,rm‘|Tlp‘s,,\,.p;szAJ =
. i J
-3 G o Te oy O

3
12M
wvhere M denotes the maximum of l). "Azland llj-h.j .

(6.19)

Consider the ooupling soheme (7.3). This can be dealt with in a
similar faghion to (7.2) if we exploit the squivalence (7.4) to define
& "trangposed” T operator by '

<Py Sy s, ﬂs*k’,T,.hs,A,,hS, A > B (6.20)

\ . .
= () Epso, .p,s,,x‘, Tlf,s,l,,-p,s,x,>(-)” M

-~

The states between which T is sandwiched transform according to the
Trepresentations I)f‘( m:_)*(@ j)i‘ (Mt )* and :bf_‘(m H® I)f’ ( mf,) and

our problem is to expreses them as sums of irreducible components. This
problem differs from the previous ome in that the deocomposition of ,I)+@ D
contains more than one type of irreducible representation, The invariant

=18




"total mass?' of these states, t = (p1 - p3)2 = (p4 - p2)2 can range from

2
~00 up to the lesesr of (m1 - m3) and (m2 - m4)2. Since the represent-

ations appropriate to t » 0, t = 0 and t ¢ O are entirely different, there

will result digtinct types of expansion for those ranges of t. Tt will

be necessary to impose some continuity requiremenis at t = O where these

ranges merge.
Taking the case t { O we choose the reference frame such that all
momenta lie in the O 1 3 subspace with p, - Py =1 - P, aligned with the

three-axis. Specifically we ohoose

p, = my(ch Y, ohf , oh¥, sbf , 0, shY¥,)
P, = mz(ow2 ' o sy O, ah])'e)
Py = m3(oh1{3 ch f , chY3 ah(e. y O, sh'(3)
p, = my(ch ¥, p o » 0, 8hY,) (6.21)

where the angles satisfy the conditions
m, :_:h}{l - my qh‘_{3 -m, th4 -m, ohY, =0

L BbYy =~ my shYy =m, shY, -m, shY, = /< >0 (6.22)

which are solved by

_ -t-'n:'+|"; ‘t-lﬂ:;+"\: 1- M, -Ha ‘ -t'h{}».{
ShYI 2‘“1 ﬁ. J ] Sh"l-‘ l‘FE—_ y Sl.yj - ————— m J__ ) SLY = --i—’-‘T;;EE_—

(6.23)

The angle @ is fixed in terms of the energy, s , by
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5 - (‘P,*P:)z - oaamm, (d.y' ch¥, chf -shY1 slnxz) +m, (6.24)

80 that
(= e +t) (m,- m, -t) - 2t(S-m;~ m.)

‘ RN (6.25)
[((m;_‘ m:+t)l- n,.‘tt) (u;- n.'l‘-t) - t)]i’

ch@ =

Accoxding to the fomulae of Sec. 3 the product states with momenta definecd
by (7.21) decomposes respectively as

I‘P,S,M,-?, S,"A3>— a )_—-_ | (’-jfi)la1sk,;‘i;j))d:;\'_'\;(@) +
L 4ioo ~I-Asl6 §€ -1 (6.26)
. 1j+1 - 3
+§ g tan A B0y by, @)
. - -4
2'?1 CRLTER RN B Z (zj“) O*A'r-;%jhfha | ¥
PRI (6.27)
-fato0

B hiha, |
+ dj tMtJ k). ﬁ;?j (Y 2
' where the superscript (-) on the states (7.26) and (7.27) indicates that
they are defined relative to the = type boosts of Sec, 2 and the appearance

" in (T.26) of the digorete representations dJ* or a9~ is*determined by the
sign of )\1 - A 3 e The "total'Pour-momentum is denoted by

3=(0,0,0.J:?5 (6.28)
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Since T is a scalar operatnr we have the resuls

X PINTTIN A B =
y Tam ¥4 i (6.29)
= §({-1{)dy» 7j+ 1 02?‘#" Ty ”‘)\')‘3 ?
for the principal meries components with analogous expressions for the
disorete components. Putting together (T7.28), (7.27), (7.29) and (7.20)

we obtain the decomposition for t { O,
<P" Sy Ay P'ts'tkh 'T' P15 A Pse A, > =
Sy= A
= (-) LI [

L +ico .
. 25*" j‘ { 5;"‘3
+ gdj o} OANTO NN XY d:;*p*rh(@J “
-t _ . (6.30)

(240 O BTN di;.za,z.-x,(@*

-HE

In order to compare the two decompositioms (7.19) and (7.30) it
is necessary to apply a Lorentz iransformation to (7.30) so as to carry
i+ from the brick wall frame specified by (7.21) to the centre-of- mass
frame specified by (7.10) and then to transform from ‘the ~type states to

the +type by applying the spineroarrangement faotors of Sec. 2.

Consider next the ocase, t = O, There are two possibilities, firatly
By = Wy and m, = m4 in which case ¢t = O implies P = p3 =a.mi Py = p4 or,
seoondly, m, £ m, and s, ;‘ n, in which case ¢ = 0 implies that P - Py =
- Py = P, is lightlike. Taking first the lightlike case we choose the
frame such that

[ N
p, = ml(th' +§- e_x‘, -Ee_x1, o, SL'X, +§ e-K,)

P, = mz(ch‘xv o , 0 \ thz) .
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i

T
X -3
m3(oh')(5+-§ e, 0, shX; + ‘5‘ e )

py = my(onX, , 0 , 0, si\Xi) (6.31)

where the angles satiafy the comditiona
m, ohX, - my chX ~u, chx -m, thz - D

n lihxl---n3 'hX3'“4 thx‘--zlbxz- @ (6.32)

where @ jis an arbitrary parameter (positive when m> my , m,> m,
and negative when m,<{ m, , l2<l4). These angles are given in terms of co

by

, «melo wmi 1 1
X, M-y A Mo Y, (Mo Xy _ Mo,
e - z'm"_, r @ = Zm..w r L. lm’(\) y € L 2 1m*w
(6.33)
'.I'lnangleg ig fived in tems of s by
) (plqspz)z - .i 42w, ch(xl -Xz) + mg + 52 n, m,e -(XI+X2)
' (6.34)
po that
S ' ‘e 2
El b ‘( n - z) l( m,:—m)
(Z,') T wy) (n- ) ST\l - my el Wy, =, (6.35)

According to the formulae of Sec. 3 the produot states with momenta defined
by (7.31) decowpose respectively as,
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(-]

Ir?#s}xi ' "FZS}-AS')“ - g (dff')«‘)\s N ‘E?J\) d:’f:'-l’ (E) , (6.36)

and
ot

2" P52y, 'P;,SQAL , = Y dl’l <‘\1AU‘ f’ 2% i

where the supersoript (O) an the states (7.36) end (7.37) indicates that
thoy are defined relative to the O-type boosts of Bec. 2. The "fotal"
four-momentum is defined by

(6.37)

pe(@,0,0,0) (6.38)

~

Since T is a soalar operator we have the result

Ohs Be N [T ppay = 8(p-2") 4y, AN D (6.39)

Putting together (7.36), (7.37), (7.39) and (7.20) we obtain the decomposition
for t = 0’

[y . ) o
<P~"53&-’" Pbstatl T l‘h% Aes B Se l,) -
o € f s
= o Ydpt 77| R.*ﬁdhﬁ,.x.-h(ﬁ) N (6.40)
/]
and, using the explioit form ( ) for d'b thig beocomes,

<’P353J‘3' ‘p“s‘a\}l 7| PSA o Bs, N =

L, "
- 0" Lag A ITIINNY T PYR) 7 (68)

where E/“ is to be expressed in terms of s by {7.35). Again it would be
necassary to apply the appropriate rearrangement matrices and Lorentz
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transformation in order to compare this with the other expressians.

The other important case at ¥ = O arises whan my, = by and
o, = u4 (i.0. elastic forward scattering). dere the momentum transfer

38 null and we can choose the frame such that

Py = Py = M chc /2, 0, 0, shox /2 )

(6.42)
92'1’4'3( chv /2, 0, O, "h"lz )
It is just the brick wall frame. The angle & ia given by
s =M +2Mmoht +m° (6.43)
The product states deocompose raspacﬂvaly ag
3¢5
H
lPi S; % "R Sy "> [ 2: Y“(L’)[
Telnn-sy) ge-3 o
(6.44)

|35 A a",(‘) <n|s.a..s,-,\ )

By, J T

‘('Rg"*z'ﬂ5~kt| = [ [ Y do(f,-o") ‘}J; :‘ (6.45)

Thes BT i3
PlseA [ TAY 4% (@) CT; g |

For the scalar operator T we have

T ex |37 4o id> = by %ﬂl by oo TN

Y .
- . s s «I o . H L m--uu-vu o4
. - . ' % T Ty S . - .- .onw-o#




Hence the decomposition for + = O (aull) is given by

y +
<P3 S50, qul,.)ul.r "P. SAr s =

Tm teo ) 'éﬂ' (6.47)
- ( do(jz-o) T IT¥T>
J J ' jo= _]l\\ °

S | S, TAD d;‘:’; () CTA, % | 53>

whore Jm denotes the lesser of J amd J',

Finally we take the 0<% < (11.1--113)2 (o:- (m4—mz)2). The reference
frame oan be chosen so that plup3=p4—p2 is aligned with the zZero-axis.

In this frame the momenta are given by

p, = n,{ohol, , shX, sind , O, aho(l cosf )

p, = my(chd, 4 0 » 0, ¥, )

Py = m3(ohlx3 » 8hXy sin® , 0, ahot3 cos @ )
D, = m4(chbl4 . 0 y O, shot , ) (6.48)
where the angles satisfy the conditions

m, ch¥

1 1~ " oh?{B-m4ch0(4—m2 ohwz-tﬁ

m, shotl - m3 nho(3 - n4 ahtx4 -m, sh0(2 . (6.49)

’

which are solved by

t4 -y -tnn:-m: Y ey t+| -

d'd1 2m, 4t dw‘ zm, JE ] chdly = 2my [T d‘ :J_m Jt
.
{6.50)




The angle 8 is fixed in terms of the energy s by

2 2 2
o = (p,+p,)" =m] + 2 m m,(ch¥, ch, ~ sk, sh¥, cos ) + m (6.51)

go that
(m)- ) ™ - m~t) - 2t (s-m-w)

. (6.52)
[((u\ my +t) -yt V) (wi-m -t) - :,mt)]"

cosf =

The product states decomposs respeotively as

llp.s, W B S = [(:,n)[hx,,”;)d“ A{) (6.53)

<"ﬁs"'A;’ ks‘ l" - Z(zj"'j (k, A"; ii*,")ll ‘ (6054)
i

j whore the "total" four-momentum iz given by
;"(Rrotovo) {6.55)
'Phus we get the decomposition for % >0,
(‘P,S,A, ’ ﬁs‘l‘ 'T' LRI A S, M)‘? =
_ _&-MZ : e ; S
() : (1]‘&?)'()1“'1. ‘,llx'x-‘)d),-l,.x.-).,(e) (,)3 3

| ! (6.56)
This ocompletes the treatment of the ooupling soheme (7.3).




Let ug summarize the formulze go far obtained and refer them all

to bases defined with +type boosis. (The + will therefore be omitted)

4 5 S o 3, ¥ +
1) Conventional coupling (12; 12:2.1),; ll.).t’ 12; me :

<f’sA5 ITI{’,R,,PA = jY(zj”)<kl)\'o” (5)HAA 7d )\3)\ XA, 6
M

Moo= wax( AN, INN]D

(st — ) (St m) 25(t-m=m)
[(s—m -m ) gm?s ((s-un’ m f—qmss)}

FrametP1+P2‘P3+P4"(J;r0!0!0)

2) Crossed ooupling (Qst' I)f,) Dy ID?H)? *) I):; 3

Pour cases must be distinguished according to the value of
2 2
t=(p - p3) - (p4 - P,)°« These are

(a) Timelikes 0 < t £ min ((m - m3)2 y (m -m )2)

< h|1—|f,a BAD = O ) e AN TBIN, W Y Aok
j2M

""-= Mﬂl(lkl‘hjl ||A5- hl')
((,.n m3 +£) - ymit) - 2t (5-wy- 2)

wh = Ao

[t e t) (- - -ty mt)
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(b) Lightlikes t = O and m7m,, m,>m, (or m, < my m4<m2)

AT R A = ) & () 0T (F) OF
MMy
gdf’ (‘\zxu"T ")‘ As? +A‘-p A (PV@)

1
i !} _ 1 !i— M: 1 '“T " ms \
‘_2_) - (“‘:'”‘;"(—“‘i' ) [S ™ (' + wi- n" )_"'z. (l L m'

4

) [ 3
M"-— h; E 1 M - My

&Y=i'." 1-(:'_2% (w E;) w fﬂlf,';; 1-(_,1;;_.‘::_)’(54&5-;)

Frame: pl-p3-n4-pz-(u.0.°.w)

2

(o)lulht-Oand-l-l -l,l4 n, =n

qt)‘sf:.);,'flh" P = Z g Sdc(jo a*) <) "T" [7> x

s\ lar T2 457 0 (s lsin)

[si-55 ¢ T € 5,45 ond |sy-5] ¢ 77 ¢ sy45,
:_'- win (3 , 3
o 80 o n?
21

Framot r1+P2‘l'3+P4‘(ﬁl°!°’°)

s

. - ) o “' ‘_”__ .
e e neegp o Rt R (N JE:‘I-"!:I M




(d) Spacelikes t {0

\?5A}‘P'1 §,TIP1 TPA ) [ d) @1} [_)sl-fu“! d;:)'(’@) {_)s.-)«z x

:“l}“!
- it §t
» [_Z{jw (2js0 O T A d,\ e, (O
i 15& J
¥ S 4§ £ o OXATHB I dA -y _,.,(@)}
-t

M= mm (IP--"}‘:!l - xal)

_ (- o 2) (b - - t) -2t (s-mi- )
o ([ R amee) (- er-ange)]©

tom @, - “'"F . . @, = uXad th

m, mft

Frameti pl-pj-p4-p2-(0,0;0-ﬁ)-

{(In this decomposition the disorete representation ad+ appears when both
J‘-
Ay = Ay and gy - py ave positive while d¥  appears whenm both )\1 - Az

and » - Py are nagative, These are the only situations in whioh the
disorete representations can contribute.)

It remains only to transforw all of theae expreesions (a)...(d)
to a oommon frame of reference following normal oonvention,for exampls,
to the oentre-of-mass frame,
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