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INTRODUCTION

The inhoroogeneous Lorentz group in Wigner's classification possesses

essentially four distinct classes of unitary representations; these are

(A) Timelike representations p > O % (little group S0(3)).

(B) Spacelike representations p < 0 j (little group S0(2,l)).

(C) Lightlike representations p « 0 (little group t? x 0(2)).

(D) Null representations p - 0 t p^ «• 0 (little group S0(3,l)).

In the conventional harmonic (partial wave) analysis of scattering prob-

lems the significance of using time-liks representations is well appreciated.
2

For a fixed time-like vector - total c m . energy squared, s - p > 0 -

an expansion of the (two-body) amplitude F(af6) is made in the associated

angle

whioh is the parameter occurring in the representation theory of the appropriate

little group S0(3)j apeoifioally the expansion employs the complete set of

rotation functions d ^ (0) which correspond to the unitary representations

of S0(3).

Less well appreciated has till recently been the use of the other

representations (B), (C) and (D). Through the work of Joos, Toller and

Sertorio and Hadjioannou, since 1964* it has come to be realised that if

tho:(spaoelike) momentum transfer t 0 is held fixed, a partial wave analy-

sis of the same amplitude F( tt) can be made in the associated (hyperbolio)angle

the expansion employing unitary representations of the corresponding non-

compact little group SO(2,l). Specifically it uses functions d

with J complex of the form J « •£ + ip,-<*» <f><oo. The great merit of this

expansion is the direct -passage it provides to complex angular momenta.

Its use supplants completely the oumbersome conventional three-steps

procedure for passing to complex J representations which uses S0(3) partial

wave analysis in the crossed channel, mak&s a Sommerfeld—Ifatson transform

and then finally oontinues analytically to physical s and t values.



When momentum transfer vanishes i t i s clear from the above that tho
natural group-theoretic procedure for a partial wave analysis should employ
representations (C) and (D). POT the unequal mass case,4s shown in what
follows, the appropriate expansion functions for case (C) turn out to
be the Beaael functions J^_x |,2j>v-t (m - JK )" J . For forward scatter-
ing of equal-mass particles, not only does the momentum transfer vanish
(p m 0), but also each component of p̂  •• 0. The l i t t l e group - the
invarianoe group of the S-matrix - in this exceptional case is the
homogeneous Lorentz group S0(3»l) i t se l f - a much larger structure than
S0(3). Corresponding to this larger symmetry, the principal unitary re-
presentations of 30(3,1) are labelled not by just one quantum number J,
but by two numbers, one disorete label ( j ) and one oontinuous pure imag-
inary number (T, -teo<Cr < too . The corresponding representation functions

2 2
"^ )• Qroup thflOIy would

speoify a partial wave expansion for forward scattering in terns of those
funotions. Daing these, wo pass onoe again directly to the complex
cr-plane - the variable <r now taking over and generalising the role of
complex J. This or-plane was introduced into the subject by Toller*) in 1965»
who notedthat i f theBeggB hypothesis of poles in the oooplex J plane Is
carried over to the complex tr—plane, to one (T-pole there corresponds an
entire family of integrally spaced J-poles - a result foreshadowed earlier
in the works of Gribcnr, Volkov, Domokos and 3uranyi and rediscovered by
Treednan and Vang in oonneotion with situations involving l ight-l ike re-
presentations ( 0 ) .

The present artiela (Part I ) i» an attaapt at a aystematio and se l f -
oontained presentation of the croup tfaaoretio Wwia of harmonie analysis
using the four types of representations*^A), (B), ( C ) and (D). In Part II we
extend these results | in particular we show how an expansion of the ampli-

*) All expansions (B), (C) and (D) apply to square integrable functions.

In Part II we show how one oirbumvents this limitation.

**) To our knowledge representations for olasa (c) have not been previously

studied.
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tude may be carried through, usinc tbe functions D'° ,...• , not or]y

in the forward direction but for all momentum transfers and for all

values of hclicity flip. This type of expansion,with its nav separation

of the kineraatioal factors, will allow a more systematic use of analyt-

icity in the O"-plane for all processes at all momentum transfers,

possibly giving a further insight into what may be learnt from a

deeper analysis of the Poincare group.

, The material in this paper ia going to be issued in two parts. The con-

tents of the first part are in the nature of a review and .are indioated

on the next page. This part essentially covers the basis of the group

Theoretic approach. The second paxx wxli deal with generalizations, a

study of the complex Cr-plane and applications. The authors would welcome

suggestions for improvement of the material.
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1, THE UHITARY HEPHESENTATIGFS OP THS P0IBCAH2 ORODP

Definitions and general discussion

The orthogonal transformations of space-time together with the

translations comprise t ie Poinoare group j » The slamentB of this
group take the form

where A^v s a t i s f i e s the orthogonality conditions

Throughout t h i s paper ve use the summation convention A« B^ -

1Q BQ - A^ ^ - Ag Bg - A3 B^ . The metrio tensor, gAV » takes the

diagonal form (+ - - - ) • All quanti t ies appearing in ( 1 . 1 ) and ( 1 . 2 )

are r e a l .

We are oonoemed with properties of the unitary representations

of Y denoted by

vnere U 1B an operator -valued funotlon at a^ and • A^¥ Batisfying

U+U • UlT « 1.

The auooessive applloation of tvo transfoxmatiaoa

V

the basic requirement

''X) d.4)

The infinitesimal transforaations of this 10-parameter group

nay he represented in the fora

- 2 -



where ft and €„„ ** - ^f- denote infinitesimal quantities. The
hennitian generators P^ and J^y which determine the entire
representation satisfy the algebra,

TheBe commutation relations whioh can be deduced* from (l«4) and
(1,5) assure, in particular, that under f inite homogeneous trans-
formations of the group F» and J^.^ transform respectively as a

and an antisymmetric tensor,

U(A) c

For example, oorroapondinff to the spaoe rotation,

X ^ X , COS* - X

•n have, through integrating the corresponding infinitesimal trans-

* A simple way to derive the commutation rules is to write (1*4)

in the form

S(A-m*',A')U[A) „ U(A-Vr A*'A'A)

Kaking (a*, A 1 ) oorrespond to an infinitesimal transformation

and comparing first order terms yields immediately the relations

(1.7)* Taking A infinitesimal in these equations gives the second

and 4hird lines of (1 -£)• The first line of (1.6) is obtained

by the same method.

-3-



formation, the operator exp[-itx J 1 2 1 and, therefore

^ e " » "** " ? iWlOt ft
I1

- | O ( J | L -O •

Similarly, oorreaponding to the pure Lorents transformation,

v
(1.10)

vs hare the operator eatp[-le(JQ*) and, therefore

Relations of this sort will be used repeatedly in the following,

The prinoipal Oaaimlr operators of T are the tiro invariants

where

The vector V^ has the tiseful property of bein^ translation in -

variant,
Oju , Wv] = 0 (1.14)

The operators F and w do not alitaya provide a complete
2

speoif ioation of the' irreduai'ble representations* When m •£ 0
several different types of representation are possible. Before
going on to their olaseifioation we ooneider some general proper-
t ies of the representations of

-4 -
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For the construction of representations ve follow the method

of tfigner. It is advantageous to labelt in part, the basis -rectors

of a representation by the eigenvalues, p« « of the Casimir operators

of the translation subgroup

vhere X denotes those remaining labels vhioh are necessary for a

oomplete speoif ication. In view of the veotor behaviour of |^

noted above (1.7), ire see that under a homogeneous transformation*

A * the basis vectors must transform according to a relation of

the form

vhioh simply states that the transformed state must be an eigen-

Btate of momentum with eigenvalue p» - A^yPy • To evaluate the

coeffioientB Cy* it la necessary to fix* in B O M conventional

fashion, the definition of the basis vectors. This is done most

direotly by meana of the figner "boosts".

l e t u« denote by I. a 3-paraneter family of Lorents trans-
formations t the boost a. The boost L transforms a given momentun

A *
vector p - vhioh we take as a standard - iato p^ ,

There are various alternative speoifioations of the function L
vhioh axe useful in different oixoiauitanoaa. They are discussed
in Seo- 2.

i

Sincet in an irreducible representation, i t i s by definition
possible to obtain taaj vector in the representation spaoe by apply-
ing appropriate transformations of the group to a fixed one, ve
can formally define the p-Aepeadenoe of the basis by

\f,x>

-5-



A

There is a subgroup, G , of the homogeneous group SO(3,lj

which leaves invariant the manifold of states with p • p . This

is called the little group. Thus if we define 0 as the set of

transformations E ^ v satisfying

then i t follows from (1.*) that

and it i s implied that the coefficients Cu\ must belong to a re-
presentation of the l i t t l e group 0 f

It i s now a simple matter to show that the transformation £(p,/ \ )
defined for. each p sad A by

AL^ = lA? K(f,A) (1.22)

A

ia oontalned in 0 t i . e . ,

This means that

- UML )̂ I f

- 6 -



or

l
The coefficients C. introduced in (1.16) are thus identified with

matrix elements of a representation of the little group. Moreover,

the unitarity and irreduoibility of U.(/Ois tied to that of D(R).

Firstly, unitarity is guaranteed by the invariance of the

(positive) sum over states

and this follows if

i.e.t from the unitarity of D . Obviously the converse also is

true*

Secondly, if U(A) is reducible then so is D ( H ) (provided
p

of oourse that p takes only one value in the representation •
apaoe). This follows sinoe a i s a subgroup of SO(3,l). On the
other hand, i f D(R) i s reducible, i t i s possible to divide the
states jp,*-^ into two or more sets which do not mix under
Lorents transfoxmationa, i . e . t U(A ) also i s irreducible. I t
would be a simple matter to spell out in detail proofs for these
olaims. However, we do not do this but merely state the basic
theoremt

The representation of K carried by the states
le unitary and irreducible i f and only i f

( i ) the wass' p i s unique, and

( i i ) the associated l i t t l e group representation R-»D(H)
1B unitary and irreducible.

So far our Lorents group i n c i t e s only the so-called proper,
oxthochronous transformations* Spaoe and time refleotionB will
be dealt with separately at a later stage.



2. CLASSIFICATION OP IHHEDUCI3LE HEPRESEMTATIONS.

A oonssquence of the theorem s ta ted in Sea. 1 i s t ha t the un i t a ry

represen ta t ions of r can be c l a s s i f i e d by means of the u n i t a r y

represen ta t ions of the l i t t l e groups with whioh they correspond.

There are four d i s t i n c t types of l i t t l e group whioh apply accord-

ingly as P 2 > 0 , P 2 < 0 , P 2 « 0 or P^ = 0 which ire s h a l l r e f e r

to r e spec t ive ly as the t ime l i ke , apace l ike , l i g h t l i k e and n u l l

oases . This sec t ion i s devoted p r imar i ly to the cons t ruc t ion of

complete orthogonal b a s i s systems fo r the rep resen ta t ions of j .

In the course of doing t h i s we sha l l have to d i scuss the l i t t l e

groups and the ir representations as they arise*

Following the procedure outlined in S e c 1 we d iagonal ize the
4-ttomentum F^ in addition t o the basio invariants P 2 and V2

whioh of oourse must be pure numbers in any irreducible represent-
at ion. In an irreduoible representation any veotor can be ca r r i ed .

into any other by applying a motion of the group. To begin withy

the vectors with arbitrary 4-momentum p« can be obtained from a

given one with fixed 4-momentum p , the "standard momentum". -
Moreover, a l l veotors with momentum p oan be obtained from the
given one by applying transformations of the l i t t l e group G since
these are the only motions whloh leave p unchanged. Evidently,
then, the representation of G contained in the irreducible r e -
presentation of J must i t s e l f be irreduoible . We shal l denote
the basis veotors of t h i s irreduoible representation by Jp j A ^
or, in the case p - 0 , by 1 p p A > where j and p label

a t ' f

in question and X serves to different-
iate the individual basis veotors. Since, by the basio theorem of Sao.
1. the irreduoible representations of J sad 0 are correlated, .
i t mist be that j and p are Poinoarfi invariants. In faot,
as we shall show for e'aoh case considered below, V2 * -p j( j + l )
for p f 0 and JT « - o for p « 0 . The remaining label,
X f i s not generally invariant. We find*it convenient to

associate i t always with J12 , i . e . t

- 8 -



(2 .1 )

2 2
O a d f>

2 2 \
It happens, howeverf that when p •» O and f> — 0 then -A has
Invariant significance, namely

W j f 0 X > * A ^ J f OX > , f f • « • ( 2 -2 )

Generally, then, we have the struoture

> (2.3)

so that, under an arbitrary motion of the group J

A

where R . belongs to the appropriate 0 « The precise choice of
boost L depends upon what applications are to be made. We shall

P 2 2 2 \
discuss for eaoh type of pA ( p > O , p < O , p - 0 ) three
different choices of L which serve to diagonaliae one of ffQ ,
IT, or w . o - ^x * *^ba n u l 1 case* p« • 0 t i s logically dist inct
since no L i s defined for i t and we shall have to consider i t
separately*

firstlyf. however• we deal with the subapaoes p • p and the
l i t t l e group representations contained therein.

( O TineliJce case, p > 0

For the standard momentum i t i s always possible to take

£ * (± yj? , 0 , O , 0 ) (2.6)

where the sign of pQ i s invariant* There i s no transformation
in Y irhioh oan reverse the sign of pQ when p2 > 0 . Such

- 9 -



improper transformations belong to the "extended" group which will

be oonsidered separately later.

When acting in .the subspace p = p the components of W^

reduoe to the form

W^ . ± ( o , Ja, J3, , TJfiT (2.6)

wbioh means that the l i t t l e group 0 i s in th i s case generated by

**2̂  • *^l ' ^12' w l l i c l 1 obey the commutation rules

(2-7)

ao that 0 i s simply the ire Unknown rotation group S0(3)« The
irreducible representations of J are therefore characterized by

corresponding to the representations D^ of 30(3) with

j = 0t t , 1 , ,.. , (2.9)

The representations corresponding to half-integer values of j
axe at course 2-valued.

( i i ) Spaoelike case p < 0

For the standard momentum we can take

= (0, 0, 0, fy ) (2.10)

-10-



where the root 1B positive. The sign of p, has no invariant
A

significance* When acting in the sub space p •* p the components

of Wb reduce to the form

wM = c J a , *lo, xo , t o ) / 7 " • (2
A

whioh means that the l i t t l e group 0 is in this oaae generated by
J12 ' J20 a n d JO1* w l l i o h Obey the oommutation rules

J " A ^oi

- " l J>i (2-12)

so that 0 becomes the nan-ooapaot rotation group S0(2,l). Tie
irreducible represftntations of S are oharacteriaed as before by

(2.13)

corresponding to the representations D3 of SO(2,l). In this

oaset however, the possible values of j are quite different

from (2.9), It iB usual to group the unitary representations

of 30(2,1) into four distinct familiesi

(a) Principal series

< 00 (2.14)

These representations atra a l l infinite-dimensional with X taking

a l l integer values or al l half—integer values between — oo and + oO«

X * 0, f i , t 2, . . .

-11-
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Strictly speaking there are additional many-valued representations

with A taking fractional values. We are in effeot restricting

ourselves to the one-valued representations of SU(l,l). Another

point to note is that the representations D"* and D"**"" are

weakly equivalent. This will be made olear in Sec. 4»

where the structure of these representations is discussed in some

detail.

(b) Supplementary aeriee

(pO (2.16)

These representations also are infinite-dimensional with A taking

all integer values,

A • 0, t1 , 12> •-. (2.17)

(o) Discrete peri.es

} • r i - , - 1 , - f , ... (a. i « )

These axe semi-infinite of two types depending on the sign of X ,

: A > - j , - j t - 1 j - j + * > , . . . ( 2 . 1 9 )

: A . j , j - i , j - . j , , . . . ( 2 . 2 0 )

(d) Soalar representation

} = 0 (2.21)

This is the only finite-dimensional unitary representation of

1,1) , A - 0 .

(Hi) Lightlike oase p 2 - 0

For the standard momentum we oan take

-12-



(2.22)

•whore CJ ia arbitrary up to sign. As for the timeliie oase there

is an invariant distinction between «J > 0 and fc> < 0 . When aoting

on the subspace p - p the components of ¥•* reduce to the "form

/L \> \ » , , l t W (2.23)

where

1 'S (2.24)

A

The group Q is generated in this oase by J12 f TT^ and

vhiob. obey the oommttation*rules:

ir,

[TT, , TT, ] =

so that 0 becomes the Euclidean group in two dimensions,

30(2) A T ( 2 ) . The irreducible representations of Y are

oharaoterieed by

- p l > >

corresponding to the representation Tfr of 30(2) A l ( 2 ) . The

parameter a is of course a Poinoare invariant while the little

group Casimir (/) /&>} is not. This simply reflects the faot

that our standard momentum p was not specified in terms of

- 1 3 -



invariants as was the case in ( i ) and (±i)» There i s in fact a
1-parameter group of transformations - the Lorentz transformations
in the 03-plane - which preserves the form of (2*22)* Thus

voile

^ + i r ; ) e l i ; I ' > . <r*ar*+nt) <2-28>
ao that the product

* Ĉ t + %) • invariant. (2.29)

ualtary representationa of S0(2) A T(2) oan be grouped into
two fanillaai

aerioa. I* '•

p ; p « 0 (2.30)

Tbaao rapxesantationa axe infiaita-dlaansional with X taking all
integer values or a l l half-iateger Talus • batvaan - oo and + oa ,

X « 0 , t 1 » * « » . »
or

> t i ... (2.31)

eeriea, D°X

Mffcosentationa are l-dimenaicnaX a»4 oarxeapond to

/» • 0 . (2.32)

Evidently tn this oase ve have TT£ - Tfg - 0 BO that the algebra
reduces to J 1 2 ^^oh beoomes the Casimlr operator. Setting

-14-
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Tf » "IT2 - 0 in (2.23) gives the relation

(2.33)

and the oquality

W^ = > ? M (2.34)

is evidently Poinoaxe oovariant thus exhibiting A as a Casimir

invariant* To eaoh integer or half-integer value of A there

corresponds an irreducible representation D° ,

^ = °> t i » t 1 . ••• (2.35)

(iv) Hull oase p, • 0

Here the representations of the PotnoajSe group coincide with

those of the homogeneous Lorenta group « There is no standard

momentum in this oase and the l i t t l e group 0 becomes 30(3»l)

generated by the six J v . There are tiro invariants ;

J- T J . "* *

TXp « 2ij o < T (2.37)

It is possible to label a complete set of basis veotors^ j 40 <?* * ^}
with two additional quantum numbers j and A defined by

(2.38,

The unitary irreducible representations D'V* of S0(3»l) come in

two series, both infinite-dimensionalt

-15-



(a) Principal aeries

Re (<r) . 0 - to < Li* (a) < e>0
(2.40)

o - 0 , Z , 1 , . . .

j and J( taking the values

(b) Supplementary series

0 < Rt(<r) < 1 , Jjufor) r 0 (2.42)

with J and A takiMg th» valuta

1 (2.44)

I t irill be ehaftm in Sec. 4r whoxe these representatioas
axv dlvouaaad more fully, that the reprasentatioas D**^ and
JJ—3O™°" are weakly equivalent.

To summarise the discussion so far, «e have found the
following classes of unitary irreducible representations of the
Poinoare groupt

(i) Tlaelilw

-16-
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(11) Spaoalike

fr f<0 , fa j = '<*>

< 0 , H»* j « 0 (Supplementary)

j . 0 (Scalar)

, t 1> ^ * i > - ^ *i-» " • (discrete)

(ill) Lllhtlito

(iv)

0< Re («^ < 1 ,

(Principal)

, i « 0 (Supplementary)

Consider now the problem of defining the functional form of

the boost matrices L • It is desired, firstly, that the
P

variable B in L provide a suitable parame t rieat ion of the "mass-
P

shell" or orbit of p . Since

( 2 - 4 5 )

we require that

( 2 - 4 6 )

-17-



that is,

|V= t

(2.47)

Seoondly, it is desired that L be suoh as to diagonalize

one of the operators ¥- , W, or H Q - W, . It turns out that

this requirement is set by constructing L as the product of a

LorentB transformation in the 03-plane with transformations

belonging to one of the little groups 30(3), S0(2tl) or SO(2)/\T(2).

This structure will prove advantageous when we oome to the problem

of deoanposing products of irreducible representations* We shall

therefore define three distinct boost funoticns, It̂  , h~ aaA. 1 «

employing operations drawn, x&speotivaly, fvon 30(3), 30(2,1) and

90(2)Af(2)« They are

(2.48)

or

did

(2.49)

s «
-i (2. 50)

-18-



o r

e" " e

(2.51)

(2. 52)

or

O

/
(2. 53)

Thus we have the following parametrisationei

(i) Time like case p g> 0

, shoe cos«)

s t

(2.54)

vhore the parameters'take the respective ranges



(2. 55)

2TT

Comparing the three expressions (2.54) we get the relations between

the different parametrizationsi

cU
(2. 56)

t ~

-si.y-

" X

ftp •-
(2. 57)

-X

. .

( i i ) SpaoelUce case p2<0

-X
cUot -

? • -

, cd« SHiO Cosjp ,

(2.58)

ckA Ccs&)

ctp,

-20-
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Comparing these expressions we get

= cU COS0

-X

'X

(2.60)

:ti£ dtf
(2.61)

cU

(2.62)

Evidently only the first parametrization in (2.59) serves to oover
n

the entire orbit p <0 with

The other tvo oover only parts of the orb i t . Thais

0 I V < 2TT , O 4. p < oo f - oo < Y < <* (2-64)

corresponds t o the region oosO il/chtt and

O ^ V < 2 ? T , 0 4 ^ < « o , ~ o o < X < ° ° (2.65)

corresponds to the* region cos 6 > thof • These regions are, as

it happens, sufficiently large for the applications we shall be

making in the next aeotian.

-21-



(i i i) Liglitlike case p =0

• c i > e o t ( i , si*6tcsff , casB)

(2.66)

we

This parametrization evidently fails rather drastically in the last
+ - 0

line. However, if we apply the boosts L t L and L to a

different lightlike vector* namely

t « (to.O, 0 , -6>) , (2.67)

irhioh is the one that will "be concerning us in practice, we get

(1,

-1)
(2. 68)

-i

These expressions oontain one parameter too many. To eliminate

this redundancy vo may regard &> (say) as a oonstant scale factor*

Then the oonneotions betneen different parametrizations can be

derived as before:

(2. 69)

-22-



(3. 70)

- -I

"

(2.71)

The f irst parame tr i zat ion serves to cover the orbit p • 0 with

046

The second parametriaation oorers the region */2

0 i , -<w <

and the third covers the same region with

0 < f <JLir , O ^ ^ < « ,*oo< \ < o* •

With these parametristations i t i s easy to verify that

with

(2.73)

(2.74)

p (WocLt

Defining the respective basis systems by

-23-



U(L'f) |> j A

and using the formulae (2.6) and (2.11)aad (2.23),whioh give the aotion

of ¥j| on states with standard momentum

j

, J.'<0 (2.77)

2 2
we obtain for p > 0 and p < 0 the eigenvalue equations

- ^ . f i | f 1 A >

k- y,Hfi*^ - -̂ (f.- io|t j

where € denotes an invariant sign factor, £ - £(p ) for p > 0
2 * 2 °

and € - 1 for p < 0. For p - 0 the corresponding formulae
are
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3] 1Pf >>"

(2.78')

2
The p - 0 states are defined here by

(2-79)

There L denotes one of L + , L~ • or L° • The four-momentum p
P P P P

takes the standard form (w , O , 0 , cj) . The helioity A is con-

ventionally defined as the eigenvalue of J-- on states with four-

monentum p r

(2.80)

It remains only to oonstruot the unitary matrices Thioh

transform one basis sysfem to another, That might be called the

"spin rearrangement matrices'1. Since, for any pair of boosts

lT and !• t say, we have the equality
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fry
+ -1 A

then it must "be that (L ) L belongs to the little group G
Thus,for any representation,we have

lTl(L+t) W f

>l> 0

<o (2.81)

where, sinoe the 5° depeztdenoe factors oat we have been able to ex-
olude fnom the form (2.81) those J^v with /*. or V o 2 . The
angle © depends on p« • Similarly, we have

J

(2.82)

, f (2.83)
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In terms of the three angles (n)?$and ^f, we oan -write the sought

after relations in the form

2 2 2
for the various cases, p > 0 t p < 0 and p = 0 * The functions
d^t are matrix elements of the little group transformations*

^ j x > • t'<B (2'B5)

No confusion oan arise from using the same symbol d<* for the

different representations sinoe the aotual range of j will
2

distinguish them. For the p - 0 oasef ot oourse, we should

read P instead of j •

To evaluate the angles <$) • $ and ĵp", it will be sufficient

to work in a two-dimensional representation of the J « v ,

Jj 3 r"k' , J* * T ^ I
 {286)

vbere the 9\ afe Pau3.i natrioea* In ttalB xepresentatiou ve
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and

e

Therefore*

_1

0 1

Af/i + %Ue/i tkp/l)

00/2 - c

fflV* cos
, f

) • ' •

which gives, for p > 0 f

(2.87)

tskd/i

(2.88)

cot* ^ 2 - Sin*

= (tot (^ td^fc *SV*

_28-
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w t y city - « t y d ty ) • K ^ s l l ' f •!""1'9A c l^ i

(2-89)

2
and, for p < 0

2
and, for p - 0

(2.9D

With the help of relations (2.56), (2.60) and (2.69) these results

may be expressed in the form

dtuL

*r

Similarly,
(2.92)

V4Y y V



COS $ j l$ jl

cos

; ) • ' •
(2.93)

2
Thus, for p >0

2and, for p < 0

2
for p - 0

-f
(2. 94)

Finally,

cos
(2. 95)

In the sane way as before one gets



whioh become on using (2.^8), (2.62) and (2.71)«

(2.97)

This ooropletQB the discussion of basis vectors, A check on the

computations is provided by the consistency requirement derivable

from (2.84), namely,

-- 0 (2.98)

3 . REDUCTION OF THE DIHECT PBtHXTCT.

I t i s well known that the di rect product of two unitary

representations of the Poinoare group can be completely reduced

into a d i rec t sum o£ irreducible representat ions. This reduction

has been discussed by many authors using various formalisms* We

shall adopt here the phys ic i s t ' s a t t i tude t ignoring any of the

more in t r ioa te mathematical questions that may a r i s e , proceeding

- 3 1 -



as it were, in a state of innocence.

Before we start, however, it may be worth mentioning that

there is at 2eaat one important distinction between the f ini te-

find the infinite-dimensional problems* In dealing with a non-

oompaot group one's intuition may fai l to warn that the direo't

produot of an infinite-dimensional unitary representation with a

finite-dimensional non-unitary one may contain unitary-as well as

non-unitary irreducible representations. This is indeed the oase.

That is to say, there do exist invariant couplings between tiro

unitary representations and a non-unitary one. On the other hand,

the reduction of the direct product of two unitary representations,

as usually formulated, oontains only unitary irreducible represent-

ations - the non-unitary ones are exolu&ed by convergence require-

ments. This means that the problem of reducing direct products is

not always equivalent to the problem of finding invariant couplings

or Glebsoh—Gordan coefficients.

Disregarding, for the present, this question of possible

finite-dimensional representations, we proceed with the reduction

in the light of the formalism developed above. Consider the

problem

Xs, <s> 3>j, « I ® . a > n (3-D

or, la terms of basis vectors,

In Bq.(3*2) the index* n , i s supposed to comprise all of the

necessary labels which are not shown explicitly. An explicit

realisation of n as indeed of the coupling ooeffioient,

( n P dA| j»x ^ \ P2 32 A 2 ^ » "sel f , will be developed in

the following.
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The basic invariancee of the coupling coefficients can be

discovered by applying an arbitrary transformation of the Poincare

proup to both sides of (3.2) while requiring th9 index , n , to be

invariant. For the states n p j A ) one can assume a tram-Form-

ation law of the form

* E l A i > I > J f C A L"> <3-3>

which assures the invariance of n « Translation invariance alone

gives

while invariance under the homogeneous transformations gives

(3.5)

where B , R, and R_ denote the appropriate little group rotations,

In view of the conditions (3*4) and (3*5) it will be sufficient

for us to take p - p, + p, and to fix p in one of the standard
A 2

directions p . Consider now the possible values of p cor-
2 2

responding to given p. t p. and, where relevantf sgn ( P I 0 )
 an(i

sgn (p 2 0). There are ten cases to be distinguished but only four

of these need be examined explicitly, the others following rather

trivially.

(i) a^On^Xg^Ong) , where

1? ' "S > ° f < M "S * ° . ^pfU -SjwffJ - + 1 0.

There is only one type of representation in this product,

« f O (3.7)
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The masses are non-negative in (3 .7) , m. , m^ 0 .

( i i ) a>+(m^)03>_(jn|) , where

If m1 > mp thero are three types of repreaentation in the
product

( 3 ' 9 )

1 ) W.ftv -00 < ^ < 0

If EL. < m2 the p content is the same but 3L> becomes 3&>_

in (3. 9)« The representations (3*7) and (3.9) must be further

classified according to their j-̂ ralnes but this wo shall postpone*

If nu • nip there are two types.

*#<r wilt j y « o

to'li - oO < t l < 0

(iii) 0>+(aiJ)<g) £(-«!), rtexe

^. ft- - < < ° ^ "KW •+ 1 - (3-U)

There are always three types of vepresoatefcUn hare,

with 0 < -|>* < «o

+ (0) with -f-0 (hAfc 4 O) (3.12)

with -«o < y < 0

( iv ) i)(-m^)(S>^>(-m2), where

- -mf
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If m- f n- there are five types of representation in this product,

and «&_(t>°) with 0 <

and 3).. fo) with f>L*

with - oO < t> < 0

(3.14)

If m. o Dip there i s , in addition, the representation

with ?V * ° • 0.15)

The remaining six oases need not be listed explioitly. They

are: i>_ QS> 3>_ and 3b_ © 3> which follow from (i) and (iii) in an

obvious way; ̂  (j£) "t>^ and 5̂ (̂> $£'* for which p » p- ; and

^ ^ ' which p = 0 .

Hore difficult to s«lve ie tiie problera of discovering what

values of j can appear in the various cases. This cannot be

dealt with merely by considerations involving the basis vectors

in isolation. Strictly, one has to use scalar products of them

with normalizable states in the Hilbert space — i«e., wave packets -

and take careful account at the asymptotic behaviour of these

functions. Since, for the applications we have in view, this

asymptotio behaviour ia not always known in advance we shall have

to proceed in a rather formal manner and discard any pretence of

rigour. More specifJLOal3j, we shall asffume that any function f(Q)

defined over one, of the l i t t l e groups 0 can be expanded as an
A

integral over the unitary representations of G »

fr - <V(pE f^fpD^Cs) 0.16)
with

L (pU(^^)*ft) (3.17)L
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where, in (3.16), the integral extsnds over the unitary represent-

ations D"* with Plancherel measure d/i(j) and, in (3.17), the
A A

integral extends over the group 0 with Haar measure &jl(Q) .
The formulae (3.16) and (3.17) are a valid group—theoretical result
only i f f i s squaxe-integrable,

f r < ( 3 .

but we shall apply them formally to basis veqtorB which are
oertainly not square-integrable. This can be rigorously justified
i f the baais veotors axe employed only in the specification of those
matrix elements which are square-integrable.

In order to be able to define the baais veotors as funotions
over the l i t t l e groups i t i s necessary to take for the states

ttnd lp 2 h+ ,* h o a e d e f t o o d with the boosts
+ P2 i s timelika, light like or space-*

lp l 3 1 A

ifi or, V accordingly as
l ike . This wil l generally necessitate the introduction of the spin
rearrangement matrioes (defined in Seo. 2) in order to oover
the oomplete range of representations oantained in a given produot.

Hotioe that there are essential ly three independent para-
meters determining the components of p, and p2 subject to the

constraint + p2 - pj 2 These are, for the time l ike, l ight like
and spaoelike oases, the mass p and a pair of angles, ( J&, 0) ,
( V , C) and ( V, ^ )» respectively* por the null oase they are
three angles, ( V» &t <̂ )< The unifying ohaxaoteristio of these
parametrizationfi l i e in that while the total momBntum p. + p-

* X ft

is fixed in one of the standard direct ions, the "relative"

momentum is specified by angles which relate %o the appropriate

little group for each oaee.
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( i ) Timelike case (p1 + p2) >0

The parameters ((/> 0, 0(,} and ( ^f &;&) associated with the momenta
p- and p muat ha so chosen that the total four-nionientum p. + p_ is

aligned vith the zero-arie. This requires

m,

Theoe oaaditiane are aet by taking

The angles o(- and Of_ axe expressible in terms of the total mass

a - (p2 + P2) by

ziw,

The product states may be written In the foxm
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where

(3.20)

The total J^yis of course defined by

j > > (3

Ve are now in a position to projeot out the irreducible re-
presentations sinply by applying the formula (3*17) to the rectors
tr(Q)|o(>. The result is

(3.22)

where J takes the values | \ - \ \, X I -> i | + l , |A, - > t |+ 2 , •• • .

The integration extends over the compaot group S0(3). The Kroneoker

symbol ^iJt-A, appears as a oonsequenoe of the condition

(3.23)
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For brevity Ke have neglected to show in the states | \ ^ j :
2 2 2 2

the Invariant labels p 1 - a^ , p 2 " w^ and jj , j 2 which are common

to all.

The inverse foimula to (3.22) is obtained by applying (3.16),

*(O)|«C>. ^W+Olx^jfi^])^ (V (3.24)

The formulae (3.22) and (3.24) oan, with the help of (3.19)» be expressed
in the more useful fora,

j i r

X K, v i
0 0

(3.26)

We hare in (3*26) an expl ic i t realisation of the Olebsoh—Gordan oo—
effioient introduced in (3 .2 ) , v i a . ,

whioh i s valid for pM - (JB9 O , 0 f 0 ) , I t s value for any other frame

oould be obtained by Applying the appropriate Lorentz transf onnation .

The representations dbr(p ) with p - (p, + Po) >0 oan appear

not only in the product 3>* (m^)© ^ ^ ( a ^ ) with tn^nig > °» b u t also in
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and ^ ( p 2 ) © ! ) 0 . In each case the Clebsch-

Gordan coefficients can be calculated by following the technique out-

lined above, i.e., by writing the product state with p + p ? « p

in the form U(0)jo(/ where G belongs to the little group and projecting

from these the various j values by integration over the group.

(ii) Spaoelike case (p + p_) <0

Let us oonsider the, extraction of representations "3b (p ) with

p 2 < 0 from the produot^f(m2)(j> ^(nig). Using the -type boosts of

Seo. 2 ire have

- M, (cU, cif,, ciV, sip, oasV,, cUY,

and the states with p, + P2 = & = (0* 0 , 0 , /^t) are picked out by

choosing

^

(3.28)

The product states may be written in the form

I ft i,A.. 1V4\>" - l A t y u&)(L-fc) | ?, i. A,,
(0
11 e
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where

(3.30)

By applying (3.1?) to the states U(O)JY)we project out the irreducible

repreaentat ions,

where the integration extends over the non-oompaot group S0(2,l). The

Kroneoker symbol ^y ,*,•>£ appears because

The invariant j takes values oorrespondin^ to all of the unitary re-

presentations of 90(2,1) in the principal series,

$ + £ m imaginary

and a finite number of those in the discrete series,

(3.33)

This i s exhibited in the inverse formula to (3.31) obtained by
(3.16),

(3.34)
too

A o
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The representations Dj+ appear for >,*>t>0and D ~̂ for \ + > z < 0 .
The formulae (3.3l) and (3.34) oan, with the help of (3.29), bo written

in the form

\

(3.35)

' '"-* (3.36)'

We h*r» In (3*36) an explioit realisation of the Clebooh-Qordan oo-
effioient for this oase,

fbo *epTOaentatians tr(p ) with p <T 0 appear also in the produota

l ( p 2 ) x J ° . Again the teohniqpa for obtaining the Clebsoh-
Oordan ooeffloients i s the same aa fa* the oase outlined here.

( i i i ) Lightlitoe oase (vx + P 2 ) 2 - 0

The extraction of ' l ight l i t© representations £>+(0) from the

product3>+ (m^)^)^)^ (m2) prooeeds as follows. Use the O-type boosts

and vrite
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T- e*Xi

The states vith

= (W, 0, O, to) (3.38)

are piaked out "by ohoosing

Ve shall take m. > m2 so that £J>0. The produot states may be written

in the form

where 0) ci) A .

|X> * *~l 1 M~l »* •* I -R1* »•**]* i (341)

In the same manner as before ve oan project out the irreducible re-

presentations by integrating orer the little grouf G - 9 0 ( 2 ) A T ( 2 ) .

,̂ - [ **& * t &* U^> I X
soVi>Tff)

the oonverse relation being

t x

The representations D irhioh appear here belong to the prinoipal series

of unitary representations of S 0 ( 2 ) A T ( 2 ) . Substituting for |X>from (3.40)

these formulae become

-43-



These formulae represent a Bessel transform sinoe* as will be shown in
4»

Thus we have an explicit realisation of the Clebsoh-Oordan ooeffioient
c o u p l i n g i > J ( j k

expressed in the frame for vhloh

The saute teohnique oaa be used taoc oalouLating the Clebsoh-Oordan
ooeffioients coupling the lightlite representations to other produote:

(iv) Vull oase (vx + Pg)^ - 0

This oase is in some respects simpler than the previous ones sinoe
there is only one independent four-veotor in the problem* Also* sinoe
the l i t t l e group compromises the entire homogeneous group S0(3«l)* the
ohoioe of parametriaation i s governed by the nature of p. - -p2 (time-
like* spaoelike or lightlilte). Again we shall oonsider only one of
the possible situations in -tfhioh the null representations oan appear, vie.,
the product 2^m 2 ) (£ X>^(m2). The other situations oan be dealt with in
similar fashion* ,

Using the +type boosts ire oan write

P l --p2 - m(c&«, sda sU9ax?t dm jpw0su>y, shtt cos9) .

The produot states with p, + pg - 0 oan then be irritten In the form



iyJn e'"To* I h i»A 'J ^j

(3.47)

3y applying (3.17) to the states U(A) | \t\%\ , f j W > T O o a n P^ojeot out
irreducible representations of S0(3»l)» Before doing this,however, i t
is oonvenient to define the new states

where <j,X, •ijA^jjA^denotes an S0(3) Clehsoh-Oordan coeff icient . The s ta tes
so defined satisfy two conditions*

vhioh are the analogue for the null oase of (3.23) for the timelike -, case
Application of (3.17) gives

the oonverse relation being
•j- too

J3"

The representations 3) which appear here helong to the principal series

of unitary representations of S0(3»l)»

or- pure imaginary, j - - J , - J + l, ... , J . The matrices ^

are defined in the "basis (2.38), (2.39) hy
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The matrix for a transformation in the 03-plane i s defined by

These functions trill be disoussed in Sec. 4.

Using (3.47) a»id (3.48) to eliminate ) -JJ, j , , j>a ^ ) Jju> these
formulae become

or ir

(3.52)

( 3 - 5 3 )

Fommla (3*53) providee an eaqxLioit jBtvCi.zsA&m tags the Olebsoh-Gordan
eoeffioieat ^ ^

C3.54J

ffcia oocpHgtes the l i s t of ClebBoh-CkmLaa ooeffioieuts that we ekall
oaatftruoi exfOloitly. All of t t e others with one exception can be found
by the oiatbods used heOBS* She exoeptioaal oaae i s ^y f°® X^^whioh requires
Move MghisHooled t«ofent4f»e. £t tea teett 406lt with in great detail in
the fiKasiaa U t a w l H o (e^t^M^A. RAZKtfC, Am. Math. Soo. Trans. 16, 101 (1964$.

Hi oanplttBioa i t utay perfaayB 1M i«otraotive to examine the above
manipulations from the -v^etrpoint of complete oonnnuting sets of operators.
The problem of decomposing a direct product can of course be looked upon
as one of finding the transformation that takes one basis — irhioh
diagonaliges certain of the operators 7^ , J ^ , P , T * - ia*o another
which diagonalizss certain of the operators Tf s T ^ + ^ ^ ' a n d
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Since all of the states met with above diagonalize the four Casimir

operators f tf «f

•we can omit them from the following discussion. Of the remaining operators,

eight are diagonalized ty the product states I* j A , "PaiiV^ These include
[1] a

sir independent momentum components contained among T\ * and (p ) and tvo
nfli *.(o\ ^ /*•

helioities, e#g.;W
v ' and

On the other hand, the irreducible states lA.X, > £ 1 ^ diagonalize

the four independent momenta P̂ , « P^ + P and in addition the four operators

again eight in all (at least when Py. / 0, the null case must be treated

separately.) The total VJ* is defined by

It is a simple matter to verify (for the oase p > 0) the relations

(3.55)

The important point to notice here is that A, ,X£and j are all Poincare

invariants.

The irreducible states IJjk^jX^ diagonal!ze the total four-momentum,
Pu_ • 0 i but this accounts for only three independent operators since this

oaae arises only if ( P ^ ) 2 - ( P ^ 2 , i.e.,P « 0 implies P o - 0. The remain-

ing five operators are given by

and the "total spin"
i

The eigenvalues of the total spin operator can be found by applying it to

the state (3.60).
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- f *r W < * M * (Hi" • V ^ "to I ̂ *. ft l.

bat frcn (2.6)

00 that

" • H ? V k ; i H » - -̂ 3tJ*O'|3ii«rjA> . 0.56)
"h' ' ' • " V

ThiB above that J is a Poinoaxe invariant.
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4>* ANALYTICAL P R O P E R T I E S O F L I T T L E GBOUP B B F B E S E B T A T I O f i S

Differential equations

It provee convenient to parametrize all the finite transformations
of the l i t t le groups in the"Eulerian" manner, namely for

ao(3):

so(2fi):

so(8)A*(2)r

W(3,l): U ^ ^ F i ^ O . e j V ) . . ,(4.1)

because all the essential information is ooatained in the real

representations d t

<U

Thus -we require the properties of the d's in order to Btudy the
analytical properties of the S-matrix i t s e l f .

The normal way of analysing the d-funotions i s to set up
differential equations for them with suitable boundary oonditions,
like dCO) s 6 . There are several equivalent vays for obtaining
these differential equations but the simplest way, from our point of

i s the following!
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Express the operators U(di } J - where <* = &> p?^ or Q and J

are al l the generators of the l i t t l e group - in terms of g j > UJ,

and j a i (and UJ+ , >̂U for the case of S0(3,l)). There-

by express the bilinear invariants U(<*)CCJ)±n those same

terms, Ct^) being a Casimir operator for the l i t t l e group, and

take l i t t le group representatives. This gives the sought-after

differential equations.

Consider eaoh oase in turn,

uce) =

U J W » 7TT VJ. tosd -

vbanoe the representative equation,

& 7 > * A I j <»W- o (4.3)

aofa>i) » 1*3

sk

giving '



Observe that $-»ifr gives the SO(3) equation.

SO(2)AT(2) : L

The matrix elements of this relation are

2 «̂ fc C, —

and

J ^ ' (4.5)

Taking matrix elements of these differential relations and using the

S0(3) subgroup propertiest
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ire get the ooupled equations

o ( j V M j V • . ) •

Completeness relations and eipansion formalae

A.
The irzeduolhle representative functions D( G ) oorresponding

to the unitary transformations U( O ) of the little group, obey the
orthogonality relations

(4.8)

generally,

f

is the Haax measure over the group 0 while

the Planoherel measure over the unitary oasis.

(4.9)

If we are given a function t( G ) of the group parameters

which is square integrable over the group manifold,

-50-



then it is possible to expand it In terms of the unitary irreducible

representations (those whioh are square integrable) according to

and the expansion ooeffioients wi l l be given by

* >

2. j ••-

^ - f

providing £($) is regolar in the region -1 -$ COS 8 < 1

He illustrate these remarks with the speoifio oases belovt

30(3) t

L ***<"?** 4 W Kx' (4.12)

(4.13)

», Y) - Z Uj+O f^ lA D^X (V, ̂ V) (*.i4)

(4.15)

Here the situatibn is somenhat more oomplioated in that ire have three

types of representation. However, the supplementary series can be

safely neglected because the corresponding representations are not

square integrable. Thus, for the principal seriest
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(4.16)

and for the discrete aeries:

Integrals crrwr -cross reisreBentations vanish. Cxmvoraely,

*(>-V) (4.18)

Providing that t(f,$,i> ) i s aqpare intograblfl itt the

tbsn «s oon parooeed with the expansion formula,

r
i M »**>V"T' (4.19)

Vioe versa, •» must have f' % square integrable along the imaginary

axis j - -4 • if *<

( 4 . 2 0 )
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S0(2)ATf2) I

We shall regard the finite-dimensional representations as

special cases of the infinite-dimensional ones (It • P / &> -* & )

being essentially the orthogonality properties of Beseel functions.
The expansion formulae just correspond to the Hanleel transformations

« r

f

and

-53-
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and are permissible for all eqjiare integrable f .

SOf3.l) i

Adhering to the Haintark definitions of the representation

functions, the orthogonality properties are

(4.25)

(4.26)



and providing that f( ^ ) i s of order e ' for large ^ with <x <

then it can be expanded in these irreducible representations:

» l t h ( 4. 2 7 )

Representations of the first kind

The solutions to the differential equations for the d-function*

which are regular in the vicinity of the identity transformation will

be called the representations of the first kind. It is these group

representations which enter basically in the "Fourier expansion" of

any function defined over the group manifold and which is non-sinsular

at the "origin". A complete discussion of the differential equation

nevertheless requires the "representations of the seoond kind";

although these functions are singular at the origin, they do have

simpler asymptotic characteristics than functions of the first kind,

and of oourse there exist certain integral relations between the two

types of representation. (This is analogous to the connection between

the ?i and Qj). For the present let us analyse the properties of the

first kind representations.

90(3) and S0(2.l) funotions

These can be treated at onoe owing to the fact that the

substitutions Z« ckp * CosQ lead to identioal equations

( 4 . 2 9 )

with the boundary oondition dA/l (i) • uXfL •

By displacing singularities to 0,1 and cO the equation oan be oast

in hypergoosetrio form and the solution with the correct boundary

value is (for
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for the SO(3) functions and the principal series of SO(2 tl). The
discrete series of S0(2,l) are obtained by analytic continuation!

(4.31)
1-Z v /

It i s inmediately possible, friw the properties of the hyporgeonetrio
and gaama functions, to state the equivalence relations and index
symetxy properties t

For a l l dieorete xvpveaentationa ($-/*• - iategar) dean be
related to the Jaoobi polynoaiale and la that oase one WKJ deduce
the inversion property

More generally howawr i^x(^) i s a branched function. Thus in the
2 ~planet the branobes (1 + « )* and (1 - B )* give outs from -<*4

to -1 and 1 to oo while the hypergeonetrio function gives a cut from
-eo to -1 again (defining the principal sheet this way). On the
other hand, in the j—plane, the hyp»rgao«etrio funotion i s an entire
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function of j and the only branches derive from the P functions;

these j-cuts have a finite extension if we let the principal sheet

be defined positive for j » 1 . The asymptotio properties and integral

representations must be deferred to later since the second type

functions need first to be defined.

SO(2)AT(g) functions

The representation funotion just satisfies Bassel's equation
for if we substitute x -TTIJ the equation reads

(4.34)

(4.35)

It is interesting to notice that solutions are just the p -> 0

limits of the 30(3) and S0(2,l) functions because

(4.36)

fron Haneen's formula*

In a sense this also diotates the ohoioe of Bessel funotion.
The symmetry properties are then well -Jenown,

(4.37)

and the fact that there exis ts a branch point at 5» 0. Moreover i t i s known
that d i s an entire function of /JL~X.
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S0(3il) functions

The situation here i s more involved than in the previous three cases

because we have a set of coupled differential equations to solve

in general. However, these equations can be simply combined in the

extreme limit where /*. « min (j»d')j supposing for definiteness that

3 <$ i* we get

0 - i

J t ' in '
or

whioh must be so lved subjeot t o d * * | ( 0 ) - 6 . . ,

0
(4.33)

The substitution x - e * allows us to oonve,rt the equation into hyper-

geometrio form, and up to normalization factors the solutions whioh

are regular at x • 1 aret

jjj' ' " '* ' ' ' (4.39)

The general &#($) oan in principle be obtained from ffy

repeated application of the operator /K^p + oothC) -^.C and leads to

a sum of hypergeometrio functional but this is a tedious procedure whioh

is avoided by the integral representation method which gives *

* We are grateful to Dr. M.A. Rashid for correcting certain errors in
the first draft.
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j*f .z)

( 4 # 4 0 )

that correotly satisfies c(f* .» (x - l ) - £,. , . Note that the

unitarity of the representations gives d/*:i * - d YuJt so that d
is "not quite real", unlike the earlier three oases.

The above form can be used to discuss the analyticity and
synaetry properties of the d-funotions. Thus it" is straightforward,
if rather tedious, to obtain the index symmetries

and the weak equivalence relation

The analytical properties in the jo,c plane are extremely oosplioated

and we will not describe them here} however in the Cplane they are

quite simple. In fact, let us define z - ohC as a convenient

variable. Then since d is an analytic) function of e^ out from

0 to -»O say, it will be an analytic function of z « £ (e< * e ' )

out from -1 to -oo , (We avoid stating the inversion property

a ~* -a as this is only staple for functions of the seoond kind

whioh will presently be ooneidered).
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Rapresentations of the aeoond kind

In the- theory of Legendre's equation we know that the p.-

muBt be supplemented by the Qr in any complete discussion.

Likewise with the differential equations given earlier we must

consider the solutions of the second kind e t in addition to the

functions, d, of the first kind; and as with Pn and Q* , g> and

d are linearly related and connected by integral formulae.

Although they are singular in the neighbourhood of the identity

transformation the K functions nevertheless have quite simple

inversion properties and asymptotic behaviours - in contrast to

the D - which makes them very useful in physical applications

as we shall subsequently see.

S0(3) and 50(2,l) functions

A simple rule of thumb ««tbod for seeing how the E funotions

arise is* where possible, to use the continuation property of the

hypergeometrio function!

-4.

which i s useful for determining the a -» oo behaviourr and to
identify the e with each of the asymptotic terms. As applied
to the d i u ( K ) representation this method gives

J (4.44)

(4.45)
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the factors (1 + z ) E and (l - z)~ produce cuts from ~oo to -1

and 1 to a4, and the remaining cut of the z plane, from 1 to -oo,

derives from the hypergeometrio function. There is of course the

inverse formula whioh expresses e as a linear function of two d j

it [ e ^ ' H d̂ ft) - d).(-z) J
>"A" J (4.46)

where ? i s to he taken when JJ*» Z £ 0 .

The properties of the e-functions can now be deduoedj the
inversion .property Jhaa been siiipliXivd at the expanse of the

relation

. ^ W l t f t » » l . (4.47)

In addition we now have simple asymptotic behaviour*

as |s I —• oo and for fixed j , JX , X * Vio* versa, for fixed
* , /* , X anft large j J J ,

^ ^ y (4.49)

providing -7T + fe < euw, ^ < IT- € .

Turning next to the integral oomection between e and d, we

know that pi the region -1 < z <1 the square root functions are

Innocuoust so that the discontinuity across the z—out oomes as

I - » < z <r f .
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Also for the region z > 1, and taking Re-f̂ max (|A f , / u j ) in

order to circumvent the j-plane singularities, we also find

that the e-cut discontinuity ia related to e itself upon

extracting suitable square root factors. The Cauohy formula then

gives the integral conneotion,

\ iW
J

lJrX ( T / V."/
(4.50)

which is the simple generalization of the a , Qjj formula.

In any oase, the completeness relation oan be restated through

the biorthogonality of the d and e functions:

(4.5D

as

(4.52)

where

The oidinary Basse 1 functions J^.«(z) » z » irT were

identified with the representations of the firs* kind <&][„ ( £ ) •



It is natural to identify the second kind representations with the

Complementary Bessel functions Y ^ ^ f z ) which are logarithmically

singular at the origin. Viz.,

(4.54)

The connections between J and Y can be rewritten as the linear

relations between d and e ,

TT

' - " " (4.55)

(4.56)

to be takaa In the 04ttit as A->A->ijiteeer.
The e^funotlonB satisfy the symmetry relations,

are similar since

(4.58)

of d and e as |a|-* eo for |arg s| < TT

(4,59)

(4.60)

It i s only the imaginary Bessel functions whioh have a more "drastic"
asymptotio ohaxaoter.
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S0(3»l) functions

The decomposition of a function of the first kind into a linear

combination of two representations of the second kind which have simple

asymptotic characteristics is a complicated problem whioh has been

solved, by Toller diractly from the integral representation for d(<^ ).

We quote the non-trivial result:

where

L— nf; ;

(4.62)
is a polynomial In a? . We shall find it oonvenient to regard it as

a funotion of the variable z - oh^ at times.

Wo note firstly the index syunetriest

) (4.63)
*

and secondly the inversion property,
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(4.64)

Also we have the asymptotic behaviour

(4.65)

The analytioity of e in the e-plane is the same as that

of d, viz., i t has a out from -«o to - 1 . The discontinuity

across the cut can be obtained from the inversion property:

Upon applying Cauohy'e theorem we get the integral relation,

1 \
r-

or

(4.66)

Finally, let trt note the inverse linear oonneotion between the first
and seoond kind funotions,

where ± refer to JJH z -̂ 0 *

(4.67)
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5. IMPROPER TRANSFORMATIONS

Parity and time reversal

If one adjoins the space and time inversion operations to the

homogeneous Lorenta group and the translations, one obtains the so-

called extended Poincare group. This is completely described by the

adjoined algebra.

I 1

Zl Z^ -r£ ; , 2TP0 Z~X ' po

t J r 1 - 4 , ZL Z~X " E (5.1

The effeot of improper Loreats trattsforafttioas on the jsepresentations

of the Poincare group is completely determined from their aotion on

the "standard" states* Sinoe the standard momenta always oorreepond

to linear combinations of P- and P, one selects in preference to

(? and *£ , the operators

tj -

because they oonmute with PQ and P. • That these are the "natural"

operator* from our point of view can he appreciated from the fact that

with all of our boosting procedures,

-1 m

- (p0, Px»-*»2. P3> (5.3)

Moreover, in contradistinction to \f and C * they always induce
4

outer automorphisms on the little group generatorst
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y±
-1

p* 1

-i

* • > • *

J± J - 1 - J ±

-1

-1

-i _ (5-4)

With Btd.ta'ble phase oomventionB for the little groups we can

choose without loss of gesnerality the phases of our discrete trans-

formations such that

where s stands for any of the Casimir operators of So(3) $ So(.??l)

or 0(2) A T(2). The invariant factor V assumes for each of

the following cases the values1

0(2,1)
discrete

0(2) A T(2)
disorete

0(2,1)
or

0(2) A T(2)
continuous

0 for yu. integer

for J*- % odd integer

\ ia the intrinsio parity of the state and equals ± 1 . The eigen-

value U = ± 1 aooording as ire have single-valued or double-valued

representations.

The simplicity of the scheme is evident from the general proper-

tiest

- > |Tp S -

5 j (5.6)
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Note that the complete reversal operator v* *» u 0 » 1iS for whioh

ftj.... &" 1 - -J.... - &P.. ft"1 = P., . eives

• -

Improper transformations of two-partiole states

We have seen that it is most suitable to take the two basic

discrete operations as U- and J because of their uniformly simple *

aotion on all boost operators. Thus ire can follow through their action

on two-partiole states by means of the reduction formulae,

^ ( ) |3f (S)JP (S) U (0)[p181A1 , P2s2A2>z (5.8)

and noticing that only the asimutbal angle in 0 is reversed. Ve shall

treat each case in turn but will simplify the notation by negleoting the

obvious labels p ŝ  and

S0(3) states

(5.9)
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0(l) A T(2) atatae

~ x i - A 4 > (5.11)

similarly. (5.12>

30(2.1) states

The results for the principal series follow exactly the pattern
of 0(3) since one only makes use of the reality of the d matrices and
their symmetry property,

Thus we obtain for the principal series,

,+s«-
(5.13)

(5.14)

tar the discrete series we must instead use

• (—l)^~ d** \(z) beaanse tl reverses D and B"

representationst

h ± ^ > 1 A 2 > f however. (5,16)



S0(3«l) states

The effect of \l and J comes dixeotly from the properties

io<r It) - d~io<r (0 d^O* k°7O

^(Ulvesjiyyxi^* (5.17)

and

Note that from the weak equivalence relation, ire have the oonneption

Parity and time reversal invariance reatriotiona

Aotually it is muoh simpler not to apply (P and £ as such

directly, hut instead the equivalent operations U and § , to the

S-natrix
1 - 3 , J S i"1 - sf (5.20)

Without reducing the matrix elements under the Poinoare group, the con-

ditions on the scattering amplitudes (with the scattering confined *fco

the 013 subspace) can he stated immediately;
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The conditions are perhaps easier to analyse when the two-particle

are broken up into irreducible components*

4 : < a
3 A 3 S 4 A 4 | T ^ ( B ^ J s 2 A 2 > - < s 1 A 1 S 2 A 2 | T

J i 6 3 A 3 s 4 A 4 > (5.23;

for S0(2,l) and S0{3) components

^ B l *1 S 2 A 2 > " < 8 1 A 1 S 2 X 2 I T? ' e l A l 8 2 A 2 > ^ ' 2 4 )

T ° | J > = < j | T ° | J< > for S0(3,l) oomponents. (5-25)

Fote that j ± -» JT for the discrete S0(2fl) series and that j hae

to be interpreted ae p for the li^ht-like oase. Also

<»•! T ^ l J> - ^ ^ ^ 3 ^ U ) ' 1 ^ <" I T~3°'| J > (5.27)

12 i r + l )

by weak equivalence.

It is ueeful to oonstruot overall eigenstates of fixed Y-parity

\y by taking appropriate linear combinations of the reduced two-particle
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states. (The connection of this T-factor V\ with the signature and the

conventional definition of the intrinsic parity will be given later.)

We can treat all p / 0 possibilities by using the phase factor (-l)

defined earlier for those Poincare representations.

Define

whereupon,

showing that the state | V"/• h a e T-parity Vj(- ± l) . There is of

course no change for the operation of "ti»o

3\ ( 5' 3 O )

Ho suoh elaborate oonstruotian i s needed for the p «• 0 states which
are atttomattoally of ths «>rre<t*

J > •

J >

(5.32)

Inversely we oan of course express the basic two—particle states as linear

combinations of parity eigenstates,
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(5.33)
with **

> 3 A 4 > (5.34)

by 3 -invarlanoe and t{ diagonal by U in variance,
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6. PARTIAL WAVE ANALYSIS OP S-MATRIX ELStGWPS

The main purpose in developing the theory of Poincare group re-

presentations is the application to partial wave analysis, Everyone is

familiar with the ordinary partial -save decomposition of* scattering

amplitudes into angular momentum components S(j,E) by using an expansion

in terms of Legendre functions P.. or generalizations thereof. However,

it is not always well appreciated that this analysis has a straightforward

group theoretic meaning, being precisely the decomposition of the S-ciatrix

into irreducible components of the Poinoare g*oxzp , Basically, the quantities

of physioal interest contained in'an S-matrix element such as, for example,

< P 3 S3 X3 , P4
 S4 ̂ 4 Is I Px

 si Ai » P2 S2"*2^' are the relativisti0 in~
variants. The isolation of these invariant quantities corresponds, group

theoretically, to the extraction of scalars from a direct product of ir-

reducible representations,

tne operator S itself being a scalar operator. Under the usual procedure

the two—particle in-states, jp» S.. X. , p 2 S_ ^ o ^ » which transform accord-

ing to a direct product representation, are decomposed into a sum of com-

ponents whioh belong to irreducible representations,^^(p. + p_) ) . A

similar decomposition is made for the out—states, <p, S, X, , p. S. A^ I *

Kow, the matrix elements of the scalar operator, S , between state's which

belong to irreduoible representations of the Poincare group are simply

expressible in terms of a "reduced matrix element". Thus

h

where n and n' denote the additional quaatun ntnbers whioh are neoessary

to distinguish among the rapre sen tat ions $r vhioh generally ooour in the

decomposition with some multiplicity. Using the Clebeoh-Oordan coefficients

whioh were evaluated in Sec. 3 we can express the original matrix element,
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quantities /n* |J S(V,'f:>*) ||h y . It is those quantities which are physically

significant.

Raving recognized the group-theoretical nature of the problem one can

immediately oontemplate some generalizations. Firstly, it is evident that

the techniques for extracting scalars from products of representations may

be applied to matrix elements of & involving any number of particles.

Secondly, they oan be applied to fora factor decompositions where the scalar

operator 3 is replaced by, for example, the vector 4«(a)» F o r t h e present,

however, we shall be oonoerned with yet another generalization1 one which

exploits the variety of coupling sobemes between products of four represent-

ations.

As is well known from the theory of angular momentum,the procedure

for extracting invariants is not mique. Thus it is possible to couple ^&

firstly with any one of *>2 t2>»
 ot*^A a n d Beoondly to couple together the

remaining pair and then extract "the soalars. There are three such schemes

whloh we indicate by

Beyond this, we could oouple^)-* t o X L to give JD^and then extract the

soalars from the produot of $X,ti with i>*. This scheme we indicate by

There are many suoh schemes. It is of oourse neoessary*that the set of

invariants obtained under one coupling scheme should be expressible in

terms of those obtained'under any other. The connection iB made by means

of reooupling coefficients. The recoupling coefficients of the Poincare

group are better known as crossing •atrioes. Some of these will be computed

in a later eeotion.
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A problem which should be faced here and which does not arise in

-the familiar theory of angular momentum is that of convergence. The

procedures developed in Sec. 3 for expressing the product states J p 31 A. ,

p? S? Ap ^ in irreducible components vae valid only insofar as these

states were employed specifying square—intergrable functions. It is not

clear that, in the applications we shall be making, this condition can

always be met. We shall simply assume that there exists some region in

tLo complex planes of a and t where the amplitudes can be expanded in

the relevant irreducible representations and that this expansion can be

continued to the physioal region. This attitude oan always be justified

by relating the expansion in question to the well-known partial wave expansion

by means of recoupling coefficients.

In the following we shall deal with only two coupling schemes for

the process l + 2-*3 + 4- These are

(*>, 3>2ua (KK^K
 (6-2)

and

» . ( 6 - 3 )

of whioh the first corresponds -to the well-known partial wave expansion.

In order to apply the formalism of Seo. 3 it is neoessary for us

first to demonstrate the equiv&lenoe

This follows with the help of the equivalence between the S0(3) represent
ations D* and DJ* y T l 8 . f
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Ve oan set up a correspondence between the basis vectors of S)*-(m ) and

those of $)^(ra2). Since for 1)^(m2) we have

y
2-*then for 4)7(01 ) we must have

Defining a new set of basis rectors by

it follows that the transfonation beoones

vhioh is oharao-teristio of j[>̂ (m ) . Thus the equivalence is proved.

Consider now the ooupling scheme (7*2). Ve choose the reference frame

such that p. + p_ « p, + p. is aligned with the tine axiB and all momenta

are contained in tho 0 1 3 subspaoe. Specifically we ohoose

hX^ , shOCj ain^ , 0 , »hot
1

p 2 • m2(oha.2 , -Bbte 2 sintf, 0 , -

oos

P 3 - «3(ohot3 , 0 , 0 ,

P 4 - B 4 ( o h o f 4 , , 0 , 0 , - B h * 4 > ($.10)

where tho angles satisfy the conditions



choi

m-, shoe. - m« sh</ . « m, shof, - m. shot A = 0 ( 6 . 1 l )
l l e c J J 4 4

wiiioh are solved by

(6.12)

The angle ^ i s fixed in terns of the momentum transfer, t f by

t » (p-v - Pi) » mj - 2 HJ mCohot oho/ s n <* s t ^ o o s d ) + n>

(6.13)

eo that

oos

With the momenta (7*10) we oan exhibit the decompositions of the in- and
out-etates respectively ae

j A Jo)

2 2
where we have left implicit some of the invariants, m. S*.F a^ S^t ••
showing only the important numbers Aj t A g and A, , X- which - themselves
invariant - serve to enumerate the multiplicity with which the represent-
ation *iJ appears in the decomposition of i) * T) aniffix'h ^respectively.
The total four-momentum of the resulting states i s denoted by
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Defining the matrix elements of the T operator by extract ing the
four-momentum conserving 6-function from S-l» we have, since T is a
scalar operator.

(6.18)

where the reduoed matrix element, ^Xj %̂ J""~ '"*'* *i *2 ? , i s a
Poincare invariant. Proa (7.15) f (7.16) and (7.17) we obtain the required
decomposition

( 6 * 1 9 )

where M denotes the maximum of |A,-A2[and |^3"^J»

Consider the coupling soheme (7*3)* This can be dealt with in a
sinilax fashion to (7*2) i f we exploit the e<juivalenoe (7 .4) to define
a "transposed1* T operator by

( 6 . 2 O )

The states between which T is sandwiched transform according to the

representations £ * (*$*<& t>l* (*\ ) * and ̂ '(iti ,2) ® X»f3 (»?s ) and
our problem is to express them as sums of irreducible components. This

problem differs from the previous one in that the decomposition of JD+ ® X

contains more than one type of irreducible representation. The invariant
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"total mass2' of these states, t - (p^ - p-) = (p. - Pg) can range from

2 2

-00 up to the lesser of (nu - m, ) and (râ  - m.) . Since the represent-

ations appropriate to t ) 0 , t => 0 and t < 0 are entirely different, there

will result distinct types of expansion for those ranges of t . It will

be necessary to impose some continuity requirements at t = 0 where these

ranges merge .

Taking the case t < 0 we choose the reference frame such that al l

momenta l ie in the 0 1 3 subspace with p 1 - p , =» P1 - P2 aligned with the

three-axis. Specifically we ohoose

sh

p3 - m3(ohV3 oh £ , cbY3 shf , 0 ,

P4-m4(oht4 , 0 , 0 , sh)f4) (6.21)

where the angles satisfy the conditions

- 0

3 3 4 y 4 2 2 » /It > 0 (6.22)

whioh are solved by

(6.23)

The angle 6 is fixed in terms of the energy, s , by
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(6.24)

BO that

Acooxding to the fosulae of See. 3 the product at ate a with momenta defined

by (7*21) decompose respectively as

and

(6.27)

-1
the superscript ( - ) on the states (7.26) aad (7*27) indicates that

they are defined relative to the — type boosts of Sec „ 2 and the appearance
in (7.26) of the disorete representations d^+ or d^~ ie*determined by tb»
sign of A^ - A^ . The "total* four-aonenturn i s denoted by

P * ( 0 , 0 , 0 , f3) (6.28)
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Since T is a scalar operator we have the result

for the principal series components with analogous expressions for the

discrete components. Putting together (7.26)t (7.27), (7.29) and (7.20)

we obtain the decomposition for t < 0,

(-) *

(6.30)

In order to compare the tiro decompositions (7.19) and (7.30) i t
i s necessary to apply a Lorente transformation to (7*30) so as to carry
iv fxom the brick wall frame specified by (7*21) to the centre-of-mass
frame specified by (7.10) and then to transform from the -type states to
the -ftype by applying the spin-rearrangement factors of See. 2 .

Consider next the case, t - 0 . There are tiro poss ib i l i t i es , f i r s t ly
m. - m, and nu - m. in which oaae t » 0 implies p, ° p, and p - p. or,
secondly, m^ fi nu and n. / • . In whioh oase t - 0 implies that p. - p. •>
- p . — p2 i s light l ike . Taking f i r s t the lightlike case We choose the
frame such that

1 2 . i 2

P2 " "
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m.

0 0 (6.31)

where the angles satisfy the conditions

m l o h ^ l ~ m3

- -2 (6.32)

where W is an arbitrary parameter (positive when m±> m^ , m4> m2

and negative when Bj< m^ , • 2 < « ^ ) . These angles are given in terms of

by

e ' =

(6.33)

aa^lef ia fixed jja taan <rf s by

(6.34)

so that

(6.35)

Aooording to the formulae of Seo. 3 the product states with momenta defined
by (7.31) deoowpose respectively aat
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and

(6.37)

where the superscript (0) on the states (7.36) and (7.37) indicates that

they are defined relative to the O-typo boosts of Seo. 2 . The "total"

four-momentum i s defined by

A . ( « , O , 0t€j) ( 6 .38 )

Since T is a soalar operator we have the result

1 ^ (6-39)

Putting together (7.36), (7.37), (7.39) and (7.20) TO obtain the decomposition

for t - 0,

o
and, using the explioit form ( ) for d*** this beooaes,

where ̂ A> is to he expressed in terms of s by (7.35)* Again it would be

necessary to apply the appropriate rearrangement matrices and Lorentz
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transformation in order to compare this witii tbe other expressions.

The other important case at t • 0 arises when a. = m, and

nu - n, (i»e. elastio forward scattering). Here the momentum transfer

XS null and we oan choose the frame such that

pl - P3 * M * cho</af 0 , 0
(6.43)

2 - P4 - m ( ohv/2, 0 , O , -Bhx/2 )

It 1B Just tha brlok wall frame. Th* sa«^« * ia gi^an by

s - M2 + 2 H n oh* + « 2 (6*43)

The product states deooetpoee reopdotivoljr ae
T j«

(6.44)

For tbe ©©alar operator T we h&rm



Henoe the decomposition for t - 0 (atill) is given by

= 5 1 1
t£

where J denotes the lesser of J and J ' .
ID

Finally we take the 0 < t < (m.j-*O (or (m.-Bj) )• The Teferenoe

frame can b« chosen so that p^-p^p^-p- is aligned with the zero-axis.

In this frame the momenta are given by

p = ra.fchof^. , shof. sin & , 0 , shiX, COB9 )

, 0 r D , )

p, - m^(ohK. , BhX^ sinO , 0 , sh<X -

p 4 - m4(oh« 4 f 0 , 0 , 4

where the angles sat i s fy the conditions

- m. ahOtj « m. Bh<X . - m^ oh(^2 - 0 * (6.49)

irhioh are solved by

(6.50)
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The angle $ ia fixed in terms of the energy s by

a -

00 that

2 n l m 2 ( c h V i c h < y 2 ~ B h«*i B h W 2 OOB 6 ) * »* (6.51)

The product states decompose respectively as

(6.53)

vhere the "total" foux-aoBeiitun is given by

p . ( / t , 0 , 0 , 0) (6.55)

Thus ire get the decomposition for t >0«

1 (6.56)
This completes the treatment of the ooupllag soheae (7.3) .



Let us summarize the formulae so far obtained and refer them all

to bases defined with +type boosts. (The + will therefore be omitted)

1) Conventional coupling (3bJ £)/) Jbn (t& Dl"

M =

Framet Px + P 2 » P 3 + P 4 - (̂ /s, 0 , 0 , 0 )

!))!>» fJ&I* t>7 ) J)a» t2) Crossed ooupling

Pour oases must "be distinguished aooording to the value of

t - (Pj - P3) - (p^ - P2) . These are

(a) Timeliket 0 < t 4: min (^ - m 3 )
2
 y (m4 - m 2)

2)

M

0 0 5 =

Pramei Px - P3 - P4 - P2 - (/t, 0 , 0 , 0 )



(b) Light like i t • O and m1 ( o r n1< m^ , m <m

CO

!

s ' * 1

t w ' ~ **'

* Pi - Pi

Hull i t - O a n d i j - i j - M ,

Jm - win (J ,

• O f 0 f 0)



(d) Space like i t <0

Pĵ  - p̂  • p. - P 2 - (0, 0 , 0 , / ^

(In this decomposition the dieorete representation d*'+ appears when both

X. " X2 and ii. - ok ore posit ire irhile d*1"" appears when hoth A. - >

and yu. - ix, are negative. These are the only situations in vhioh the

discrete representations can contribute,)

It remains only to transform all of these expressions (a) . . . (d)

to a oommon frame of reference following normal convention,for example,

to the oentre-of-maas frame •
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