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INTRODUCGTION

The inhomogeneous Loreniz group in Wigner's classification possesses

essentially four distinct classes of unitary representations; these are
(A) Timelike representations pa)'o s (little group S0(3)).
(B) Spacelike representations p2< 0 3 (little group SO(2,1)}).
(C) Llightlike representations p2 = 0 (little group T2 x 0(2)).
(D) Null representations p2 = 0, p, = 0 (little group s0(3,1)).

In the conventional harmonic (partial wave ) analysis of scattering prob-
lems the significance of using time-like representations is well appreciated.
For a fixed time-~like vector - total c.m. energy squared, s = p2> 0O -
an expansion of the (two-body) amplitude F(s,0) is made in the associated

s(t-w)
los 6 = [5-Cm+pO%] [S-Cm-pu¥]
whioch is the parameter ocourring in the representation theory of the appropriate
little proup 50(3); gpecifiocally the expansion empldys the complete set of
rotation functions di& (@) which correspond to the unitary representations

angle

of S0(3).

less well appreciated has till recently been the use of the other
representations (B), (C) and (D). Through the work of Joos, Toller and
Sertorio and Had jioannou, since 1964, it has come to be realiged that if
theifgpgoelike) momentum transfer t O is held fixed, a partial wave analy-
gis of the same amplitude F( ,t) ocan be made in the associated (hyperbolio)angle

chf = - t(s-u\/ [tt-pnd) £t - (map)H(t - (m-p0'l] *
the aipansion enploying unitary representations of the corresponding non-
compact little group S0(2,1). Specifically it uses functions df;-((s)
with J complex of the form J = & + ip,-o0 ¢ p<oo. The great merit of this
expansion is the direct passage it provides to complex angular momenta.

Its use pupplants completely the ocumbersome conventional three-steps
prozecure for passing to complex J representations which uses 50(3) partial
wave analysis in the orossed channel, makes a. Sommerfeld-Watson transform

and then finally oontinues analytically to physical s and t valuesn,




When momentum transfer vanighes it is clear from the above that tho
natural group-theoretic procedurs for a partial wave analysis should employ
represontations (C) and (D). For the unequal mass oaBe,as shown in what
follows, the appropriate expansion functions for cage (G} turn out to
be the Bessel functions J,_y [2,04-1: (m _#2)-11 . For forward scatter-
ing of equal-mass particles, not only does the momentum transfer vanish
(p2 = 0), but alsc each component of Py = 0. The little group - the
invariance group of the S-matrix -~ in this exceptional case is the
homogeneous Lorentz group S0(3,1) itself - a much larger structure than
$0(3). Corresponding to this larger symmetry, the principal wmitary re-
presentations of 90(3,1) are labelled not by just one quantum number J,
but by two mmbers, one disarete label (;jo) and one oontinucus pure imag-
inary number O, -i90 O £ {00, The corresponding representation functions

are n!{ﬂ. (§) (on{~ ’—:ﬁ'é‘-ﬂf) Group theory would

specify a pariial wave expansion for forward scattering in terns of thess
funotions. Using these, wo pass onoe again directly to the complex

O'-plane +~ the variable o now taking over and generalizing the role of
complex J. This O—plane was introduced into the subject by Toller®) in 1965,
who notedthat if theRegge lhypothesis of poles in the complex J plane is
carried over to the complex O—plane, to one U—pole there corresponds an
entire family of integrally spaced J-poles = a result foreshadowed earlier
in the works of Gribov, Volkov, Domckos and Suranyi and redisoovered by
- Freedaan and Wang in ocomnection with situations involving light-like ro-
preasntations (C).

The present articls (rm I)1s an attompt at a systematic and self-
omntained presentation of the group theore$ic basis of harmonis analyeis
waing the four types of Tepresentations™™){1), (B), {(C) sd (D): In Part II we
extend these rosults} in partioular wa show how an expangion of the ampli-

*} 411 expansiona (B), (C) and (D) apply to square integrable functions,
" In Part II we show how one circumvents this limitatiom.

¥%) 7o our knowledge representations for olass (C) have not been previously
studied.

it



g
tude may be carried through, using ihe functions DZ; 5\ y not orl

in the forward dirsction but for all) momentum transfers and for all

values of nelicity flip. This type of expansion,with its new separation

of the kinematical factors, will allow a more systematic use of analyt-
iecity in the g—plane for all procemses at all momentum transfers,
possibly giving a further insight into what may be learnt from a

deeper analysis of the Poincard group.

. The material in thie paper is going to be issued in two parts. The con-
tents of the first part are in the nature of a review and .are indicated
on the next page. This pari egsentiaily asovers the basgis of the group
theoretic approaoh. The second partv wili deal with generalizations, a
etudy of the complex U-plane and applications. The authors would weloome

suggestions for improvement of the material.
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1. THE UNITARY EEPRESENTATIONS OF THE POINCARE GROUP

Definitions and general discussion

The orthogonal transformatioms of space-time together with the
translations comprise the Poinoar$® group ? » The elements of this
group take the form

’ |
Xy = Xy F Ay X, + Ry (t.1)

where Aﬂ\? satisfles the orthogonality oonditions

Aww Apy = pp (1.2)
Throughout this paper we use the swumation convention A, B, =

Ay By - A]_ B - A, By = Ay By . The metrio tensor, g,, s takes the

diagonal form (+ ~ = —). All quantities appearing in (1.1) and (1.2)
are real. '

We are conocaerned with properties of the unitary representations
of ? denoted by

(4, ,Auy) > U(a,A) .9
where U 3is an operator valued funotiom of a, and.A,, satisfying
U+U = UU‘. e 1.

The supoeasive application of two transformations
K=k = Ay Xy +ly > X, = A’,.,(A,Pxf,+q,) +ay,
‘Swplies the basio requiremant
U(a,A) V(a,A) = VU(o'4A, A'A) (1.4)

The Mfinitesinal'tmafonatims of this 10-parameter group
nay be repressnted in the form

Vi tve) = 14 i, Bu-f ey Ty s ... (1.5)




where &, and Euy = ~ €vy denote infinitesimal quantities. The

hermitian generators ¥, and .I)_n,. which determine the entire

representation satisfy the algebra,

[Pp.er] =0
(v, B e ':(ﬂva Pu‘_, ?p)-Pv) (1.6)

i(ﬂw\ Jnp = 9 5[,» + Gpp T2 = GypTr)

—
oy
A
g
By
)
L

These commutation relationas which can be deduced® from (1.4) and
(1.5) aspure, in partioular, that under finite homogeneous irans-—

formations of the group P, and J, . tranaform respectively as a
4=vootor and an antigymmetiric tensor.

UMY B ULA)Y = AL, T

-1 a.n
U A D VA = Ay Age Toe -
For axample, corrospomding ta the spaoce rotation,
> cosa ~ X, Sl
17 % T ’ (1.8)

X, > X, Sna + X, Cosd ,

we have, through integrating the ocorresponding infinitesimal transe

* A simple way to derive the commutation rules is to write (1.4)
in the form

YAV (WA UA) - U, AT

heking f{a', A') oorrespand to an infinitesimal transformation
and comparing first order terms ylelds immediately the relations
(1.7). Taking A infinite@imal in theass equations gives the second
snd third lines of 1.3}, The firat line of (1.6) ig cbtained
very aaeily 9y ibe same method.




‘variant,.

formation, the operatsor axp(—iu le) and, therefore

aed - g ,
e n P a iz -P' cos ol - E Swmd, (1.9)

= P, sl + B casa

taJ 1 i
etd Y ?‘_ e vt Jia 1

Similarly, corresponding to the pure Lorent:z itranaformation,

X, > %, tha 4+ x, cha

3 (1.10)

X, % X%, sha + X, cha
we have the operator sxp(—i qu) and, therefore ,
eu&T.; ‘P e—thu - .Ed‘i + T;S'M

: . (1.11)
etdIog ‘P3 e-tdg]}; = RS‘\G + 'R..,d‘“

Relationa of this sort will be usmed repeatedly in the following,
Phe principal Oesimir operato::js of ?m the two invariasnts

Pl sm* o W, Wy = -m"j(jﬂ) . (1.12)
where
w}; * "%epvlp J;x.PP , (1.13)

The vector W, has the useful proparty of being tramslstion in~

[P, W,]: 0 o (1.14)

The eparators P2 and li2 do not always provide a complete
specifiocation of the’ irredunible representations. When mz-so
several different types of representation are possible, Before
going on to their olaseification we oongider some general proper-
ties of the representations of @ .



For the construction of representations ws follow the method
of Wigner. It is advantageous to label, in part, the dbasis vectors
of a represeniation by the eigenvalues, p "y of the Casimir operators
of the tranalstion subgroup

P»"P"\> = Pﬂl?"\>

where 1 denotes those remaining labels whioh are necessary for a

complete specificatiom. In view of the vector bebaviour of P‘_

noted above (1.7), we see that under s homogeneous transfoxmation,
A , the basis veoiors must transform according to a relation of

(1.185)

the form

VA $,2) = );M?’}t) Cux (1.16)

which simply states that the transformed state must be an eigen—
state of momentum with eigenmvalue p;_- Aﬁvpv « To evaluate the
coeffioients C Ap it im nocessary to fix, in some oconventiomal
fanhion, the definitiom of the basis weotora. Thiz is done most
direotly by meana of the Wigner "boosts".

Ist us denote by I'r a l-parsmeter family of Lorents trans—
formations, the boosts. The boost Lp transforms a given momentum
vector f:ﬁ-whioh'etmuuatm-mto Pu '

(Lo P, =ba wih P =p=w (.11

There are various altemative speoifications of the fumotion I.p
whioh are useful in different ciroumstances, They are discussed
in ISao.- 2.

Since, in an irredusible re;pmnéntatim, it ia by definition
posaible to obtain u‘ng veator in the representation space by apply-
ing appropriate transformations of the group to a fixed ome, we
oan formally define the p~dependence of the basis by

|ps2y - U(L?)If:)\> (1.18)

-5-




There is a subgroup, G , of the homogeneous group 350(3,1)
which leaves inveriant the manifold of states with p = fs\ « This
is called the little group. Thus if we define 6 as the set of
transformations E,‘w satiafying

R}"V ﬁ\’ = %I.'L (1.19)
then it follows from (1.¥) that
R B.AS =) )b udy € .
UCRY] $.45 ;}?;O.N (1. 20)

and it is implied that the coefficients Cﬂ must belong to a re-
A
prosentation of the litile group G ,

G * (R (1.21)

It is now a simple matter to shov that the transformation E(p,A)
defined for eack p amad A by

ALy = Lap R{psA) @.22)
ia contained in G , i.e.,

Ruw ($2A) By = B -

This means that

VA p3) = V(ALY 1B -

UL R (p4) ] §2

= ULy ); | s 1> Dua(R(p))

S e apee—



UM | pA> = ;MP'/‘Q D, (R(p,A) (1.23)

The coefficients € A introduced in (1.16) are thus identified with
matrix elements of a representation of the little group. Moreover,

the unitarity and irreducibility of W (A)is tied to that of D(R).

Firstly, wmitarity is guaranteed by the invariance of the

(positive ) sum over states

j.dp 6(1»‘..#)%”» <A |

and this follows if

AZD,ua ])::\ = 4

i.0., from the unitarity of D . Obviously the converse also is

true,

Secondly, if U(A) is reducible then so is D(R) (provided
'of course that p° takes only one valus in the representatiom
space). This follows mince & is a subgroup of S0(3,1). On the
other hand, if D(R) 1is reduoible, it is poseible to divide the
states Ip,).) into two or more sets which do not mix wmder
Lovents transformations, i.g., U(A) also is irreducible., It
would be a simple matter to spell oui in deiail proofs for these
olaima. However, we do not do this but merely state the basic

theorem:

The representation of § carried by the siates '2,12

ig unitary and irreducible if and only if

(i) tbo wass’ p° ie wnigque, arnd

(11) 1be associated little group representation R->D(R)
is unitary and irreducible,

So far our Lorents group inclwies only the so-called proper,
orthochronous transformations. Space and time reflections will '
be deslt with separately at a later stage.

-7




2, CLASSIFICATION OF IRREDUCISLE REPRESENTATIONS.

A ooneequence of the theorem stated in Sec. 1 is that the unitaxy
representations of ﬁj can be classified by means of the unitery
representations of the l1ittle groups with which they correspond.

There are four distinct types of lititle group whioch apply'écccrd—
ingly as P23 0 , p?¢o , 220 or Py = 0 which we shall refer
to respeotively as the timelike, ampacelike, lightlike and null
oages. This mection is deveted primarily to ths construction of
oompletehorthogonal bapip systems for the representations of ?’ .
In the course of doing this we shall have to discuss the little
groups and their :Eepreaents.tima as they arise.

Following the procedure outlined in Sec, 1 we diagonalige the
4-aomentum Py in sddition to the basio invariants P> end WO
which of course must be pure numbers in any irreducible represent=
ation, In an irreducible repressntation any veotor can be carried
into any othsr by applying a motion of the group. To begin with,
the vectors with arbitrary 4—mmnt-um Py oan be obtained from a
given one with fixed 4-momentum pp_ s She “gtandard monanjum" .
lloreover, a.ll vectors with momentum ﬁp oan be obtained from the
given one by applying transfoxmations of the little group 6 since
these are the only motions whioh leave Qu unchanged, Bvidently,
then, the representation of G contained in the irreducible re-
presentation of I must itself be irreducible. We shall denocte
~ the basis veotors of this irreducible representation by ,p JA >

or, in the case p2 =0 , by IP'P Ay where j and p label

the representation of in question and A gmerves to different-
iate the individual basis veotora. Since, by tha basio theorem of Seo.
1. the irreduoible mpmaentatims of ?) and G are corxrelated, .

it sugt be that j and P are Poinoard invarisnts. In faot,

as we shall show for cach case omgidered bolow, W- = <p> 3(J + 1)
for pz,l 0 end v - _Fz for p2 =0 . The remaining label,

A, is not generally dmveriant, We find:it oonvemient to
'aasqciata it alweys with J10 » 1eesy

-
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(2.1)

LI i = ABid>, w T peA>:-AlbeAr.

It happens, however, that when p2 = 0 and Pz = 0 +then -A has

invariant significance, namely

Wlpod> = Apfpord, peo @

Generally, then, we have the structure

hil)g U(Lf)lﬁjl-) (2.3)

go that, under an arbitrary motion of the group ?
Ipid> > vealpin> = T EA 2 %

where R . belongs to the appropriate 8 + The precise choice of
boost L, depends upon what spplications ere to be made. We shall
discuss for each typs of p, (p2>0 ’ p2<0 ’ p2 = 0) three
different cholces of Lp which serve to diagonalize one of LAY

‘3 or H_o- H3 « Tha null case, Pp = 0 , is logically distinot
since no Lp is defined for it and wo shall have to consider it
poparately.

Firstly, howevar, we deal with the gubapaves p = f and the
little group representations ocontained therein.

(1) Timelike cage, p2>o

For the standard momentum it is always poseible to take

4

b (+ .0, 0,0) (2. 5)

where the sign of f)o is invariant., There is no transformation
in ? which can reverse the sign of Pqg when pz)o « Suoh




improper transformations belong to the "extended" group which will
be oconsidered separately iater.
¥hen aoting in the subspace p = 13 the componenis of Wy

reduce to the form

W, = t(0, Tu, 3., , T,) /65 (2. 6)

M

which moans that the little group @ is in this case generated by
.1'23 ’ J31 ’ J12’ which obey the commutation rules

[Iu: J;f] = i. 7Y
[Ty I I N | (2.7
[‘Tlt ’ Ju ] 2 t 3

A .
so that O 4is simply the well-known rotatian group S0(3)., The
irreducible representations of (f) are therefore characteriged by

WIB i - T L+ T BA)> e
S FICIU AR FPY

corresponding to the representations I or S0(3) with

I = 0,5, t, «v (2.9)

The representations corresponding to half-integer values of
are of oourse 2-valuag. '

(i1) Spacelike ocase p2<0

_ For the standard momentum we can take

b. = (0, 0, 0, Fp°) (2.10)

-10-
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where the root im positive. The sign of 33 hag no invariant
gignificance. When acting in the subspace p = ; the components

of EF reduce +o thg form

We = (T, Tos Jo , 0) [+ < (2.11)

A
whioh means that the little group G is in this case generated by
and JO&’ which obey the commutation rulss

[Jﬁ ' J;:] - 4 ot
[sz ' Ju ] = "‘Jn. (2.12)
[];n ' Jﬁ-) = 1 J;o

A «
so that G becomes the non—ocompaot rotation group S0(2,1). The
irretucible represantations of q) are characterimed as before by

J12 * J20

i

WP iay = - (Ja- T J.:)IHU
< iG] PN

(2.13)

corresponding to the representations pd or 80(2,1). In this
ocase, however, the possible values of j are quite different
from (2.9), It ie usual to group the unitary representations
of 50(2,1) into four distinot families: ‘

(a) Principal series

R;(i) s =t , ~w < Im(i)(oo  (2.14)

These reprosentations are all infinite-dimensional with A +taking
all integer values or &ll half-integer values between = 00 and + o0,

x = D, 1'1 » '_.:z’ ()

-11-




{2.15)

or U S S L

Striotly speaking there are additional many-valued representations
We are in effect restricting
Another

are

with A +taking fraotional values.

ourselves to the one-valued representations of SU(1,1).
point to note is that the representations DY and p~d-1

weakly equivalent. This will be made clear in Segq. 4,
whore the structure of these representations is disoussed in some.

detail.

(b) Supplementary geries _
“tC(Re(f) <O , Du(j) =0 (2.16)

Thepe representations also are infinite—dimensional with A taking
all integer values,

A= O, £1, £2, .. (2.17)

(¢) Disorete geries

5’ '.'*n -1, “a‘_‘a e (2.18)

These axe semi-infinite of two types dopending au the ign of X

" .
D}.i A= ‘ja-ja-i PR K NPT (2.19)
‘]>i.: A" j ) {" 1 » i-l 3 v (2-20)

(d) Scalsr representation

(2.21)

i =0
Thies is the only finite-dimensional unitary representation of
50(2'1) 4 A=0,

2

(444 ) Lightlike case p° = O

Por the standard momentum we can take

-12-
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13#=(w,o,o,w) (2.22)

whore ¢J 1is arbitraz-_y up to sign. As for the timelike ocase there
is an invariant distinotion between w70 and <0 ., When acting
an the Bubspace p = fy the components of W, xeduce to the “form

W

w = (Jy, =T, Ty, T,) e . (2.23)

where

e T - T,

m, - ‘Tzo - ‘Tzs

(2 .'_'724) |

. :
The gxoup G is generated in this case by J12 ,Tfi and ',Il"a,
which obey the oommutation rules:

[T, , ] = i,
[Iu , Wy ] ® ""-Tr1 ‘ (2. 25)
['Tr‘l' * z ] = 0

so that & becomes the Euclidean group in two dimensions,
80(2) A ™(2) . The irreducible representations of P are
oharaoteriged by :

W’ Ippl} P CANTIY

= -plppad> (.29

oorresponding to the representation DP/ < ot S0(2) AT(2) . The
parameter o is of course a Poincaré invariant while the little

group Jasimir (p /GJ) is not. Thie simply reflects the faot
that our standard momentum f) was not specified in terms of

-13-




invariants as was the case in (i) and (ii)., There is in faot a
loparameter group of transformations ~ the lLorentz transformations
in the O3-plane - which preserves the form of (2.22). Thus

et [ pa> = (e¥5,p0) @.27)
or w -+ elew
while . :
I‘L (“- +Tr) "‘T-! . e‘é‘(]’l‘:*‘n’:) . (2. 28)
so that the pmdunt
s+ Tl't) « tnveriant. | (2.29)

!hn mﬂary represeatations of 80{2) It '1'(2) can de grmxped into
two families:
(a) Prinocipal sexies, )2

0<p <o , Tmp =0 (2. 30)

These nj)remtationn are infinite-dimensiomal with A taking all
integer values or all half-integer valuss between -~ o0 and + ody

A= o, +1, 2, ...
A=, 3, . | (2. 31)

(v) Disorete geries, :!Jl"l

Thede mgm'ﬁatim are l-dimensicnal and coxrespond to
P =0 . : (2. 32)

Bvidently in this case we have 'tri‘- Tf.z = 0 go that the algebra
reduces to J;, whioh becomes the Casimir operator. Setting

-14-
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- M, =0 in (2.23) gives the relation

w"‘“;‘n‘? - ?’*‘ ,,_If;o)\) (2. 33)
s AR |s0X
andtl;e equality
Wy = XPy (2. 34)

is evidently Poincaré covariant thus exhibiting A as a Casimir
jinvariant, To each integer or half-integer value of A\ there
corresponde an irreducible representation Do‘\,

Az0, td, 21, .. | (2. 35)

(iv) Full oase P = O

Hore the representations of the Poinca®d group coincide with
those of the homogenecus Lorents group. There is no standard
momontum in this case and the little group G becomes 80(3,1)
generated by the six J,, . There are two invariants,

£ Jov = j;-crz-ri (2. 36)
#eﬂ"ll’ J.pl\‘ J;P sz 2 i jo a | (2. 37)

It is possible to label a oomplete set of basis veotors ) l j, a } )>,
with two additional quantum numbers j and ) defined by

(J’,:-t T +J:,)I§°o-".\> = 1'(1'1-1)]3',0']')\} (2. 38)
Ju Ljpojdd> = Ajoi2 > (2. 39)

The unitary irreducible reprasentétions' ph® of S50(3,1) oome in
two series, both infinite-dimensionals

-15-




(a) Principal series

Re () =0 -0 < Im@ <0

_ ' (2. 40)
10::0,-3,1,...
with J and A tsking the valuea
1= 4, L F1 4.+ 2, -
1% 1. 4 (2.41)
A= -5, o R NELEEE 1
(v) Supplementery series |
0< Re(@) <1 , Imfe)eo0 (2.42)
with § and A taking the values
i= 0, 1 2 .ea
i Yo (2. 44)

‘l= 'I-'.' "'1"1 "..q’ j
It will be showm in Sec. 4, where those representations

are discussed more fully, that the representations D;joc‘- and
D~9%“% are weakly equivalent.

. To summarige the disoussion so far, we have found the
following clasgses of umitary irreducible rep:faaenta.tim of the

Poinocaré group:
(1) Timelike

| bi(b‘): fr $r0, sn(p) =21, feo, 1,1, ...

-16-
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(11) Spaoelike

(Principal)

ﬂ)}(p‘); ‘fﬂ' Pg<0, Re,J' = -%,-00 <Iu.J' ¢ o0
“i(ch <o , Im(jso (Supplementary )

j =0 (Scalar)

bjt“"): fyf P’*(o , S:n(“): t'l 3 d:-é,-1, -i-’ ces (Discmte)
(11i) Lightlike _

'ﬂ;(o): {,,- P‘:a, sr(ﬁ). +1, 0<p <0 (Principal)

(Disorete )

Sjtd(o);-furp‘go, sr.[f.)a t1,A=0, t+, 1,

(iv) Huld .
| _Dﬁ'or: {o‘r Bu.’o’ Re(@) 20 =00 < Im(a) <a-o,4'°= 0,,1,..(Principal)

0« 'Re (®_<1 R Iln(tﬂ': o, J.o' 0 (Supplementary)

Consider now the problem of defining the funotional form of
the boost matrices I.P e« It is degired, firstly, that the

variables in Lp provide a suitable parametrigation of the "mass-
shell™ or orbit of p . Sinoe

ALTES RN A IEY

= (Li’)l"f" U(LP) ﬁjl) (2. 45)
= ?Pl?ik> ’
we require that
P = (L?),w {;v J (2. 46)
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that is,

P
P
P

u
+
o~~~
P
-’
L .E-.J
[+
-
A4
Q

(2.47)

i
! |
' o
‘ﬂp (]
—~
W
~v,
A
o

"
E
[
r
o
1
£
N
F
*
“®
[}
—.o.
o

be such as to diagonalize
It turms out that
a8 the product of a

Seoondly, it is desired that Lp
ane of the operators '0’ H3 or Wy - 3 e
this requirement is met by constructing Lp
Lorents transformation in the O3=plane with transformations

belonging to one of the little groups 80(3), 80(2,1) or S0(2)AT(2).
This structure will prove advantageous when we oome to the problem
of deoamposing products of irveduoible representations. We shall
therefore dofine three disbinot bscst fmotimms, LY , Lo and Lg.
employing operations drawm, Tespectively, fwem 50(3), 50(2,1) and
W(2) A 2(2). They are A

U(Lf) e-i'PIn e-iaJ;' e"' e FCdJ (2. 48)
or .
(L,,),u', =
cha 0 o ~shd A

mf“"‘am S Poast ~ Sinlep ~Sintpiarplatd-1) ~casipsi. @ chd
s..qu-as&d.  Singpoop(asd-1) -S2piso-coly. -Smpsiodka

cosOshd 3PS shosp . —asgkd 5 49)
\ . H _“_XI
u(L,) - I I AL A (2. 50)
?
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(1), =
f oﬁpoﬁa’ —'skpmcg -s\n'ss.;..cp —c&-{sskf \
cospshachy  -cfypchn-Sidp  Sagesp(i-cka) - - cospshpshy |
s‘..c,sl'eaﬁx Sw peasep (1 - dhg) -So'..‘?d’o-w@ - S gpshBsh Y

| sk o o ~hY | (2.51)
u(s) - SR T R gk (.52)
or
(L?)N s {nﬁ)dx-ﬁs‘kz Feosg LS idm_,(.q;)sl.x 1
Eceap(shz-chx) ~\ 0 luSp(shi-chz)
;s{.,f(shz-cﬁz) o «1  Esup(shx-ch®)

l-Gisheeghe  Fosp g Gdcha- fyshr ]
(2. 53)

Thus we have the following parametrisations:

(1) Timelike case p°> O

? = i-JP (d\d sha Swmé tos¥ , sha sind sinp, Sha msﬂ)
f't‘ (d,x chp etqr sl.p eostf, cl.y shﬂ sm‘f, ShX)
= +“: (CLX +-e "'Ee ts¥ , §e sinf, SLX* )

(2. 54)

where the parameters’take the respective ranges
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0 ¢ ¥ <1T , ©O0s € 7 0
0 €Y <2 \ 6§ B oo 4, =~ & Y & 20 (255

0 & ¥ <2 , .m0 ¢ B g0, -e €Y €00

Comparing the three expressions (2 .54) we get the relations between

the different parametrizations:

shy = sha ctos@ cha = chy chg
: | (2. 56)
fﬁp = Sin® tho fam,s E_A
c"'x - d“Y Chg -ﬂ‘r _ Slor -] th 'l'
£ =- chy shg he :- (2.57)
“chy chp -shy ct.7(+
[
cha = chX + _gs, e,_x e.x z cha - sha cosé
b oo Ee” E . sha Sin & (2.58)
. th-tg e.-x d\d slm Casf

(11) Spacelike case p-< O

Pu ™ ,/-p‘ (sha , cha sine c&s? , Chd Swmb sin'P, cha wsé)

H

ﬁ‘(s&y chg , Shy sh@ cosf, shy shg swf, chy )

Y X X . ¢ X
2 COS'P, EQ SM!'P, C“X'E—e )

=z ﬁr(shx-ge ,:»;e

-20-
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* = B YA
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Comparing these expressions we get

chy = c¢hd coso sha = shy chg )
i v (2.60)
thp = 30 to 6 = sh th ¥ i
i o £
e* . chy - shychg chy = ¢hX - ; e_x
-X (2. 61)
e . e —ES
chy - shychf sh - _E;c X
shd = shX - -5— e-z e'x = cha tosh - shat
=X . o
Tme - Ee - g . Cl'd Smb (2. 62)
ch) - 5‘ e cha cos# - sha

Bvidently only the first parametrigation in (2.59) serves to cover
the entire orbit p>< 0 with

0&Y <¢ 2w 0 £6 ST , <00 <& <90 . (2,63)
The other two cover only parts of the orbit. Thus

0¢Y ¢ 2w |, 0£g <0 , -0 <Y <00 (2. 64)
corresponds to the region oo0sf # 1/cha and

0¢¥P <¢2m , 0¢&com , ~o0< <o (365

oorresponds to thd region ocosf > tha . These regions' are, as
it happens, sufficiently large for the applications we shall be
making in the next meotiom.
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(iii) Lightlike case p2=0

A we“(‘r. Snbeesf, mbsimyp, cosd)
= we¥(chg, e cosy . sme Sim 9, cos8) . (2.86)
e we (1,0, 0, 1)
This parametrization evidently fails rather drastically in the lasat

line., However, if we apply the boosts L; ’ L; and Lg to a

different lightlike wvector, namely

b o= (0,0, 0, -0) (2.67)

whioch is the one that will be concerning us in practioe, we get

P = w(L?)ﬂ“‘ t (L?)M

= e (1, cinBes, Smdsinp, cos )
. (2. 68)

we™ (chg, shgeasy, skpsiu?, -1)

weX (1 +t;'!, ~2E s, —zgmy, -1+{')

These expressions contain one parameter too many. To eliminate
this redundancy we may rTegard & (say) as a constant scale factor.,
Then the oonneotions between different parameotrizations can be

derived as before:

~ : Y
e ¥ . e ésd e™ = e chg

‘ (2.69)

thpg = - &% g, = - thy

-22-
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e")':= e"oq'\-‘(% ¥ - (1—5“‘)€x )

; (2. 70)
€ - - thehy thitgy = -% i
ez (Q—; r1)% e* . ety ?
' (2. 71)
t"""elz = § g = t'ome/z

The first parametrization servas to cover the orbit p2 =« 0 with

d<s ¢ <2T 048 €TC , -0 Lot ¢0 (2.72)

The saoon‘d parametrisation ocovers the ragion %/2 € 6 < T with

OLypea™ ,-0lBgo , (X oo , (2. 73)
and the third covers the same region with
0¢Pea™ , o0 € ¢™ ~m< X oo - (2. 74)
With theso parametrisations it is easy to verify that
WMQ)=WQ(%M+%*O
W, U (L) - (L, ) (W, shy + W, chy) (2. 75)

(w,-W) L) = V(LR (M, -M) ™ .

Defining the respefrtive basis systems By




T U R0

2y -
BjAY = UMD (2.76)
BRI CANITRY

and uging the formulae (2.6) and {2.11)and (2,23),which give the action
of ll}', on states with siandard momentum _

(o, W) |B4A) » (o,uf;.‘l)”,“)' B30

(Wo. ‘”l?ﬂ) QWA ) $4Ar, pco (2.77)
W BpAY ¢ (whmwd) [ BpA) . §-o

we obtain for p2> 0 and p2< 0 the eigenvalue equaticms

W gAY = Ae /f,"rf{f P,’ﬁ ,.pj.\)*
Piry

Wpiry = Xe/g-p-g
(W Wolpias = -Alph-p)pj 13

(2.78)

vhere € denotes an jmveriant sign fastor, € = - &(p,) tor p?> 0
and € = 1 for p<'0 Forp -Othaoorrespondingfomula.e

are




wlpeay = Ap|ppr>
W P2 = p|pery
(W25 = X(h- p) [ 2pAY (2.78')

The p2 = 0 states are defined here by

pA> = U(LlE P

N U(Ly) e x> (2.79)

H
where I.p denotes one of L; ’ I.; s o L° ., The four-momentum p
takes the standard form (w, O, O ,@) . The helicity A is con-
ventionally defined as the eigenvalue of 312 on states with four-

momentumn 5 ’

N ETSOEDY Y2V (2.80)

It remains only to oonstruoct the wmitary matrices whioh
traneform one basles systfem to another, what might be called the
"gpin rearrangement matrices", Since, for any pair of boosts

Lp and I.; s Bay, Wo have the equality

~25-




(L-‘P)}J.V ?’v = (L;))w l;v

-1 - A
then it must be that (L;) : Ly belongs to the little group G
Thus,for any repreaentation,we have

- - ) a - Y 4. &
U-l(ff) U(Lf) s e % emJ—“ e ® % e p o PR

e“‘l’qze":@Isl e“?a;i , ?:.> 0

. e:;q,I,e L ®1, Cup:fn

. P‘ 0 (2. 81)
¢ vl -1 O 3“);“'1", #a.0

whoere, since the ¥ dependence: factors out we have been able to ex-
olude frqm the form (2.81) those Juv With & or V =2, The
angle (® depends on 1)‘ « Similarly, we have

U"([?} U(L'?) . Cti?:rueiﬂ’eip‘rﬂ e t§Mh e~ X 4‘-?‘1’:
(o B el 50

| %187, iede

[ or% a0

]

o, (2.82)
, $<0

y P =0

U-‘.( L.f) U u‘;’) ® 2 0‘1 :Lei ET[, et 0Jy e ta Ty ‘g‘:?Jll.

ré.@;,e-i'lfl,, &593’“ ' Px s o |
= é‘ﬂ'e"if"-- &“?Ju , Pa < o (2.83)
‘ é"‘ﬁle iy (Juo"':_ru) e“l'Ju , P‘ | - 0




In terms of the three angles @,& and V¥, we can write the sought-

sfter relations in the form

1

P> = L eip) &y (o) SVt

FER > L) ip> .d,’;,\ @) WY (2.8
| A

lpi Ay = L ednd dh b et NY

for the variocus cases, p2}0 ’ p2(0 and p2 a 0 . The functions
dik are matrix elements of the little group transformations,

. <f’;j}1,e-i®1"l$jA> ’ #>o

dl, (@)

<%1P'e-t®3¢n'%ix> , 'f;(o (2.85)

Biple OB 5000, peo
No oonfusion can arise from using the same aymbol 6.j for the

different representations since the actual range of J will
distinguish them. For the p2 = 0 oase, of oourse, wo should

read fl ingtead of J .

To evaluate the angles @, @ ana \P’. it will be sufficient
to work in a two-dimensional representation of the J uv e

T. = +oy S o, (2.86)

where the O'i are Pauli matrices, In this representation we have

S (P e gD
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and . ‘

8Ty wsOf2 -5in6f2 LT 1 -E

¢ = , e §h (2.87)
sime/z\ tos a/i 0 1

Thenfore,

e':‘]:ﬁ e 875 il YT, =

R (conbfz chpfa +<ingf2 :A‘@/z) é'd_zﬁ(m Gz shBR +sin Bf2 cLF/i))
T (-im g2 chgfo + mo/z shﬁ/z) X (cmbfe she/z + wcsf2 ch B2

[ (ws@/z -:h@/z) Cgro

Sim qu ¢S @/z

chop  sh®f2 . 2 ¢
Y(éﬁ@/z m/z) e
\ |

(o)

oomparing which gives, for p2> o ,

(2.88)

ws® e o' @/z - s’ ®[a.
- (;;s o/a ch gz. Jrs\Q e/z s._kp/z) (~ s of2 sln(s/z Hos'e/z CLF/I)—

| + (o e/z sL(i/z. +3w e/,_ 'cl\(./i) (- ::m &/z cl\(i/a + (o8 o/z ng/z):

28




- ((D_r,’e/;_ cth/Z -55“16/?. sl."s/z) + (Ca$79;"2 SLZ(?;,."'Z. - S'u\zB/?. cL"(g 2.)

s (ostof2 ~swiefz) (chglz + sl g2)

= csh ch§ (2.89)

and, for p2< 0

ch@d = cos® cf\g (2. 90)

and, for p2 - Q

3

® s e‘"Y(:-mo) (|.+ chg) - (2.91)

With the help of relations (2.56), (2.60) and (2.69) these results
may be expressed in the form

Similarly,

we - ' -"5?- a
chad :f% ("h“'i “sthxfi %) for p>e
o :
shd ﬁe‘ ﬂx g‘a’){shz i'g‘z)ﬁl.r <°
a®  =_e'thp . z2te” Lo oo

'3‘ eie Iot e"i g Lo e‘il ;,

N e _(#X
e "kl -e T (Ehgla 4 shih)
= sh g2 & (Eshgfz -du(!/z)
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< s §/1 -Sm §/?- .
' 'Pl >0

Sw B2 s G2
{ch 3 sh %2
% g2 d.;,_] » Pl

1 o
{_é., ; } y‘P:O

Thus, for p2>0

|

s = §s||$-d-p
.anl, for p2<0
chP = Eshp-chg

and, for p2 = 0

t} P QI;L.Skg/I

Shislces®-shachoicason  chy- shychg
3 i . _ chd O = shp
il cos'B-shot chcasB-4 Shy - da’dp
o . ¥
= e tnm.ez = ﬁ..ﬁ&
2 Sw’§ - cas"® *
m” . z . .
e X0y i§Th 10
=

In the pama way as before one geta

=30-
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. {(2.93)
_; i
cﬁx—%}i"’" PHro
- -t (2. 94)
- Esi_ =0
-4

eﬁa'—&(a’sq{z + Esnofe) S5 (-u'm‘a/z + EcosO/z))
X8 o op e** cas of2




s § = tos® +& ymd . p0

h¥ = o:B+Esmb , Pp<O (2. 96)
o

¥ - -el“!—s&nq’z , PO

whioch become on using (2.58), (2.62) and (2.71):

tnm S-- 8 = —M’L = E
P Shot - cRacor®  UIDIRIP-1  sha-T et
hy = -8 _Shxshp E (2.97)

Chdt - ShiCss® _sk‘toﬁ'i!-wd-s&pﬂ~ c&u%‘e""

¢ = by _ e‘ﬂ‘&z .-;__E_F::_A
CK$£44§3 2 §‘+-l

Thig completes the discussion of basis vectora. A check on the
computations is provided by the consistency requirement derivable

from (2.84), namely,

® + ¢ + ¢ - 0 (2. 98)

3. REDUCTION OF THE DIRECT PRODUCT,

It is well known that the direct product of two unitary
representations of the Poincaré group can be completely reduced
into a direot pum of, irredusible representationa. This reduction
has been discussed by many authors using various formalisma. We
shall adopt here the physioipnt's attitude: ignoring any of the
more.intrioate mathematical questions that may arise, proceeding
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as it wore, in a atate of innocense.

Before we start, however, it may be worth mentioning that

there is at least one important distinction between the finite=

and the infinite-~dimensional problems. In dealing with a non-

compaot group one's intuition may fail to warn that the direot
produot of an infinite-dimenzsional unitaxry representation with a
finite-dimensional non-unitary one may contain unitary.-as well as

non~-unitary irreducible representations, This is indeed the oase.

That is to say, there do exist invariant oouplings beitween two
unitary rephesentations and a non-unitary ome. On the other hand,
the reduotion of the direot produot of two unitary representations,
as usually fomulated, contains only wnitary irreducible represent-
ations - the non-unitary ones are exoluded by convergence require-
ments, This means that the 'problem of reducing direct products is

not always equivalent to the problem of finding invariant couplings
or Clebeoh~Gordan coeffioients.

Disregarding, for the present, this gquaestion of possible
finite~dimensional representations, wo proceed with the reduotion
in the light of the fofmaliam developed above, Consider the

" problem

DeD, - LoD, (3.1)
ory, in terms of basis veotors, |

. Ih‘.vlthi!xz ? s Z d?[ ,NPI A>‘<h Pk lP" j‘h'?‘j’)‘>
DR 2.2)

In Eq.(3.2) the index, n , is supposed to ooﬁpriae all of the
necesgary labels which are not showm explioitly. An expliocit
realization of n as indeed of the coupling ocoeffioclent,

(np 3A|p §;A; P I3 Ay ) s iteelf, will be developed in
‘the following. '
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The bagic invariances of the coupling coefficients can be
discovered by applying an arbitrary tranaformation of the Poincaré
group to both sides of (3.2) while requiring the index , n, to be

invariant. For the states ’n P J A) one can assume a trannform-

ation law of the form

Wahnpids < € Dinapjpy Dby ALY @

which agsuresg the invariance of n , Translation invariance alone

gives

(nPi)\lﬂﬂ:&RYPt‘.z Az) ~ 6(?1*"1 "P) (3. 4)
while invariance under the homogeneous tre;nsfomations glves
CYIRNLPR N PR

i ~1 N . . .' il
= DM(R ) <hA 1’1}""/‘1’1 41 My A'Pa fa Mo ? J)i.a, (Ru) bhk;(Ra)
(3. 5)
where R , Rl and R2 denote the appropriate little group rotations.

In view of the conditions (3.4) and (3.5) it will be sufficient

for us to take p = pl + Py and to fix p 1in one of the standard

direotions. 3 + Consider now the possible values of p"2 COT-
responding to given pf ’ pg and, where relevant, sgn (plo) and
sgn (PZO)‘ There are ten cases to be distinguished but only four

of these need be examined explicitly, the othera following rather
trivialiy.

(i) m+(mf)®'.‘b+(m§) ¢ Where

femao, Kemao o salh) sspulb) 41 o0

L

There ig only one type of representatiom in this product,

§)+(#) wik (m,*i- ml); £ ‘P‘ ¢ ©0 (3.7

=33~




The masses are non-negetive in (3.7), m oy my2

(i1) D,(n7) @ D_(n3) , whore

| B
Poem

Ir my > m, there are three types of representation in the

product

B8 wbh 0 < g (wmm)
D, wih p =0 (bt h £0)

DHF) wh -0 <P <0

Ir wy < m, the p2 content is the same but 5D+ becomes
in (3.9)s The representations (3.7) and (3.9) must be further

:>,O @;:m:»ﬁ ’ S?n(f)w)=+1,53ﬂ”“

'(iB)

(3.9)

H_

classified -according to their j-valwes but thie we shall postpone.

I m =m, there are two types,
oo .
D wik P“
D(P) whk -0 < P <o

(111) D (22)@ D(-n2) , where

Piau:»o, P:--nl;‘(O amd snn(‘:”)..,.‘_

There are always three types of represemtaiiom here,

D (ff) with 0<$ <o
D, (o with  p=0 (lt$, #0)
D (H) with -0 ¢ 4 <0

!

(iv) 'i)(-mi ® ﬂ)(—mg) , Wwhere

Pre -miCO0 oamd ff=-m <O

'3
|
33
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(3.10)

(3.11)

(3.12)

(3.13)

(% ]



Ir my A m, there are five types of representation in tkis product,

D, (") and D (8 with 0 < ?‘" < oo
D, © and  D_(o) with 3= 0 (bt 2 £0)

i
:D(‘Pn: with —~ o0 <‘P < 0
(3.14)
1t n, = m, there is, in addition, the Tepresentation
;ﬁj"‘r with 0
Pu - (3.15)

The remaining six cases need not be listed explicitly., They
are: D @ D_and H_ & D which follow from (i) and (iii) in an
obvious way; ‘13: 3] ;bi.." and ;5® 1)14:"' for which p = Py j and
H*°® D3 gor which p = O .

Hore difficult to aselve is the problem of discovering what

values of j can appear in the various cases. This cannot be

dealt with merely by considerations involving the basis vectors
in isolation. Strietly, one has to use scalar products of thenm
with normalizable states in the Hilbert space — i.e., wave packets =
and take caroful account of the asymptotic behaviour of these
functions. Since, for the applicetions we have in view, this
agyupiotic behaviour is not alweys known in advance we shall have

to proceed in a rather formal manner and discard any pretence of A
rigour., Hore specifiocally, we ghall asgume that any function £(G)
defined over one of the little groups G can be expanded 28 an
integral over the umitary representations of ﬁ ’

S i g
f(e) = Bd,tt(é}g fxy.('j) D"f" (G) (3. 16)

with

fl,*(j) = d}l(&‘) R“’P(Car)* £(6) (3.17)







