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INTRODUCTION

The inhoroogeneous Lorentz group in Wigner's classification possesses

essentially four distinct classes of unitary representations; these are

(A) Timelike representations p > O % (little group S0(3)).

(B) Spacelike representations p < 0 j (little group S0(2,l)).

(C) Lightlike representations p « 0 (little group t? x 0(2)).

(D) Null representations p - 0 t p^ «• 0 (little group S0(3,l)).

In the conventional harmonic (partial wave) analysis of scattering prob-

lems the significance of using time-liks representations is well appreciated.
2

For a fixed time-like vector - total c m . energy squared, s - p > 0 -

an expansion of the (two-body) amplitude F(af6) is made in the associated

angle

whioh is the parameter occurring in the representation theory of the appropriate

little group S0(3)j apeoifioally the expansion employs the complete set of

rotation functions d ^ (0) which correspond to the unitary representations

of S0(3).

Less well appreciated has till recently been the use of the other

representations (B), (C) and (D). Through the work of Joos, Toller and

Sertorio and Hadjioannou, since 1964* it has come to be realised that if

tho:(spaoelike) momentum transfer t 0 is held fixed, a partial wave analy-

sis of the same amplitude F( tt) can be made in the associated (hyperbolio)angle

the expansion employing unitary representations of the corresponding non-

compact little group SO(2,l). Specifically it uses functions d

with J complex of the form J « •£ + ip,-<*» <f><oo. The great merit of this

expansion is the direct -passage it provides to complex angular momenta.

Its use supplants completely the oumbersome conventional three-steps

procedure for passing to complex J representations which uses S0(3) partial

wave analysis in the crossed channel, mak&s a Sommerfeld—Ifatson transform

and then finally oontinues analytically to physical s and t values.



When momentum transfer vanishes i t i s clear from the above that tho
natural group-theoretic procedure for a partial wave analysis should employ
representations (C) and (D). POT the unequal mass case,4s shown in what
follows, the appropriate expansion functions for case (C) turn out to
be the Beaael functions J^_x |,2j>v-t (m - JK )" J . For forward scatter-
ing of equal-mass particles, not only does the momentum transfer vanish
(p m 0), but also each component of p̂  •• 0. The l i t t l e group - the
invarianoe group of the S-matrix - in this exceptional case is the
homogeneous Lorentz group S0(3»l) i t se l f - a much larger structure than
S0(3). Corresponding to this larger symmetry, the principal unitary re-
presentations of 30(3,1) are labelled not by just one quantum number J,
but by two numbers, one disorete label ( j ) and one oontinuous pure imag-
inary number (T, -teo<Cr < too . The corresponding representation functions

2 2
"^ )• Qroup thflOIy would

speoify a partial wave expansion for forward scattering in terns of those
funotions. Daing these, wo pass onoe again directly to the complex
cr-plane - the variable <r now taking over and generalising the role of
complex J. This or-plane was introduced into the subject by Toller*) in 1965»
who notedthat i f theBeggB hypothesis of poles in the oooplex J plane Is
carried over to the complex tr—plane, to one (T-pole there corresponds an
entire family of integrally spaced J-poles - a result foreshadowed earlier
in the works of Gribcnr, Volkov, Domokos and 3uranyi and rediscovered by
Treednan and Vang in oonneotion with situations involving l ight-l ike re-
presentations ( 0 ) .

The present artiela (Part I ) i» an attaapt at a aystematio and se l f -
oontained presentation of the croup tfaaoretio Wwia of harmonie analysis
using the four types of representations*^A), (B), ( C ) and (D). In Part II we
extend these results | in particular we show how an expansion of the ampli-

*) All expansions (B), (C) and (D) apply to square integrable functions.

In Part II we show how one oirbumvents this limitation.

**) To our knowledge representations for olasa (c) have not been previously

studied.
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tude may be carried through, usinc tbe functions D'° ,...• , not or]y

in the forward direction but for all momentum transfers and for all

values of hclicity flip. This type of expansion,with its nav separation

of the kineraatioal factors, will allow a more systematic use of analyt-

icity in the O"-plane for all processes at all momentum transfers,

possibly giving a further insight into what may be learnt from a

deeper analysis of the Poincare group.

, The material in this paper ia going to be issued in two parts. The con-

tents of the first part are in the nature of a review and .are indioated

on the next page. This part essentially covers the basis of the group

Theoretic approach. The second paxx wxli deal with generalizations, a

study of the complex Cr-plane and applications. The authors would welcome

suggestions for improvement of the material.
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1, THE UHITARY HEPHESENTATIGFS OP THS P0IBCAH2 ORODP

Definitions and general discussion

The orthogonal transformations of space-time together with the

translations comprise t ie Poinoare group j » The slamentB of this
group take the form

where A^v s a t i s f i e s the orthogonality conditions

Throughout t h i s paper ve use the summation convention A« B^ -

1Q BQ - A^ ^ - Ag Bg - A3 B^ . The metrio tensor, gAV » takes the

diagonal form (+ - - - ) • All quanti t ies appearing in ( 1 . 1 ) and ( 1 . 2 )

are r e a l .

We are oonoemed with properties of the unitary representations

of Y denoted by

vnere U 1B an operator -valued funotlon at a^ and • A^¥ Batisfying

U+U • UlT « 1.

The auooessive applloation of tvo transfoxmatiaoa

V

the basic requirement

''X) d.4)

The infinitesimal transforaations of this 10-parameter group

nay he represented in the fora

- 2 -



where ft and €„„ ** - ^f- denote infinitesimal quantities. The
hennitian generators P^ and J^y which determine the entire
representation satisfy the algebra,

TheBe commutation relations whioh can be deduced* from (l«4) and
(1,5) assure, in particular, that under f inite homogeneous trans-
formations of the group F» and J^.^ transform respectively as a

and an antisymmetric tensor,

U(A) c

For example, oorroapondinff to the spaoe rotation,

X ^ X , COS* - X

•n have, through integrating the corresponding infinitesimal trans-

* A simple way to derive the commutation rules is to write (1*4)

in the form

S(A-m*',A')U[A) „ U(A-Vr A*'A'A)

Kaking (a*, A 1 ) oorrespond to an infinitesimal transformation

and comparing first order terms yields immediately the relations

(1.7)* Taking A infinitesimal in these equations gives the second

and 4hird lines of (1 -£)• The first line of (1.6) is obtained

by the same method.

-3-



formation, the operator exp[-itx J 1 2 1 and, therefore

^ e " » "** " ? iWlOt ft
I1

- | O ( J | L -O •

Similarly, oorreaponding to the pure Lorents transformation,

v
(1.10)

vs hare the operator eatp[-le(JQ*) and, therefore

Relations of this sort will be used repeatedly in the following,

The prinoipal Oaaimlr operators of T are the tiro invariants

where

The vector V^ has the tiseful property of bein^ translation in -

variant,
Oju , Wv] = 0 (1.14)

The operators F and w do not alitaya provide a complete
2

speoif ioation of the' irreduai'ble representations* When m •£ 0
several different types of representation are possible. Before
going on to their olaseifioation we ooneider some general proper-
t ies of the representations of

-4 -
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For the construction of representations ve follow the method

of tfigner. It is advantageous to labelt in part, the basis -rectors

of a representation by the eigenvalues, p« « of the Casimir operators

of the translation subgroup

vhere X denotes those remaining labels vhioh are necessary for a

oomplete speoif ication. In view of the veotor behaviour of |^

noted above (1.7), ire see that under a homogeneous transformation*

A * the basis vectors must transform according to a relation of

the form

vhioh simply states that the transformed state must be an eigen-

Btate of momentum with eigenvalue p» - A^yPy • To evaluate the

coeffioientB Cy* it la necessary to fix* in B O M conventional

fashion, the definition of the basis vectors. This is done most

direotly by meana of the figner "boosts".

l e t u« denote by I. a 3-paraneter family of Lorents trans-
formations t the boost a. The boost L transforms a given momentun

A *
vector p - vhioh we take as a standard - iato p^ ,

There are various alternative speoifioations of the function L
vhioh axe useful in different oixoiauitanoaa. They are discussed
in Seo- 2.

i

Sincet in an irreducible representation, i t i s by definition
possible to obtain taaj vector in the representation spaoe by apply-
ing appropriate transformations of the group to a fixed one, ve
can formally define the p-Aepeadenoe of the basis by

\f,x>

-5-



A

There is a subgroup, G , of the homogeneous group SO(3,lj

which leaves invariant the manifold of states with p • p . This

is called the little group. Thus if we define 0 as the set of

transformations E ^ v satisfying

then i t follows from (1.*) that

and it i s implied that the coefficients Cu\ must belong to a re-
presentation of the l i t t l e group 0 f

It i s now a simple matter to show that the transformation £(p,/ \ )
defined for. each p sad A by

AL^ = lA? K(f,A) (1.22)

A

ia oontalned in 0 t i . e . ,

This means that

- UML )̂ I f

- 6 -



or

l
The coefficients C. introduced in (1.16) are thus identified with

matrix elements of a representation of the little group. Moreover,

the unitarity and irreduoibility of U.(/Ois tied to that of D(R).

Firstly, unitarity is guaranteed by the invariance of the

(positive) sum over states

and this follows if

i.e.t from the unitarity of D . Obviously the converse also is

true*

Secondly, if U(A) is reducible then so is D ( H ) (provided
p

of oourse that p takes only one value in the representation •
apaoe). This follows sinoe a i s a subgroup of SO(3,l). On the
other hand, i f D(R) i s reducible, i t i s possible to divide the
states jp,*-^ into two or more sets which do not mix under
Lorents transfoxmationa, i . e . t U(A ) also i s irreducible. I t
would be a simple matter to spell out in detail proofs for these
olaims. However, we do not do this but merely state the basic
theoremt

The representation of K carried by the states
le unitary and irreducible i f and only i f

( i ) the wass' p i s unique, and

( i i ) the associated l i t t l e group representation R-»D(H)
1B unitary and irreducible.

So far our Lorents group i n c i t e s only the so-called proper,
oxthochronous transformations* Spaoe and time refleotionB will
be dealt with separately at a later stage.



2. CLASSIFICATION OP IHHEDUCI3LE HEPRESEMTATIONS.

A oonssquence of the theorem s ta ted in Sea. 1 i s t ha t the un i t a ry

represen ta t ions of r can be c l a s s i f i e d by means of the u n i t a r y

represen ta t ions of the l i t t l e groups with whioh they correspond.

There are four d i s t i n c t types of l i t t l e group whioh apply accord-

ingly as P 2 > 0 , P 2 < 0 , P 2 « 0 or P^ = 0 which ire s h a l l r e f e r

to r e spec t ive ly as the t ime l i ke , apace l ike , l i g h t l i k e and n u l l

oases . This sec t ion i s devoted p r imar i ly to the cons t ruc t ion of

complete orthogonal b a s i s systems fo r the rep resen ta t ions of j .

In the course of doing t h i s we sha l l have to d i scuss the l i t t l e

groups and the ir representations as they arise*

Following the procedure outlined in S e c 1 we d iagonal ize the
4-ttomentum F^ in addition t o the basio invariants P 2 and V2

whioh of oourse must be pure numbers in any irreducible represent-
at ion. In an irreduoible representation any veotor can be ca r r i ed .

into any other by applying a motion of the group. To begin withy

the vectors with arbitrary 4-momentum p« can be obtained from a

given one with fixed 4-momentum p , the "standard momentum". -
Moreover, a l l veotors with momentum p oan be obtained from the
given one by applying transformations of the l i t t l e group G since
these are the only motions whloh leave p unchanged. Evidently,
then, the representation of G contained in the irreducible r e -
presentation of J must i t s e l f be irreduoible . We shal l denote
the basis veotors of t h i s irreduoible representation by Jp j A ^
or, in the case p - 0 , by 1 p p A > where j and p label

a t ' f

in question and X serves to different-
iate the individual basis veotors. Since, by the basio theorem of Sao.
1. the irreduoible representations of J sad 0 are correlated, .
i t mist be that j and p are Poinoarfi invariants. In faot,
as we shall show for e'aoh case considered below, V2 * -p j( j + l )
for p f 0 and JT « - o for p « 0 . The remaining label,
X f i s not generally invariant. We find*it convenient to

associate i t always with J12 , i . e . t

- 8 -



(2 .1 )

2 2
O a d f>

2 2 \
It happens, howeverf that when p •» O and f> — 0 then -A has
Invariant significance, namely

W j f 0 X > * A ^ J f OX > , f f • « • ( 2 -2 )

Generally, then, we have the struoture

> (2.3)

so that, under an arbitrary motion of the group J

A

where R . belongs to the appropriate 0 « The precise choice of
boost L depends upon what applications are to be made. We shall

P 2 2 2 \
discuss for eaoh type of pA ( p > O , p < O , p - 0 ) three
different choices of L which serve to diagonaliae one of ffQ ,
IT, or w . o - ^x * *^ba n u l 1 case* p« • 0 t i s logically dist inct
since no L i s defined for i t and we shall have to consider i t
separately*

firstlyf. however• we deal with the subapaoes p • p and the
l i t t l e group representations contained therein.

( O TineliJce case, p > 0

For the standard momentum i t i s always possible to take

£ * (± yj? , 0 , O , 0 ) (2.6)

where the sign of pQ i s invariant* There i s no transformation
in Y irhioh oan reverse the sign of pQ when p2 > 0 . Such

- 9 -



improper transformations belong to the "extended" group which will

be oonsidered separately later.

When acting in .the subspace p = p the components of W^

reduoe to the form

W^ . ± ( o , Ja, J3, , TJfiT (2.6)

wbioh means that the l i t t l e group 0 i s in th i s case generated by

**2̂  • *^l ' ^12' w l l i c l 1 obey the commutation rules

(2-7)

ao that 0 i s simply the ire Unknown rotation group S0(3)« The
irreducible representations of J are therefore characterized by

corresponding to the representations D^ of 30(3) with

j = 0t t , 1 , ,.. , (2.9)

The representations corresponding to half-integer values of j
axe at course 2-valued.

( i i ) Spaoelike case p < 0

For the standard momentum we can take

= (0, 0, 0, fy ) (2.10)

-10-



where the root 1B positive. The sign of p, has no invariant
A

significance* When acting in the sub space p •* p the components

of Wb reduce to the form

wM = c J a , *lo, xo , t o ) / 7 " • (2
A

whioh means that the l i t t l e group 0 is in this oaae generated by
J12 ' J20 a n d JO1* w l l i o h Obey the oommutation rules

J " A ^oi

- " l J>i (2-12)

so that 0 becomes the nan-ooapaot rotation group S0(2,l). Tie
irreducible represftntations of S are oharacteriaed as before by

(2.13)

corresponding to the representations D3 of SO(2,l). In this

oaset however, the possible values of j are quite different

from (2.9), It iB usual to group the unitary representations

of 30(2,1) into four distinct familiesi

(a) Principal series

< 00 (2.14)

These representations atra a l l infinite-dimensional with X taking

a l l integer values or al l half—integer values between — oo and + oO«

X * 0, f i , t 2, . . .

-11-
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Strictly speaking there are additional many-valued representations

with A taking fractional values. We are in effeot restricting

ourselves to the one-valued representations of SU(l,l). Another

point to note is that the representations D"* and D"**"" are

weakly equivalent. This will be made olear in Sec. 4»

where the structure of these representations is discussed in some

detail.

(b) Supplementary aeriee

(pO (2.16)

These representations also are infinite-dimensional with A taking

all integer values,

A • 0, t1 , 12> •-. (2.17)

(o) Discrete peri.es

} • r i - , - 1 , - f , ... (a. i « )

These axe semi-infinite of two types depending on the sign of X ,

: A > - j , - j t - 1 j - j + * > , . . . ( 2 . 1 9 )

: A . j , j - i , j - . j , , . . . ( 2 . 2 0 )

(d) Soalar representation

} = 0 (2.21)

This is the only finite-dimensional unitary representation of

1,1) , A - 0 .

(Hi) Lightlike oase p 2 - 0

For the standard momentum we oan take

-12-



(2.22)

•whore CJ ia arbitrary up to sign. As for the timeliie oase there

is an invariant distinction between «J > 0 and fc> < 0 . When aoting

on the subspace p - p the components of ¥•* reduce to the "form

/L \> \ » , , l t W (2.23)

where

1 'S (2.24)

A

The group Q is generated in this oase by J12 f TT^ and

vhiob. obey the oommttation*rules:

ir,

[TT, , TT, ] =

so that 0 becomes the Euclidean group in two dimensions,

30(2) A T ( 2 ) . The irreducible representations of Y are

oharaoterieed by

- p l > >

corresponding to the representation Tfr of 30(2) A l ( 2 ) . The

parameter a is of course a Poinoare invariant while the little

group Casimir (/) /&>} is not. This simply reflects the faot

that our standard momentum p was not specified in terms of

- 1 3 -



invariants as was the case in ( i ) and (±i)» There i s in fact a
1-parameter group of transformations - the Lorentz transformations
in the 03-plane - which preserves the form of (2*22)* Thus

voile

^ + i r ; ) e l i ; I ' > . <r*ar*+nt) <2-28>
ao that the product

* Ĉ t + %) • invariant. (2.29)

ualtary representationa of S0(2) A T(2) oan be grouped into
two fanillaai

aerioa. I* '•

p ; p « 0 (2.30)

Tbaao rapxesantationa axe infiaita-dlaansional with X taking all
integer values or a l l half-iateger Talus • batvaan - oo and + oa ,

X « 0 , t 1 » * « » . »
or

> t i ... (2.31)

eeriea, D°X

Mffcosentationa are l-dimenaicnaX a»4 oarxeapond to

/» • 0 . (2.32)

Evidently tn this oase ve have TT£ - Tfg - 0 BO that the algebra
reduces to J 1 2 ^^oh beoomes the Casimlr operator. Setting

-14-
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Tf » "IT2 - 0 in (2.23) gives the relation

(2.33)

and the oquality

W^ = > ? M (2.34)

is evidently Poinoaxe oovariant thus exhibiting A as a Casimir

invariant* To eaoh integer or half-integer value of A there

corresponds an irreducible representation D° ,

^ = °> t i » t 1 . ••• (2.35)

(iv) Hull oase p, • 0

Here the representations of the PotnoajSe group coincide with

those of the homogeneous Lorenta group « There is no standard

momentum in this oase and the l i t t l e group 0 becomes 30(3»l)

generated by the six J v . There are tiro invariants ;

J- T J . "* *

TXp « 2ij o < T (2.37)

It is possible to label a complete set of basis veotors^ j 40 <?* * ^}
with two additional quantum numbers j and A defined by

(2.38,

The unitary irreducible representations D'V* of S0(3»l) come in

two series, both infinite-dimensionalt

-15-



(a) Principal aeries

Re (<r) . 0 - to < Li* (a) < e>0
(2.40)

o - 0 , Z , 1 , . . .

j and J( taking the values

(b) Supplementary series

0 < Rt(<r) < 1 , Jjufor) r 0 (2.42)

with J and A takiMg th» valuta

1 (2.44)

I t irill be ehaftm in Sec. 4r whoxe these representatioas
axv dlvouaaad more fully, that the reprasentatioas D**^ and
JJ—3O™°" are weakly equivalent.

To summarise the discussion so far, «e have found the
following classes of unitary irreducible representations of the
Poinoare groupt

(i) Tlaelilw

-16-
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(11) Spaoalike

fr f<0 , fa j = '<*>

< 0 , H»* j « 0 (Supplementary)

j . 0 (Scalar)

, t 1> ^ * i > - ^ *i-» " • (discrete)

(ill) Lllhtlito

(iv)

0< Re («^ < 1 ,

(Principal)

, i « 0 (Supplementary)

Consider now the problem of defining the functional form of

the boost matrices L • It is desired, firstly, that the
P

variable B in L provide a suitable parame t rieat ion of the "mass-
P

shell" or orbit of p . Since

( 2 - 4 5 )

we require that

( 2 - 4 6 )

-17-



that is,

|V= t

(2.47)

Seoondly, it is desired that L be suoh as to diagonalize

one of the operators ¥- , W, or H Q - W, . It turns out that

this requirement is set by constructing L as the product of a

LorentB transformation in the 03-plane with transformations

belonging to one of the little groups 30(3), S0(2tl) or SO(2)/\T(2).

This structure will prove advantageous when we oome to the problem

of deoanposing products of irreducible representations* We shall

therefore define three distinct boost funoticns, It̂  , h~ aaA. 1 «

employing operations drawn, x&speotivaly, fvon 30(3), 30(2,1) and

90(2)Af(2)« They are

(2.48)

or

did

(2.49)

s «
-i (2. 50)

-18-



o r

e" " e

(2.51)

(2. 52)

or

O

/
(2. 53)

Thus we have the following parametrisationei

(i) Time like case p g> 0

, shoe cos«)

s t

(2.54)

vhore the parameters'take the respective ranges



(2. 55)

2TT

Comparing the three expressions (2.54) we get the relations between

the different parametrizationsi

cU
(2. 56)

t ~

-si.y-

" X

ftp •-
(2. 57)

-X

. .

( i i ) SpaoelUce case p2<0

-X
cUot -

? • -

, cd« SHiO Cosjp ,

(2.58)

ckA Ccs&)

ctp,

-20-
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Comparing these expressions we get

= cU COS0

-X

'X

(2.60)

:ti£ dtf
(2.61)

cU

(2.62)

Evidently only the first parametrization in (2.59) serves to oover
n

the entire orbit p <0 with

The other tvo oover only parts of the orb i t . Thais

0 I V < 2TT , O 4. p < oo f - oo < Y < <* (2-64)

corresponds t o the region oosO il/chtt and

O ^ V < 2 ? T , 0 4 ^ < « o , ~ o o < X < ° ° (2.65)

corresponds to the* region cos 6 > thof • These regions are, as

it happens, sufficiently large for the applications we shall be

making in the next aeotian.

-21-



(i i i) Liglitlike case p =0

• c i > e o t ( i , si*6tcsff , casB)

(2.66)

we

This parametrization evidently fails rather drastically in the last
+ - 0

line. However, if we apply the boosts L t L and L to a

different lightlike vector* namely

t « (to.O, 0 , -6>) , (2.67)

irhioh is the one that will "be concerning us in practice, we get

(1,

-1)
(2. 68)

-i

These expressions oontain one parameter too many. To eliminate

this redundancy vo may regard &> (say) as a oonstant scale factor*

Then the oonneotions betneen different parametrizations can be

derived as before:

(2. 69)

-22-



(3. 70)

- -I

"

(2.71)

The f irst parame tr i zat ion serves to cover the orbit p • 0 with

046

The second parametriaation oorers the region */2

0 i , -<w <

and the third covers the same region with

0 < f <JLir , O ^ ^ < « ,*oo< \ < o* •

With these parametristations i t i s easy to verify that

with

(2.73)

(2.74)

p (WocLt

Defining the respective basis systems by

-23-



U(L'f) |> j A

and using the formulae (2.6) and (2.11)aad (2.23),whioh give the aotion

of ¥j| on states with standard momentum

j

, J.'<0 (2.77)

2 2
we obtain for p > 0 and p < 0 the eigenvalue equations

- ^ . f i | f 1 A >

k- y,Hfi*^ - -̂ (f.- io|t j

where € denotes an invariant sign factor, £ - £(p ) for p > 0
2 * 2 °

and € - 1 for p < 0. For p - 0 the corresponding formulae
are
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3] 1Pf >>"

(2.78')

2
The p - 0 states are defined here by

(2-79)

There L denotes one of L + , L~ • or L° • The four-momentum p
P P P P

takes the standard form (w , O , 0 , cj) . The helioity A is con-

ventionally defined as the eigenvalue of J-- on states with four-

monentum p r

(2.80)

It remains only to oonstruot the unitary matrices Thioh

transform one basis sysfem to another, That might be called the

"spin rearrangement matrices'1. Since, for any pair of boosts

lT and !• t say, we have the equality
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fry
+ -1 A

then it must "be that (L ) L belongs to the little group G
Thus,for any representation,we have

lTl(L+t) W f

>l> 0

<o (2.81)

where, sinoe the 5° depeztdenoe factors oat we have been able to ex-
olude fnom the form (2.81) those J^v with /*. or V o 2 . The
angle © depends on p« • Similarly, we have

J

(2.82)

, f (2.83)
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In terms of the three angles (n)?$and ^f, we oan -write the sought

after relations in the form

2 2 2
for the various cases, p > 0 t p < 0 and p = 0 * The functions
d^t are matrix elements of the little group transformations*

^ j x > • t'<B (2'B5)

No confusion oan arise from using the same symbol d<* for the

different representations sinoe the aotual range of j will
2

distinguish them. For the p - 0 oasef ot oourse, we should

read P instead of j •

To evaluate the angles <$) • $ and ĵp", it will be sufficient

to work in a two-dimensional representation of the J « v ,

Jj 3 r"k' , J* * T ^ I
 {286)

vbere the 9\ afe Pau3.i natrioea* In ttalB xepresentatiou ve
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and

e

Therefore*

_1

0 1

Af/i + %Ue/i tkp/l)

00/2 - c

fflV* cos
, f

) • ' •

which gives, for p > 0 f

(2.87)

tskd/i

(2.88)

cot* ^ 2 - Sin*

= (tot (^ td^fc *SV*

_28-
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w t y city - « t y d ty ) • K ^ s l l ' f •!""1'9A c l^ i

(2-89)

2
and, for p < 0

2
and, for p - 0

(2.9D

With the help of relations (2.56), (2.60) and (2.69) these results

may be expressed in the form

dtuL

*r

Similarly,
(2.92)

V4Y y V



COS $ j l$ jl

cos

; ) • ' •
(2.93)

2
Thus, for p >0

2and, for p < 0

2
for p - 0

-f
(2. 94)

Finally,

cos
(2. 95)

In the sane way as before one gets



whioh become on using (2.^8), (2.62) and (2.71)«

(2.97)

This ooropletQB the discussion of basis vectors, A check on the

computations is provided by the consistency requirement derivable

from (2.84), namely,

-- 0 (2.98)

3 . REDUCTION OF THE DIHECT PBtHXTCT.

I t i s well known that the di rect product of two unitary

representations of the Poinoare group can be completely reduced

into a d i rec t sum o£ irreducible representat ions. This reduction

has been discussed by many authors using various formalisms* We

shall adopt here the phys ic i s t ' s a t t i tude t ignoring any of the

more in t r ioa te mathematical questions that may a r i s e , proceeding

- 3 1 -



as it were, in a state of innocence.

Before we start, however, it may be worth mentioning that

there is at 2eaat one important distinction between the f ini te-

find the infinite-dimensional problems* In dealing with a non-

oompaot group one's intuition may fai l to warn that the direo't

produot of an infinite-dimensional unitary representation with a

finite-dimensional non-unitary one may contain unitary-as well as

non-unitary irreducible representations. This is indeed the oase.

That is to say, there do exist invariant couplings between tiro

unitary representations and a non-unitary one. On the other hand,

the reduction of the direct product of two unitary representations,

as usually formulated, oontains only unitary irreducible represent-

ations - the non-unitary ones are exolu&ed by convergence require-

ments. This means that the problem of reducing direct products is

not always equivalent to the problem of finding invariant couplings

or Glebsoh—Gordan coefficients.

Disregarding, for the present, this question of possible

finite-dimensional representations, we proceed with the reduction

in the light of the formalism developed above. Consider the

problem

Xs, <s> 3>j, « I ® . a > n (3-D

or, la terms of basis vectors,

In Bq.(3*2) the index* n , i s supposed to comprise all of the

necessary labels which are not shown explicitly. An explicit

realisation of n as indeed of the coupling ooeffioient,

( n P dA| j»x ^ \ P2 32 A 2 ^ » "sel f , will be developed in

the following.
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The basic invariancee of the coupling coefficients can be

discovered by applying an arbitrary transformation of the Poincare

proup to both sides of (3.2) while requiring th9 index , n , to be

invariant. For the states n p j A ) one can assume a tram-Form-

ation law of the form

* E l A i > I > J f C A L"> <3-3>

which assures the invariance of n « Translation invariance alone

gives

while invariance under the homogeneous transformations gives

(3.5)

where B , R, and R_ denote the appropriate little group rotations,

In view of the conditions (3*4) and (3*5) it will be sufficient

for us to take p - p, + p, and to fix p in one of the standard
A 2

directions p . Consider now the possible values of p cor-
2 2

responding to given p. t p. and, where relevantf sgn ( P I 0 )
 an(i

sgn (p 2 0). There are ten cases to be distinguished but only four

of these need be examined explicitly, the others following rather

trivially.

(i) a^On^Xg^Ong) , where

1? ' "S > ° f < M "S * ° . ^pfU -SjwffJ - + 1 0.

There is only one type of representation in this product,

« f O (3.7)

-33-



The masses are non-negative in (3 .7) , m. , m^ 0 .

( i i ) a>+(m^)03>_(jn|) , where

If m1 > mp thero are three types of repreaentation in the
product

( 3 ' 9 )

1 ) W.ftv -00 < ^ < 0

If EL. < m2 the p content is the same but 3L> becomes 3&>_

in (3. 9)« The representations (3*7) and (3.9) must be further

classified according to their j-̂ ralnes but this wo shall postpone*

If nu • nip there are two types.

*#<r wilt j y « o

to'li - oO < t l < 0

(iii) 0>+(aiJ)<g) £(-«!), rtexe

^. ft- - < < ° ^ "KW •+ 1 - (3-U)

There are always three types of vepresoatefcUn hare,

with 0 < -|>* < «o

+ (0) with -f-0 (hAfc 4 O) (3.12)

with -«o < y < 0

( iv ) i)(-m^)(S>^>(-m2), where

- -mf
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If m- f n- there are five types of representation in this product,

and «&_(t>°) with 0 <

and 3).. fo) with f>L*

with - oO < t> < 0

(3.14)

If m. o Dip there i s , in addition, the representation

with ?V * ° • 0.15)

The remaining six oases need not be listed explioitly. They

are: i>_ QS> 3>_ and 3b_ © 3> which follow from (i) and (iii) in an

obvious way; ̂  (j£) "t>^ and 5̂ (̂> $£'* for which p » p- ; and

^ ^ ' which p = 0 .

Hore difficult to s«lve ie tiie problera of discovering what

values of j can appear in the various cases. This cannot be

dealt with merely by considerations involving the basis vectors

in isolation. Strictly, one has to use scalar products of them

with normalizable states in the Hilbert space — i«e., wave packets -

and take careful account at the asymptotic behaviour of these

functions. Since, for the applications we have in view, this

asymptotio behaviour ia not always known in advance we shall have

to proceed in a rather formal manner and discard any pretence of

rigour. More specifJLOal3j, we shall asffume that any function f(Q)

defined over one, of the l i t t l e groups 0 can be expanded as an
A

integral over the unitary representations of G »

fr - <V(pE f^fpD^Cs) 0.16)
with

L (pU(^^)*ft) (3.17)L
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