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ABSTRACT

The discrete and continuous series of infinite-dimensional irreducible

representations of Lie algebras of compact unitary groups are derived and

their properties are discussed. The possible physical applications are

pointed out.
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INFINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF LIE

ALGEBRAS OF COMPACT UNITARY GROUPS

1. INTRODUCTION

It is rather well known that every representation of a compact topo-

logical group & realized on a Hilbert space sL is equivalent to a unitary

representation [1] and moreover every irreducible unitary representation

is finite dimensional [2] . However, if we extend the class of the linear

spaces in which a representation of the group G can be realized, we may

obtain new classes of irreducible representations which are no longer

finite dimensional. In fact the method of extending a class of irreducible

representations of a given group £r by extending a class of carrier spaces

is well known in the case of non-compact groups. For example, if we con-

sider the irreducible representations of the SL(2, C) group in the linear

topological spaces of homogeneous functions we obtain the extended class

of irreducible representations in which the irreducible unitary represent-

ations correspond to only a small subclass [3] .

In this work we show that the infinite-dimensional vector spaces with

an indefinite metric appear naturally as carrier spaces of infinite-dimen-

sional irreducible representations of the Lie algebra of the compact unitary

groups l/(p^ . The topological and geometrical properties of these spaces

are completely determined by the bilinear form related to the indefinite

metric.

The problem of an extension of the representation theory of compact

groups was raised after the appearance of Regge's classic paper in which

the concept of complex angular momenta is introduced [4] . In a series

of papers the group theoretical aspects of this problem have been discussed

[5] and the existence of local as well as global infinite-dimensional represent-

ations of the rotation SO(3) group has been proved.[6] .

In this work we consider the properties of the irreducible infinite-

dimensional representations of the Lie algebras &p of the unitary groups

Xl(-p) (p -2- 3 -••)• *n ^ec. ^ we give a short review of the properties of de-
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generate irreducible finite-dimensional representations of Iff-p) groups and

the related harmonic functions. The properties of infinite-dimensional ir-

reducible representations of the Lie algebras of V(-p} groups are discussed

in Sec. 3, which represents the central part of the work. In Sec. 4 we dis-

cuss the topological and geometrical properties of carrier spaces. The

principal problem of the construction of the invariant bilinear form on

carrier spaces of singular functions is solved by applying the classic Riesz-

Gel'fand regularization method [7] . In Sec. 5 we briefly discuss possible

physical applications and some general properties of the representations

considered. Finally, in the four Appendices we present the structure of the

Lie algebra of ~V(t>) groups, the classification of the irreducible represent-

ations of the 1/62) group and some auxiliary calculations.

2. PROPERTIES OF IRREDUCIBLE UNITARY FINITE-DIMENSIONAL

REPRESENTATIONS OF THE U(p) GROUPS

In the present section we recall briefly those results of our previous

paper [8] , which pertain to degenerate series of representations of the

compact V(p) group.

Consider a vector space <sC(X) of complex-valued functions having

as their domain a homogeneous space X of the type

^ = ^f>v/V/-p-0 " (2jl)

The homogeneous space X has dimension 2-p-J and can be represented

by a "model" space X having the same dimension and the same stability

group as X and determined by the equation

* ' 5 V . . . +•***? s 1 , ( 2 f 2)

where J? ,-£.= i,z> •• -} -p are points-in the p-dimensional complex space C .

It is convenient to parametrize the homogeneous space X by the

biharmonic co-ordinates (see [8] ), which are introduced in the following
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recursive manner. For p - / put 2r = C where to t= if ^

Suppose that we have constructed the co-ordinate system &, • • • ,*

on the manifold X ; then the co-ordinates &\ • • •, z7'"*, * r on X

are defined as follows :

A i A ' §•

( 2 i 3 )

where 0-^ ~'Z7T > °^'^-7J>z A~^,^"-?fr

The left-invariant Riemannian metric tensor cu. (X(py on the manifold/ p

is given by

2 f

(2,4)

where ^* , ^ - '?>?> • • • •> *f are the co-ordinates in the 2p-dimensional

Euclidean space {in which the manifold X can be embedded as a hyper-

s p h e r e ) a n d 3 * ) * = l}2>- • ->Zf>-t denotes the partial differentiation

with respect to the angles <f , • • • > m » ̂  > ' " p v •

In the case considered the ring of invariant operators is generated

by the first order invariant operator

M - SI Z-a, ,

{ Z^ being generators of the Cartan subalgebra) and by the Laplace-

Beltrami operator

which is proportional to the second order Casimir operator.

It is obvious that the linear envelope of the set of common eigen-

functions PM of the invariant operators A(X<fi) and tfP

creates for a definite A and Ai a representation space of the algebra R~

of V(f) . It was shown that the explicit form of the eigenfunctions of
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Eo.(2,5) ia

(2,6)

(2,1)

It is somet imes convenient to introduce new azimuthal angles ^ l,.. ;^>

given by

(2,8)

and new representation labels M2 } • • • } ^« •>

A

Then the new harmonic function has the form

(2,10)
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where

ft * i*r •
r (2.11)

/
> )

and ^ ; s^ a re expressed in te rms of Mj by using (2, 9).

On the manifold A the left-invariant Riemannian measure <^ff' (*•'P'/ can be

defined in the following way:

f
hi y
0 **' " " * (2,12)

The vector space CA (X / equipped by this measure becomes a Hilbert

space, in which the scalar product is defined by

(2,13)

The harmonic functions Y " ' " ' r (̂ Ji") a re a complete orthonormal set of

functions with respect to the scalar product Gj.f^Jfc) on the manifold X

The requirement of the square integrability imposes the following res t r ic t -

ions on M. . . . . , Mr, : X, ••• . J»

(2,14)

w h e r e ^A ^ 0 , 1 , , , . , - i (\- Mj) } JL = 2}3, . ••>? •

In our previous work [8] it was shown that the Lie algebra R is r e -

presented irreducibly in each finite-dimensional space D fl (X /
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spanned by the set of harmonic functions Y " ' '' r ()('Pj with fixed J and

/% . The relation (2, 14) between numbers ^tHf and J"_j ;AJM induces a.

definite decomposition of the representation space £> ̂ (X1^) of V/p) with
T M

respect to the irreducible representations D f>~'' p~' of l̂ -o-i) . This

decomposition is conveniently illustrated by the graphs in Fig. 1.

A

Fig. 1

The action of the Vlf) group in the Hilbert space Ti(X ; <tf) is determined

by the left translation

(2,15)

Therefore, the unitarity of the representations D p1 ^ follows from

the left-in variance of the Riemannian measure^(/)on the manifold X ^ .

The irreducibility of the global representation of Ijf-to) (2,15) follows from

the irreducibility of the corresponding Lie algebra.
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3. INFINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF

THE LIE ALGEBRA OF THE U(p) GROUP

In the previous section we derived the properties of finite-dimensional

irreducible representations of the I/(p) groups and of the corresponding Lie

algebra Rr, determined by two integral invariant numbers X and H? .

The representation space was spanned by the set of harmonic functions

(2,10) satisfying the equations

(3,1)

These representations were realized on finite-dimensional vector spaces
P ()((PJ spanned by solutions of (3,1) with JT and Mp satisfying the

conditions

1 1 \ f

, i ( 3 ' 2 )

^ M p ]
even •

r r

The set of all values for Jp and Ajp satisfying (3, 2) constitutes the full

spectrum of the invariant operators A CX f) a n d Mp which are essentially

self-adjoint on the dense linear subspace of^/X P , / / ) determined by the

linear envelope of harmonic functions \f *v ' p ($\)

A natural question ar ises as to what class of representations is

obtained on the vector space J* (x(j °^ eigensolutions of (3, 1) labelled
rip

by such values of. X, and fA? which do not satisfy conditions (3, 2), i. e.,

which are outside the spectrum of the self-adjoint operators A and Al .

We shall consider the case when J and Â  are arbitrary complex numbers.

In this case, the harmonic functions satisfying the set of Eqs. (3,1)

differ from (2, G) only by the labels X and M. , whereas all other labels

have the same spectra as before. The conditions (2,14) are satisfied for

are not satisfied for JH = ^> . Consequently, the
- 8 -



dependence of the harmonic functions on angular variables (f,. •. tf , T) , • • • ?*
? Q-p

differs from (2, 6) only by its Cp and v -dependent part

((/) • QP"" P (^0 which can now be written (including the corresponding

f

part of the normalization constant) in the following form;

d

(3,4)

where

(3,5)

The set of all harmonic functions with both »_ and >?+ being non-

negative integers span the Hilbert spaces ~H ^ 6( P ) in which the finite-

dimensional irreducible unitary representations determined by vJl and Mp

are realized (see Sec. 2). >
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If either or both ~n_ and ~n+ in (3, 4) are different from any non-negative

integer, we obtain an infinite-dimensional representation of the algebra ^

of Ut-p) provided that the function 0 ?~'> ? ($e) is well defined by

formula (3, 4). This is the case if the factor fe standing on the right-

hand side of (3, 4) is finite and non-vanishing. It is important that, if G+

is finite and non-vanishing for some values of J^, Mp ,, T ; A-j ,

then it is finite and non-vanishing for all other possible values.within the

corresponding invariant irreducible subspace. A complete classification

of all cases in which (r̂  is finite and non-vanishing is given in Appendix A;

here we use only the results of this classification.

•j (?)Due to the fact that the domain A of the harmonic functions for

complex X and tA? is the same as in the case of the finite-dimensional

representations discussed in Sec. 2, the elements of the Lie algebra Rp of

the V(p) group are represented by the same differential operators. The

explicit form of the generators in the standard Weyl basis is given in

Appendix B. It turns out that the representation of the Lie algebra £p

realized on the vector space J. p (X ) (<3̂ , , Mp complex numbers) is

generally reducible on this-space, the number and properties of correspond-

ing invariant subspaces being different for different values of the invariant

numbers Â_ = ^ (Jp +A?p) and //_ = 4j (^>~Wp}. Nevertheless, all the vec-

tor spaces in question can be divided into the following three categories ^ .

I and II:

% \ Hilbert space *U p (X(?\u) (both \ and "H. are non-negative

integers). The properties of these spaces were discussed in Sec. 2.

I: infinite-dimensional topological vector space o£\ (X %/lj with

indefinite metric (either >7+ or y>_ , but not both, is a non-negative

integer; Tp and A/ are integers). It turns out that on these spaces

a global representation of the ~U{f) group can be realized (see Sec. 4).

Ej> Tp , ,p)\
II: infinite-dimensional vector space oL (X / (neither y/ nor >?

is a non-negative integer).

The structure of the representation space JL ()('^J in each special

case can conveniently be investigated by considering the action of an arbitrary
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T
generator of the ^(f) group on an arbitrary element of the oC (X

space.

As follows from the commutation relations of the Lie algebra ^ P

(see Appendix B) the action of all generators can be obtained if the action

of all basic elements of the subalgebra R ^ -+• ^ and the action of one

generator of Wf) not belonging to £ ^ -f- R, is known. Thus, to solve

the problem of reducibility of a given representation it is sufficient to

select one generator not belonging to the subalgebra Rp^ + f^1 and to

see which subspaces of X J* (X ^ / a r e invariant under the repeated

action of this generator.

In the following, we shall give the solution of the problem in the case

when -f"^3 . The case -p<= Z is treated separately in Appendix C.

The generator not belonging to the subalgebra p̂_i +• £, of Rp is

conveniently chosen in the following form:

(3,6)

The action of f̂" . . on an arbitrary element of & p can be

expressed as

_ (3,7)

to.),
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where

1 /"

(3,8)

and

As J^ ytf^ ^ A = /, *, ...} -p -1 } a re assumed to satisfy the

conditions (2,14), the numbers H+ and H± can only be non-negative in-

tegers . On the other hand, the invariant numbers H+ and Ai are consider-

ed to assume, in general, arbi t rary complex values. The number and the

properties of possible invariant subspaces of the representation space

cL P fx/?y depend on the specific values of N^ and N_ chosen. We shall

treat the different cases separately.

Let us divide the set of all complex numbers into four disjoint parts,

^i > ^2 j ^3 a n c l ^1 ' defined in the following way:

Cj contains the numbers 0 ,1 ,Z y"b . • .

C2 contains the numbers . * + ) _ J O , - - f e - 1 , . , . -
(3,10)

C5 contains the numbers -1 , -z. , • • • , —-f + z. •,

C4 contains all other complex numbers.

The various possibilities which a re relevant for the structure of the re*,

presentation space are

ci
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The factors 4 .̂ and 5+ in formulae (3, 7) and (3,8) never become

zero (for non-negative integral values of ^ and Â  ). A successive

application of the operators ^.,p >^i)makes it possible to pass to every

point of the diagram in Fig. 2.starting from any arbitrary point. fin this

diagram, every point is determined by the two invariants £-1 > ^$-\ of the

subgroup Ufy-i) of ~0(*>) and represents one subspace of the representation

space.) The representation is irreducible and the corresponding represent-

ation space is the infinite-dimensional vector space of the type II.

The boundaries of the representation space in Fig. 2 are given by the

lines 7 _^ = lMp-i I on which the coefficients R± = N+- M+ become zero.

As AC and H+ are non-negative integers the representation space is

restricted to the region \tf\^\ £ T i in all other cases too.

2.a) / £e C4 , X_€ C2 .

never become zero, while factor /*!_ vanish-The factors A+ and

es at The two straight lines A_-** = O and A.-O

determine a "barrier" in the

the representation space

structure of the space

plane which is the boundary of

The diagram representing the

is depicted in Fig. 3.

-13-
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Fig. 3

2.b) A^

The properties of ^ and 5+ are the same as in case 2. a). How-

ever, as H± is an integer, the space ^f ' (xlfy has a structure depicted
p

in Fig. 4.

Fig. 4

-14-
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3.a) + ^

The factors A^ and B+ can never vanish, while £?_ vanishes at

AC - M. . The two straight lines, #_ + 1 - o and £_•= o , determine a

barrier which is the boundary of the representation space of p (Xlp)

See Fig. 5. j
p-1

Ficr. 5

S.b) ^ C3 t N_ 6-C, .

The properties of n± and B± a r e the same as in case 3.a). The

structure of the representation space <X P(j(ffj is shown in Fig. 6.

-15-



4. a) V_

The factors 4_ and B+ are non-vanishing while A+ vanishes for

"_ = ~^_h --£>•+ 1 . The complete description of this case, including the

diagram, is obtained from case 2. a), by replacing //± >-VL > A+ and 8^

by //_ , Â  4_ and ^_ respectively.

4. b) C

This case is obtained from 2. b) by the same change as in 4. a).

5. N^ cz , ,v « cz ,

The factors % never vanish, while the factors / ^ give rise to two

perpendicular barriers, A+ - ° yA+~1~ o and _̂_ = o , /^-i-o,which divide

the representation space into two invariant subspaces as shown in Fig. 7.

Both subspaces are of type II and are distinguished by the eigenvalues ± l-

of the invariant operator, T , whose action on the harmonic functions is

defined as follows:

Fig. T o
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6. Cz

The factors A_ and 3 ^ cannot vanish, while A+ and B_ can

vanish and give r i se to two parallel bar r ie rs at a "distance" of j Jp + -p-i )

which is not equal to zero. The representation space is divided into two

invariant subspaces, <£ ^ {X, ^J and <£ P (x*F)) , (see Fig. 8) which can
f

be distinguished by eigenvalues £ 1 of the invariant operator

as follows:

Z 7_

defined

Fig. 8 Vi

As is shown in Sec. 4, an indefinite bilinear form is defined on the space I

which is invariant under the action of the global representation of the V(-p)

group.

7. a) V+ eC, , / ^ . f ^ ,

These cases and the corresponding diagrams are obtained from the

cases 3. a) and 3.b) respectively by performing the changes^

-17-
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8 . A / ^ - C , , / V _ * C z .

This case is obtained from case 6 by performing the same changes as

indicated in 7. a) and 7. b). The resulting invariant subspaces can be dis-

tinguished by the eigenvalues ± 1 of the operator 7̂  and we have_2T and _ZZ

spaces.

The coefficients A+ never vanish. Two perpendicular barriers,

B+ ~° , B+ +1 - o and 8_ - o } B_+ 1 = O, divide the representation space

into two invariant subspaces, which can be distinguished by the eigenvalues

±1 of the operator 7̂  (see Fig. 9). The space ^i ? is the ordinary

Hilbert space, in which the finite-dimensional unitary representations of the

V (f) group are realized as described in Sec. 2.

An examination of Figs. 2-9 shows that there are points appearing in Fig. 2

which do not appear in any of the Figs. 3-9. This is due to the fact that

the factor & given in (3, 5) is infinite or zero in this region. For further

details about this question see Appendix A.
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4. TOFOLOGICAL AND GEOMETRICAL PEOPERTIES OF CARRIER

SPACES

HUREVTTSCH and KOOSIS [2] have proved that any irreducible re-

presentation of a compact topological group realized on a Hilbert space is

equivalent to a finite-dimensional unitary representation. Therefore, we

may expect that our irreducible infinite-dimensional representations con-

sidered in Sec. 3 will be realized in more general spaces than Hilbert

spaces.

The topological and geometrical properties of a vector space<£/' f(it?s)

are completely determined if it is possible to introduce on it a bilinear

form G"(x\-y)fulfilling the following conditions [9] :

i) fr^X

(4,1)

ii)

for every X}^€&p%'fi) and : <*, § € C1

In the case of finite-dimensional representations such a bilinear form was

given by

er

where //{X) is the left-invariant Riemannian measure on the manifold X

determined by the expressions (2,12). The form {4, 2),besides conditions

i) and ii), fulfills the additional condition

for every O 4= -f £<^ f P ^ i. e . , it represents the scalar product on the vector

space jf.JP>Mp $(ypy . However, as harmonic functions (2,10) with the indices

-19-



Xp and Mf, not obeying condition (3, 2) are, in general, strongly singular

at the point V = ^/z. , we cannot use directly the expression (4, 2) in the

representation space <£ Pl p (V'^) • The generalization of the metric form

(4,2) on £/% YV) should satisfy two additional conditions besides (4,1):'

iii) It should be invariant under the action of the group lfy)on the

representation space Xp> f(/?)) > i. e., if

then G - ^ f |TIA) = frftl-O • (4>3>

iv) In the special case that T and Mo are integers fulfilling con-

ditions (3, 2), then the corresponding generalized metric form

should reduce to the usual scalar product {4, 2).

In what follows we shall denote a harmonic function V *""''""" f (X)

by the symbol j CX) with <̂  representing the set of indices

•£-1 •• Ji>%-4" y. As harmonic functions j So span the representation

space ^ p> p()('fyit is sufficient to specify the generalized metric form £r

only for these functions. Let us consider first the case of $^p> ?

spaces (see Fig. 8,I*). The metric form G-̂ -fl'-O on these spaces fulfilling

the conditions i ) . . . iv) can be taken as the regularized integral of harmonic

functions over the manifold X p

X (4,4)

where the regularization is meant in the sense of analytic continuation

(see,for example,[7] §3 and Appendix D,) Using the formulae (2,10) and

(3,4) for the harmonic function ^ 9l *(x'rJ and performing the integration

over the variables ^ , • • •} § ^ and •§ ..,} § f we finally get (see Appendix

D)

•Pf-1 >Jf v -

(4, 5)

- 2 0 -



where

T
f ^ t - 1 >o

.for J? +-p-1 <0

We see that the generalized metric form (4,4) is stongly indefinite and

consequently the linear representation space JLP * (A PJ represents the

infinite-dimensional vector space with the indefinite metric.

Let us denote by <Ĵ_ and <£_ the linear subspaces of the vector

space ok, with a positive and negative norm respectively and by cL.o the

subspace of so-called isotropic vectors, i . e . , the vectors -f for which

every l

The decomposition of L on to the direct sum

is called the canonical decomposition. The space o£ which contains at

least one non-zero isotropic vector is called a degenerate space and

min[dimoC+ , dim^L_ ] the rank of the indefiniteness [9] . We see that

our infinite-dimensional carrier spaces J*-p> f (X p ) are non-degenerate

vector spaces with an infinite rank of indefiniteness.

The existence of the hermitian indefinite metric form (4, 5) on the

vector spaces oC p' p {X p / does not determine uniquely the topological

and geometrical properties of the spaces [9] . It turns out that in these

spaces we can introduce at least two different topologies and related geo-

metries which are important from the point of view of group representations.

1° Hilbert's topology_

In order to define this topology we introduce first a positive definite

scalar product on the space £.p> ? (%lr>) using the indefinite bilinear

form (4, 5) ,

-21-



where

is the unique decomposition of an arbitrary vector r ^ <£• p> p (X p) into

components 7̂ . belonging to the subspaces JL± respectively on which

the G" -metric (4, 5) has a definite sign.

Then, the topology on the vector space JL Pi p (X ) wiH be

determined by the norm

II -f tl = U I i)/Z . (4.6)

and the related geometry by the distance

• ( 4 - 7 )

A sequence "X-^ of vectors is convergent to a vector X if

2° F res chefs topology

The Freschet topology on a vector space (£, is determined by a

countable set of semi-norms P, (j) .For this set we can take in the

considered spaces ^ p ^ p ^ ^ ) the collection of semi-norms determin

ed by

In fact -f represents the projection of a vector j € &L (X / on a basis

vector ^ p' P o The collection of semi-norms defined by formulae

(4, 9) is separating because for each O.\j- £ <£ * p (Xl(> ) there exists

at least one semi-norm f̂ fY) % 0 . Using the system of semi-norms

Pot ~\ w e c a n determine the notion of the distance between two vectors

-22-



(x'pl) in the following way [9)-.

A = ± -L P-v ( + - O . (4,10)

This distance is invariant with respect to translations, i. e.,

and moreover is determined even in the case when a finite or an infinite

number of components -f are equal to infinity. The topology determined

by the metric (4,10) is equivalent to the original Freschet topology, de-

termined by the set of semi-norms (4, 9).

A sequence Xy^ of vectors is convergent to the vector X in the

Freschet topology if^for an arbitrary fixed U,

( 4 - n )

JL r> p (X P )The Freschet topology on the vector space JL r> p(X P ) is weaker than the

Hilbert topology^ which implies that not every sequence "?n convergent in

the Freschet topology is also convergent in the Hilbert one.

The definition (4,4) of the hermitian indefinite bilinear form satisfying

conditions i\ . . iv) can be used also for complex values of X, and A^

(i, e . , also for some spaces of type X- P} 9 (X ) provided that in the V

dependent part of the function (3, 4) the hypergeometric function

F(—n^}-y>+ • oi+-l } ~-haZv ) represents a polynomial. This holds, for

example, if X, is an arbitrary complex number and /Vjp = 01 - 2-r, ;»=o,;,z....

The sign of the corresponding norm depends on the choice of cuts in the H^

or Â_ complex plane (see Appendix D). However, as we cannot determine

a single-valued global representation of the V/p) in these spaces,we shall

not consider them in detail.

In the topological vector spaces X p> P (V / >*ne global represent-

ation a —'s T(fy' of XF(f) may be determined by

- 2 3 -



The operator TU) conserves the indefinite metric form (4,4) because of

the left-invariance of the measure J/(x) on the homogeneous manifold X P

Moreover, the conditions

are also formally satisfied. However, in order that a mapping q -?~T(a)

represents a global representation of a topological group Cr in a topological

vector space oC , two additional conditions must be satisfied [3] : namely,

for an arbitrary 3 £• G~

i s a continuous operator in the space

2° T(a) is a continuous function of a , i. e., if //^ q^ = a } then
cl p 0 ^^^ d "

for an arbitrary j j l

The fuKilment of these continuity conditions, as well as a concrete and not mere-

ly formal fulfilment of Eq. ( 4,, 3),essentially depends on the topologies

introduced in the spaces ^ p> p ^X'PJ * and in the space of linear maps

of the space c£ ̂ ^(x'^) . The detailed analysis of these problems will

be given elsewhere.

5. CONCLUDING REMARKS

The linear space$LF> pfj{'n)generated by a set of simultaneous eigen-

functions (3,1) of the invariant operators A (^>) and Aff provides a

carrier space for the Lie algebra /?p of VTp) . We have selected three

classes of such spaces. The first class contains the finite-dimensional

Hilbert spaces ^L ^?)/f) spanned by the set of eigensolutions (3,1) with

eigenvalues X and Mp satisfying condition (3, 2), i .e . , belonging to the

spectrum of the self-adjoint invariant operators A (-t>) and M . The

• :



second class contains infinite-dimensional vector spaces TJi A HX1*/ with
the indefinite metric (4, 5). In these spaces, convergence can be determin-

ed by means of the Hilbert or Freschet topologies. The eigenvalues Xp

and Mp which determine these spaces satisfy the condition 6 or 8 of Sec. 3,

The third class contains infinite-dimensional vector spaces ^ ?}t* (X"*)

corresponding to arbitrary eigenvalues of >̂ and ^ P from the complex

plane CZ which do not satisfy conditions (3, 2), or 6. or 8 of Sec. 3. The

algebraic structures of all spaces are drawn in Figs. 1-9.

In the carrier spaces jL?1^? (X'P7 ,the maximal set of commuting

operators in the enveloping algebra of the Lie algebra Rp of Ufa) contains

the following operators:

A(p) ,Mp , A r f - 1 \ M?_ , . . . ,h(z), A)4 and M, • (5,1)

In the vector spaces ^JL"*'(Xtp)) and ^Tp^F(x?}) all operators from the

set (5,1) related to the subgroup If (f~1) ,UCp-z% •• • ,V(^)) are unbounded

operators. We may use the formalism developed here for finding continu-

ous series of irreducible infinite-dimensional representations of other com-

pact Lie algebras, e. g., of SO(-n) and Sp(n") groups, using as the main tool

the sets of harmonic functions for corresponding groups [10] .

The continuous series of representations of Lie algebras of compact

groups may be applicable in some physical problems; e. g., for investigat-

ion of the symmetry properties of the hydrogen atom. In this case we

usually use the compact Lie algebra of the 50(4)group for the description

of the discrete spectrum of energy and the non-compact Lie algebra of the

SO(3,1) group for the continuous spectrum [11] . If,for different states of

the same physical system described by the Hamiltonian, we really have to

use two different groups as symmetry groups, then a concept of a higher

symmetry group becomes extremely unclear. Previously, it was not

possible to use the Lie algebra of the compact group for the description of

the symmetry of both bound and scattering states because the irreducible

representations of these algebras determined by continuous invariant num-

bers were not available. Therefore, the introduction of continuous series

-25-



of irreducible representation of compact Lie algebras may clarify the

hydrogen atom problem as well as other problems of higher symmetries

in elementary particle physics.

Moreover, the possibility of the existence of infinite irreducible

multiplets which can be related to continuous representations of a

compact Lie algebra, seems very attractive, as compact groups appear

most naturally as internal higher symmetry groups in elementary particle

physics.
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APPENDIX A

List of cases in which relation (3,4) determines a harmonic function

As stated in Sec. 3, relation (3,4) can be used to determine a har-

monic function Y * 'P (Sh) if and only if the factor G-± is finite and

non-vanishing. The factor G+ is given by formula (3, 5) and can be

written in the following form:

6- _ ( j | h

* P

The factors in the numerator as well as in the denominator form increasing

sequences. It is easy to see that G-± is finite and non-vanishing if any

one of the following conditions is fulfilled:

1. Both -V and //__ are not integers, and

2. If H is an integer and /V_ is not an integer, but either

or

U - 1 ^ O , . - ! , - ^ , , . . ' (A, 3b)

3. If t/V_ is an integer!and // is not an integer, but either

/ ( - / / ' * o i z ( A ' 4 a )

4. If both H and //_• are integers, (r± is non-vanishing and finite in

the following cases:



a)

b)

c)

d)

e)

(A, 5a)

(A, 5b)

(A, 5c)

(A, 5d)

(f. dnd DON (A, 5e)

We can easily check that condition (A, 5a) leads to the Hilbert space

"H. J & f )M) (see Fig. 9) whereas conditions (A, 5c) and (A, 5b) lead to the

vector spaces £ p (X > u) (see Fig. 8 and a diagram obtained from

Fig. 8 by reflection in the 3" i -axis). Condition (A# 5d) leads to the space

JT~ in Fig. 7.
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APPENDIX B

Properties of the Lie algebra of the compact unitary group.

The Lie algebra R^ of the V ( ^ group consists of pz basic

elements which can be subdivided into the following categories:

a) (2) operators which represent by themselves generators of the

subgroup SO(f>)of the U(f) group. We shall denote them by
•f , . .

b) ( Pz ) generators /."• ( L}% ^ 1 }Z , • • • ; f } I*^ ^) which do not

correspond to the 50(f>) group. Among them there are "diagonal" operators

L7 • (i'= 1 z -p) w n ^ c n belong to a Cartan subalgebra of fy

The commutation relation for these operators have the following form:

, ^ i + % t ' (Bfl)
where it is convenient to introduce the following symmetry properties :

1L 1

for all tj j -1 ,z-,-";P '

All the generators can be represented in the space J, (X ?) i n terms

of co-ordinates * ' and their derivatives ^ - . in the form

(B,3)

As we have chosen the group parameters to be real, the generators are

skew-ad joint.

The algebra Kp has an abelian centre, which is formed by one

operator "Z. L- • • . If this operator is dropped from Kp we obtain the

algebra of 5t/(-p) , The most suitable way to do this is to define the Weyl
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basis

(B.4)

I f ^A^) i s d e n o t e d b y ^ • a n d £>* is g i v e n b y ^ =

then the set of generators ^ , £~u and f^^ fulfil the standard commut-

ation relation of the Lie algebra of the £tffj>) group.
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APPENDIX C

Classification of representation spaoea for the algebra of the V(z)

The classification of representation spaces given in Section 4

is valid for a general V(p) group, -p - 3^... .In the case -p> ~ z.

the classification is similar but differs in some points due to the fact

that the "W(-p-i) subgroup of the V(f} group is abelian in this oase *

In this Appendix, we shall point out these differences.

The generators £±, * given by formula (4,5) have now

the following form:

^ ^ (c,i)

The action of £± ̂  A on a general harmonio function can be

expressed as follows :

* 5 ) •

where D± * L (J ± M2) + At, . (C,3)

In accordance with (4»8) we introduoe

MR)

5" O

- 3} -
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In this definition, N+ is a general (non—negative or negative) in-

teger, whereas /Y_ is identically zero. If we had defined ? as

/M,) instead of M , we would obtain that both /V' and //'

are non-negative integers. However, the definition J' = M, appears to

"be more convenient for the olasaifioation of representation spaces and

for the definition of phase factors of the harmonic functions.

The linear spaces to be dealt with in the subsequent classific-

ation can, again, be divided into three categories, *^t}.Z" and JF ,which

are determined by the value of the numbers 7?̂ .

(c,5)

The criteria of appurtenance to a given category are the same as those

discussed in Section 3 for -ps 3,V,.-- •

We divide, again, all complex numbers into the categories

C1, C z , C 3 and Cy according to (3,10). Note that the set Cg in the

case -to s 2 is empty. The classification of all cases indicated

in (3,11) can be performed in an analogous way.

The analysis of formula (C,l)leads to the same result as for ~p~ 3

We have only one irreducible representation space, which belongs to the

category II. For given values Tz and /V|z ,the number M, can be an

arbitrary integer.

2- V+6C,,V.*CZ .

The coefficient D+. can never vanish*, D_ vanishes at A^ -a - A(. > O

The barrier, ^ l ^ - V M. s-V»-^ restricts the representation space to

the region of M, smaller than -A/_ . The position of the represent-

ation space on the IAA -axia is shown in Fig. 10.

For H ^-N_-t there exists no representation space beoause the

factor (̂  in (3,5) is not well defined.
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which, can be distinguished "by the eigenvalues 1:1 of the invariant
operator 7T defined as follows:

The corresponding scheme is ( 2T , 0 pX ) ,

The coefficient Q^ cannot vanish; the vanishing of D+ creates a
"barrier restricting the representation space oT*** ' Xrt J
to the region A?̂  ^ t -A^ according to scheme fll^ JP; •

D_ vaniahea for fA. - - V _ > 0 ; P. vanishes for A| » / ^>O.

The mutual position of these two "barriers depends, as in oase 6,

on the value of N+. +*V_ £ ^ • The corresponding scheme is

("J[ tp .JET ) an(^ 'tne spaces are distinguished by the

eigenvalues i1 of the invariant operator 2^

£L vanishes at Mf - -V_ < O ; D+. vanishes at MA = V̂ _ > O •

These two barriers select from the A/, -line one representation space,

-u ^ (y*3^ // j i ty being restricted by condition

v % M ' f AV • The sohenie i s
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APPENDIX D

Normalisation of the harmonic functions

In this Appendix we shall study the normalisation properties of

the harmonic functions f * P (Sh) . The bilinear form is

determined by the expression

where the bar means complex conjugation. Since we have assumed

J j " to be non^negativs and integral and AJ , . , A) H to be

integral in the present paper, we can put J* •=. T[ and
/ -ft. -*L.

JLX ? f in (D,l)

Furthermore, as global representations of the T/fp) group have been

obtained by us only for integral values of JI and Af_ , .we put also

j s Tp and Af^A?p in (D,l).

The integration in (D,l)over the variables <fi , , . • , f "? and

^ Z . . ^ oan be performed in the same way as in the case of the

finite-dimensional unitary representations of t/£p) disoussed in Sec-

tion 2, because the integrability conditions

are fulfilled for Jfe,- 2 ; 3 } - •• j - p - 1 0n "tke other hand, as the

validity of (f), z) for -4s •£> has not been assumed by us in this work,

the integration (D,l) in the variable V~ i s , generally speaking, not

defined.

"2/ - dependent part k) \ \ IvThe "2/ - dependent part k) \ \ Iv J of the

** "' P / ^ ^ c a n ^ e written in the

form given by formula (3,4) The integrability properties of



U [r t a r e determined by the values

of the parameters Yl_ = M. - ™~ . if both >?_ and "^

are some non-negative integers the corresponding harmonio function

belongs to the Hilbert space ~£{, p (X f tf) . If only one of

these numbers is a non-negative integer the funotion (

can be expressed in terms of Jacobi polynominals P *' /

in the following way:

(D.3)

X -a, COS 2 ^ P
;

where all symbols have the same meaning as in (3,4)and the upper or the

lower sign pertains to the oase when >?_ or 7?^ is a non-negative

integer,respectively.

The normalization integral

Vz :
, (D,4)

can be written in the form

[
Since the properties of X^. and of JT_ are quite analogous, it

is sufficient to diacuss one case only? J^_ J say. The quantity JL.

depends on three independent variables, rf( A and >^« j ̂  and ~r>_

being some non-negative integers. A is in general complex but

we have only obtained global representations of the Utf) group for

integral values of (fi *



For real values of k the integral on the right-hand side of
(H,5) coincides with

_ (f) --ft-

The integral (B,6) defines a function A (&) whioh is analytic in the

complex &-plane. For Ae & > -1 the function A •» (0 )

can be evaluated directly by performing the integration in (D,6) lead-

ing to the result (see

This leads to the following value of

( B t 8 )

For "̂e- ̂ ^ " ^ tho integral (D,6) does not exist in the usual

sense. However, it can Tae defined in the regularised sense of Eiesz

and Gel'fand. In fact, representing ( &£'? (i&) as a poly-

nomial in (1+-JC,1} with coefficients CL*'? , we express A * (f)

as a finite sum of beta functions:

The regularization procedure for such functions is given explioiiiy in

the hook by Gel'fand and Shilov, Chapter I (see [63).

We obtain
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rf

This formula defines r\ (a) for all complex values of B for

^ ( i ) >-.&. (except A •= 0,-1 , - ? , " • ) •which

where is an arbitrary non-negative integer. In the half-plane
v a l u e coincides with, the integral in the usual

sense.

Taking A. sufficiently large,

which does not depend on At. at all:

, we obtain an expression

We see that the regularised value of the integral (D»6) is an analytic

function in 5 in the whole complex $ -plane except a finite num-

(«) has poles.ber of points where

By (D,9) the function ">, (̂ )is represented in the form of a

finite series of rational functions. The sum of this series can easily

be obtained by remembering that its value for Ri. 3 >-1 is given

by the right-hand side of (Dtf). Since both expressions are analytic

in J? j we obtain

in the whole complex

following points:

- plane. Thus (s) has poles only at the

- 38 -



For real values of & the integral on the right-hand side of

(D,5) coincides with

The integral (D,6) defines a function A (a) whioh is analytic in the

complex £>- plane. For Ac 5 >-1 the function /4 •»_ (& )

can be evaluated directly lay performing the integration in (D,6) lead-

ing to the result (see £

(D,7)

f
This leads to the following value of X

A -

(D,8)

For ^e. £^~1 tho integral (D,6) does not exist in the usual

sense. However, it can be defined in the regularised sense of Siesz

and Gel'fand. In fact, representing (P^'ifob) as a poly-

nomial in (1+-X} with coefficients a.*^ , we express A ̂  (p)
A ~ <

as a finite sum of beta functions:

. !"• ̂ A z —r.-- \ •»: ~d-H) <<

The regularization procedure for suoh functions is given explicitly in

the book by Gel'fand and Shilov, Chapter I (see [63).

We obtain

- 37 -



This formula defines / ^ (g) for all complex values of 8 for

which ĵ <. (A+i) > - & (except A •= o, -1 , - *, - > • )

where ^ is an arbitrary non-negative integer. In the half-plane

fa a > -^ , its value coincides with, the integral in the usual

sense.

Taking A. sufficiently large, -£.£*( ; we obtain an expression

which does not depend on JL at all: *

(fe) -
r=o r

We see that the regularised value of the integral (D»6) is an analytic

funotion in & in the whole complex B -plane except a finite num-

ber of points where A (fi) has poles.

By (D,9) "the function n^ (fl)is represented in the form of a

finite series of rational functions. The sum of this series can easily

be obtained by remembering that its value for °e, 6 2>-1 is given

by the right-hand side of (D,7)« Sinoe both expressions are analytio

in & } we obtain

r (of+fl

in the whole oomplex fe- plane. Thus, A^ (s) has poles only at the

following points:
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The conditions (C,5o)

Al-^'r 0>1> Z

under which the representation space JT F(X^) can be realised,

are equivalent, respectively, to the following conditions:

- J H -f

Comparing (D,12) with (D,ll) we see that in the representation apace

"oL P ()((/ characterised by conditions (C,5c) > a metric can

be defined by using H, given by formula (D,8).

In a completely analogous way, the case of the lower sign in

(D,5) is treated. We come to the result that in the representation

space ~f p /V'pM characterised by conditions (C,5b),a metric

can be defined by using JT__ given by formula (D,o).

Let us now determine the sign of X ^ . From the form (0,l) of

Gv we see that if both A^_-A^' and A^—V, are non-negative

integers, all factors of the numerator as well as of the denominator

are positive, i.e., (r+-
/^ is real and the metric is positive definite.

On the other hand, if conditions (C,5c) or (C,5b) are satisfied we

obtain

for T +• -p - 1 > O and

Sl^rx Gv = (-1) *

for Tp -t-jp -1-< O . Inserting these expressions into (D,8), we get

finally .>
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for Jp •+- JO — 1 ^ O and

for 7*p-*-«—'f * In "both oases, the sign of the norm depends

on the invariant T^^ of the subgroup 7//p-i) of Ufa) and is different

for/harmonic functions "belonging to the same representation space

ci (A , ̂  j • Thus the metric form on the space
*lp '/A /

is indefinite.

Let us mention that the definition (D,l) of the "bilinear form can

also "be used for complex values of Ĵ > and M*> provided that the
HL *+* ft I '

function oj ' ' ° ^ » ^ ^ i s °^ "tlie polynomial type. The sign
of the corresponding norm depends on the choice of cuts in the /!£ or

V_ oomplex plane. However, as we cannot determine a s ingle-

valued global representation of the lf{p) group for complex Jp or tfp ,

we shall not consider these cases in de t a i l .
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