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ABSTRACT

The discrete and continuous series of infinite-dimensional irreducible
representations of Lie algebras of compact unitary groups are derived and
their properties are discussed, The possible physical applications are

pointed out,
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INFINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF LIE
ATLGEBRAS OF COMPACT UNITARY GROUPS

1. INTRODUCTION

It is rather well known that every representation of a compact topo-
logical group ( realized on a Hilbert space ?ﬁ is equivalent to a unitary
representation [1} and moreover every irreducible unitary representation
is finite dimengional [2] . However, if we extend the clags of the linear
spaces in which a representation of the group ( can be realized, we may
obtain new classes of irreducible representations which are no longer
finite dimensional, In fact the method of extending a class of irreducible
representations of a given group (¢ by extending a class of carrier spaces
is well known in the case of non-compact groups. For example, if we con-
sider the irreducible representations of the SL(2, C) group in the linear
topological spaces of homogeneous functions we obtain the extended class
of irreducible representations in which the irreducible unitary represent-

ations correspond to only a small subclass [3] .

In this work we show that the infinite-dimensional vector spaces with
an indefinite metric appear naturally as carrier spaces of infinite~dimen-
sional irreducible representations of the Lie algebra of the compact unitary
groups UCP\ . The topological and geometrical properties of these spaces
are completely determined by the bilinear form related to the indefinite

metric.

The problem of an extension of the representation theory of compact
groups was raised after the appearance of Regge's clagsic paper in which
the concept of complex angular momenta is introduced [4] . Ina series
of papers the group theoretical aspects of this problem have been discussed
[5] and the existence of local as well as global infinite-dimensional represent-

ations of the rotation SO(3) group has been proved.[6] .

In this work we consider the properties of the irreducible infinite-
dimensional representations of the Lie algebras R? of the unitary groups

Ulp) {p=2,3,) In Sec. 2 we give a short review of the properties of de-
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generate irreducible finite-dimensional representations of U(F) groups and
the related harmonic functions, The properties of infinite-dimensional ir-
reducible representations of the Lie algebras of U(p) groups are discussed
in Sec, 3, which represents the central part of the work, In Sec, 4 we dis-
cuss the topological and geometrical properties of carrier spaces. The
principal problem of the construction of the invariant bilinear form on
carrier spaces of singular functions is solved by applying the classic Riesz-
Gel'fand regularization method [7] . In Sec. 5 we briefly discuss possible
physical applications and some general properties of the representations
considered, Finally, in the four Appendices we present the gtructure of the
Lie algebra of -UTP) groups, the classification of the irreduclible represent-

ations of the U(2) group and some auxiliary calculations,

2. PROPERTIES OF IRREDUCIBLE UNITARY FINITE-DIMENSIONAL
REPRESENTATIONS OF THE U(p) GROUPS

In the present section we recall briefly those results of our previous
paper [8] , which pertain to degenerate series of representations of the

compact Vlp) group,

Consider a vector space of@() of complex-valued fun{:tions having

as their domain a homogeneous space X of the type

/ S
X = U(‘P)/U(»P—D : _ (2,1)
The homogeneous space X has dimension Zp-1 and can be represented

{p) .
by a "model" space X7 having the same dimension and the same stability

group as X and determined by the equation

1 e
2z +. . +2"FP =1, (2,2)

where .-3&,4,_= hz, , p are points-in the p-dimensional complex space CFi

1P}
It is convenient to parametrize the homogeneous space X " by the

biharmonic co~ordinates (see [8] ), which are introduced in the following

“3-




o4
&
recursive manner, TFor p=1{ put %7= e ¢ where 0 = q:’.-szn'
.1 !’-P—l‘
Suppose that we have constructed the co-ordinate system #, .. ., %
. (p~17 . 4 - {p)
on the manifold X ; then the co-ordinates =,..., &7 , =7 on X

are defined as follows :

- . r
f'&" ﬁnw._:’m} , hs 1,20, p-1

B 4

LLP Fa
,E‘P = é Coﬁ’} »

£ (2: 3)

where O=¢ gzm , ox? =7 A= 23, ,p .

The left-invariant Riemannian metric tensor 3(_({5 (X(P’) on the manifold)(‘fpJ
“

is given by

2P
5,(?(7({?)) = ’E-)S—;] g@L(gZF) Dd X Q(G'z.f L A= L2, 2T
(2, 4)
where 2%, &=1,z2,...,2p arethe co-ordinates in the 2p-dimensional
Euclidean space {in which the manifold X(P) can be embedded as a hyper-
sphere) and 9, , %= 42, H2p-l denotes the partial differentiation

k4
with respect to the angles t?f, S L{’f, 7 » .

In the case considered the ring of invariant operators is generated

by the first order invarjant operator
A
Mp = c:{:v Lo
( Zx being generators of the Cartan subalgebra) and by the Laplace-

Beltrami operator ‘6
= =3 /1
4= /gl o(g j’ ars ’
which iz proportional to the second order Casimir operator,
It is obvious that the linear envelope of the set of common eigen~

A ' {$
functions f/f,, of the invariant operators _A(K?) and M?

" o (2, 5)
AL Y
My =My
creates for a definite A and / a representation space of the algebra RP

of Ulp) . It was shown that the explicit form of the eigenfunctions of




f
" * P 2hgk 7 (RJre-R)
Y (w): ‘—"- ex (L ZM({'{) o S 19 2 * ’9-&‘
My ”"f P P L (2
ZEAE T wp N
(2, 6)
X, = -‘fz- (M&-p oo ol —2) , = R ,
54-.:3’(%"’"_%"’-,&-*2) ,J,"-"”: ,
1 4 2 P . .
W= Y, P, P 0% 22T Jx4Z..,p
&
Of_'ﬁ = 7 £=23 PRI
’ P ig /
N, = Rn 77
fc2z £+£~f |
(2, 7)
It is sometimes convenient to introduce new azimuthal angles ¢f ,¢P
given by
& & e+l
‘?5 =@ - " ) A= L2 e, 0o >
P .
P _ = ¢
pEs (2,8)
- ! £ 9= 7
Q=588
and new representation labels A, , .-, M, .
4 (2,9)
Moo= Z,00  , A=hzp ’
Then the new harmonic function has the form
Y%-“;J} / 2k 4 s 2> £
A (Jl,)z-—nexp{zf/{;ﬁ)ﬂ' sin JLA )
na"':MP /A?
(2,10)




where

{2,11)

=

|
N9~
=

and &, , By are {e)xpressed in terms of /Vlﬂ by using (2, 9).
On the manifold X i the left-invariant Riemannian measure 4///)({'») can be

defined in the following way:

v i
dyb'?) = /,;/ 7 de® n A5
A=t A=2 (2,12)

. 243 £ F
A T AP B
4=2 A=t

The vector space 010 &(f)) equipped by this measure becomes a Hilbert

space, in which the scalar product is defined by

GF(;‘,%) = f)fm RO dy (K1) (2,13)
Kt

The harmonic functions YMJE""’j" (_n,) are a complete orthonormal set of
1y "D .

functions with respecttothe scalar product G‘;.({.},JEJ on the manifold )((P)

The requirement of the square integrability imposes the following restrict-

ionson M, ... Mp T, ., T,

MM )+ Imd = 3 2w,

MM+ T = 52 (2,14)
A’N’P—Mp_r} + J;-q = J[; ‘273.? ’
where ", = 0,1,...J-é(3r;_-l'ﬁ7'&f) , A= 2,3, ,p

In our previous work [8] it was shown that the Lie algebra R, is re-

T, M P
presented irreducibly in each finite-dimensional space Dot (X )

-G~
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7, y
spanned by the set of harmonic functions ‘g*; * y (X rp) with fixed JP and
LRI .

¥.. . The relation (2, 14) between numbers J’F)JV/P and J;‘ , My, induces a
definite decomposition of the representation space D¥'/X™) of Up) with

. . T .
respect to the irreducible representations D of U?p-l) . This

decomposition is conveniently illustrated by the graphs in Fig, 1,

J J
1 -
T D~ p-~1 . ‘Tp—l
I
5 5 r.
- Ll H
p-1 Kol -1
' J
N Jp-'l 0 p-l
“p-l _M-p-l
Fig, 1

The action of the W«p) group in the Hilbert space ’K/X (P), //) is determined

by the left translation
[Te T (v = £057%) (2, 15)

' JeM
Therefore, the unitarity of the representations D™P  follows from
the left-invariance of the Riemannian measure/z/()() on the manifold X(F) .
The irreducibility of the global representation of Uf»p) (2,15) follows from

the irreducibility of the corresponding Lie algebra,




3. INFINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF
THE LIE ALGEBRA OF THE U(p) GROUP

In the previous gection we derived the properties of finite-dimensional
irreducible representations of the U(P) groups and of the corresponding Lie
algebra RP determined by two integral invariant numbers J; and MP
The representation space was spanned by the set of harmonic functions

(2,10) satisfying the equations

)

‘J::?""J 3-,"';3-
A YM“. . .JMPP (s-n-) = - J-P (Ip-l-ZP - 2) YM“-Z-.,M: (L.D_n)
(3,1)

oy T Fere
Yy ) = Y 0

These representations were realized on finite~dimensional vector spaces
J‘ .
o‘ﬁ; ()(‘”) " spanned by solutions of (3,1) with J; and MP satisfying the
2]
conditiong
O) '72 Tttt

?

J,
(3,2)
T2 M)
J'P +/V]f, even
The set of all values for JP and MP satisfying (3, 2) constitutes the full
specirum of the invariant operators A (X fr\) and }:1 which are essentially

p

seli-adjoint on the dense linear subspace ofj{[)( ) determined by the

linear envelope of harmonic functions = MP (__n,) .
r' L

A natural question arises as to what class of representations is
obtained on the vector space of (x “’)) of eigensolutions of (3, 1) labelled
by such values of. .'J;, and MP Wthh do not satisfy conditions (3, 2), i, e.,
which are outside the spectrum of the self~adjoint operators A and A:]\P

We shall consider the case when J;, and /V]? are arbitrary complex numbers.

In this case, the harmonic functions satisfying the set of Egs. (3,1)
differ from (2, 6) only by the labels J;, and MP , Whereas all other labels
have the same spectra as before. The conditions (2, 14) are satisfied for

k= R,3,...,p-1 butarenotsatisfied for £=.p. Consequently, the

-8~




dependence of the harmonic functionson angular variables ce,i. -.,qof:f, . -,?9?

differs from (2, 6) only by its QCP and 19? ~-dependent part

- r T
Q_B (0" -§F (79”) which can now be written (including the corresponding

ple M
part of the normalization constant) in the following form;

L'(Mp._}f] -1 ?
b (D= L e )

Mp-‘I'MP ramw ) i (30 3)

N+ o

(3,4)
where
=J ,+tp-2 »
= M= M,y ,
. (Lam-T x4.),
G = (Sap-) 21(7%4 e (L emyae) iqﬂm""")w_z

(é(g—mp)wﬁi

A= L +M Ve
) .- 4G )
(3, 5)
The set of all harmonic functions with both v_ and ».,. being non-
T
negative integers span the Hilbert spaces H M: (X(P‘) in which the finite-
dimensional irreducible unitary representations determined by J, and MP

P
are realized {see Sec. 2). "

—
i
]
[




If either or both _and *7, in (3, 4) are different from any non-negative
integer, we obtain an infinite-dimensional representation of the algebra RP
of Uls) provided that the function @jz"::r; (5%) is well defined by
formula (3, 4). This is the case if the factor G standing on the right-
hand side of (3, 4) is finite and non-vanishing, It is important that, if &u
is finite and non-vanishing for some values of J,, M, , Tocn ) Moy .
then it is finite and non-vanishing for all other possible values.within the
corresponding invariant irreducible subspace. A complete classification
of all cases in which &, is finite and non-vanishing is given in Appendix A;

here we use only the results of this classification,

Due to the fact that the domain X(P) of the harmonic functions for
complex J; and MF, iz the same as in the case of the finite-dimensional
representations discussed in Sec, 2, the elements of the Lie algebra Rp of
the Ulp) group are represented by the same differential operators. The
explicit form of the generators in the standard Weyl basis i:; given in
Appendix B. It turns out that the representation of the Lie algebra ’QP
realized on the vector space cf;:'; (Xm) (J'P , MP complex numbers} is
generally reducible on this. spacep, the number and properties of correspond=-
ing invariant subspaces being different for different values of the invariant
numbers /{,_ = -é (“TP +Mp) and A= L (J;-MP) . Nevertheless, all the vec-
tor spaces in question can be divided into the following three categories }, )
I and II:

A
H . Hilbert space MMP {X(P)
P

integers}, The properties of these spaces were discussed in Sec. 2,

M{) (both M_ and 77~ are non-nhegative

I: infinite-di . . ‘2{735((?) .
: inite-dimensional topological vector space p X N with
F‘

indefinite metric (either M. or %_ , butnot both, is a non-negative
integer; J; and MP are integers), It turns out that on these spaces
a global representation of the 'U(p) group can be realized (see Sec. 4).
Tp 7,
II: infinite-dimensional vector space ofMP [XCP)) (neither 3, nor »_
P

is a non-negative integer).

7%
The structure of the representation space Jf M: (X '”) in each special

case can conveniently be investigated by considering the action of an arbitrary

-10-




generatoi‘ of the U{'P> group on an arbitrary element of. the cfjp (X/'P))
space, :

As follows from the commutation relations of the Lie algebra &,
(see Appendix B) the action of all generators can be obtained if the action
of all basic elements of the subalgebra R?_,' + R, and the action of one
 generator of U/P) not belonging to RP-" + Ry is known, Thus, to solve
the problem of reducibility of a given representation it is sufficient to
select one generator not belonging to the subalgebra RP-" + R 4 (and to
see which subspaces of i ;‘: ( X "P)> are invariant under the repeated

action of this generator,

In the following, we shall give the solution of the problem in the case

when $23 . The case p= Z is treated separately in Appendix C.

The generator not belonging to the subalgebra R, +R  of R, is

conveniently chosen in the following form:

£ = z -+ + ' - )
r(’f’)‘?"’) 2—';/,.__?_[) ( L‘PVP-‘I = ¢ L‘F’v‘?-? -
3,6
‘ 7l L y?) '
=t O Y A SRS id’s o0 2
< ¢ S& (;ﬁftL 3 3@?)4%3(5 93}?..1_8'5_199-13@9'1) .

T
The action of £ on an arbitrary element of f £ can be
x{pyp-1) _ "o
expressed as .

. 4 4 t gy -4_1"3;
[:(,F’ P_‘J) Y J'-z‘ ’J;’-”IJ—P (._['L) - _‘_. _‘/(Ai-q) 52- }(4: -1) (Bi-i-‘l) Y J; J‘; (ﬂ)

Mh"‘ﬂf—ﬂ” : -
A e g
(3, 7)
-t 9*\%(3;-*1) / Az Bs Y‘-Jz.i ity I, ( )
/ LY
,f(ﬂg-‘l) ﬁ{-q"‘? -2) (,;_4 "’f"1) M‘)"'JMP“”?MF H
-11-~




where

/ 4
Af :A{t+M +»F—‘J ) A_../Y__+Nt'-,-?—z,
(3,8)
B - YL / ! H
;=% Ne g CE AR ’
and
/Vr = ‘é(J_PtMP) 5
, .
Ne=L (T, =M (3,9)
N
Nﬁ =JE (IP-Z:L‘MP 2)
As ‘IUM&. JATLZ T are assumed to satisfy the

conditions (2,14), the numbers N,_” and Ai’ can only be non-negative in-
tegers. On the other hand, the invariant numbers A, and /_ are consider-
ed to assume, in general, arbitrary complex values. The number and the
properties of pOS.Sible invariant subspaces of the representation gpace

of [x“?’) depend on the specific values of #, and A_ chosen, We shall

treat the different cases separately.

Let us divide the set of all complex numbers into four disjoint parts,

¢, G, yC3 and Cy , defined in the following way:

C, containg the numbers 0,1,2,3 d

C, contains the numbers “ptl =Py =P, .y :
(3,10)

C; contains the numbers =1 ,=2, o, =mpr2

Cs contains all other complex numbers,

The various posgibilities which are relevant for the structure of the re-

presentation space are '
AR NoeC  {=t2,3,4 (3,11)

1) 2, 32 ¥

[}

A
A

] i




LoMeGUC , N eC UG,

The factors ‘A‘:t and 3, in formulae (3,7) and (3, 8) never become
zero (for non-negative integral values of /\f: and N__, ). A successive
application of the operators ,»;’-} (1) makes it possible to pass to every
point of the diagram in Fig. 2 starting from any arbitrary point, (In this
diagram, every point is determined by the two invariants J;-, y /lg.q oOf the
subgroup Ulp-1) of Ulp) and represents one éubépace of the representation
space.) The representation is irreducible and the corresponding represent-

ation space is the infinite-dimensional vector space of the type II,

J
n p-1

s N

-1

A T ' Fig. 2
The boundaries of the representation space in‘Fig. 2 are given by the
/ 4
lines J;_,T = IMp-*l on which the coefficients 3, = /V_,: -#,"  become zero,
As N; and /L"are non-negative integers the representation space is

restricted to the region }/V}?_J SN

in all other cases too.
»

2.a) Nely , AN eC,.
The factors A, and B never become zero, while factor A_ vanish-
4 .
esat N, = -NM -p+1 . The two straight lines A_-717=0 and A_=0
determine a "barrier' in the (J;,,, ,Mp_1) plane which is the boundary of
Ty
the representation space £ M’ 0(“") . The diagram representing the

Zpry, P . . . .
structure of the space of,: (X rp\) is depicted in Fig, 3.
o]

-13




2.b) N+e Cs » M eCy, .

The properties of A, and B, are the same as in case 2.a). How-
7, .
ever, as A, is an integer, the space ?,\; (x“”) has a structure depicted
P

in Fig. 4.

-14-
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3.a) N,eCG Nel, .

The factors 4, and B, can never vanish while B_ vanighes at
M’= X . The two straight lines, B+1 =0 and B =o, determine a
Tp 7,
barrier which is the boundary of the representation space L MP ( X "”)
P

See Fig. 5. 7
g p-ﬂ.

I'J_"}’o p..l

3.b) N, e Cy , N €C,.

The properties of A:t and Bi are the same as in case 3.a), The

' . . X JP 3 . . .
structure of the representation space o‘(o " (X! f) is shown in Fig, 6,
— P

v
L4

Fig. 6
-15~




4.8) N edlp ,AN «C,

The factors 4_ and By are non-vanishing while 4, vanishes for
/
N = =N ~p+ . The complete description of this case, including the
diagram, is obtained from case 2.a), by replacing A, )M_*/ >A, and B,

by NM_ , M. /) A and 8; respectively,
-+ +

+

4.b) N, e, , Me C,
This case is obtained from 2. b) by the same change as in 4. a).
5, /\ic— Cz , N e C,

The factors B_,,

LN

perpendicular barriers, KJ* =0 ,4,-7=0 and A_=o0, A-1=0,which divide

never vanish,while the factors A3 give rise to two

the representation space into two invariant subspaces as shown in Fig, 7.
Both subspaces are of type II and are distinguished by the eigenvalues 1
of the invariant operator, 7; s Whose action on the harmonic functions is

defined as follows:

TYZ’ (Jlj* s’j"" (T M+ Toeit Moy +2p- 3) Y R -D.-) (3,12)

2 JP-]-

NAT ol T THETENTTT T TR ¢




6./V+GCZ MeQ

?

The factors 4_ and B _ cannot vanish, while A4, and B_ can
vanish and give rige to two parallel barriers at a ''distance'’ of fJ'P—hP ey
which is not equal to zero, The representation space is divided into two
invariant subspaces, Iof j;_()(m) and MIOZ';J;?X(F’) ,(see Fig, 8) which can

,
be distinguished by eigenvalues + 7 of the invariant operator 7, defined

as follows:
T2ty od
7‘ ay M p . LosonTp
2 YM‘,. LM (&) = Sljﬂ. (J-P_MP -Tp_q +MP-1 + 1) YM”. M, (..DA (3,13)
J ‘
A Pl
11 '
N
l'\' \
R
’Qu .
v e
*'
g "

As is shown in Sec, 4, an indefinite bilinear form is defined on the space 1
which is invariant under the action of the global representation of the Up)

group,
7,8) NMpeG o, N.eSy
b) N e ,N el

These cases and the corresponding diagrams are obtained from the

cases 3.a) and 3, b) respectively by performing the changes,
/4 4
A./t’M: Ax s By — ”::’,M,—_,A;,B;

-17-




8. Nel ,MeC,.

This case is obtained from case 6 by performing the same changes as
indicated in 7,a) and 7,b), The resulting invariant subspaces can be dis-

tinguished by the eigenvalues # 7 of the operator 7 and we haveZ and II”

spaces,
9. N, eC ,NecC,.

The coefficients »‘L_L never vanish, Two perpendicular barriers,
B, =0 ,B +1 =0 and B.=o0 ,B_+1=0, divide the representation space
into two invariant éubspaces, which can be distinguished by the eigenvalues
+ 1 of the operator 7, (see Fig.9). The space ?‘fMJ; * is the ordinary
Hilbert space, in which the finite~-dimensional unitary representations of the

U(?) group are realized as described in Sec, 2,

-gp-l

An examination of Figs. 2-9 shows that there are points appearing in Fig, 2
which do not appear in any of the Figs, 3-9, This is due to the fact that
the factor C‘i’1 given in (3, 5) is infinite or zero in this region, For further

details about this question see Appendix A,

-18-




4, TOPOLOGICAL AND GEOMETRICAL PEOPERTIES OF CARRIER
SPACES

HUREVITSCH and KOOSIS [2] have proved that any irreducible re-

presentation of a compact topological group realized on a Hilbert space is

equivalent to a finite-dimensional unitary representation, Therefore, we
may expect that our irreducible infinite~dimensional representations con-

sidered in Sec, 3 will be realized in more general spaces than Hilbert
spaces.

‘ T
The topological and geometrical properties of a vector space dﬂf‘ﬂf(x’ P‘)
are completely determined if it is possible to introduce on it a bilinear

form (= ly) fulfilling the following conditions [9] :
i) G-(og':( +oL z‘)Fqﬂ"*? 1&1 _
2 < f, G (1,4 of F,G(z,llzj D ¥ 4T Glaly,) 4ot F G (2,14

(4,1)

ii) 6-(1}13)‘: 6-(13\1) )

J
for every X, 1&61"”&"’) and  « g €C’
In the case of finite-dimensional representations such a bilinear form was

given by

GGl = | 60 A& i) (4,2)

K(P)
where ///)() is the left-invariant Riemannian measure on the manifold X 2
determined by the expressions (2,12). The form (4, 2),besides conditions

i) and ii), fulfills the additional condition

G, (?LH-) >o

pa
for every 0 %+ el "M’(X’j i, e., it represents the scalar product on the vector

space g,f_JP:M? 6(“") . Howevef, as harmonic functions (2, 10) with the indices

-19-




J;, and MP not obeying condition (3, 2) are, in general, strongly singular
P

at the point YARE ™2 , we cannot use directly the expression (4, 2) in the

representation space 5{3"””" ( ¥ ’P") . The generalization of the metric form

M, .
(4,2) on £.7*6) should satisty two additional conditions besides (4, 1):

" iii) It should be invariant under the action of the group Uff) on the

representation space ip' "ﬁ(””) i, e,, if
(g £) (x) = +(f3"><)

then (}(Tafr)v%m = G (41A) . (4, 3)

iv) In the special case that J; and M, are integers fulfilling con-
ditions (3, 2}, then the corresponding generalized metric form G{-f-]/?\)

should reduce to the usual scalar product (4, 2).

In what follows we shall denote a harmonic function Y a2’y (¥)
by the symbol Y G o) with representmg the set of mdlcgs Fle-rtle
3}', . 4. A s harmonic functions Y &) span the representation
space d{ P "()("’) it is sufficient to specify the generalized metric form G §l4)
only for these functions. Let us consider first the case of .7 * (x/?)
spaces (see Fig,8,I). The metric form G‘({-H\) on these spaces fulfilling
the conditions i)...iv) can be taken as the regularized integral of harmonic

X(P)

functions over the manifold

T s bl b S

Me WM = ( CT Y
(-7- (Y ’ Y ) XIP)YMh"'tMP-vM.' YMll' ' )
| (4,4)

where the regularization is meant in the sense of analytic continuation
(see,for example,[7] §3 and Appendix D.) Using the formulae (2,10) and
(3, 4) for the harmonic function Y To (x”’) and performing the integration
over the variables {b vt ¢P rand ;9 ety ﬁf,we finally get (see Appendix
D)

}‘.. / ?-1 «1
GYE T |y B T 9(5.,5,)

4!' p—i)M? M"’”.JMP"‘“MP A=t MLM ! k=2 ‘TJ
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where

(«1)3;'1+?—2 for Jprp-t >0

S(J—P“ ’j?> = (,T)yp.t*'?-q for I?+’F—1 <0 .,

We see that the generalized metric form (4, 4) is stongly indefinite and
, . R ()
consequently the linear representation space X represents the

infinite-dimensional vector gpace with the indefinite metric.

Let us denote by i* and cﬁ_ the linear subspaces of the vector
space o{ with a positive and negative norm respectively and by ofo the

subspace of so-called isotropic vectors, i.e., the vectors -fo for which
CT(-{-O],P,_\ =0 for every & € L

The decomposition of L on to the direct sum

L, idtd,
is called the canonical decomposition, The space o'E which containg at
least one non-zero isotropic vector is called a degenerate space and
min[dimai , dimdf _ 1 the rank of the indefiniteness [9] . We see that
(p})

NPT . . . ZpIpM
our infinite-dimensional carrier spaces oﬂ prr (X are non-degenerate
1

vector spaces with an infinite rank of indefiniteness.

The exigtence of the hermitién indefinite metric form (4, 5) on the
vector spaces ELMe (X[PO does not determine uniquely the topological
and geometrical properties of the spaces [9] . It turns out that in these
spaces we can introduce at least two different topologies and related geo-

metries which are important from the point of view of group representations,

1° Hilbert's topology.

In order to define this topology we introduce first a positive definite
T, M *
scalar product on the gpace Icﬁ e ( X m) using the indefinite bilinear

form (4, 5)

(418 = G (5, 14y - G (404
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where

'E't )’K‘i e‘fi;,mp(xm) , and
f=4+4

ToJ. M
is the unique decomposition of an arbitrary vector + € L p(XKP\) into

: e Mep : .
components ‘5‘1 belonging to the subspaces Cf't’ respectively on which
the (& -metric (4, 5) has a definite sign.

Ip 33
Then, the topology on the vector space L P (xff‘) will be

determined by the norm
%
40 = (£]4)* (4, 6)

and the related geometry by the distance

f(ﬁm = -4l . (4,7)

A sequence X, of vectors is convergent to a vector X  if

L W2,-xll = !,-,;f(x,xg -0 . (4,8)

W= oo

20 Freschet's topology

The Freschet topology on a vector space o£ is deter.?nined by a
countable set of semi-norms R (-f-) . For this set we can take in the
considered spaces ';f_TPJMP(XfPW) the collection of semi-norms determin-

ed by

p@ =1Ll = e (Y, IH) (4,9)

M,
Y {p)
In fact -f-o( represents the projection of a vector ‘fC— dep P(XP) on a basis
oM
vector Vdp’

? . The collection of semi-norms defined by formulae
{4, 9) is separating because for each 0%+ € :;eJ“M" (Xm) there exists
at least one semi-norm Pﬂ(ir) ¥0 . . Using the system of semi-norms

S Pa} we can determine the notion of the distance between two vectors

-0

T S Y VUV PRSP PRRP L INTP W™ ¢ W w4l W .
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¥ .
+ b e iﬁ P (x””) in the following way [9]:

- % 2 Py (-4 _ (4,10)
J)'})/el) » 1 + F;‘m(-fw—/em) .

This distance is invariant with respect to translations, i.e.,
JDH +x, ) "—-f(%ym

and moreover is determined even in the case when a finite or an infinite
number of components {;{ are equal to infinity, The topology determined
by the metric (4,10) is equivalent to the original Freschet topology, de~

termined by the set of semi-norms (4, 9).

A sequence X%, of vectors is convergent to the vector X in the

Freschet topology if,for an arbitrary fixed N,

lim P, (2, ~%)= 0O . (4,11)
Nzl

B J’M .
The Freschet topology on the vector space L s P(Xm> is weaker than the

Hilbert topology, which implies that not every sequence <,, convergent in

the Freschet topology is also convergent in the Hilbert one,

The definition (4, 4) of the hermitian indefinite bilinear form satisfying
conditions ik,,iv) can be used also for complex values of J, and M,
(i, e., also for some spaces of type ZSEJ‘;’M” C\’(")) provided that in the DF
dependent part of the function (3, 4) the hypergeometric function
sz ("’"-:'”+ g oA —%CJ 297 } represents a polynomial. This holds, for
example, if TP is an arbitrary complex number and MP = J;, ~ 27 y1=0,)y200ee
The sign of the corresponding norm depends on the choice of cuts in the A,
or A_ complex plane (see Appendix D). However, as we cannot determine
a single-valued global represerﬁgtafq:ion of the Uf p) in these spaces,we shall

not consider them in detail.

In the topological vector spaces {fj-‘"Mf’ (x””) »the global represent-
ation g -~ T(g)' of U{p) may be determined by

~-23~




(ﬁg)f)(XU = flgx), + 2P n)

- The operator 7—(3) conserves the indefinite metric form (4, 4) because of
the left-invariance of the measure/f/,\/) on the homogeneous manifold Xm

Moreover, the conditions
T(g«jﬂ = T(g»}) T(‘jz) and T(E) =1 )

are also formally satisfied. However, in order that a mapping g —97_{3)
represents a global representation of a topological group O in a topological
vector space 58 , two additional conditions must be satisfied [3] : namely,

for an arbitrary %é— G
1°© 7?3) is a continuous operator in the space Of ,
20 T(j) is a continuous function of j , l.e,, if lrom In=9 , then
M= po
for an arbitrary —feof

L Tlg) 4 = UOEE

- o
The fulfilment of these continuity conditions,as well as a concrete and not mere-

ly formal fulfilment of Eq.{ 4, 3), essentially depends on the topologies
introduced in the sbaces ’Zﬂa}’MP ()(““) , and in the space of linear maps
of the space ct J-PN"()(“") . The detailed analysis of these problems will

be given elsewhere,

5. CONCLUDING REMARKS

The linear spaceir” 1“"(;(”")generated by a set of simultaneous eigen-
functions (3, 1) of the invariant operators A (p) and /‘tff, provides a
carrier space for the Lie algebra K, of Vp). We have selected three
classes of such spaces., The first class contains the finite-dimensional
Hilbert spaces ?H, ;%(5(“};/[) spanned by the set of eigensolutions (3,1) with
cigenvalues J, and M, satisfying condition (3,2), i.e., belonging to the

spectrum of the self-adjoint invariant operators A(?) and ICIF . The
-94-
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second class contains infinite-dimensional vector spaces . *(X?) with
the indefinite metric (4, 5). In these spaces, convergence can be determin-
ed by means of the Hilbert or Freschet topologies. The eigenvalues Jo
and MP which determine these spaces satisfy the condition 6 or 8 of Sec. 3,
The third class containg infinite~-dimensional vector spaces 1;{7””4? (x'")
corresponding to arbitrary eigenvalues of 3; and MP from the complex
plane ¢* which do not satisfy conditions (3,2). or 6. or 8 of Sec.3, The

algebraic structures of all spaces are drawn in Figs.1 -9,

In the carrier spaces c;ﬁJ;fMP (Xm) ,the maximal set of commuting
operators in the enveloping algebra of the Lie algebra K, of U{p) contains

the following operators:

A(F’) ),O\p ) A(‘P'1)5 M'p-1 y v 5 A(2), /\%;, and Mq ’ (5,1)

In the vector spaces J;;ﬂJ’”M" (x”)  and xgﬁfp’m” (X‘P’) all operators from the
set (5,1) related to the subgroup U (p-1) ,Ulp-2), ..., V(1) are unbounded
operators, We may use the formalism developed here for finding continu-
ous series of irreducible infinite-dimensional representations of other com-
pact Lie algebras, e.g., of 50(n}and Sp(+) groups, using as the main tool

the sets of harmonic functions for corresponding groups [10] .

The continuous series of representations of Lie algebras of compact
groups may be applicable in some physical problems; e. g., for investigat-
ion of the syrﬁmetry properties of the hydrogen atom. In this case we
usually use the compact Lie algebra of the SO(#)group for the description
of the discrete spectrum of energy and the non-compact Lie algebra of the
50(2,1) group for the continuous spectrum [11] , 1If,for different states of
the same physical system described by the Hamiltonian, we really have to
use two different groups as symmetry groups, then a concept of a higher
symmetry group becomes extremely unclear, Previously, it was not
possible to use the Lie algebra of the compact group for the description of
the symmetry of both bound and scattering states because the irreducible
representations of these algébras determined by continuous invariant num-

bers were not available, Therefore, the introduction of continuous series

-25-




of irreducible representation of compact Lie algebras may clarify the
hydrogen atom problem as well as other problems of higher symmeiries

in elementiary particle physics.

Moreover, the possibility of the existence of infinite irreducible

multiplets which can be related to continuous representations of a
compact Lie algebra, seems very atiractive, as compact groups appear

most naturally as internal higher symmetry groups in elementary particle

physics.
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APPENDIX A

List of cases in which relation (3, 4) determines a harmonic function

As stated in Sec, 3, relation (3,4) can be used to determine a har-
Ty - o, T ) . L.
monic function YMZ", ﬂ: (n)  if and only if the factor G+  is finite and
4y
non-vanishing, The factor G,_ is given by formula (3, 5) and can be

written in the following form:

+1
G =(J "“P"") ('V+'N+’+1') (V+‘M'+z)... My (M + 1 "'(M+*N-"’P“3)(M+A/_1f—2§
t— e / ‘ )
WA A7) NAN 4 e AW+ p=) (N, +p~2)
(A,1)

The factors in the numerator as well as in the denominator form increasing
sequences. It is easy to see that Gi ig finite and non-vanishing if any

one of the following conditions is fulfilled:

1, Both ¥, and #_ are not integers, and

/_V+_+/\/_‘¥'--P+'f. (A, 2)

2, If /V+ is an integer and A/ _ is not an integer, but either

/
N+‘N+ ':..011)2.1.13 ) (A,3a)

or

/
BN 3 =1 20,1, =2, o (&, 30)

3. If A. isan integeriand ¥, is notan integer, but either

; ‘
/V.. '—'071,2.’... : (A'J4a)

=

or

=

}
M+M-+/P_1=OJ-1J_29"" (Al4b)

4. If both N, and N:are integers, G+ is non-vanishing and finite in

the following cases:
D -




c)

e)

N-N = 0,12,
/\/-./\/___l = 0.1.2

Y,
M,_‘/\/_,_ = 0)’3,2,..,

N+N wp-t= 0,-1,

%_"}‘N_ #"?4‘1 +

N_-/V_' = 0,% 2

] y

3

~Z5 .,

3

/
M_+/V_, -.l-?_? = O,“",-z,"')

No4N_ X —prt .

Nor M bpet = 0,-1,-2,... ,

N_+N+’+4>—1 = 0,~1,-2,.,

7
N+—N+ <O }

N++N'!+? -1 >0

i_f. and Only |'+

N_-N_"<D

N_+N, +p-1>0

(A, 5a)

(A, 5b)

(A, 5¢)

(A, 5d)

(A, 5e)

We can easily check that condition (A, 5a) leads to the Hilbert space

7,

‘}{MP (Xm,/{) (see Fig. 9) whereas conditions (A, 5¢) and (A, 5b) lead to the
P I

vector spaces f:":’ (Xm)ﬂ) (see Fig. 8 and a diagram obtained from

P
Fig. 8 by reflection in the J'?_
-

]

in Fig, 7,

~axis),

.28~
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APPENDIX B

Properties of the Lie algebra of the compact unitary group.

The Lie algebra RP of the U(?ﬁ group congists of Pz' basic

elements which can be subdivided into the following categories:

a) ( ‘Z) operators which represent by themselves generators of the
subgroup S0()of the V(p)group. We shall denote them by
+ . , . .
Lt'i' 'J'.',} xi’Z"."IP ,L(a 5
( p+ 1) - .o U s
b) 2 generators. LL-- (L’.& = 152:"‘;1’;"53) which do not
correspond to the 50(1:) group, Among them there are "diagonal” operators

LZL. (i = 1,2, P) which belong to a Cartan subalgebra of RP .

The commutation relation for these operators have the following form:

BT )k SR

where it is convenient to introduce the following symmetry properties:
S

+ _ =
for all ‘::3 =1,2,00,p

All the generators can be represented in the space Ofé(m) in terms

of co-ordinates =' and their derivdives -—g— ! in the form
2
” ) 212 442 _z'23
Lag = ¥ >zt drk >4 dER !
(B, 3)
LT = 4 (-Z&Ex +zfd g%y _zf2 ,
L0 ;2 = L )i-‘e DE&.

As we have chosen the group parameters to be real, the gegxerators are

skew=-adjoint,

The a_Plgebra RP has an abelian centre, which is formed by one
operator 2 . L:. . If this operator is dropped from EP we obtain the
i= L . .

algebra of SU(p) . The most snitable way to do this is to define the Weyl

“29.




basis

—

£
- [z B - :
o=t 31 (i,m,,m L&») y A= L2, 5pnl

| (B, 4)
! L+ -
= T (0L, =L )
(& A) 2 '/'P/'P"D 44 &4
% ‘ - - - _ +
If E(/u) is denoted by £, , and [ is givenby £ = £, _égﬂ)
then the set of generators }Jﬂ » £, and £__ fulfil the standard commut-

ation relation of the Lie algebra of the SVU(p) group.

-30-
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APPENDIX C
Clagsification of recpresentation spaces for the algebra of the U(2)

EE:OUE

The classification of representation spaces given in Section 4

is valid for a general V{)group,p= 3,4,... . In the case 4 = 2
the classgification is similar but differs in some points due to the fact

that the U{p-1) subgroup of the U{p) group is abelian in this oase.
In this Appendix, we shall point out these differences.

The generators £, ¢ given by formula (4,5) have now

: ‘ Pop1)

the following form: '

£ z L oLl LT )

ez T 2/z (L2,4 = ¢ 21
; -?L'((p"—te‘) (_3 £ 402 + Lot 7).9..'>

eY; 257 i '/

= I € J te
27z ¢ (¢,1)
The action of & (2.4) on a general harmonic function can be
2
‘expressed as follows @

£ YJ;'(‘QP‘;? _— /0 (D +1) YJ; (¢f¢z§) :

(2,) MM, 29, ,7—2' 7 t Mzt M A4 ! (cy2)
i* 'z

where D, %(J;_tM,) M. (C,3)

In accordance with (4,8) we introduce

=4 (T, ::M,_) ’
(c,4)

R

I
- %(3;"'”1) =M

?
= o -

>4

—
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/

In this definition, /V+ is a general (non-negative or negative ) inw
F
teger, whereas A

-

/M,]  instead of M, , we would obtain that both M_' and /\/_'

are non-negative integers. However, the definition J =M, appears to

is identically zero. Ifwe had defined 3; ag

be more convenient for the classification of representation spaces and
for the definition of phase factors of the harmonic functions.

The linear spaoces to be dealt with in the subsequent olassific-
ation can, agesin, be divided into threse categories,’H,,I and I ,which

are determined by the value of the numbers 77,
me=d (T em M)z M), (¢,5)

The criteria of appurtenance to a given category are the same as those
discussed in Section 3 for p= 34,...

We divide, again, all complex numbers into the categories
C,,Cz ,¢, and C, according to (3,10). Note that the set C(; in the
case P 2 1is empty. The clasgification of all cames indicated

in (3,11) can be performed in an analpgous way.

A, N, €Cy ,N_€C,

The analysis of formula (C,1)leads to the same result as for p=2 3
We have only one irreducible representation space, which belongs to the

category II. For given values ‘J, and M, ,the number M, can ve an

arbitrary integer.

2. N, eC, , N_eCy

The coefficient D+_ can never vanish; D_ vanishes ai M4 =-N_>0
The barrier, IV]‘ = ~N, M‘=-N__q restriots the representation space to
the region of M, smaller than —~AN_ . The position of the represent-
ation space on the M -axis is shown in Fig. 10.

1
For M1 }-N_-‘l there exists no representation space because the

factor & in (3,5) is not well defined.
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which can be distinguished by the eigenvalues + 14 of the invariant

operator 'Z; defined as follows:

7 : A
2’. (&\ = S'j"‘ (J:“' Mz ""?M,’f"l) Y”L,M,. ('-D-) .
The corresponding scheme is (JZ'—, ¢ )I*) .

N, e ,NVN_eC,

The coefficient [J)_ cannot vanish; the van:l.sh:ung of creates a
barrier restricting the representation space of (Xm)

to the region Mq < —/V+_ according to scheme (II, ¢)

8. N e( ,M €C,

D_ vanishes for M‘, ==-M.2>0 ; D, vanishes for /VI1 '://+ >0
The mutual position of these two barriers depends, as in ocase 6,
on the value of N_,_ +MN_ = Tz. . The corresponding scheme is
- 1— .
(T , ;ﬁ yIL ) and the spaces are distinguished by the

eigenvalues *1 of the invariant operator 7,

D. wvanishes at M =~-NM. < 0 D, vanishes at M, = 1'/,_ =0
These two barriers select from the M, ~line one representation space,

(‘Xm ) , M, being restricted by oondition

—/VMZ“ M, f-/V+ . The scheme is ( ¢’ H, ¢)

— —
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APPENDIX D

Normalisation of the bharmonic functions

In this Appendix we shall study the normalisation properties of

I R
the harmonic functions YMz’ ::; (._D,\ . The bilinear form is
doetermined by the expression" e

y o 1) Y
) @) k), G
H" ' ’Mp-1’ P MH' o Mp-“lMp
wherse the bar means complex conjugation. Since we have assumed
‘Tz . J';’_q to be non-negative and integral_and M1 oo .’Mp_4 to be
integral in the present paper, we can put J;_’ = J}:_ and _
- /
M}ll:ﬂ{f [&._.2,3,...’.?-1 52:1)2‘""?"1) in (D,l)

Furthermors, as global representations of the Ulp) group have been
obtained by us only for integral values of J;, and MP , -we put also

IP - TP and. M}: Mf, in (D,1).
The integration in (D,l)over the variables ¢’, v, p? and

-~
-;9P can be performed in the same way as in the case of the
finite~dimensional unitary representations of 'U'(p) discussed in Seg-

tion 2, because the integrabiliiy conditions

M -M, | +1,) = T -2n, ) M= 0,4,2,..0 5 (D,2)

are fulfilled for & = 2,3, 0y p-1 On the other hand, as the
validity of (D. 2) for 4= ¢ has not been assumed by us in this work,
the integraticn (?D,l) in the variable 79'P is, generally speaking, not

defined.
P -
The 'ﬁ - dependent part P " P ( _9?) of the
Mo.a M,
Il! T
general harmonic function Y ( D) can be written in the

form given by formula (3,4) 'I‘he in'gegrability properties of




J
-1
Q % (-ﬁp) are determined by the values

?-‘l M

A
of the parameters 'Yt; = Mo I . If both 7_ and 27,
are some non-negative integers the corresponding harmonic function
belongs to the Hilbert space 'J{ )(m,/() - If 'only one of
these numbers is a non-negative 1nteger the function QJ;"‘MTP (“3 P)
Mp-1,Mp

can be expressed in terms of Jacobi polynominals Ph { cos 29")
in the following way:

4 ot

@p_j‘P 9P) = (1 3 Fatp- 1/_-"(Hz) Ji;: ) o E J(zt;,

AL = Cos 2‘3")

where all symbols have the same meaning as in (3,4)and the upper or the
lower sign pertains to the case when »_ or n, is & non-~negative
integer, respectively.

The normalization integral

r- [’ ewﬂ‘r 6 07T 6 W4t 1 O

e}

can ve written in the form

\

N e o+x) [ R AT

q.

:t

Since the properties of _Z: and of I _ are quite analogous, it
is sufficient to discuss one case only, L, ,say. The guantity I,

depends on three independenti variables, &, ‘B and M. ; & and 1 __

being some non-negative integers. (_). is in general complex but

we have only obtained global representations of the 'U'(?) group for

"integral valuea of @
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For real values of % the integral on the right-hand side of
(1,5) coincides with '

ot - - =
A, (g)= S(Lﬂ“mﬂ? (Pj,_’?@) dy . (2,6)

e
The integral (D,6) defines a function A ( )whioh is analypic in the
o

complex ﬁ-plane. For Re_IB >~-1 Llhe _function A . ( )
can be evaluated directly by performing the integration in (D,6) Lead-

ing to the result (see [12])

A"(( N = 2% lotaman) l"(‘9+>1+12 ‘ (D,7)
“—e 1 (;e+f+1+ zn) 7 (a(+f+)7-r-‘1)
This leads to the following value of I‘..'“..

oy 1 1
- -2 2
L =l Joe = 6, %Gy (,8)
G-t
Por Ke ﬁﬁ"’? the integral {D,6) does not exist in the usual
sense. However, it can be defined in the regularised sense of Rieggz
z
and Gelfand. In fact, representing (fiZ’F Gﬂ) as a poly—
nomial in (1+x) with coefficients a,;:? , Wo express A : (?)
as a finite sum of beta functions:
' 1
« 2. o +¥ A
A.,, {f) =2 a f (HI)F (1-1) dx
- L= X =
2n, Arg + A+t (] B+, K
A
g0 R 0
2.
o o+ B 4L+
= Z 4 /f f B (f+£+?, o(-H) .
A=0 A

The regularization procedurs for such functions is given explicitly in
the book by Gelfand and Shilov, Chapter I (see [6]).
Ve obtain
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z
- vf,e , oA gt A+

A (= Z e, f f y"”f“' FE 14y

F=O rf f‘/ _r+1)

oA p
+ (('“‘33 ‘?Wid} + 24-(-1)" o ! 1 }

2 r=o 2r+r+l+‘-r! r‘[d."l""‘“) Y‘+F+i+1

ey

This formula defines A:_ (F) for all complex values of for
which Re (P.H) 3 7% (except F'-..- a,-1,-z,~.).

where & is an arbitrary non-negative integer. In the half-plane
Re g > -1 its value coincides with the integral in ths usual

gansa,.

Taking A sufficiently large, A = y wo obtain an expression
which does not depend on A &t all: “

+g+d+ !
A ((_z,) 2 cL ’F = F 4 12(“1 (‘i) T RS (2.9)

rzo

We see that the regularised value of the integral (D,6) is an analytic
function in P in the whole complex F -plane except a finite num-

ber of points where A: {F) has poles,

By (D,9) the function A,Z (F) is represented in the form of a
finite series of rational functions. The sum:-of this series can easily
be ovtained by remembering that its value for RLP >-1  is given
by the right~hand side of (D,'{)- Sinoe both expressions are analytioc
in- (3 y we obtain -

1
A0 o 2 ()] Tlpens)
,,“(F) - ) (D,10)
! (.,<+‘e+z-n+43 f"(d+f;+l1+1)
in the whole complex F,- plane. - Thua, A:_ (F) has poles only at the
follewing points:
f&:-ﬂ_-‘l, -7 '“Z, C —_—ed ~ Y1 d.hd ?: — a(-ZY?_-—" ' (D’ll)
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For real values of [3 the integral on the right-hand side of
(D,5) coincides with

) 1 o 2
A, (p)= g("“ﬂ (1+2) ¢ (P»,*’P(’)) . (9,6)

-1

The integral (D,6) defines a function A:( )whioh is 2nalytio in the
complex f)—plane. For Re.@ >-1 the funotion A -;,_( }

can be evaluated directly by performing the integration in (D,6) lead-
ing to the result (see [ 12])

A“( Y = 2d+F+4 T {4 ma1) l"(p+h+42 ' (0,7)
“—e i (&4-]94—“ zn) 7 (o(-;-fy-.m-r-'})
This leads to the following value of Z,

2 4
2

l;:/g:Gt - G_t“zG_:
GE

For Ke ?5"1 the integral (D,6) does not exist in the usual

(D,8)

sense. However, it can be defined in the regularised sense of Riessz
. ) 2

and Gelfand, In fact, representing (P:’ p (15) as a poly-

nomial in (1+1ﬂ with coefficients a._;:P , Wo express A : (F)

as a finite sum of beta functions:

« S ! B+ A
’ . )7
OIS PSS RUS LD
2

2
£

i

H

- A, B d+F+£H{‘ F+Y, 1— dA
AN A e
g- a.d’f 2 prhe
A=

B (f+,9+1, o(+1) .

=)

The regularization procedure for such functions is given explicitly in
the book by Gelfand and Shilov, Chapter I (see [6]).

We obtain
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Vl-..

A (tg) ) -cF ? a{+f+}z+4j'£ ?P-M ['(1 .3)"‘ Z(—1) ]t{;&

r=Q r’ r'/ -r+1)

((1’&) 'g,? d,&+Z(-1) o ! 1 }

Z F=o r‘-i-(+£+ﬁr! r'{a{—r'+1) r+F+lt+1

o
This formula defines A?' (‘2) for all complex values of for
which Rc_ ( +1) >-A (except (5‘: o,-‘l,-Z,-'-).
where & is an arbitrary non-negative integer. In the half-plane
RQ‘P > -1, its value coincides with the integral in the usual

sense.

Taking s sufficiently large, Az y ¥ obtain an expression
which does not depend on .o at all: +

A (@ 2 a- =, ¢ o(-t-F-u{-f-'!Z () ( ):ﬁ—:;; . (D.9)

r=0

We see that the regularised value of the integral (D,6) is an analytic
function in in the whole complex ‘B -plane except a finite num-

ber of points where A: (F) has poles,

y (D,9) the function A:(F) is represented in the form of a
finite series of rational functions. The sum-of this series can easily
be obtained by remembering that its value for Ee.'ﬂ >-1  is given
by the right-hand side of (D,'?). Since both expressions are analytio

in- ‘5 y we obtain

a+§+1

4% (F) _ 2 (3! r'/f*"'i-")

: (D,10)
m! (o(+€+2'h+13 I"(dq.fg-n-m.f)

of
in the whole complex F,- plane. - Thus, A.n_ (‘8) has poles only at +the
following points:

fsz-n_._1,-w_ ~2, ..., -x-7Mo and f= -~ k-zn_=1. (D,11)
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The conditions (C,5¢)

/
M-_A/._ = 0)1,2’15. b

M /
i+ A tp-1=0,-1,-2,...,
Af++/\/_ 3 -p+ i
under which the representation space P(X’P)) can be realiised,

are equivalent, respectively, to the following conditions:

’n'-:O,',’Z’cal ]

B T RSPV ¥ Sy N
& ) 2 (D,12)

(2, X —od=-2Zn ~1

Comparing (D,12) with (D 11) we see that in the representation space
7
:g]_p ? (x“”) characterised by conditions (C,5¢) , a metric can
be de§1ned by using f given by formula (D 8).

In a completely analogous way, the case of the lower sign in
(D,5) is treated. We come to the result that in the representation
space of (X"P‘) characterised by conditions (C,5b),a metric
can be def:med by using J _ given by formula (D,8).

Let us now determine the sign of I, . From the form (0,1) of
G, We see that if both N,,_-M_, and N_—A. ' are non-negative
integers,all factors of the numerator as well as of the denominator
are positive, il.e., G-i_'/z is real and the metric is positive definite,

On the other hand, if conditions (C,5¢) or (C,5b) are satisfied we

obtain

N M’+ -z ) r -

Siqn Gp= (1) a PRy &) b e

for 3;-#-1:-1 >0 and. _

. ‘ _;'FP"'"

Slqn G-__ = ("‘1) P ]
for TP +p -1« 0 . Inserting these expressions into (D,8), we get
finally _ A
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2

J"_1+ -
I!: = (——'1) F P !

T -1
or J;-i-? >0 and
T +p-1
p TP
L, =(-)
for TP+P--1 + In both cases, the sign of the norm depends

ondj_thetinvariant J;,_1 of the subgroup 'U'{P-‘}) of Ufp) and is different
for ha:;:'xon;?c f{x:)nctions helonging to the same representation space
i’ﬂp (X ,/,,‘) . Thus the metric form on the space
is indefinite,
Let us mention that the definition (D,1) of the bilinear f:orm can
also be used for complex values of J-P and Mp  provided that the
funotion ‘?,,:FF in (D,3) is of the polynomial +type. The sign

of the corresponding norm depends on the choice of cuts in the M_ or

N

valued global representation of the Ufp) group for complex JP or M, ,

complex plane, However, as we cannot determine a single-

we shall not consider these cases in detail.
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