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MULTIPLE FIELD RELATIONS

Three elements have gone into recent calculations in particle theory;

1) higher symmetry multiplets, 2} a postulated algebra for weak currents,
3) PCAC and similar hypotheses. These elements appear somewhat un-

related as used at present. We suggest in the present note that there may

be a common basis for these and that this basis may lie in postulating {with

Heisenberg) that there exist fundamental fields and all matter is made up

from them. For such a fundamental strong field, the simplest assumption

is to take a triplet of quarks qL (i = 1, 2, 3), Such field theories face two

problems: 1) what is the fundamental Lagrangian - or at least what sym-

metry properties it possesses - and,2) much more difficult, how to express

physical fields as multiples of quark fields. This note is concerned with

these problems; the particular Lagrangian we choose leads to an approx-

imate higher symmetry classificationU{6) xU(6) of strongly interacting part-

icles; using it we are able to obtain a (heuristic) derivation of equal time

commutation relations {C.R.)not only for currents but for arbitrary com-

posite fields for use in dispersion theory. These relations are different

from those one would get in a canonical formulation of field theory.

Fiirther, from the point of view here adopted it appears that relations like

PCAC, PCTC, PCBC, etc., essentially express the content of the quark

equations of motion.

For the quark Lagrangian take:

Vt

*

where only appropriate charged currents are retained in
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tK.E + L*<^ + Wn possesses SU(3) x SU(3) symmetry; £mass+^strong is SU(6, 6)

invariant if mj ~ mz = m3 .

For constructing physical particle wave functions, the proper formul-

ation is to consider Bethe-Salpeter amplitudes. For mesons, for example,
8

(leaving out SU{3) indices) one may consider M^ (p, k) which is Fourier

transform of (0 | T[q (x,) "q^fx^))! p). In a set of earlier papers it has

been shown that the Lagrangian above can lead to the appearance of a U(6) x

U(6) multiplet structure at least for 0" and l" particles as solutions of

an approximate Bethe-Salpeter equation. Since it is our intention to write

multiple field expressions for physical fields and ultimately to consider

equal time commutators, we work with the idealization of the Bethe-Salpeter
4

approach given by NISHIJ1MA and ZIMMERMAN. In this approach a local

composite field, satisfying the axioms of field theory, is defined (for mesons

for example apart from a normalization constant) as:

for zero orbital angular momentum and as

for orbital momentum S. . In Zimmerman1 s formulation a. is a space-like

or a time-like (but not a light-like) vector. We propose to write equal
6

time C.R. for fields Mj (x) using the basic quark C. R. with % space-like

(in particular a0 = 0). Barring Schwinger terms, this gives:

It is important to stress that unlike a conventional theory of phenomenological

fields with its canonical C.R., the composite fields corresponding to two

distinct particles do not necessarily commute on a space-like surface. This

was first pointed out by THIRRING and constitutes a distinguishing feature
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of composite model theories. Indeed this may provide a test of the idea

whether or not fundamental fields exist at all.

The first problem with this approach is; if we use the completeness of

the Dirac algebra to write

what physical particles, if any, could correspond to the respective field

components ^ , 4>s , . . . , etc. ? To decide on this we use repeatedly on

M (x) the quark equation of motion

where cr = (2X q q) . In the self-consistent approximation (see below) where
7

qq on the right of (1) is replaced by its expectation value, we get

- 0

j ( [ f MfoA)] + |X,M(f,k)|) = ^(fMdk) (3)

Here LL =2(m + cr) and M(p,k)dk is the Fourier transform of

M(x) = i t M(x,a) . The -/-decomposition of these equations gives

b h ~ 0
~h- -MA.

-aji,
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where * • I tf(p,k)dk is the Fourier transform of #(x) etc. In all these

equations it is important to remember that a = Aqq has been replaced

by a constant. This ignores essential dynamics. But even at the kine-

matical leve^note that if in (6) terms on the right under the integral sign

are ignored, we recover just the set of Bargmann-Wigner equations for a

U(2, 2) multiplet with ^(x), tf^OOas independent quantities and ^ffM,

expressible as their gradients or curls. Further* to this approximation,

P̂M.0 = 0 , so that ^ is a constant field consistent with the replacement

above of $ = <#> = <qq> - a .

o
We now make the identifications,

* £ <TT(x) = < ^ Y? <V , ^ f (x)

Eqs.(4) and (5) read

(11)

Eq. (11) is the analogue of PCAC in our formalism. Eq. (6) further states

that ^ 5
 =iq757 / JLq equals ^*\ p^ ir(x) + R^ (x) where R^y may

possibly represent a field corresponding to a 1+ particle. However, there

may exist a certain region of frequencies (particularly if the 1 particle

is much heavier than the i-meson) where the axial-vector field q T̂ Tj-q

may be approximated by the gradient of the 7r-field, and likewise for the

tensor field which may be approximated by the curl of a vector.

Our final conclusion may be stated thus: with the postulated quark

Lagrangian, it is possible to write a string of quark-antiquark local field

operators. Some of the operators can be identified with independent

particles contained in U(2, 2) multiplets (or with inclusion of SU(3), with

U(6, 6) multiplets), while the remainder fields possess an approximation in

which they can be expressed as gradients or curls of the independent fields

mentioned above, following the pattern set by the Bargmann-Wigner form-

alism plus a residual part which may possess vanishingly small matrix

elements for the relevant U(6, 6) free particle states. The completeness
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of the -y-algebra ensures that all U(2, 2) tensors Into which a product like

(qq . . . qq . . . ) can be decomposed find an interpretation. Further, among

these Bargmann-Winner relations are contained the divergence relations

which are analogues of PCAC, PCTC, etc.

To illustrate the utility of the rules formulated above regarding the use

of the Bargmann-Wigner ansatz for redundant U(6, 6) tensors, we compute

some expressions for the equal time C.R. of the nucleon-fields with meson-

fields. To avoid problems of fractional charges and para-statistics

(needed to construct a local s-wave symmetric baryon field) we use the

Nambu-Han model instead of the pure quark model with three fundamental

triplets obeying Fermi statistics. Thus

MjM = ^ M l M t . l . i . 3 for the
... three triplets

It is easy to check that

w
(12)

Here M ^ = lp^ \j/Ft" \{J ip and represents a mixture of 4212 + 5940

multiplets of U(6, 6).

Both B and M may be decomposed relative to SU(3) x U(2, 2) in the

usual manner. Denoting SU(3) indices by p, q, r and U(2,2) indices as

a, $, y . . . , and defining the usual projections: -
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we obtain from (12) for the baryon commutators with time-component of

the axial current the expression

{ u* (- vex) ^ f 3 y5 M ; * 31

The important point is that this gruesome relation reduces to an extremely

simple form when one takes account of the Bargmann-Wigner (approximate)

ansatz which states that V = y5 N + i % y'N^ =. 0 . The commutator then

reads:

i. e., (apart from SU(3) complications) the commutator of the time-com-

ponent of the axial current with the nucleon produces ys times the nucleon.

It is important to stress once again that this reasonable result has been

obtained using for both the nucleon and the axial current their expressions

in terms of quark fields .and by getting rid of redundant components using

Bargmann-Wigner formalism. One can similarly write C.R. of the field

N^ {which satisfies the PCBC relation p^N^ - MN) with M05 ; the r.h. s.

now also involves the decuplet field. With the whole host of new equal

time relations available now along with the U(6, 6) table giving (at least

an approximate) physical interpretation of all composite operators intro-

duced, the range of calculable consequences one can draw is likely to be

greatly extended. (Since C. R. in a field theory in general incorporate the

the content of kinetic energy terms in a Lagrangian, the use of C. R. will

improve pure U(6, 6) results to the extent of including parts of kinetic

corrections). But before this is done, it is important that one should

acquire some feeling for how good the Bargmann-Wigner U(6, 6) ansatz in

practice turns out to be for the redundant operators and also how consistent

such identification of redundant components and the C.R. is. It is indeed
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with considerable trepidation that we are putting forward this note in so far

as our conclusions about C.R. differ very considerably from those accepted in

in conventional phenomenological field theories.
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interaction for example one could not use the simple ansatz above.

An infinite constant coming from differentiating the time-ordered
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quark mass inside "quark matter" (m + or) could be very different
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The integral on the right is essentially the self-mass integral and

therefore one may expect that or 5̂ 1 .

9. Combining (5) and (6)7 RA5 appears as pion-quark current, presumably

with zero matrix element for the single pion state provided 2M & mean

mass of the 0" multiplet.

10. Note that the relation p (iq y.y~q) = ~+— m!l 7r(x) survives even after

taking account of weak interactions in the quark equation of motion.

The next task of the present formalism is to express Ĵ /) = iqT5X q(x)

in terms of physical fields (nucleons, pions, etc.) and to derive the

Goldberger-Treiman value of the constant -f— = - ^ =[ Ei). This

is a difficult but, we believe, not a completely hopeless task.
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