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BOUND STATE EQUATION FOR QUARK-ANTIQUARK SYSTEM

§1 INTRODUCTION

It is now generally accepted that if the spectrum of elementary

particles contains traces of higher spin-containing symmetries, such sym-

metries must have a dynamical origin. A number of quark models, both

relativistic as well as non-relativistic, have recently been considered in

this connection. In this paper we treat explicitly the relativistic bound

state (Bethe-Salpeter) equation for quark-antiquark binding with a specific

kernel corresponding to a zero boson-singlet exchange (Fig. 1) with a view

to seeing if one can reproduce the meson-multiplet spectrum assumed by

the higher symmetry schemes.
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Fig, 2

Bethe-Salpeter equations have been considered before in this context; in

reference it for example, a chain diagram of the type shown in Fig. 2 was

summed and shown in certain strong-coupling approximations to reproduce

the physical multiplet spectrum. A different approximation to the kernel
2

was considered by Bogoliubov and his co-workers; in this approach

spin-containing terms were neglected at the outset. We believe the con-

siderations of the present paper are possibly closer to the realistic situation
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in the following sense: the physically observed bosons are likely to be much

lighter than the quarks if they exist, so that it is a reasonable first

approximation to consider zero boson mass exchange terms as providing

the dominant part of the binding potential.* If one further looks for meson

bound states of zero mass {the case we shall explicitly solve) one is con-

sidering in effect a reciprocally self-consistent situation - a Bethe-Salpeter

bootstrap. The usual objections to retaining only the two-particle Bethe-

Salpeter amplitude are,within this context, easy to meet. If mesons are

indeed made up from quarks and antiquarks, the meson-pole terms occur

equally in the two-particle propagator (qq qq) as in the four-particle

(qq qq qq qq) propagator and so on. To include the four-particle amplitude

effects within the two-particle propagator equations, one should include in

the Bethe-Salpeter kernel two-particle irreducible iterated terms of the type

shown in Fig. 3

Fig. 3

We believe it is plausible to neglect such terms in comparison with the

kernel of Fig. 1 in so far as the "potential" which the inclusion of terms of

Fig. 3 will give rise to must inevitably be of a very short range. The plan

of these notes is as follows. We first consider in §2 spin-less quarks,

interacting through mass-less bosons. A stereographic projection to a
4

5-dimensional pseudo-sphere, first introduced by CUTKOSKY exhibits

the symmetries of the equation fqr the two cases fl) when total energy p^

of the bound system equals zero (maximal binding) and (2) for the case

p 4 0 . The Bethe-Salpeter equation is exactly soluble (§3) in case (1)

and reduced to a tractable differential equation in case (2).

* A recent preprint by J. Harte (CERN) contains an analysis along these lines.

- 2 -



In §4 we consider the spinor equation, and its transformation

properties, particularly for the case p = 0 . In §5 an approximate spinor

equation exhibiting a 5-dimensional symmetry is solved explicitly. In §6

we make remarks about the problem of defining particle wave functions.

§2 THE LADDER APPROXIMATION FOR SCALAR QUARKS AND

PROJECTIVE TRANSFORMATIONS

The ladder approximation for spin-less quarks of masses m

and mz interacting through the exchange of a spin-less boson of mass yA

is

J
where

Introduce total and relative momenta

a

for the equal mass case in terms of which the equation reads

7
As shown by CUTKOSKY and SCHWINGER , one can make a stereographic

projection, mapping the Lorentz space onto a unit hyperboloid in 5 dimens-

ions. Several cases must be distinguished according as p^ falls in the

intervals (-op, 0) , (0) , (0,4m2") , (4m i,co). Introduce the unit vector

^ = (1| , ^s) such that



[ + \ s = 1 where p2" > 4m2- — (3 + 2) space

- ^ = -1 where p < 4 a l (4 + 1) space.

and connect the r\ to the relative momentum via the relation

H s ^ 1 (3)

The various kinematical factors in the equation reduce to

where

and the integration over relative momentum may also be referred to the

pseudo-sphere

whence

Combining these results and defining the new wave function

(4)

the B-S equation in the new variables reads
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(5). i ' . . _ . . . . - _ ... .

with A =

This equation possesses the following (little-group) symmetries:*

(A) JUL = 0 (mass-less boson exchange); p^ - 0 (maximal binding). The

equation is invariant for O(4,1) rotations of Y\c , >|i; V\u , Y\3 , ii s .

(B) j1*- ® > P]*.f ® > 4— m < 0 ; the symmetry is O(3,l) correspond-

ing to r\ , Y\t , h , ilf in the res t frame £ = 0.

For txf 0 , the symmetry is reduced to O(3,1) and 0(3) in the two

cases (A) and (B).

§3 WICK ROTATION AND SOLUTION OF THE SCALAR PROBLEM

Before attempting to solve the equation as it stands, it is con-

venient to perform a Wick rotation to a complex relative time variable.

In practice this consists of replacing q0 by q = i q o . 'The Wick bound-

ary condition which allows for this transformation is a consequence of the

stability requirements on the bound system and a postulated behaviour at

large momenta of the wave function. In group theory terms the transform-

ation has an important consequence in that one can now use the orthogonal

set of harmonic functions appropriate to a Euclidean metric instead of the

finite-dimensional (non-unitary) representations of the corresponding
9Lorentz group. It is however to be emphasized that in our view the use of

this Wick ansatz is of no fundamental significance; one could either choose

to work with the Euclidean harmonics from the beginning and transform

back to the Lorentz metric in the Bethe-Salpeter propagator at the end, or

one could equally well set up ihe entire calculation within the Lorentz frame-

* These higher'symmetries emerge providing the ie term is dropped,which is possible after Wick rotation.
See Section 3., „ p; _



work, recognizing explicitly at each stage of the calculation analyticity

properties guaranteed by the stability condition and the appropriate bound-

edness. w e shall in the sequel, however, carry out the Wick rotation

whenever feasible and work within a Euclidean framework.

(A) Case p^= 0

From the evident O(5) symmetry of this limit

an expansion in 5-dimensional hyper spherical co-ordinates is indicated,

Explicit expressions for the relevant harmonics are given in the Appendix.

For each value of N , the equation (6) is satisfied only for a particular

eigenvalue A N . The order of degeneracy of this solution is the number

of independent YN which equals \ N {N + 1)(2N + 1).
4 6

Using the expansion (see eq. (A-7) in the Appendix)

(8)

we deduce that X^ - N (N + 1). (9)

(B) p ^ / 0

More generally we have only O(4) symmetry. Let pL/4mi =

and orient p along the 0 axis (rest-frame):

(10)

There is a degeneracy with respect to rotations in the 1235 subspace implying

that the solution is proportional to a characteristic 4-dimensional spherical

harmonic. We exploit the fact that these [4] harmonics are contained in
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[5] harmonies VN , by the formula

where = vj, ^ ^ ^ ) ,

Define the amplitude

Integrating (10) over the 4-dimensional subspace, and using (12), we get

an integral equation for this amplitude:

, (13)

We have suppressed the X , m dependence of 5 ^ above. Define the

function

which satisfies gh (1) = gK(~l) = ° f o r regular solutions. Eq. (13) may be
rewritten as

This integral equation can be recast into a differential form for g if we

notice that

satisfies the differential equation.
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Thus

X

Integrating w. r . t . C ,,.^ (2) and using the completeness property of the

C functions in the interval (-1,1) we finally obtain the differential equation

(15)
4

This equation was obtained by CUTKOSKY by a different (and perhaps more

cumbersome) method. The solutions are characterized by an additional

number N where N-fc^ 0 denotes the number of zeros of gK within the

interval (-1,1). Since Wick and Cutkosky have solved the equation in

various limits no further elaboration is needed. In the rest frame then,

apart from a normalization factor,

Since gN>v = (1 ~ zx)K C N_^ (2) in the limit £ -> 0 , it is easy to verify that

(j) (0 ,1T ) equals the 5-dimensional harmonic YNh^ (n ) when A takes the

appropriate value N (N + 1).

The level structure of the system can be described by using represent-

ations of non-compact groups.

(A) p^ = 0 (maximal binding)

Since to each level (N) is associated a degeneracy — N(N+1)(2N+1),

this corresponds to a component of a fully-symmetric t raceless tensor

<&\x ^ (yL, y t , . . . =1 , . . . 5), which provides an elegant alter-

native description of a general spherical harmonic. When arranged in a

tower it is easily seen that such symmetric tensors correspond to a single

irreducible representation of the non-compact group O(5,1) with the

maximal compact subgroup O(5).
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(B) As shown above, each O(5) level is split and labelled by two

quantum numbers n and HL (N = n+ K). It is easy to see that the levels

may now be arranged according to the following irreducible representations

of 0(4.1) .

K = 0 : ( 0 , 0 ) © ( i ! ) @ ( 1 , 1 ) © . . .

K = 1 : (1 , | ) © (1,1) © . . . etc.

K = 2 : (1,1) © . . . etc.

i . e . , the original p = 0 , O(5,1) representation splits as O(5,l) = £® O(4,1),

The O(4) levels in the notation above a re characterized by quantum numbers

of the groups U(2) x U(2)^O(4).

§4 SPINOR QUARKS

The relevant equation for mass- less singlet exchange is

{ Yo hermitian , Y anti-hermitian).

Let R represent little group transformations which leave p invariant

(p = Rp). In general we have

(is)

where S(R) acts on spin indices and O(R) is an orthogonal transformation

appropriate to the representations of the little group. We can always

write

and there is a special class of solutions to the equation where J\ ^ (p, q) is

scalar under the combined spin and co-ordinate transformations q —̂  Rq ,

p ->Rp = p , and Y(q) is a scalar harmonic of the little group of some part

icular dimensionality. There may be other classes of solutions which

we have not investigated. _g_



We exemplify these remarks with reference to the case p = 0 ,

when the little group is 0(3,1) or,after Wick rotation, O(4). For this

case the special class of solutions mentioned above consists of

V —2~ ' —2~ ' r e P r e s e n t a t i o n s J t n e functions X« are of the form«

2
s~7 etc., and 0 (0, q) can be written as

t (<

At this point it becomes convenient to pass to the V-matrix basis

(20)

which is the procedure followed by MANDELSTAM and KUMMER. The

equivalent form of eq. (17) is

(21)

where

(The detailed expression for D is given in the Appendix.)

Using the identity: 3* \i-/(%'<[T ] - - lpl ^ (ff %'

we end up with the set of simultaneous differential equations

(22)

S and V are coupled together; so are A and T , while P remains
12

disjoint (the GOLDSTEIN particle). We consider the various sectors
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in turn after passing to Euclidean space:

P - P sector

Since P(q) = P n (qL) Yhj^(q) we obtain simply

where

S - V sector

Here we must use the solutions

(23)

(24)

(25)

The properties of Y C1 , Y and other harmonics a re given in the

Appendix. The resulting equations a re

(26)

(27)

- 1 1 -



T-A sector

(28)

Introducing this expansion into (21) we arrive at

[11
Q.

D

-AT

( i )

(29)

(30)

<c (31)

Notice the close similarity with the S-V sector.

Finally we may remark that in the limit m —̂  0 , only Vx V^

and A-j_ A^ remain coupled and these equations reduce to the cases con-

sidered by MANDELSTAM . Since the equations of the P sector are
12

identical with those considered by GOLDSTEIN, it would be very

surprising if the S V A T solutions also do not possess a continuous A

spectrum.

For the case pc f 0 , the little group transformations are simply

pure rotations and we may only use the following expansion for ^(p*0 )
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where S , S1 , V t V . . . are functions of E , q z and q o , In the limit

E—> 0 (with the corresponding eigenvalue change) the functions should

merge into the previous 4-dimensional solutions.

§6 A SPINOR MODEL EXHIBITING O(5) SYMMETRY WITH PSEUDO-

SCALAR EXCHANGE

The discussion of §4 was framed entirely in terms of relative

momentum variables. However, in the limit p-» 0 it was found that

the equation almost possessed an O(5) symmetry in the sense that the S-V

sector equations closely resembled those in the A - T sector. This quasi-

symmetry can be made more evident if we use the r\ variables of §2 ,

when we have

[x- ivo] *0i) [A-

for a model where we consider pseudo-scalar meson exchange.

Write

(33)

where ^ = (

and ^ = ('Yo Xs , Â f-Y5 . A-V5 ) a re hermitian

Thus (r\ ,

As we have seen,the cases p = 0 are reproduced from the solutions of the

case p f 0 . We expect therefore that the solutions of (32) are related

to the solutions of the model equation

A ') for)
1 - V y(

(34)
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where we drop the iV^ term, and

Change to the basis

, rL
v K ,

In these terms,

(35)

We shall consider the solutions which transform as representations of the

pure rotation group and therefore use the harmonics below (see the Appendix

for definition and properties)

Algebraic relations among the coefficients which give the eigenvalues A

then follow easily:
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. V, f j . +• ^ - 0 , V i i - 0

* ( ^ + * ™A7^N\ (38)

= 0, N > 0 .
+2A i i i

The equation

has always two real positive roots so there a re always two vector states.

As U-* oo Xx-^-N^

for the corresponding eigenvalues.

When the symmetry breaking is switched on (for example p" j- 0)

these algebraic equations become coupled differential equations that must

be solved with appropriate boundary conditions.

§6 PARTICLE ASPECTS

We have so far concentrated on solving the bound state equation;

the amplitude f{pt q) or ffl fp, M ) is a function of external as well as

internal variables. The next problem is to decide how to define particle

wave functions, and for the spinor case to find cri teria for deciding how

many physical particles the amplitude ©5(P*Q) represents .

For the scalar case, the extraction of a particle wave-function

from f (p, h ) seems reasonably unique; define the wave-function

d n (i) (39)

The indices KH(VH give the internal symmetry characteristics. For the

spinor case one may likewise define the particle wave-function

-15-



KH) A (40)

There is however in this case the extra complication arising from redundant

components in the spinors. To see this,note that the structure of the B-S
13

equation resembles the BARGMANN-WIGNER equations. Writing the

equation in the form

(41)1

(f +

it is clear that a quantity like Vt^a - (jjL (p, q) YJ^ (q)j^ (which one may

reasonably call the orbital projection of the B-S amplitude) satisfies sub-

sidiary equations closely resembling (but more complicated than) those

arising from Bargmann-Wigner formalism. The extra complications

come from the terms on the right-hand side of (41). The first term

A \ -f1—-7-5; 1 on the right contributes a mass-correction; the other

relate S , T , P , A , V projections among each other. The situation is

analogous to the one encountered in field theory where, for example, for a

theory with non-conserved currents, -^f* f 0 and one has the problem of

deciding whether the scalar components of A , (with their indefinite metric

characteristics) make their appearance as physical particles. Our feeling

is that such components in both the field theory case as well as the B-S

equation do not make their appearance; we are however, unable to formulate

our arguments in a convincing fashion yet.
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APPENDIX

The propagator matrix

The spinor product D^f appearing on the 1. h. s. of eq. (21) can

be transformed into the Y-matrix basis when it reads

s

V

1

o

0 o

A
o v

_. _„ j _ _.. _

Notice that when either p a f l or q = 0 the equation takes on a block

diagonal form.

Five-dimensional tensor harmonics

We introduce four angles in the 5-dimensional Euclidean space

say

5 = sin X- cos

y = sin X sin "̂  cos 9

"z = sin%> sin f sin & sin Y

sin Y* sin,^ cosy

The tensor harmonics of the unit vector x are then defined by the formula
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with N - l > n - l ^ A . > | m I .

The "IS (Z) are normalized Gegenbauer polynomials:

(x+v + i) (x-^

The so-defined harmonics are orthogonal over the 5-dimensional unit

sphere

Finally we note the differential properties

(N-i)(tV+O y

= 0

14
and the general theorem

(A-7)

i
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Tensor harmonics are derivable from the above by differentiation

or multiplication with the unit vector X . We shall only require the

simplest ones:

vector

Y f ^ ) = yxKdL -xLaK ; y^u tensor.

These are also orthonormalized in the sense that

(A-9)

In the course of calculation given in §5, the following formulae

were used:

mnTi/ J

i r
f

(A-ll)

These may be verified by operating on each side of the relations with Xv

and c)̂ . . These formulae do not appear to be in standard references.1^

Four-dimensional tensor harmonics

The scalar harmonics are contained in the YNK ,(M and need be

discussed no further except to note the properties

-19-



t*) (A-12)

Thence one derives generalized harmonics

?, (X)

Y *

U)

y ** ~~ J-

(x;

(x)

which are orthonormal over the unit sphere

vector

tensor

(A-13)

(A-14)

The computation given in §4 of the text has required the following different-

ial properties:

(A-15)

D.

+ 1
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