GENERAL EIGENFUNCTION EXPANSIONS
AND GROUP REPRESENTATIONS

(Lecture Notes)

K. MAURIN

1966
PIAZZA OBERDAN
TRIESTE
GENERAL EIGENFUNCTION EXPANSIONS
AND GROUP REPRESENTATIONS

K. MAURIN*

(Notes of three lectures given at the ICTP 7-10 February 1966)

TRIESTE
February 1966

*University of Warsaw, Poland.
GENERAL EIGENFUNCTION EXPANSIONS
AND GROUP REPRESENTATIONS

In this paper I shall give some results concerning a general theory of
eigenfunction expansions for families of commuting self-adjoint oper-
ators in a separable Hilbert space H ($§2$). As was remarked (in a special
case) by Gelfand and Kostyuenko in the case of an arbitrary spectrum
the (generalized) eigenvectors are elements of Φ' - the dual of Φ,
where Φ is a dense linear subset of H equipped with such nuclear topo-
logy that the identical imbedding

$$i: \Phi \to H$$

is continuous.

Thus we have always to do with a triplet of

$$\Phi \subseteq H \subseteq \Phi'$$ (0.1)

(locally convex) vector spaces, each dense in the following one, but only
H is a Hilbert space. The most classical example of the triplet (0.1) is

$$\mathcal{D}(\mathbb{R}^n) \subseteq L^2(\mathbb{R}^n) \subseteq \mathcal{D}'(\mathbb{R}^n)$$ (0.2)

where $\mathcal{D}(\mathbb{R}^n)$ is the L. Schwartz space of infinitely differentiable
functions with compact supports and $\mathcal{D}'(\mathbb{R}^n)$ the space of all distribu-
tions on \mathbb{R}^n.

In § 1 we recall the fundamental notion of the Hilbert-Schmidt (H-S)
mapping, and give the definition of a nuclear space by means of H-S
mappings, which, as was shown by A. Pietsch,is equivalent to the
original (much more involved) one by Grothendieck. A proof of the nuclear-
ity of $\mathcal{D}(\mathbb{R}^n)$ - or more generally $\mathcal{D}(\mathcal{M}_n)$ - follows.
In § 3 it is shown how the fundamental theorem of § 2 can be applied to obtain a decomposition of a unitary representation of a locally compact (l.c.) group into irreducible (or factor) representations. The first step in this direction has been taken by Mautner and V. Neumann. In § 4 it is shown that the irreducible spaces $H(\lambda)$ are common generalized eigenspaces of some self-adjoint operators constructed in a natural way.

§ 1. HILBERT-SCHMIDT (H-S) MAPS. NUCLEARITY

All Hilbert spaces considered here are separable, i.e., they have a countable orthonormal basis.

Let H, K be Hilbert spaces with a scalar product $(\cdot | \cdot)$ and let $(e_j)_{j=1}^{\dim H}$ be an orthonormal basis of H. For any linear continuous mapping $A : H \to K$, the number $|A|^2 = \sum \|Ae_j\|^2$ is independent of the basis (e_j).

Definition 1. If $|A| < \infty$ then the map $A : L(H_1, H_2)$ is called an H-S map.

Lemma 1. The identical operator $I : L(H, H)$ is H-S if and only if the dimension of H: $\dim H$ is finite.

Proof: $|I|^2 = \sum \|e_j\|^2 \cdot \dim H$.

Let Ω be an open subset of \mathbb{R}^n or (more generally) a differentiable (separable) manifold of dimension n. $C_0^\infty(\Omega)$ is the set of all infinite differentiable functions on Ω with compact supports. Let Ω_j be a precompact open subset of Ω. $H^p = H^p(\Omega_j)$ is the Hilbert space of measurable (complex) functions on Ω with the scalar product

$$(f, h)_p = \sum_{\Omega_j} D^\alpha f D^\alpha h,$$

where $D^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

The derivations are understood in the sense of the theory of distributions.
Theorem 1. (cf. MAURIN [6])

1° If \(\mathcal{S}_j \) is a pre-compact domain of an \(n \)-dimensional differentiable manifold, and if \(m > n/2 \), \(\kappa > 0 \) then the canonical imbeddings

\[
H^m_0(\mathcal{S}_j) \to H^k_0(\mathcal{S}_j)
\]

are H-S.

2° If \(\mathcal{S}_j \) possesses a regular boundary then the imbeddings

\[
H^m_0(\mathcal{S}_j) \to H^k(\mathcal{S}_j)
\]

are H-S.

Corollary. Let \(\mathcal{S}_j \to \mathcal{S} \), i.e., \(\Omega_1 \subset \Omega_2 \subset \ldots \), be a sequence of pre-compact domains exhausting \(\mathcal{S} \) and let \(H^m_j := H^m(\mathcal{S}_j) \) (resp. \(H^m_0(\mathcal{S}_j) \)). Then to each \(m, j \in \mathbb{N} \) there exist such \(m', j' \in \mathbb{N} \) such that the imbedding

\[
H_j^{m'} \to H_j^m
\]

is of H-S type.

The spaces \(\mathcal{D}(\mathbb{R}) \), \(\mathcal{E}(\mathbb{R}) \), \(\mathcal{D}'(\mathbb{R}) \), \(\mathcal{E}'(\mathbb{R}) \), are defined in the following way:

Definition 2. \(\mathcal{E}(\mathbb{R}) \) is the set \(\mathcal{C}^\infty(\Omega) \) with (locally convex) topology defined by the norms \(\| \cdot \|_{m,j} \), \(m, j = 1, 2, \ldots \), where

\[
\| f \|_{m,j}^2 = \int_{\Omega_j} \sum_{|\alpha| \leq m} \left| D^\alpha f \right|^2,
\]

\(\Omega_j \to \mathcal{R} \).

We introduce now the notion of nuclearity.

Definition 3. A locally-convex vector space \(\mathcal{F} \) is nuclear if there exists an equivalent system of seminorms \(\| \cdot \|_\beta \), \(\beta \in \mathcal{B} \), such that:

1° For every \(\beta \in \mathcal{B} \) is the (normed) quotient space

\[
\mathcal{R}_\beta := \mathcal{F} / \mathcal{N}_\beta,
\]

where \(\mathcal{N}_\beta = \{ \phi \in \mathcal{F} : \| \phi \|_\beta = 0 \} \)

a prehilbert space.

-3-
For each \(\beta \in \mathcal{B} \) there exists such \(\alpha \in \mathcal{B} \) that the imbedding
\[
\mathcal{H}_\beta \rightarrow \mathcal{H}_\alpha
\] is H-S.

Proposition 1. A Hilbert space \(H \) is nuclear if and only if \(\dim H < \infty \).

Proof: The topology of \(H \) is given by one norm \(\| \cdot \| \) only. Hence \(N = \{0\} \) and \(\mathcal{H} = H \). In virtue of \(2^0 \) the identical imbedding \(H \rightarrow H \) is H-S. Thus Proposition 1 follows from Lemma 1.

Proposition 2. As was proved by Grothendieck, nuclearity is preserved by the most important operations on locally-convex vector spaces:

a) taking the quotient by a closed subspace \(\mathcal{N} \subset \mathcal{F} \) (i.e., if \(\mathcal{F} \) is nuclear) then \(\mathcal{F}/\mathcal{N} \) is nuclear too;

b) the completion \(\mathcal{F} \) of a nuclear \(\mathcal{F} \) is nuclear;

c) the strict inductive limit \(\mathcal{F} = \lim_{\rightarrow} \mathcal{F}_i \) of nuclear spaces \(\mathcal{F}_i \) is nuclear, i.e., \(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \), \(\mathcal{F} = \bigcup \mathcal{F}_i \), and if \(\mathcal{F}_m \subset \mathcal{F}_n \) then the topology induced on \(\mathcal{F}_m \) by the topology of \(\mathcal{F}_n \) is identical to that of \(\mathcal{F}_m \). The topology of \(\mathcal{F} \) is - by definition - the finest topology on \(\mathcal{F} \) such that for each \(i \) the imbedding \(\mathcal{F}_i \rightarrow \mathcal{F} \) is continuous;

d) the (topological) direct sum \(\bigoplus \mathcal{F}_i \) of nuclear spaces is nuclear.

Definition 4. \(\mathcal{D}(\mathcal{L}) \) is the open space \(C^\infty(\mathcal{L}) \) provided with the following topology: \(\mathcal{F}_j := \{ \varphi \in C^\infty(\mathcal{L}) : \text{the support of } \varphi \subset \mathcal{L}_j \} \), \(\mathcal{L}_j \not\supset \mathcal{L} \). \(\mathcal{F}_j \) has the (nuclear) topology of the space \(C(\mathcal{L}_j) \), \(\mathcal{L}_j \)-precompact. \(\mathcal{D}(\mathcal{L}) = \lim_{\rightarrow} \mathcal{F}_i \).

We can give now a simple proof of the following fundamental result of Grothendieck.

Theorem 2. (Grothendieck)

1° \(C(\mathcal{L}) \) is nuclear;

2° \(\mathcal{D}(\mathcal{L}) \) is nuclear.
Proof: 1° follows immediately from Definition 1 and the Corollary, 2° follows from 1° and Proposition 2c.

If \mathcal{F} is a locally-convex vector space (l.c.v.s.) then \mathcal{F}' denotes the dual space of \mathcal{F}, i.e., $\mathcal{F}' = \mathcal{L}(\mathcal{F}, \mathcal{C})$, i.e., the elements of \mathcal{F}' are linear continuous functionals on \mathcal{F}.

Definition 5. Elements of $\mathcal{D}'(\mathcal{R})$ and $\mathcal{C}'(\mathcal{R})$ are called distributions on Ω and distributions with compact supports in Ω respectively. It can be proved that \mathcal{D}' and \mathcal{C}' are nuclear.

$\S 2. \text{GENERAL EIGENFUNCTION EXPANSIONS}$

Let us recall rapidly the notion of a direct integral of Hilbert spaces. Let (Λ, \mathcal{C}) be a locally-compact (l.c.) separable measure space. For each $\lambda \in \Lambda$ there exists a Hilbert space $(\hat{H}(\lambda), (\cdot, \cdot)_\lambda)$. Let $k(\cdot)$ be a vector field on Λ, i.e., $k(\cdot)$ is a map: $\Lambda \ni \lambda \rightarrow k(\lambda) \in \hat{H}(\lambda)$.

A countable family of vector fields is called a fundamental family if:

1° all functions $\Lambda \ni \lambda \rightarrow (k_i(\lambda), k_j(\lambda))_\lambda \in \mathcal{C}$ are σ-measurable for all $i, j = 1, 2, \ldots$

2° for each $\lambda \in \Lambda$ the set $\{k_j(\lambda) : j = 1, 2, \ldots\}$ spans the space $\hat{H}(\lambda)$. A vector field $k(\cdot)$ is σ-measurable if each function $\lambda \rightarrow (k(\lambda), k_j(\lambda))_\lambda, j = 1, 2, \ldots$ is σ-measurable.

Definition 6. The direct integral \hat{H} of Hilbert spaces $\hat{H}(\lambda), \lambda \in (\Lambda, \sigma)$ is the Hilbert space of equivalence classes of σ-measurable vector fields $k(\cdot)$ for which

$$\int \|k(\cdot)\|^2 d\sigma < \infty.$$

The scalar product on \hat{H} is defined by

$$\langle u(\cdot), v(\cdot) \rangle := \int \langle u(\lambda), v(\lambda) \rangle_\lambda d\sigma.$$
\[H \] is denoted by \(\int \hat{H}(\lambda) d\sigma \).

Diagonal and Decomposable Operators

An operator field

\[\lambda \rightarrow A(\lambda) \in L(\hat{H}(\lambda)) \]

is measurable if all functions

\[\lambda \rightarrow (A(\lambda)h_j(\lambda) / h_i^* (\lambda)) \]

are \(\sigma \)-measurable where \((h_j(\cdot)) \) is the fundamental family. A measurable operator field \((A(\cdot)) \) is called a decomposable operator in the Hilbert space \(\hat{H} = \int \hat{H}(\lambda) d\sigma \).

The simplest decomposable operators are diagonal operators: if \(f \in L^\infty(\lambda, \sigma) \), i.e., if \(f \) is an essentially bounded \(\sigma \)-measurable function then

\[\lambda \rightarrow T_f(\lambda) := f(\lambda) I(\lambda) \]

where \(I(\lambda) \) is the identity in \(\hat{H}(\lambda) \) and is called diagonal operator. Of course, one could introduce diagonal operators

\[\lambda \rightarrow g(\lambda) I(\lambda) \]

with unbounded measurable \(g \), but since such operators are not bounded their domain is not the whole space.

\[\int \hat{H}(\lambda) d\sigma \]

If \(\mathcal{A} \) is a weakly closed algebra in \(L(\hat{H}) \) then \(\mathcal{A}' \) denotes the commutant of \(\mathcal{A} \). It is the set of all bounded operators in \(\hat{H} \) commuting with every operator in \(\mathcal{A} \). A weakly closed \(* \)-algebra in \(L(\hat{H}) \) is called a von Neumann \((v, N) \) algebra.

The following fundamental result due to von Neumann gives a nice characterization of algebras of diagonal and decomposable operators.

Lemma 2. (v. Neumann)

1° The algebra \(\mathcal{D} \) of diagonal operators is a commutative \(v, N \) algebra.

2° The map \(L^\infty(\sigma') \ni f \rightarrow T_f \in \mathcal{D} \) is a topological isomorphism of the \(* \)-algebra \(L^\infty(\sigma) \) onto \(\mathcal{D} \) (both algebras are provided with weak topologies):

\[T_f g^* = T_f T_g^* \]

etc.

3° The commutant \(\mathcal{D}' \) of the algebra \(\mathcal{D} \) of diagonal operators is the \(v, N \) algebra \(\mathcal{R} \) of (all) decomposable operators: \(\mathcal{D}' = \mathcal{R} \) and the commutant \(\mathcal{R}' \) of \(\mathcal{R} \) is the algebra \(\mathcal{D} \):

\[\mathcal{R}' = \mathcal{D}, \quad \mathcal{D}' = \mathcal{R} \]
Thus an operator is decomposable if and only if it is commuting with all diagonal operators.

In the spectral theory of unbounded self-adjoint (s.a.) operators the notion of strong commutativity is of paramount importance.

Definition 7. Two s.a. operators A_1, A_2 are strongly commuting if their spectral families $\{ E_k(\lambda) \}$, $\kappa = 1, 2$ are commuting.

This is equivalent to the commutativity of Cayley transforms of A_1 and A_2: $(A_k + iI)(A_k - iI)^{-1}$, $\kappa = 1, 2$.

We can now formulate the principal result of this section.

Theorem 3. (Nuclear Spectral Theorem cf MAURIN [2, 6])

Let A_β, $\lambda \in B$ be a denumerable family of strongly commuting s.a. operators having a common invariant domain D dense in H:

1. there exists such a nuclear space that $\Phi \subset H \subset \Phi'$ is a Gelfand triplet;

2. each A_β maps Φ continuously into Φ': $A_\beta : \Phi \rightarrow \Phi'$;

3. there exists a direct integral $H = \int_\lambda H(\lambda) d\nu$ and such a Hilbert isomorphism $\mathcal{F} : H \rightarrow H$ that for σ-almost all λ, $H(\lambda) \subset \Phi'$ and $H(\lambda)$ are common generalized eigenspaces of all A_β: if $\phi (\lambda) \in H(\lambda)$, then

$$<A_\beta \phi, e(\lambda)> = \hat{A}_\beta (\lambda) <\phi, e(\lambda)> \quad (2.1)$$

identically for $\phi \in \Phi$, where $\{ \hat{A}_\beta (\lambda) : \lambda \in \Lambda \}$ is the spectrum of A_β.

(2.1) can be written shorter $A'_\beta e(\lambda) = \hat{A}_\beta (\lambda) e(\lambda)$, where A'_β is the natural extension of A_β given by the identity

$$<A_\beta \phi, \psi'> = <\phi, A'_\beta \psi'> \quad (2.1')$$
or plainly $A'_1 \geq A'_2 = A'_3$.

Taking in each $H(\lambda)$ the orthonormal basis $e_k(\lambda), \ k = 1, \ldots, \dim H(\lambda)$, we obtain the generalized Fourier-Plancherel equation

$$
(\phi, \psi) = \int \sum_{k=1}^{\dim H(\lambda)} <\phi, e_k(\lambda)> <\psi, e_k(\lambda)> d\sigma(\lambda), \quad \phi, \psi \in \mathcal{F}.
$$

4° the isomorphism $\mathcal{F}: H \rightarrow \hat{H}$ is given by

$$
H \ni \phi \mapsto (\phi(\lambda)) = (\hat{\phi}(\lambda)) \in \hat{H},
$$

where

$$
\hat{\phi}(\lambda) = \sum_{k=1}^{\dim H(\lambda)} <\phi, e_k(\lambda)> e_k(\lambda).
$$

5° the spectral synthesis of $\phi \in \mathcal{F}$ is given by

$$
\phi = \int \hat{\phi}(\lambda) d\sigma, \quad (2.4)
$$

where $\hat{\phi}$ is given by (2.3)

In view of the applications to the theory of unitary group representations the following corollary is of great importance (cf § 3.). We can consider \hat{H} as a subspace of $\hat{\mathcal{F}}$ so we have the following:

Corollary. Let \mathcal{U} be such a unitary decomposable operator in $\hat{H} \subset \hat{\mathcal{F}}$ that $\mathcal{U}, \mathcal{U}^*: \hat{\mathcal{F}} \rightarrow \hat{\mathcal{F}}$ are continuous (cf Remark 2° below); and let

$$
\tilde{\mathcal{U}} := (\mathcal{U}^*)' \quad \text{be the natural extension of } \mathcal{U} \quad \text{to } \hat{\mathcal{F}} \text{ (precisely, } \tilde{\mathcal{U}} := (\mathcal{U}^* / \mathcal{F})' \text{) and let } \mathcal{U}(\lambda) := \tilde{\mathcal{U}} | H(\lambda),
$$

then

$$
\mathcal{U} = \int \mathcal{U}(\lambda) d\sigma.
$$

(This integral is not a symbolic way of writing a decomposable operator but a genuine strong integral).
Remarks.

1°: The isomorphism \(\mathcal{F} \) diagonalizes simultaneously all operators \(A_\lambda \), i.e.

\[
(\mathcal{F} A_\lambda \mathcal{F}^{-1})(\lambda) = \hat{A}_\lambda(\lambda) \hat{I}(\lambda), \quad \lambda \in \Lambda
\]

and is called the \((\hat{A}_\lambda)\)-Fourier transform. We obtain the classical Fourier transformation taking \(H = L^2(\mathbb{R}^n), A_k = -i \frac{\partial}{\partial x_k}, \quad \phi = \mathcal{D}(\mathbb{R}^n) \) (on \(\mathcal{S}(\mathbb{R}^n) \)).

Then \(\Lambda = \mathbb{R}^n \cong \mathbb{R}^n \), and \(e(\lambda) = e(\lambda_j) \)

where \(e(\lambda, x) = \exp(-i(\lambda_1 x_1 + \ldots + \lambda_n x_n)) \), \(\lambda = (\lambda_1, \ldots, \lambda_n) \), \(x = (x_1, \ldots, x_n) \).

2°: von Neumann proved "only" that to every abelian \(* \rightarrow v. N.-\)algebra there exists an isomorphism \(\mathcal{F} : H \rightarrow \hat{H} \) diagonalizing simultaneously all operators \(A_\lambda \in \mathcal{A} \), i.e., for which \((\ast)\) is satisfied for \(\sigma \)-almost all \(\lambda \in \Lambda \). In this way we can identify \(\mathcal{A} \) with the algebra \(\mathcal{H} \) of diagonal operators and hence the commutant \(\mathcal{H}' \) of \(\mathcal{A} \) with the algebra of decomposable operators.

§ 3. UNITARY REPRESENTATIONS OF LOCALLY-COMPACT GROUPS

Let \(G \) be a separable l.c. unimodular group, i.e., a group with a bi-invariant Haar measure. On every l.c. group one can introduce nuclear function spaces \(\mathcal{E}(G), \mathcal{D}(G) \) respectively which in the case of a Lie group \(G \) are simply the (infinitely) differentiable functions and regular functions with compact supports respectively (See Appendix). The dual spaces \(\mathcal{D}'(G) \) resp. \(\mathcal{E}'(G) \) are called spaces of distributions resp. distributions with compact supports in \(G \). Clearly we have inclusions

\[
\mathcal{D}(G) \subset L^2(G) \subset \mathcal{D}(G), \quad \mathcal{D}(G) \subset \mathcal{E}(G) \subset \mathcal{D}'(G).
\]

One can define in the usual way the convolution of distributions

\[
T \ast S, \quad T \in \mathcal{D}', \quad S \in \mathcal{E}.
\]

Since in the case of a Lie group the invariant differential operators
can be given by distributions with support in \(\mathfrak{e} \):

\[T \varphi = T \ast \varphi, \quad T \in \mathfrak{E}'. \]

In that way, the invariant enveloping algebra of any l.c. group \(\mathcal{G} \) can be defined as an algebra \(\mathfrak{E}'_e \) of distributions with carriers in \(\{ e \} \), the multiplication in \(\mathfrak{E}'_e \) being the convolution. We have at our disposal a much bigger algebra: the whole space \(\mathfrak{E}'(\mathcal{G}) \). The unit in \(\mathfrak{E}' \) is the Dirac measure \(\delta_e \). This algebra is an involution algebra.

Definition. Let \(\varphi(g) := \varphi(g^r) \), then for each \(T \in \mathcal{D}'(\mathcal{G}) \), \(T^+ \in \mathcal{D}(\mathcal{G}) \) is defined by

\[\langle \varphi, T^+ \rangle = \langle \overline{\varphi^+}, T \rangle \quad (3.1) \]

Let \(\mathcal{U} = (\mathcal{U}, \mathcal{H}) \) be a unitary representation of a l.c. group \(\mathcal{G} : \mathcal{G} \ni g \rightarrow \mathcal{U}_g \in \mathcal{L}(\mathcal{H}) \). Our aim is to construct to each unitary representation \((\mathcal{U}, \mathcal{H})\) a Gel'fand triplet \(\mathcal{F} \subset \mathcal{H} \subset \mathcal{F}' \), and a set \((\mathcal{U}(\mathcal{T}))\) of operators in \(\mathcal{H} \) such that

1° \(\mathcal{U}_g \) acts continuously in \(\mathcal{F} : \mathcal{U}_g : \mathcal{F} \rightarrow \mathcal{F} \);

2° the operators \(\mathcal{U}(\mathcal{T}) \) are mapping continuously \(\mathcal{F} \) into itself

\[\mathcal{U}(\mathcal{T}) : \mathcal{F} \rightarrow \mathcal{F} ; \]

3° the operators \(\mathcal{U}(\mathcal{T}) \) are symmetric: \(\mathcal{U}(\mathcal{T}) \subset \mathcal{U}(\mathcal{T})^\ast \) and their closures are self-adjoint;

4° \(\mathcal{U}(\mathcal{T}_k) \) are strongly commuting, \(k = 1, 2 \);

5° \(\mathcal{U}(\mathcal{T}) \) are commuting with the operators \(\mathcal{U}_g, g \in \mathcal{G} \).

Applying our fundamental Theorem 3 we obtain thus a decomposition of the representation \((\mathcal{U}, \mathcal{H})\) into a direct integral of irreducible representations \(\int (\mathcal{U}(\lambda), \mathcal{H}(\lambda)) d\lambda \) and the irreducible spaces \(\mathcal{H}(\lambda) \) are common.
(generalized) eigenspaces of the operators $U(T)$.

The Gårding space H_G of the representation (U, H) is defined as the set of linear combinations of vectors $U(\varphi_i)\mathbf{h}_k = \int_G \varphi_i(g) U_g h_k dg$, $\varphi_i \in \mathcal{D}(G)$, $\mathbf{h}_k \in H$. Plainly H_G is dense in H.

We can now transplant the representation U to a *-representation of the algebra $\mathcal{B}'(G)$, whence to the enveloping Lie algebra \mathcal{G}' of the group G in the following way.

Theorem 4. (cf MAURIN [4])

For each $T \in \mathcal{B}'(G)$ and $\alpha \in H_G$

$$U(T)\alpha := \int U_\alpha \alpha^T(dg)$$

(3.2)

or, more precisely, for every $\ell \in H_G^\prime$, $\langle U(T)\alpha, \ell \rangle := \int \langle U_\alpha \alpha^T, \ell \rangle dg$.

Then 1° $\mathcal{B}' \to U(T)$ is a *-representation of the algebra $\mathcal{B}'(G)$ by operators in H_G: $U(T^S)a = U(T)U(S)a$, $a \in H_G$; $U(T^*) = U(T)^*$.

Thus for symmetric operators $T = T^\prime$ the operators are symmetric.

2° The representation $(U(T))$ is an extension of the representation (U, H) since $U(\mathcal{G}) = U_G$.

Let $Z(\mathcal{G})$ denote the centre of an algebra \mathcal{A}

Theorem 5. The construction of a Gel'fand triplet adapted to (U, H).

Let $H_0 \subseteq H$ be any Gel'fand pair we can provide the set of linear combinations $\Phi := \sum a_i U_\alpha \mathbf{h}_i$, $\varphi_i \in \mathcal{D}(G)$, $\mathbf{h}_i \in H$

with such nuclear topology that $\Phi \subseteq H \subseteq \bar{\Phi}'$ is such a Gel'fand triplet with all desired properties 1° - 5°.

Proof: Let us prove, for example, that...
\(U_g, \mathcal{U}(T) : \Phi \rightarrow \Phi : \)

\(\mathcal{U}(T) \Sigma \alpha_i^j \mathcal{U}(\varphi^i) \mathcal{H}_i = \sum \alpha_i^j \mathcal{U}(T) \mathcal{U}(\varphi^i) \mathcal{H}_i = \sum \alpha_i \mathcal{U}(T \times \varphi^i) \mathcal{H}_i ; \)

taking \(T = \delta_g \) we obtain by virtue of Theorem 4.

\(U_g \sum \alpha_i \mathcal{U}(\varphi^i) \mathcal{H}_i = \mathcal{U}(\delta_g) \sum \alpha_i \mathcal{U}(\varphi^i) \mathcal{H}_i \in \Phi . \)

From the continuity of the maps \(\mathcal{D} \ni \varphi \rightarrow T \times \varphi \in \mathcal{D} \) follows the continuity of the operators \(\mathcal{U}(T) : \Phi \rightarrow \Phi . \)

In order to obtain a decomposition of \((\mathcal{U}, \mathcal{H}) \) into a direct integral of irreducible representations \(\int_G (\mathcal{U}(\lambda), \mathcal{H}(\lambda)) d\sigma \) we take any maximal abelian algebra in \(\mathcal{U} \) - the commutant of the v. N. algebra generated by the operators \(U_g, g \in G \), which contains all spectral families of \(\mathcal{U}(T), T = T^t \in \mathcal{Z}(\mathcal{E}_x) \) or \(T \in \mathcal{Z}(\mathcal{E}(G)) \).

Then the irreducible spaces \(\mathcal{H}(\lambda) \in \Phi ' \) can be considered as common generalized eigenspaces of the operators \(\mathcal{U}(T) \).

The most important models of unitary representations are provided by shift-operators on a homogeneous space \(X = G/\mathcal{H} \) \((U_g f)(x) : = f(gx) \) (where \(f \) are functions on the space \(X \)). If we take an invariant measure \(\mu \) on \(X \), we take \(\mathcal{H} = L^2(X, \mu) \), our construction leads to distributions on the space \(X : \Phi ' \ni \mathcal{D}'(X) \). The operators \(\mathcal{U}(T), T \in \mathcal{E}_x \) are then invariant "differential" operators (they are differential operators in case of differentiable homogeneous space \(X \) and the irreducible spaces \(\mathcal{H}(\lambda) \) are eigenspaces of the "differential operators" \(\mathcal{U}(T) \). We want to stress once more that our whole theory does not suppose either the differentiability or the compactness of the group. If \(G \) is compact and we take for \(T \in \mathcal{Z}(\mathcal{E}(G)) \) a function, we obtain integral convolution operators from the theory of Weyl and Peter.

ACKNOWLEDGMENTS

This paper contains the material of three lectures delivered by the author at the International Centre for Theoretical Physics, Trieste (7-10 February 1966). He would like to thank Professors Abdus Salam and Paolo Budini and the IAEA for the hospitality extended to him at the ICTP.
APPENDIX

Distributions on l.c. groups

1. The spaces $\mathcal{D}(G)$, $\mathcal{F}(G)$, $\mathcal{E}(G)$, $\mathcal{F}^0(G)$. Let G be a separable l.c. group. We define here only the distribution spaces for the most important limit cases: a) G-connected, b) G-discrete.

a) Let G be a connected separable group. A famous theorem of Yamabe asserts that to each neighbourhood \mathcal{O}_k of the neutral element e of G there exists such a (compact) normal subgroup $n_k \subset G$ that $G_k := G/n_k$ is a Lie group. We know (cf §1) that the spaces $\mathcal{D}(G_k)$ are nuclear. Taking $n_k \supset n_k$ we can identify $\mathcal{D}(G_k)$ with a subspace $\mathcal{D}(G_k^0)$. Identifying $\mathcal{D}(G_k)$ with $\mathcal{D}(G_k^0)$ - a space of continuous functions on G which are constant on such left coset G / n_k) we obtain an increasing sequence of nuclear spaces $\mathcal{D}(G) = \lim_{\rightarrow} \mathcal{D}(G_k)$. Let $\mathcal{D}(G) = \mathcal{D}(G) / n_k$. Then $\mathcal{D}(G)$ (as a strict inductive limit of nuclear spaces) is nuclear (cf §1).

b) G is discrete. Let $K_j \uparrow G$ be an increasing sequence of compact subsets of G exhausting G. Since the sets K_j are finite the spaces $\mathcal{D}(K_j)$ are of finite dimension and hence they are nuclear. \mathcal{D} is now defined as a strict inductive limit of $\mathcal{D}(K_j)$: $\mathcal{D}(G) = \lim_{\rightarrow} \mathcal{D}(K_j)$.

2. Nuclear topology on \mathcal{D} can be introduced in the following way.
Let $H_o \subset H$ be a Gel'fand pair, whence the (topological) product $\mathcal{D}(G) \times H_o$ is nuclear. Consider the mapping $T : \mathcal{D}(G) \times H_o \rightarrow \mathcal{E}(G) \times H_o$ defined by

$$T(\varphi, h_o) = U(\varphi) h_o \in \mathcal{E}(G) \times H.$$

Let N be the kernel of $T : N = \mathcal{T}^{-1}(0)$. Then T induces a linear isomorphism $[T]$ of $(\mathcal{D}(G) \times H_o) / N$ onto \mathcal{D}. Since N is closed, the space $(\mathcal{D}(G) \times H_o) / N$ is nuclear (Proposition 2a) carrying by $[T]$ that nuclear topology on \mathcal{D} - the image of $[T]$ - we obtain the desired nuclear space \mathcal{D}.

Let $r_k : G \rightarrow G / n_k = G_k$ where $r_k(\varphi) = \varphi n_k$, then $r_k^* : C(G_k) \rightarrow C(G)$ is given by $r_k^* : f \rightarrow f o r_k \in C(G)$. Let $\mathcal{D}(G_k) = \mathcal{D}(G) / n_k$. Then $\mathcal{D}(G)$ is a nuclear space (cf §1).
BIBLIOGRAPHY AND REFERENCES

A. Books

All proofs of the theorems mentioned can be found in the author's monograph: "General Eigenfunction Expansions and Unitary Representations of Topological Groups", Warsaw (Monografie Matematyczne), in the Press.

Von Neumann and Mautner Theorems are presented in monographs of J. Dixmier (Gauthier-Villars, Paris, 1957 and 1964) and Naimark "Normed Rings" (Noordhof, Groeningen, 1964).

B. Papers

