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ABSTRACT

Infinite-dimensional unitary representations of the non-com-

pact group U(6, 6) are employed to classify elementary particles and,

following ideas related to those of FronsdaLare used to construct re-

lativistic S-matrix elements. Like the previously-treated relativistic

theories where finite-dimensional representations of U(6, 6) were used,

a particular S-matrix element shows no symmetry higher than that of

the appropriate hybrid subgroup.

The overall U(6,6) symmetry may give new relations between

form factors for different processes but will not, in general, give any-

thing beyond the results of the previous formulations for the scattering

processes. The unitarity of the S-matrix is compatible with the sub-

group hierarchy, provided that an infinity of multiplets for elementary

particles exists and provided that all such multiplets possess the same

mass. The crucial point of our formulation is that if mass differences

are introduced, these affect not the relativistic invariance but the uni-

tarity of the S-matrix.
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A RELATIVISTIC U(6, 6) THEORY

§1 - INTRODUCTION

In a series of earlier papers , it was suggested that elementary

particles may be classified as multiplets of a rest symmetry group

U(6)xU(6). It was shown that moving multiplets of momentum p

could be covariantly represented by using the finite-dimensional

representations of a larger group U(6, 6) for construction of a (covariant)

algebra of the structure U(6) x U(6) L . This construction procedure
2

involved a covariant projection method from the larger group U(6, 6)

based on Bargmann-Wigner equations. The problem of coupling of

U{6) x U(6) |p multiplets could then be reduced to the comparatively

simpler problem of coupling of U(6, 6) representations. Unfortunately,

since the projection procedure (the Bargmann-Wigner relation) was

not U{6, 6) covariant , the overall symmetry of the resulting S-matrix

was considerably smaller than the symmetry started with. It was in

fact shown by HARARI and LIPKIN 3 and DASHEN and GELL-MANN4

that the maximal symmetry one might expect for S-matrix elements

in such a theory could be classified in the following hierarchy:

(1) U(6) x U(6) | for one-momentum processes;

(2) Uw(6)|p p for two independent momenta;
1 2

(3) U(3) x U(3) | for three independent momenta;

and U(3) for 4 or more momenta. It was also shown by a number

of authors (for references see the review article in the Trieste Seminar
2

Volume ) that the unitarity equation for the S-matrix

would in general be compatible with the maximal symmetry specified
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above, provided the intermediate states in the sum on the right of (1)

themselves were restricted so as to belong to the relevant subgroup

in the hierarchy.

Subsequent to these developments, a suggestion was made that to

obviate some of the problems mentioned above, one might employ

infinite-dimensional representations of the group * U(6, 6) for clas-

sifying particles. One would then start with the assumption that

there are in nature an infinite number of U(6) x U(6) multiplets, all

of the sarne mass in the exact symmetry limit. In a given represent-

ation of U(6, 6), these multiplets would be grouped together constituting

as it were different "rungs" of a given U(6, 6) "tower". Each such

tower would carry in addition to the labels m characterizing

individual "rungs" also a momentum parameter p . A tower of

momentum p would be carried to one of momentum p' by Lorentz

transformations with each " rung " being carried to essentially the
7

same rung in the new tower, .The non-compact transformations

contained in U(6, 6) would however induce transitions between distinct

"rungs".

In the present paper we show that one can indeed consistently

start with such towers, and that using these one can construct S-matrix

theories where both symmetry and unitarity are fully compatible.

We find to our surprise however that the resulting S-matrix elements

share with the earlier theory the feature that the overall invariance

of the S-matrix for the coupling of given "rungs" is again governed

by the same hierarchy of subgroups U(6) x U(6) lp > Uw(6)|p p

U(3) x U(3)L and U(3) for one, two, three or four momentum

processes. The starting "towe.r-symmetry" U(6, 6) itself appears to

play no experimentally accessible role in four-particle scattering

amplitudes. Its major predictive value seems to lie (1) in the pre-

diction of new relations connecting vertex function coupling constants
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of one set of rungs to the coupling of other sets; . (2) in the possibility

of providing a more powerful and universal mass formulae and (3) in

assuring unitarity in the limit of there existing an infinity of " rungs"

in the elementary particle spectrum - all with the same mass.

In §2, we give the formalism and establish its consistency.

The chief result of the paper is the formula (2,13) and the rather

transparent expression it provides for the kinematic momentum-

dependent factors in the theory. In §3 and §4 we exploit some well-

known techniques of FEYNMAN's operator calculus, developing

further the work of Ref. 6, to evaluate these kinematic factors for the

case of 3-meson coupling. We have not yet been able to find a suit-

able U{6, 6) representation for baryons and thus the question whether
1 2

the present theory reproduces the results of the earlier papers *

and in particular if it relates the electric and magnetic form factors

for the proton in the desired manner - remains unanswered. We in*

tend to turn to this problem in subsequent work.

We believe the theory presented here has close similarities to

the recent work of C. FRONSDAL and W. RUHL , though it is not

exactly easy to trace the relationship of the ideas, or the techniques.

To these authors and to Professor M. Gell-Mann, who has been

working on related lines, we offer our appreciation for stimulating

discussions. •

§2 - GENERAL FORMULATION

Suppose that we are given in addition to the generators J,,, , R

of space-time transformations a set of generators, F a , of some in-

ternal symmetry, G , Suppose, moreover, that the F" transform

covariantly (and non-trivially) under the space-time group :

( M )

f

t PP , F"J = o . (2.2)
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If G is a spin-containing symmetry then at least some of the C$

will be non-vanishing and the relation (2,1) implies that the gen-

erators F" must include the generators of SL(2,c). This means

that G must be a non-compact symmetry. Given these properties

it is possible to set up a covariant theory with higher symmetry.

In general terms the procedure is very straightforward. After

the fashion of Wigner one specifies a family of Lorentz boosts, Lp ,

which serve to carry a fixed 4-vector p into p ,

Corresponding to Lp there is a unitary operator Uj (Lp) - made

with the J - which acts upon the physical states. A complete set

of physical states may be generated formally by applying the Uj (Lp)

to a set of rest states which we denote by | f>, m >. The label, m ,

ranges over the basis of a unitary representation of the internal sym-

metry group G. These representations are of course infinite dimen-

sional.

Corresponding to each rest state \p, m> there is a continuum

of boosted states I p, m> defined by the relation

<2-4>

Note that the index m is unaffected.

Clearly, from (3)

and, by virtue of assumption (2, l)(expressed for finite Lorentz trans

formations)
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one finds that the matrix elements of the F a between boosted and

unboosted states possess a simple linear relationship:

In the sequel, whenever the p-dependence is not explicitly shown in

<m' t Fa I m> we shall always mean the matrix element <jSm' I F a I f5m>.

Now, as is well known, if the F^'g are generators of (an SL(2, c)-

containing) non-compact symmetry G (e, g. U(6, 6))# the unitary

representations of G must be infinite dimensional. An irreducible

representation of G consists of a tower, each rung of the tower cor-

responding to an irreducible representation of the maximal compact

subgroup (e. g. U(6) x U(6)). The labels m for each rung characterize

these U{6) x U{6) representations. The U{6) x U(6) generators produce

a linear mixing of states at each rung while the remaining generators

make transitions between rungs m and m1. We shall on occasion

refer to U(6, 6) as the Tower Symmetry and U(6) x U(6) as the Rung

Symmetry .

Each tower carries a momentum label p, and the boosts

Uj (Lp) carry a tower at rest to a tower with momentum p , each

rung of the rest-tower being carried to the corresponding rung of the

moving tower. As one may expect, the operation of the generators

Fa of U(6, 6) on the moving tower is p-dependent and is specified in

(2,6). Note however, that if we write Fa(p) = U(Lp) F" U'^Lp) , we

have the transparent relation:

-5 -



The behaviour of the towers under the space-time group is

perfectly straightforward. Explicitly, and following Wigner1 s clas

sical method closely:

U,(A)

where R denotes an ordinary little group rotation - one which leaves

'p invariant -

' T

I lAj, «')<»'

(2,8)

Since R is a compact rotation, one Can always bring the infinite matrix

<m' I R I m> into block-diagonal form: each block being finite dimen-

sional. With the space-time transformations therefore we move from

a given rung of a tower of momentum p to the corresponding rung of

the tower with momentum p' =Ap , the indices m being shuffled by

an ordinary rotation R.

As an aid in the discussion of coupling problems it is useful to

have an alternative set of basis vectors for the physical states. These
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we now define. Since G contains the homogeneous Lorentz group we

have at our disposal the unitary matrices <m' I A lm> and, in part-

icular, <m' I Lpl m>. Let us use these to define a new orthonormal

These states have very simple transformation properties, namely

(2,10)

The new states I p, irC> mix up the rungs of the Wigner set, I p, m>

through the operation of the matrix <m' I Lp I m> and therefore are

rather difficult to interpret physically.

In the basis (2, 9) the trilinear invariants (if any) would take the

form:

T -
(2,H)

where the numbers (ir^ir^n^) are coupling coefficients appropriate

to the tower symmetry, G . This may be expressed in the less

cumbersome form:

MHO (•,k«,)
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where F(p|, p | , p|) ia an unknown amplitude function.

The formulae (2,11) and (2,12), which follow directly from (2,10),

may be translated back into the original basis yielding

, (2,13)

Thus, we have the relative p-dependence of an infinite set of form

factors made explicit in terms of the kinematic factors <m' I L I m>

and, moreover, as we shall show, this form is suited to practical

calculations.

The expression (2,13) which relates all the vertex parts to a

single unknown function (or at least to a limited number of them) is

the strongest result that can be expected from the relativistic symmetry

theory. When it comes to 4-point functions it will generally be found

that the number of unknown functions, F , is infinite. This is

because the product of two irreducible unitary representations of a

non-compact group G in general leads to an infinite sum or integral

of irreducible representations. . For the 4-point function one expects

therefore, that the number of tower symmetry factors (m-^ rr^ ' nig m4)

is infinite, so that a manifestation of the tower symmetry would be

difficult to pin down. The situation is different for level symmetries

however. It is important to emphasize that one of the principal

results of previous work towards the construction of relativistic sym-

metry theories, namely, the emergence of a hierarchy of hybrid,

p-dependent, compact subgroups is again discovered here. These

special symmetries which heretofore were suspect because of unitarity

considerations, are now founded upon a manifestly unitary theory.
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The hybrid symmetry groups G (px, p2 , . . . ) are defined as

the compact subgroups of G which commute with the boosts

Lip , Lp , . . . . The action of these transformations on the boosted

states will evidently be the same as upon rest states,

t 5j (2,14)

where <m' I G (p) I m> = <pm' I G (p) I p*m>.

The summation over m1 in (2,14) is a finite one since G (p) must

be contained in the maximal compact subgroup, by reference to which

the rungs were labelled.

To illustrate, if one picks out from G those compact trans-

formations, G (Pj.Pg ^Pg.)'; which commute with Lp , Lp2 and Lj?3 ,

then, for the vertex (2,13),

which shows that G is a symmetry of the matrix element <p1m1l

p2m2 p3m3>. Similar considerations apply to matrix elements

with any number of momenta. If G = U(6, 6) then the hierarchy

reads

U(6) x U(6) for 2-point functions (rung symmetry)

U(6) for 3-point functions (collinear symmetry)

U(3) x U(3) for 4-point functions (co-planar symmetry)

and U{3) for 5-point or higher functions.
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The price for having made these symmetries compatible with unitarity

is of course the infinite numbers of particles which must fill all the

higher rungs of a U(6, 6) tower. The infinity is easily seen to be

necessary if one allows for the inclusion in the intermediate states

of the unitarity relations of particles with arbitrary momenta because,

if q f p, . . . then

where the summation generally extends over all the levels.

Further, all of these particles must possess the same mass if

the tower symmetry - and with it the unitarity of the S-matrix - is to

survive. A mass-breaking immediately produces an incompatibility

of the hierarchy of symmetry groups above with the unitarity condition

Im T = T p T t

except in the situation that only such intermediate states are allowed

in the sum on the right which themselves possess the symmetry of
12

the hierarchy. Since we expect from physical evidence that the

mass differences between the rungs of the towers are quite large,

there is little hope of being able to define a "mean-mass" for a given

tower which could realistically approximate to the different " rung

masses". This may therefore present a serious difficulty in giving

credence to the results of this theory.

Summarizing: Let us assume the existence of an infinite

number of multiplets, constituting the rungs of a tower of non-

compact symmetry, and assume that all such multiplets possess the

same mean mass. Provided that there is a unique coupling of three

such towers, the over-all tower symmetry ensures that there is one

scalar form factor sf (p^, p | , p|). It also specifies unambiguously
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the relationships between the coefficients (nijl m2m3). For the

coupling of the rungs themselves an SUW(6) symmetry exists, with

unitarity of the theory automatically guaranteed. For the 4-point

function, one expects in general, an infinite number of amplitudes

f (s,t) so that the tower-symmetry is unlikely to give meaningful

relationships between scatterings of different types of (rung) multi-

plets. However, the co-planar symmetry for specified rungs

scattering from each other will survive.

It is instructive to compare the present scheme with an earlier

one which employed finite-dimensional non-unitary representations of

U(6, 6). Once it is accepted that realistic theories should avoid

infinite degeneracies then there exists a good deal of common ground

between the two approaches. If the infinite-dimensional unitary

representations are used then it is necessary to lift their mass

degeneracy so that only a finite number of rungs can contribute in

any unitarity calculation. That is to say, the imposition of a

realistic unitarity condition serves to violate the symmetry. On

the other hand, if finite-dimensional non-unitary representations are

employed, then, in order to avoid difficulty with the metric it is

necessary to impose conditions (the Bargmann-Wigner equations)

which project out just one U(6) x U(6) rung. These conditions violate

the U(6, 6) symmetry. Both approaches lead to the same hierarchy

of hybrid subgroups for the 2-, 3- and 4-point functions (prior to the

imposition of the realistic unitarity conditions). It may be that for

the 3-point functions the present method will be able to make stronger

predictions - i. e., reduce everything to one unknown amplitude - but

for the 4-point and higher functions there seems to be nothing to

choose between them.
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§3 - COUPLING OP THREE TOWERS; THE COEFFICIENTS (m11 m2m3)

For illustration we construct the invariant coupling between

three meson-like Feynman towers (i. e. degenerate discrete represent-

ations of U(6, 6)). This is not a particularly realistic case since, as

will be seen, one of these representations must be different from the

other two. That is, the mesons would have to be distributed over

at least two distinct representations. The virtue of this example

lies, however, in its simplicity, and it illustrates the calculational

techniques that we intend to employ in future computations.

We begin with the construction of some discrete representations.

Let us define the 12-component U(6, 6) spinors

) J) J , , f r i * 7 , . . . , I * ( 3 , 1 )

where the entries a4 and bj are algebraic entities satisfying bose-

like commutation relations:

U \ l{\ - %\ , Cb*, b ? ] = Si (3,2)

where

all other commutators vanishing. Corresponding to ip there is the

adjoint ip defined by

5,3)

The 7Q has been inserted here in order to make the commutator of

ip and ~ijj a U(6,6) invariant:
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The quantities M| defined by

satisfy the commutation rules

[ < ,M°J -- &JM; . s* HJ- (3,6)
and the hermiticity condition

« X £ (3-7)
and thus may be employed as generators of unitary representations

of U(6, 6).

We take for the annihilation operators a*, bj. only those

representations which admit a vacuum state

a1M 0> = 0 , b* I 0> = 0. (3, 8)

Then the adjoint operators a j , b l will create states of positive norm.

A complete set of normalized states is given by

where ms denotes the number of times i occurs in the sequence

i, . . . l ra * etc. and cm is a normalization constant. These

can all be generated by applying Mj to the vacuum. They con-

stitute the basis for an irreducible unitary representation of U(6,6).

It is a simple matter to evaluate in this basis the matrix elements

-13-



<n I MA ln'>. The Casimir operators may all be expressed in terms

of the single invariant tp. if/A and this is fixed by

^ JAj o> = 6IO>. (3,10)

If we introduce an independent set of operators ^/' such that

and put

A " A A £

then, if they annihilate a common vacuum:

we can construct a new representation by repeated applications of M^

to the vacuum. This representation is irreducible since the lowest

state, 1.0> , is evidently an eigenstate of the Casimir operators which

are all expressible in terms of the invariants

One may verify that the Casimir operators take values different from

those obtaining in the simple Feynman tower discussed above. The

new representation will be spanned by the set of (unnormalized) states

(3.14)

I S i p . ^
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where the summation extends over all partitions of i, . . . im into two

sets. The U(6) x U(6) content of this tower is

The expression (3,14) may be looked upon as a Clebsch-Gordan formula:

(3,16)

i»4n's *

where in this case, the coupling coefficients, indicated symbolically

by < n , n l l m > are very simple. An explicit representation of the

trilinear invariant takes the form

I , V^ S! * (3,17)
ft,*' * ) ' v - * x

where the summation extends over distinction partitions of i, . . . i

into two sets ip-.. . iD and ip , . . . ip , . Following the procedure

of Ref. 6, the coefficients cp (n, n1) may be determined by imposing

the condition

I = 0

One finds for the first few terms the explicit coefficients

where the (15, 15) and (21 , 21) tensors are defined by
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§4 - MATRIX ELFMJSNTS OF U(6, 6) TRANSFORMATIONS

We wish now to compute the kinematic factors<m ( Lpl m'>.

We employ for this a graphical technique. It lends itself to a nearly

closed form evaluation of matrix elements of finite transformations

and we shall start with a general discussion although in fact we shall

need only the Lorentz transformations. Consider the matrix element

(4,1)

where XA = 0 and X = yQ X % . Following the method of Feynman,

we treat the computation of (4,1) as if it were an S-matrix computation.

Thus we attach a label t to the spinor quantities

0< t < I

Define the "Hamiltonian density"

Utt) * ^Or) y ^M (4,2)

so that

and, in particularj
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This enables us to write:

T (4,3)

One can go further: let

the functional

be considered a function of t and define

J
*

Its derivatives

)

;J<**H

(4,4)

include, in particular, the desired matrix elements:

r s s
(4,5)

For the evaluation of $(\) we can set up a graphical prescription.

The lines in a Feynman graph correspond to

(4,6)

and the vertices to iXA (t).

The vacuum diagrams must consist entirely of simple closed loops

corresponding to the terms:

;« Tr (4,7)

The propagators appearing here are very simple. Since

-fiLttrtJ&l
(4,8)
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For the particular case of a pure Lorentz transformation we

take:

A ' 1
vi

(4,9)
0

Noting that:

j

o

we get the result:

f I t-f a- fiitSl
(4,11)

where x. r % flfi

For large V , this matrix element behaves like — . The graphical

procedure needed to obtain the general functional $(A(t)) and thus any

other desired matrix element is straightforward. All other matrix

elements will contain a factor like O(jt) multiplied into a series of

the type which appears in the exponent of the exponential in (4, 2).

Altogether one may therefore expect that the kinematic factors arising

from matrix-elements of (ni2 I Lp Imj ) fall with increasing momenta.

§5 - THE OUTLOOK

There are two major problems which need further consideration:

(1) The determination of appropriate representations for baryons

and mesons. As is well known, the simplest U(6,6) Feynman towers

B = (56,1) , (126,?) and M= (1,1) , (6,1) , 21, 2l)
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do not couple. One must find more sophisticated (less degenerate)

representations in which to place the (56,1) (and any other known)

baryon U(6) x U(6) multiplet and similarly for the mesons. Assuming

that one does succeed in finding towers which allow, e. g.,for the

requisite coupling, one would still need to verify that all the successful

predictions of the previous U(6) x U(6) lp theory - at least for the

vertex function - survive.

It is indeed possible that U(6, 6) is not the right symmetry group.

There are several other possibilities one may consider; e.g. to

accommodate kinetic supermultiplets considered by GATTO and

others one may need the group O(3,1) x U(6, 6) - or in analogy with

the hydrogen atom case, the more attractive possibility O(4,1) x

U(6,6).

(2) The second unresolved problem concerns mass-breaking

for the non-compact symmetry and the effect this would have on

the unitarity of the S-matrix, Experimentally the mass-differences

between incipient rungs of possible towers suggested so far appear

quite considerable and the symmetric S-matrix can therefore be

unitary only in the sight of the Lord. One of the attractive features of

the higher symmetry-breaking provided by Bargmann-Wigner

equations in the earlier U{12) theory was the automatic mass-split

which occurred between particles of different spin if the unitarity
13

corrections were taken into account . The Bargmann-Wigner

equations obviated any need for the introduction of separate spin-

splitting terms in any U(6) x U(6) mass formula. One may find this

remark of value, also in connection with the coupling problem men-

tioned above. What we have in mind is the possibility that though

the Feynman towers for U(6, 6) theory do not couple,for the vertex

-19-



function, the corresponding boosted towers for U(6, 6) x U(6, 6) (See

Ref. 6) (where the extra degrees of freedom are cut down by the use

of Bargmann-Wigner equations) do so. The levels of such towers are

indeed representations of the covariant subgroup U(6) x U(6)| and,

what is extremely important, the meson-baryon coupling is exactly the

coupling written down in Ref. 1, with its merits and demerits. This

type of mixed approach which exploits both the ideas of this paper and

of the previous work of Ref. 1 would perhaps be more in keeping with

the attitude that the origin of non- compact groups is to be attributed

to dynamical accidents which may occur in special dynamical situations
14

for special values of physical parameters and is not something

in the nature of a fundamental characteristic of elementary particle

physics.

(3) There is one other possibility which one may explore in

connection with the coupling and the mass-symmetry-breaking problem.

This is to assume that the S-matrix is not a scalar in the U(6, 6) space

but a (Lorentz-scalar) part of U(6, 6) tensors.
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s'1 - m

point function are in fact the Lehmann mass formulae. Even

if Im T is independent of spin for any U(6) x U(6) multiplet,

the Lehmann formulae have different forms for each spin value

and therefore Re T (i. e. the physical mass) will differ with spin.

14 For example the Cutkosky hydrogen-spectrum symmetry

O{4,1) makes its appearance only for the case when the total

energy-momentum vector F̂  for the atom is identically

zero.
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