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ON THE COUPLING OF NON-COMPACT GROUP REPRESENTATIONS

1, In analogy with the case of atomic and nuclear physics, a hope

has been expressed (Barut 1965, Fronsdal 1965, Dothan, Gell-Mann

and Newman 1965) that "towers" of elementary particle multiplets

may possibly correspond to the (infinite-dimensional) unitary repre-

sentations of certain dynamical non-compact rest-symmetry groups.

A second hope could be that if "elementary particles" resemble a

liquid drop the dynamics responsible for their binding and structure is

also the dynamics responsible for their scattering, so that the same

symmetry group or its subgroups manifest themselves in the S-matrix

elements.

In a recent paper (Delbourgo, Salam and Strathdee 1965, refer-

red to as I) it was shown that one can always find a relativistic exten-

sion of a given rest-symmetry and that from this boosted symmetry

(intrinsically broken by kinetic energy terms) there follows a chain

of possible symmetry subgroups for a certain class of S-matrix ele-

ments. For the rest-symmetry U(6> 6), the relativistic extension

was found to be U(6* 6) x U(6, 6) with GL(6> C) as the subgroup for col-

linear, processes, U(3, 3) for co-planar processes and GL(3, C) for

processes with four independent momenta.

Now for the case of the compact rest-symmetry U(6) x U(6)

with the relativistic extension U(12), it appears experimentally,for

reasons one does not yet clearly understand, that the collinear sub-

symmetry SU(6) works reasonably for three-point functions. This

is notwithstanding the symmetry-breaking produced by non-collinear

intermediate states as well as the symmetry-breaking for such sta.tes

arising from mass inequalities in the multiplets. One may conceiva-

bly hope that the same thing may happen for the case of non~ compact.
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rest-symmetries and the maximally allowed collinear symmetry

(e. g. GL(6, C)) may exhibit itself for the trilinear couplings of

three infinite towers (of e. g. U(6, 6)). In the earlier paper (I)

a beginning was made to consider such trilinear couplings for SL(2# C)

towers. In the present paper we consider the more realistic case

of GL(6, C) and show that a new complication arises; in general it

appears that an infinity of independent amplitudes are involved in

the three-point function and further approximations must be made

to extract physically meaningful predictions from the formalism.

We propose to return to this crucial aspect of the approximation

problem in another paper; the interest of the present paper is method-

ological. We wish particularly to emphasise those unresolved

problems in the theory of non-compact groups which are at present

relatively dark and where more mathematical work is called for.

2. Some Representations of U(V, V) and GL(y, c)

In the hierarchy of subgroups mentioned in Section 1 two types of

group occur, U(V, V) and GL(V, c). In order to be able to discuss

the decomposition and coupling problems it is necessary to have some

detailed information about representations. The purpose of this

section is to provide the essential formalism whereby these mani-

pulations can be undertaken at least for a rather simple class of

unitary representation.

The only representations of U(v, v) which we shall consider

are those of the discrete type discussed by Dothan et al. This type

of representation is most easily described in terms of a basis consist-

ing of an infinite sequence of symmetrized tensors*

t i e ) , . . .
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where

each tensor belonging to an irreducible representation of the maximal

compact subgroup U(v) x U(V).

Different values of Y label distinct representations of U(V, V). T - 0 ,

for example, corresponds to the well-known meson tower convention-

ally written a s [ ( l , I ) ; ( 6 , ? ) ; ( 21 , IT); ;]„while T = 3 gives

the baryon-tower{( 56, 1); (126 , 6 ) ; ] if we are dealing with

U(6 ,6 ) rest symmetry (Y * 6 ) . The generators of infinitesimal

trensformations may be taken in the form

<2-2>

tiLcr if one combines &and til into one index A taking the values 1, . . ,

2 V t simply as

K

Thes? generators satisfy the commutation relations

IK , K1 - H K
The £-ubset M^, MI, generate the compact part U(v) x U(v) while

the remainder Ml and M^ connect neighboring U(6) x U(6) multiplets

in the sequence (2.1). In detail^ these operators are defined by the

following relations:
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( 2"5 )

- f t

fcti
where -£= «0,1 and the notation «(.,••< 0i>." oi« indicates that

<Li is removed from the sequence dl, ... ot$+1-! With the formulae

(2. 5), which completely fix the representation, it is possible to

evaluate theCasimir operators.

For the GL(V, c) we shall consider only those

representations whose bases can be taken in the form of a sequence

of symmetrized and traceless tensors,

(2.7)

each tensor belonging to an irreducible representation of the maximal

compact subgroup, U(V), cL ,^;-.= 1, 2, . . . , V. The generators of

the infinitesimal transformations of this group may be taken in the

form

M £ , N^ . . (2.8)

They satisfy the commutation relations,
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[N*. NJ] = - ^ +

(2.9)

The subset M^ generate the compact part U(V) while the N^

connect neighboring U(V) multiplets. These operators are defined

by the relations

_,!- 2_

l>i

(2.10)
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where X^ - * e + *+-V-

The coefficients A^ and B ^ are given by

(2.U)

The constant pis an arbitrary real number which fixes the represent-

ation. The second order Casimir operators for example are expres-

sed in terms of O (and V) by

M , M,j - N , Ng - T(¥+V- 1 ) - (V- 1) • 1_
V (2.12)

Finally it may be remarked that the unitarity of the represent)-

ations* of U( V, V) and GL(V, c) given above is verified by noting the

invariance of the positive bilinear forms

* 0 I - ?l \* (2.13)
Id,. d t j

for U(V, V), and

for GL(VJ C). That these sums are indeed invariant may be verified

by applying the generators as defined in (2. 5) and (2.10) respectively.
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3. The Decomposition of U(V,V) Representations

In this section the problem of decomposing the particular

U{6, 6) representations discussed in Section 2 is formulated. The

complete solution to this problem has yet to be worked out.

The infinite-dimensional U(6, 6) tower whose components

describe particles at rest must be rearranged into subsets which

are irreducible under the hybrid- gr.oup GL{6j c). This subgroup,

we may suppose, is generated by the following combinations of

U(v, V) generators,

(3.1)

so that m. , which generates U(V), will operate within the finite-

dimensional U(V) x U(V) multiplets and K\. will connect neighbor-

ing ones. The decomposition under U(v) of each level Sf̂ 1
 ii>oL

in the U(V,Y) tower is effected by extracting traces since the dis-

tinction between hatted and unhatted indices disappears for the sub-

group defined by (3.1). For example, for the meson tower (Y = 0),

^ > ^ i , i^'*1 ... or' in tne case v = 6* for

example:

(1 ,1) , (6,"6), (21,21), . . . (3.2)

we write

( 1 , 1 ) = 1
( 6 , 6 ) = 1' + 35*

( 2 1 . 2 1 ) = 1"+ 35"+405 ' ( , ... etc. (3.3)
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the decomposition on the right being unique and invariant for U{6).

The primes are used in (3. 3) to emphasize that each U{6) represent-

ation occurring there corresponds to a distinct set of physical

particles ( at rest ). There are for example an infinite number of

singlets 1, I1, l", . . . which must ultimately be distributed, in

appropriate combinations, among the different GL(6,c) towers that

appear in the decomposition. These towers will be of the general

type

1 , 35 , 405 , . . .

repeated indefinitely though with different values of the Casimir*, p .

The problem of deciding what values of p occur in the decomposition

is considered next.

From the commutation rules (2. 9) it follows that vn.* and jry.*

are invariants of GL(6, c) and so must take unique values in each

irreducible representation. For ">*£ this gives no information since

YK£ = Y on every state in the U(6 ^ 6) tower. For YC1" > however, the

information contained is non-trivial. The method is best demon-

strated for the case of the meson tower, Y = 0 , the generalization

to Y f 0 being straightforward. It is simplest to begin by trying

to construct the U{6) singlet member of a GL(6, c) tower by requiring

where A is a number. The rest of the tower can then be generated

by repeated operations with 1nA and n.̂ . . Since ffl is a singlet

v We are here assuming that the only GL( V, c.) representations appearing in the reduction are

of this special type. This assumption must of course be justified by constructing the complete

solution of the reduction problem.
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* l "it must be a linear combination of 1 , 1*, l" . . . etc.

- z a (A.t) $;!;::;*< 0.5)

Using the formulae (2.10)one then finds

L

= 0

Tha. is

< A , e t l ) - AGL^.e) 4-U+l)(t+v)flL(A,t*-0 - 0 . (3.6)

Thî  recursion relation may be looked upon as an eigenvalue problem

whose solution gives the possible values of A together with the

associated coefficients a.(A,£). In other words,one is looking for

;t new basis in the representation space, one which diagonalizes the

operator rC . Each vector of the new basis will then be the lowest

stat<* of an irreducible representation of the subgroup GL(6, c).

The recursion relations (3. 6) have yet to be solved. A

possibly fruitful approach may be to replace them with an equivalent

differential equation. Thus one could define the function



Y(A,X) = L a .(A,nxC (3.7)

and derive from (3. 6) the equation

xvSvy'+(A+x)y -o (3.8)

which is closely related to the confluent hypergeometric equation.

In order to formulate this as a Sturm-Lionville problem it. is

necessary to fix the boundary conditions. This must be done in

such a way that the solutions satisfy the orthogonality conditions

( A - V ) L C» (C+v+O » of ( A , 0 a(A'1C) - 0 . 0 .9)
e

The authors have not yet succeeded in doing this.

Assuming that the problem can be solved,much depends on

whether the spectrum of A is discrete or not. If it is discrete

then the sequence of numbers aVA O , Ct(A.f) ,,, will decrease

rapidly for "large" A and it may be a feasible approximation for

practical calculations to terminate it at some fixed A . If there

is a continuum in A as well as the discrete spectrum it may yet

be reasonable to retain only the discrete part. Finally, however,

if there is no discrete part then the problem is hopeless. Any

process would require an infinite number of amplitudes for its

description.

4, The Coupling Problem

An invariant constructed out of the product of three irreducible

tow ers

-10-
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may in general be written in the form

where (J/(6j) Y(t^) YC^p/ ) denotes an invariant of the maximal

compact subgroup, U(V) x U(V) or U(V'): Vindicates the distinct

invariants which may be obtainable with the same three tensors.

The problem is to determine the coefficients, [£-itt^ L^r # s O a s

to make the sum an invariant of the full group, TJ(V, V) or GL(y, c).

Let vis for the sake of definiteness restrict attention to

GL(7, c) with infinitesimal generators JL and N , Since each

term in the sum (4,1) is an invariant of the compact group U(V),

it is evident that

M^ I = 0. {4. 2)

The remaining conditions,

N | I = 0, (4.3)

which assure that I is an invariant of GL(V, c), imply relations

between the various coefficients [t^t^lA-c • They are, in fact,

recursion relations. Writing
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where

and equating to zero the various terms in the sum leads to an

elaborate set of relations. In general they are highly over-

determinate. The basic problem of proving that there exists

a solution in a given case is not considered here. Going by analo-

gy with the SL(2, c) case which has been dealt with in the l i terature

we shall assume that for any three representations of GL(V, c) -

of the type discussed in Section 2 - specified by parameters 0,, f z

and ft there exists exactly one invariant coupling. It is then a

simple matter to pick out from the abundance of recursion re la-

tions sufficient to enable us to calculate any particular coefficient.

In practice it is only the first few that can be of interest.

By way of illustration we compute a coefficient for the

coupling of two baryon-like towers to a meson-like tower.

Examples.

(1) Baryon-Meson

Let us obtain the first few coefficients in the coupling of the

towers

{ • .
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And
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are:-
,- ** ** A ft

Terms proportional to | ' l Y^V0 "

t<> o o ] +• C , U ) C o o t } = 0



3 •

•h a - ( B o ( 0 + 3 o C O ) £001 ] -H 4C Z (3 ) - 0

CT CO [ l o t ] + 0 , ( 0 t o i l ]

+ Ao(3) [ooo] + B, C3) l-~ ) [ooi ] + C^O) -±-

Putting in numbers - these three equations become

( i)

+ ^ [ o o . ] + 4 f <v+*T <• Pi [ o o i ] - 0 (ii)
V+) J (V42.)(V+3)
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V(V+2)
[ooi j

+•
tV+()(V+2)

For the case P, = Pt= 0, Q} = j>, these give:

[ 0 0 0 , ] : [ 0 0 1 ] : [ 0 0 2 ]

v+i vl+
" 4-

[OO2] - 0

as the ratios of the relevant coupling coefficients.

The same sort of method may be applied to the coupling

of infinite unitary representations to finite-dimensional non-

unitary ones. In this case the finite*dimensional representation

would correspond to the momentum "spurion" or kineton.
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