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THE ROLE OF SYMMZTRY PHYSICS -
SOME CONCLUSIONS FROM THEE OXFORD CONFEREUNCE
SEPTEMBER 1965

1. INTRODUCTION

Four years ago, in September 1961, some of us here today
were privileged to hear R.P, Feynman give the cencluding address
at the Alx-en-Provence Conference on Elementary Particles. For
those who heard it, this was a memorable experience - an address
of c¢lassic brilliance and eloguence,., Right at the outset, Feyn-
man made it clear that he did not conceive his talk as a sﬁmmary
of the Conference so much as a discussion of its flavour and of itis
conclusions in a wider sense. He wanted to ask himself what is most
characteristic of the meeting, what new positions we are in at the
present time, what kind of things may we expeot in the future. In
approaching my task today, in all humility, T would like to take
Feynman's address as setting a pattern and to ask the same guestions
he did once again. I shall make no attempt to summarize the Con-
ference, for this has already been done so brilliantly by speakers
in the plenary seésions.

For the 1961 Conference, Feynman concluded thal the thing
most characteristic of the meeting was the bringing into focus of
the reality of a few resonances 11 , f , e , K l
and the beginning of a philosophy of resonances., The theme for
1965 is undoubtedly once again the sams. We have lived through a

vear of rare achievement in a phenomenological correlation of the




resonances. This has been a vintage year in symmetry theory
with the emphasis shifting decisively from the mysterious
"intrinsic" to the more recondite dynamical syﬁmetries. We
have learnt, perhaps in a heuristic manner, how to extract
results from symmetry ideas and in the process wa believe we
understand better the power as well as the limitations of $he
synmetry method. But with all this, though the subject stands
transformed, today we are still far from a complete picture

of the dynamical mechanism responsible for the symmetiries and
particularly their persistence. One sometimes has the fee}ing
that we may perhaps he neaf the close of one chapter in strong
interaction physics, with possibly a new one to begin. A4ll this
has happensd with frightful suddenness and I would thus like to
spend my time in speaking of the symmetry situation as I under-

i

stand it.

Last year, at the time of the Dubna Conference, strong
interaction physics had reached a decisive stage with the dis~
covery of an approximate SU(3) synmetry as a direct generalization
of the isotopic—spin symmetry SU(2). Like SU(2), one had assumed
that SU(3) represented something "intrinsib" - g symmetry in the
un-understood tradition of the SU(1l) symmetries responsible for
charge and baryon number conservation. An internal, an intrinsic,
symmetry, in our present thinking, has nothing whatever to do with
the structure of space-time as we know it. All scattering matrices
must respect it.

About the same time as the Dubna Conference — an ocean

away at Brookhaven and Argonne - Gursey, Radicati and Sakita

—2e

o e R MR S kbt e e a2 e




following Wigner's ideas of nearly thirty years ago, discovered
a2 new dynamical - as opposed to an internal - symmetry. This
was the famous rest-symmetry SU(6) with its magic multiplets
of éé and éé.

On the one hand it started off =z speculated chain of
generalizations; first the compact rest-symmetry, U{6; x U(6),
for accommodating still more resonances in one single multiplet;
then the non-compact symmetries like U(6) x U(é) x 0(3,1), U(6,6)}
and possibly even U(6,6) x 0(3,1), to accomazodate in one singls
“tower" an infinity of multiplets themselves., A seccond and still
more feverish search which began with non-relativistic SU{(E)
was Tor its relativistic completion- this to discover symmstries
of the S-matrix. The search led directly to the (broken ) sym-—
metries of SL(6,C) and U(12) and another set of remarkable
correlations -~ mainly for form factor phyeics. But with all
this undoubted achievement, there is also the realisation that
symmetries are no complete substitute for dynamics, nor - and
this is important - should one expect them to be. It is the
limitations of the symmetry method - rather mbre than their

known and outstanding successes = that I shall make the theme

of my remarks hers,




2, DYNAMICAL GROUPS IN GENERAL

Dynamical groups, relativistic or non-relativistic, are

no strangers to physica. In faoct it is of the essence of
"model-making” in atomic or nuclear physics that a'model is
{as a rule) soluble if it admits of a simple {dynamical) group.
The most instructive oaaé is that of the first system
ever treated in quantum physios -~ the source and fount of all
our wisdom in dynamical group theory -~ the hydrogen atom,
The group-treatment is so beautiful and yet so simple that I
would like to go over it in some detail.
Consider the Scohrodinger equation for a statioc Coulomb

potential, with the energy:
-
E id
Pauli, Bargmann, Fock, Hilthen and others made the following
discovery 'in the 1930's; introduce the angular momentum

operator

H

L r % k

~ -~

and a rather ocompliocated operator - the so-called Lenz vector -

o= (Lxpoprk)

~8E

5l

Now the set of the six operators L and M possess the following

remarkable properties.




(1) The two combinations

1'%Y
T

+ M)

~ )

b

Lot

= % (

=
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commute with each other. Both I and X obey the same commutation

relations as the conventional angular momentum vector Lj;
Lre L, ] - €5k Ly

Thus, 1ike Ly, I and X ray be considered as generators of rotations
in two distinct three-dimensional spaces. One may therefore
quantise [ and X independently with eigen-values i and k a.

(0, 3, 1, ++..). In more abstract language L and X are

group generators of the Algebra O(3) x O(3). This is also

the Algebra of & group of rotations in four dimensions o{4) = 0(3)

x 0(3).

(2) Most remarkable of all,the Hamiltonian can be written as
—4E'[£2+£2+%]-l
Thus in gensral the energy of level (i,k) equals i~

-4 E (i,k) = [i(i+l) + k(k+1) + %] -

Bach level ~ each multiplet - has the degenmeracy (2i+1) (2k+1).

(3) There is one further restriction on possible values of
i and k. UNote trivially that ,.I;',.M. = 0. Thus
2 2 .
L o= K~ and therefore i = k.,




Setting

n=2i +1 =2k +1

we finally get for the level (multiplet) mams:

1
B= =252,
(4) For the energy level (i,k), L = I + X varies between

[i - k|¢ L¢i + k. With i =k, each level (multiplet) n contains
gpin-values 0 f Lé(n ~ 1)}, Hence then we have a spin-containing

symmetry par exgellence. The symmetry of the Hamiltonian is

OI(3) x OK(B) - 0(4). This symmetry is much larger than the
angular momentum symmetTy OL(B) which is ocontained in 0(4).

All levels are labelled by itwo quantum numbers (i,k) with the
subsidiary condition i = k = E-g-}- « Bach level - each maltiplet
in modern usage — possesses a degeneraoy (2i + 1) (2k + 1) = n®
and encompasses spin states with spins ranging from 0,1,2, -....,

(n = 1), with a "mean mass" - -%-nE.
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3a MORALS FROM THE HYIROGEN PROLLEM

The hydrogen atom.has a number of lesscns to teach u=n.
(1} ‘Toe dynamical spin-containing symmetry 0(4) = 2{3) x
(3) arises peculiarly for the case of the % potential.  The
fact that the symmetry group is 0(4) (and not merely the
angular moweatum sroup 0(3)) is a consequence of the{%'law.
Any deviation from this idealization (a spin-orbit coupling
term, for example) will destroy the spin-containing symmetry
0{4). In this sense the existence of the 0(4) symmetry.is

a "dynamical accident", dictated by the dominance of the Coulombd

potential,
(2) If one scatters an atom of hydrogen in a level n, with

another excited in level n2, it ia far from olear that the
potential for the scattering problem will be the same %
potential. Thus to expeot that a general S-matrix element

may possess the 0(4) symmetry would be a completely new assump-

tion = utterly unrelated to the specirum~producing symmetry.

(3) It has been noted by Barut, Budini, Fronsdal, Gell-laun,
Dothan, Ne'eman, Bacry and others that one can formally adjoin
to the 6 generators of 0(4) another set of four, making up a
total of 10 generators for rotations in a non-compact (open)

de Sitter space — a space like the Lorentz space, but with one
time and four space~directions (X02 - K12 - X22 - X32 - Xdz =

constant). The ten generators make up the Algebra of the group

0(4,1). It so happens that one of the unitary multiplets of




0(4,1) is indeed the entire seguence ~ the entire towsr;
(i,k) = (0,0), (%:%)! (1,1}, oo
Tha eamplete hydrogen apeotrum, with a;l.l ita exoited levels,
corresponds in this description to a single unitary
representation of a (formal) group structurs 0(4,1). The
structure is a symmetry of the problem by courtesy only.
This is because at best 0(4,1) is a symmetry of the free
Hamiltonian 2% with the Coulomb potentisl left completely
out. It is a "broken symmetry" - a highly broken symmetry
indeed — yet it provides a "ussful liniting symnmetry’™, for
it yields, at one go, the entire sequencs of the

levels.

(4) The co-variant version of the Schrodinger egquation -
the Bethe-Salpeter equation - equally admits of the 0(4)

SYMmeLry group. This was first shown by Wick and Cutkosky.

This gem of a derivation of a dynamical symmeiry for
the hydrogen problem illustrates most of the approaches one
has followed in connection with dynamical symmetries of
elementary particles. Basically these approaches fall into

two distinct classes:

(a) The Composite llodels. Assume there exist entities

analogous to electrons and protons, a triplet of quarks (q)
with non~integral charges — or Van Hove-Nambu-Schwinger
triplets with integral charges. Such triplets automatically

allow for building in of the intrinsic symmetry SU(3). Set




up a (non-relativistic) Schrodinger equation with a spin-

unitary-spin independent force. This is where the basic

phveios goes in. One may or may not uese group theoretio

notions to solvethe three~quark {(qaq) or the quark-anti-quark (qq)
bound state equaiions. But the non-relativistic strong-biading
limit is indeed the SU(6) limit. I do not wish to go into any
datails of the calculations made. Professor Dalitz has covered
these admirably in his talk. One may, however, distinguish

two distinct variants of the basic model:

dodel 1¢ The Atomic Model.of Elementary Particles¥, where cae

azsumes that the inter-quark force is of a completely different
order of magnitude than the sitrong forces we are used to and
wihich determine the S-matrix in the relatively low-energy
collisions  (10-15 Bev) of the kmown composite particles.

If quarks do exist and are very massive — and if we also believe
that the origin of all mass (including quark mass) is dynamicél
in the last analysis = the high guark mass gould be a mani-

festation of such g super-strong force.

Model II ; The Ligquid-drop Model. The inter-quark forces are

assumed to be of the same variety and have the same symmetry
characteristics as the forces responsible for baryon-meson

scattering, etc. One may go even further and picturs all

*
One wonders how long one may persist with the use of the word

"elementary particle" for the known baryons and mesona., Only
if no quarks are ever discovered would one be juatified -

perhaps in 8 bootstrap sense — to continue to use this word at ail.




collision processes (particularly those at high energies)
as proceeding entirely ithrough the medium of the consiituting

quark matter.

The first model has been investigated extensively by
Nambu; the second by Dalitz, Morpurgo, Tavkhelidze and others.
Clearly the existence or lack of existence of quarks and ths
character of any inter-quark forces presents the most crucial
question—mark which hangs over strong-interaction physics.

It is also olear from the relative success of the somewhat
crude models above how close in some respecits our "elemeﬁtary
particle phyzics™ may be to the physics of nuclei and atoms

of yesteryears.

(b) The Phenomenological Group-Theoretic Approach.. One may

defer the problem of existence of quarks except as a mathematica!l

auxiliary. Believing, as most of us do, that for systems of
such tight binding, one is in the relativistic domain, one may
feel shy of setting up Schrddinger equations. One may agree
to work instead with abstract groups and their generators as
distillations of a (spin-unitary-spin independent ) dynamical

aituation. It is important to realise that for relativistic

quantum physics, with all is complexities, this may well be

the only type of '"model-making", the only type of description

possible. The art then lies in working with that (relativistic;

formalism which goes most readily to the heart of the dyramics.




The heuristic approach outlined above has been further
developed in two different but eésentially complementary ways:
(i)  Start with the known amultiplets as phenomenological
entities; like secret-field theorists (which most of us
are) one sats up a phenomenological field theoretic framéwork
to describe these. One needs necessarily a relativistic
formulation of the symmetry and a seiting-up of relativistic
Lagrangians approximately invariant for it. Realizing the
difficulties oi working with strong interaction Lagrangians,
one then tries tc abstract from the Tormalism as much of the
general features of the S-matrix as possible.

(ii) An alternative approach is the one followed by Gell-ilann
(and following him by Fubini, Amati znd others). This con~

sists in expressing generators of any conjectursd rest-symmeiry
group in terms of (hypothetical) quark fields; one tries to

make an immediate bridge between dispersion theory {rather than via
Lagrangian theory) and dynamical symmetries. Gell-Mann has
elogquently described this method in detail in his lecturs;

he has particularly emphasised the hope that this may bring a

synthesis for weak, electromagnetio and strong interactions,

-

Whichsoever approach ons follows, the end spsculations -
speculations before they are experimentally confirmed - made
in respect of what one might expect are identical. From this
point on I shall divide my remarks into iwo parts. First, re-
marks concerning rest-symmetries and oonjectured multiplet spectra;

second, on possible symmetries of the S-matrix.

-11-




4. CONJEC TUREY REST-5YLiTnT B

(1) Let us start with SU(6). As is well known, some possible
baryon and meson multiplets ars: 56, 70, J0O. weeeeen afiu iy
35, 189, 4035, ... «.. Tospectively, satisfying mase formulas

of the type* m = M_+a g° + b (¥ - 1%/4) + o¥.

¥ o

(2) The next important advance came with the generalization

of SU(6) to the rest-symmetry U(6) x U(6), where (in making

(formal) composites) guark and anti-quark spins are treated

independently in the two groups U(6) x U(6). The multiplets

are larger than SU(6) multiplets but not very much.so; for

example

U(6) x U(6) SU(6) decomposition
Mesonsg (6,6) = 17+ 35

(21,71) = 17+ 357 + 4057
Baryons (56,1) = 56%

(126,6) = 56~ + 700"

The assumption of multiplets as quark-anti-quark composiies
(with zero relative angular momentum) specifies their parity
unambiguously (in contrast to SU(6)). Even though the symmery
can accommodate the X°(960) particle, its power appears not oo
much in the multiplets predicted as in (the relativistic)

S-matrix analysis in connection with the ﬁ(lE) symmetry where

the U(6) x U(6) rest—symmetry firet arocse.

* Dhis is the phenomenological formula due to Gursey and Radicati for
barvons., For meaons, as is well known ( though not well understood “ny J,
one uses squared masses. There are additional terms to gplit off
singlets and octets within the nonets. In the pregsent discussion I
shall consistently ignore these.

#% The group was considered also by Marshak and Okubo. This is
different from the chiral group of Feynman, Gell-Mann and Zweig.

-12—
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(3) "L-Excitations": or kinetiec supermultiplets U(6) x
U(6) x 0{3): Gell~ilann, Sudarshan, Mahanthappa and others
propossd a further generalization of U{6) x U(6) ariming
from orbital excitations in orbital angular momentum. Some
possible multiplets aret |

llesons (6,650 s (6,3}1)+, cese

Baryons (56,1,0) 7, (56,1,1)7, ....

where 0,1,2, ... refer to { —-values.

Can one embed the known higher meson or baryon rascnances
in any one of these higher rest-symmetry schemes? Gatto,
Costa and others have made a powerful case for assigning the

H—,. l+-g ZH to

known positive parity nonets JPC = 0++, 1
(6,5}1). Figures 1 and 2 give the Gatto-Rosenfeld charts,

with a possible mass formula®

W= +a (g_z —_If -_8_2) + Db (;2 - Y2/4) +e Y. (1)

(4) Non-compact symmetries: If indeed two of the

multiplets (6,3,0)- and (6,6,l)+ have already made their appearance,
and if all symmeiries are — as we believe — dynamical, there is

no fundamental reason why physics of elementary particles should
not follow the pattern of the hydrogen problem. There may

indeed exist non-compact symmetries; some possible ones being

the following:

(a) The "L-excitation" Tower:

The sequence: (6,6,0), (6,6,1)F, (6,692)7) ceerns

constitutes but one irreducible representation of the non-compact

*Tha chief competition with CGatto assignments would come from the pos-

sibility of these resonances forming part of a (21,21) of U(6) x U(6).

13~




algebra, U{(6) x U(6) x 0(3,1). If this indeed were to be the
case, the constants a,b in the mass formuls (1)-may be expscied
to be universsl numbers. One mgy then congeaturr that +.a el
set of meson resonances will fill 3, 27, 17, 0" nonets with

mass values lying between 1200 and 2100 Mav.

(b) Alternatively consider U(6,6) (containing U(6) x U(6) as the
maximal compact sub—group)s Some of its simple respresentations

arei

The MBBOH""TO“GI’; (1,T)+, (6,.-6-)-’ (21,-é—i.)+, teees
The Ba.ryon-Tower H (56,1)+, (126,3—)“, Tes e

In terms of quarks all these are S~wave bound structures, the
higher-spine contained in each multiplet coming from incrsasing
numberesof quarks and anti-quarks contained in each rung of the
towar. The chief difference of the two nénwoompaot schemes ie
the appearance of gighgr SU(3) multiplets like 27 and 35 etc.
in U(6,6)*.
(c) Pinally, and if the patience of the strong-interaction
experimental physicist does not get completely exhausted, there
may even be the possibility of towers associated with a "doubly
non=compact" rest symmetry of the type U(6,6) x 0(3,1), with
a "double towér" and a possible mass formulat

M AN +a (32 -1% - 3% + b (2% -7¥%/4) v o ¥
where N = number of quarks + anti-quarks in the U(6) x U(6)
specification, (N = 3 for 2§+, 5 for 1g9-, 2 for §§_, 4 for

35+, etCe cnes). Clearly, sub-nuclear speciroscopy has cone

¥ Considerable pioneering work on non-compact rest—-symmetries 18

due to Barut and Fronsdal at Trieste. The U(6) x U(6) containing

schemes described above were firet suggested by Dothan, Gell-

»

Mann and Ne'eman.




to stay. From the very elegant work which Peyrou showed us
yosterday - from the purposeful and elegant use of the phase-
shift analyels =« it would appear that there need be no doappn@ency
regarding filling up these towers for the theoretician.

Beneath the mound of every broad resonance,apparently, there

may lie buried three or four more.

To sumiarize, SU(6) was the first breakthrough in the
poesible chain of dynamical symmetries; the realization that
the structure must be widened to U(6) x U(6) was the seocond
important step; the recognition that the infinité—dimenéional
unitary representations of non-compact symmétries may flay a
role is the third exciting idea of the past year. All such
non-compact groups must contain U(6) x U(6) as a sub-group.

If the non-compact symmetry groups do find a place in elementary
particle physics, the subject would achieve a synthesis deeper

and etill deeper with the physice of forty yesrs ago.

- 15 -




5. THE S~MATRIX

ILet us henceforth assume what I called the liquid~drop

‘medel; 1,8. we assume that the =namwe foroa that produces bt

maltiplets is also responsible for their scattering. What
symmetries may one possibly expect for the relativistic S-matrix?

Are any of these realized in nature?

Dealing with relativistic particles as we shall be,
olearly the first essential was to make a Lorentz completion of
the (spin~containing) rest-algebras. This is relatively and

formally an easy step; one can carry the completion througk for

any specified symmetry; e.g. i

Compact Non~compact
Rest symmetry su(6) U(6) x U(6) U(6) xU(6) x ¢3,1)
(non-relativistioc)
Relativistio SL{6,0) u(12) u(6) x U(6) x 0(3,2)

( completion )

The analogy is with three components of spin, G, , G, , 03
the relativistic completion needs in additiom

Yo7, , YoYr T°Y3 ;) i.e. we pass from the rotation
group 0(3) to the Lorentz group 0(3,1).

But what is one to do with these relativistic structures?

Can any of these be considered as fundamental symmetries of a
relativistic strong interaoction Hamilitonian? From the visw-point
I have adopted throughout -~ that all dynamical symmetries are no
more than symmetries pertaining to an idealized situation -~ the

answer would be no. And this indeed was what was proved = by

Michel, O'Raifeartaigh, Coleman and others in ocountless different
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ways. One could construct, Por example,thacrisse fully :nvary:
for SL{6,c), (the relativistic compietion of SU(6)})but only is &
space~time of 35 dimensione. Twery vna »f the SV 3} senoratnre
must be accompanied by their own spave~iime translations so¢ thnt
gpin and unitary-spin could be truly on an equal footing. Since
no-one knows how to pass from these 35 dimensjions to the z;ace-
time we live in, it was clear once again thaﬁ thig was not 4, =t
least the immediate ,- way to progress., The survival of a spin-—
coniaining symmetry in a relativistic theory must be traced to a
dynamical dominance of certain terms. Just as for the hydrogen

atom a symmetry must owe its existence to a reascnable ''accideni',

But these "accidents" could in a large measure be system-

atized. As I said earlier, two distinect types of formulations

have been tried; both give identil results in respect of what
maximal symmetry one may expect for certain S-matrix elements.
Professor Gell-Mann has already given a review of the current
Algebrags' approach; I shall briefly elaborate on the approach
which staris with any resi~symmetiry (compact or non-~compact,

and uses field equations to describe relativistic particles and

their interaciions,.

To illustrate, consider the U(12) = (M(12) =SUs 12))

symmetry associated with a structure generated by 144 matvice:,

Th:\; where 'Yk are the sixteen Dirac matrices and }wkhe nine 3wl
matrices of SU(3) . The simplest realization of the ilgebra iz o
lZ-couponent Dirac quark, fhich ~ in virtue of Dirac's eguation -
exists in its rest-frame in six states (two states of spin for each
member of the quark triplet) thus generating at rest a U{6) algebra.
Likewise Dirac anti~guarks at rést generate another independent

U{6) structure. A1l higher U(12) multiplets (constructed

~17~




formally from Dirac quarks and anti.quarks each satisfying a
Dirac equation™; give therefore jusi the realization in motion of

the rest-multiplets of U{6) x U(b).

Now given these moving U(6) x U(6) multiplets, what could
be a possible relativistic strong interaction dynamics of whica
these multiplets are a manifestation? With the Lagrangian attitude
thie is not hard to specify. Using Quarka (or the phenomenological
multiplet field themselves) one could write U(12)-invariant inter—
action Lagrangians together, with free lagrangians which (bscause
of the spin-~orbit goupling terms 14‘PP in Dirac's equations)
break down the symmetry intrinsically. The guestion now arises;
with this intrinsic symmetry breaking, can any vestige of the
symmetry still possibly survive? 4An elegant answer was given by
Gell~Mann and Dashen, Ruhl, Harari and Lipkin. Write all S~matrix
elements as sums of terms of iwo types S = So + Sl' The S0 terms
represent either fully ﬁ(12)—invariant amplitudes or such amplitudes
whick incliude (following Oehme, Freund, Matthews and Ruhl)

Dirac combinations }}rrof all external momenta, S1 are the re-
maining non-invariant symmetry-breaking terms. For reasons which

will be clear later, I shall call S1 terms the "unitarity teriz™.

Consider So terms first. Assume that for some reason

these dominate. For Sw-matrix slements dependent on one Jemimscion

P@P

¥ The entire set of such eqguations is known as Bargmann-Wigner

eaquations.

~18-
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— and this includes Mass-matrices for all mulftiplets - we can

pass to the rest frame., A general 4-vector b has the trans-
formation character of the Dirac 4wvector '7;. Starting with
U{12) in the Test frame (where P = P_40,0,0) clearly after in-
clusion of Y}Pb :jd%}erms the surviving symmetry group can be no
more than that subgroup of U(12) which commutss with 7,
-~ the Dirac matrix corresponding to energy (Po). This sub-
group consists precisely of the 72 generators of U(6) x U{6).
in grouptheoretic language it is the so-called "little group".
The "“little group" of 6(12) gives the rest-multiplets asscciated
with the group. g
Consider next processes inveolving two independent momenta

{and this includes (a) vertex functions {b) pp annikilaticn at rec:
into two particles ana (¢) all forward and backward scattering).
Using the same argument as above, the residual symmetry of S0
terms ig given by that sub-group of 5(12) which commutes both with

Yo and Y, (in the frame where the two independent momenta can be
written as (PO,O,O,O) and (0,0,0,q)). This is the so-called "collinear

subgroup” SUW(6) (Lipkin and Meshkov ) which consists of 36 generators™.

(1, T3, Yoy, Yo%) X A
For processes with three independent momenta the residual symmetry
can easily be seen to be no larger than the 18~generator group
T{3) x U(3).

One need not have started the analysis above with broken

n/12%. The methed is applicable equally to any non-compact rest-

#attnews and Charap have given SUw(ﬁ) the picturesque name of

"ihe lesser group" and SU(3) x SU(3), the "least group".

-19-




symmetry; for example, starting from the Lorentz-complete structure
U(6,6) x U(6,6), one successively gets the chain U(6,6) for the rest-
symmetry, GL(6) for 2-momentum processes, U(3,3) for 3-momenium pro-
cesses and so on*.

But this iz not the end of the story. In addition to So terms,
there are the Sl terms. In general such terms will break the symmetry
down to SU(3). For l-momentum processes (the Mass-matrTices) these terms
will create mass splits among different spin particlee in the same
multiplet - something empirically very desirable. TFor collinear pro-

cesses 8, will destroy SUw(6). To mee this one need only look at the

unitarity equation for the T-matrix
ImT = TPT+ (2)

Here f) is the phase space for all intermediate states. Clear-
ly the collinear SUW(6) could only be compatible with (2) if and only if
all intermediate states were alsc collinear. Since this is impossible,

the So approximation to the S-matrix must always be supplemented with

* Contrary to what has been asserted sometimes, the use of infin-

ite~dimensional unitary representations of non~compact groups like

U{6,6) has no bearing whatever on the resolution of the so-called

"unitarity" dilemmas of broken symmetries. The collinear symmetry,

GL{6) for example, is compatible with unitarity only for collinear

intermediate states in relation (2).

Some fascinating mathematical problems arise in connection with
attempts {0 couple three infinite~dimensional towers. If only the
symmetries were not so badly broken, what fun it would be to have
mvriads of couplings expressed as (known) functions of just one para—
meter - fun surely for both the theorist as well as for the experi-
mental physicist. The formal mathematical problems of writing down
such couplings have besn solved by Fronsdal, Gell-Mann, Delbourgo,

Strathdee and Salam.
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(the unitarity terms) S This, in the literature, has been called the

lo

"unitarity diiemma" of approximate symmetry theories. Unitaritvy is an

intrinsic symmetry breaker for relativistic spin-containing symmetries.

The important, the unresolved question is: when do the synmetry—
exhibiting terms S° dominate, for what situations and for what dvnam-

ical models are the Sl terma relatively unimportant in magnitude?®

f It is not completely impossSible to invent such models where
U(l2)-invariant terms could dominate. I am reminded of some
recent work of Yang and Byers who analyze forward and backward
scattering {collinear process) both elastic and inelastic for
momenta SBeV/c and up. They note =« as indeed was done so
forcefully by Lindenbaum at this Conference = that there exist
at small angles enormous peaks, rising above the small value
of the large angle differential cross-sections, irrespective
of the quanium numbers sxchanged. They interpret known data
to indicate a great difficulty to transfer large momenta —
shades of invariant interaction terms in SL(6,¢) or U(12) -
but relative ease in coherently transferring guantum numbers
like charge, spin, strangeness and nucleon number. They
picture elastic and exchange processes as very mnuch similar o
the passage of a particle through an absorptive medium with

or without its coherent excitation; they invoke a "droplei™®
model of elementary particle structure though they do not

attempt to relate this with any ideas of quark maiter.
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Concluding thenj; I believe that in order to determine

when dynamical symmetries will survive in an S-matrix situation,

it is not enough to enumerate the chain of maximal possible
symmetry sub-groups. One must go further and investigate how

and when it is possible that the symmeiry survives the unitarity

corrections. The hope that one can go on circumventing
dynamical considerations cannot for ever endure, though with

the symmetry method one has made a fair go at this.¥

* "One wonders how Herodotus could believe in the Oracle of
Delphi, in his time, as he was an intelligent man. What really
happens is that each of the predictions of the oracle are in
vague language and they become. particularly clear when the

event occurs afterwards ... The high priests of Babylon used
to predict events by looking at the liver of sheep. And. why?
Because in the complexity of the arrangements of the veins
interpreted correctly, they could tell what the future may be.
I+t is that complexity, and the possibility of reinterpreting
later «.... that permits the power of the priesis to be maintained."
~ Feynman on the predictive role of dynamical theory, Aix-en-

Provence (1961).
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6. THZ EXPERIMENTAL SITUATION

What is the experimental situation? How far, for example,
does the aollinear symmetry (i.e., the SO part of 5(12} -
survive? The experimental situation is indeed most tanialising.
As I said earlier, three typas of tests have been attempted.

(1) The Vertex Function:

These includs:

(a) baryon-meson decay processes .,

(b) meson-meson decay processes.

There is a host of predictions here*; Dby and large all agree
well {within 5-10% or so) with experiment.

(¢) the electromagnetic form factor.

Blectromagnetic form factors are the joy andrpride of the
5(12) symmetry physicist. In fact it was these that started
some of us off on the search for a symmetry larger than SL(6,C)
in the first place. Let me state the argument in a somewhat
simplified manner.

Ever since 1962, when Barnes at Impérial College first noticed
this from empirical data, one had worried about the astounding
experimental fact that there appeared just one (Sachs) form
factor for the proton (electric and magnetic) as well as for
the neutron (magnetic) for all known momentum transfers., In

Figure 3,1 reproduce the beautiful slide shown by Pipkin which

. +
¥ Tpese include predictions in respect of the decay of 2 mesons

also as shown by Gatto, Costa and Delbourge.
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sunmarizes all known data. There could but be just one
explanationy some very powerful symmetry principle must be
at work.

Now 5U(6) (or rather its rather relativistic version
SL(6,¢)) gave a ready explanation of the equality of the
proton and neutron magnetic form factors. It did not, how-
ever, ralate the eleotric form factor to the magnetic. Nor
did it account for the additional remarkable circumstances
of the neutron's slectric form factor being essentially zero.
Some extension of the group seemed absolutely essential.

In terms of group algebrae what was needed was clear.
Simplifying the argument one essentially wanted an equality

r\l

berger~Treiman relations one also knew that the pion form

of the '}F and 7, form factors. From the well~known Gold-

factor 7; was closely related to the axial vector form factor
Y}T} . Empirically, therefore, one wanted a symmetry principle

which should asesert (in a rough manner of speaking)1

v ® T J s = B -
The spark provided by SU(6) was that vector (1 ) and rs,(o‘)

particles form parts of a sinéle multiplet - again orudely

speaking - from SU(6);
7}- % Yg

Clearly one needed a generalization givingt

s % T ~ Ouw = NWYs

i.e., a generalization which treated all sixteen Dirac matrices




~

on a footing of equality = in fact the symmetiry U(4). Com~

bining with SU(3) this is the structure U(12).

S50 far so good. But why deee the symmetry persisi,
why are.the unitarity corrections Sl empirically so smgll?
I believe the answer could lie in that for spaée-like momenta -
and these are the momenta accessible for electron scattering =
the form factars are purely real. From all one's work with
dispersion theory one knows it is Im T whioh is more directly
sensitive to unitarity. Thus for time~like momenta, where
Im T is very much alive, it would indeed be an agreeablé surprise
if the form factors did exhibit the same lively traces of the
symmetry.
(2) Consider next pp annihilation at rest into 2 bosons.
Jroups at Columbia and CERN have presented somewhat complete
experimental data for the various channels. For n+ T i
XK s KOKS the experimental ratios are: |

3 ¢ 1 ¢ %

The straight So terms gives

1 1 2 t 1 | : (3)

Clearly the symmetry-breaking terms Sl are exceedingly imporiant.
This is sad — undoubtedly so. But we have met precisely this
situation before - and for that well-established part of classical
physics, the SU(3) symmetry. I had the privilege last year of
reviewing evidence for SU(3) at the Dubna Conference. From

the then available data one could conclude that whereas the

SU(3) symmetry had a number of remarkable successes in predicting

the existence of multiplets (§:s and %g's), and in correlating
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vertex function predictions (the same region where U(12) seems
to succeed), one would never have given much credence to the
gymmoetry if the only evidence for it came from scatiering
processes. Figure 4, from a slide shown by Meshkov, Yodh
and Snow at Dubna, sets out one comparison of theory with

experiment; the prediction %—0; = 0, =0, =03 (4)

is clearly strongly contradicted by experiment.

More recently, Harari at Trieste made a further exhaustive
analysis of SU(3) predictions. His conolusions are the
following:

(1) The predictions of (phase-space corrected) SU(3) are in
numerous cases incompatible with experiment.

(ii) In reactions with non-strange initial particles, the
production rate of strange particles ies experimentally smaller
by one order of magnitude than, say, charge-sxchange cross
section.

Is this alarming? No-one thinks so. For in all fairness
to the symmetry, one must include in any such comparison also
amplitudés'which,arise from the strong symmetry breaking.

It is fair and consistent because the Gell-Mann-~Okubo mass
differencss* arige from the same source. Harari did precisely
this; he included in reactions like (4) symmetry-breaking
spurions to take account of symmetry breaking to the lowest

order (spurions (S) are O° object of zero momentum and energy);

¥  Wky the lowest order corrections work so well for the
mass formulae is of course another (dynamical) mystery on which

one has thrown a cloak of silence.

=D




i.e.y, consider not Just the process
M+B-9 M+ B

but instead

M+B =M+ B+ 3

The number of amplitudes now increases; equalities of the
type (4) disappear; one is left in most cases with inequalities
to compare with experiment. All such inequalities are satis~
fied.

Likewise, for SUw(6), it is imperative that 8, corrections
are made. From the work of Pais, Bég and Singh and others,
one knows that the Sl corrections for mass splitting can be
taken into account group~theoretically by inclusion of spurions
8).

32(8), &95(1), @95( Just this has recently been done by

C.5. Lai for ﬁ; annihilation; he derives instead of (3) a

sum Tule
A(rTr™) + a®® &%) AT K) =0

in good agresment with experiment.
(3) PForward and Backward Scattering.

Here again one has an anomolous situation. As is well lMmown,

the original relations of Johnson and Treiman

1[0 0 - T p] =0 p) - p)

= o(rtp) - & D)

are fairly well obeyed (see Lindenbaum's contribution to tue
Conference}. There are in addition a host of other predict-

ions which were derived by Carter, Coyne and others from




SUW(S) symmetry for
/ ‘
M+ By M + B

where inifyial and final particles are not the =ame. Dr. Jaokson
has analyzed some of these during the Coﬁferenoe; he concludes
that most o? these predictions disagree badly. Clearly the
predictions of the symmetry are highly sensitive %o the mass
differencesj one must make a re—analysis with spurions included,
an analysie of the type made by Lai for ﬁ; annihilation before
a last word may be pronounced on the prospects of the symmeiry.
Summariging then, starting with any (broken) relati?istic
symmetry, we can identify for the S; terms, a chain of maximal
symmetry sub=groups. The largest is the sub-group of rest-
symmetries. This predicts the multiplet structure. The next
largest is the collinear group, the next coplanar, and s¢ on.
The Sl terms (the unitarity corrections.) are expected to break
this chain. For (dynamical) reasons we only vaguely comprehend,
all symmetry-breaking terms -~ and this includes the empirical
situation for SU(3) as well - affect multiplet sequences and )
vertex funotion predictions the least. It is an open question
whether starting just with the predicted multipleté and their
vertices as input, one can use dispersion techniques to compute
reliably other S-matrix elements. I believe Gatto and Wali

have started on thie ambitious programme. In the coming years

I hope we shall finally kmow the answer.
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T CONCLUSIONS

Where do we go from here? Do guarks exist? Or - as
the bootstrap physicist has always believed ~ is SU(3) also a
dynamical symmetry? What higher approximate qymmetries are
likely to emerge in the future? Would the "universal" couplings
of non=-compact towers ~ or al any rate ihe towers themselves -
ever be manifest? One must confess that the viewpoint I have
expressed - and which seems fairly generally shared among
theorists ~ about the role of symmetries and the symmetry method
divests the subject of part of its romance. The thirty~five-
dimeneional space~time siruciure with ite promise of geometris-—
ing strong interaction physics may perhaps have been more ex-
citing, if only we could survive with it. As it is, our next
efforts will inevitably bend more and more towards marrying
symmetries and dynamics, symmetries and dispersion theory -
if only to estimate more reliably possible deviations from the
symmetry magnitudes. One wonders if a more powerful formula~-
tion of the unitarity relation is in the offing with the use
of non=~compact groups or if that is a forlorm hope, as forlorn
as the use of ithe multiple dimensions.

The other major topic which has engrossed our Conference
ig CP - or even € ~ vieclation. I have purposely refrained
from mentioning this, for after the complete and elegant
discourses of Prentki, Steinberger and Bell y and the coup
achieved by T.D. Lee in drawing a distinction of baryon, lepton

and electric charge conjugations, there is very little more




that one can say. I have confined myself to strong interactions;
1 hope I have conveyed the sense of achievement made, tinged
always with the realization of how far we must yet travel.

There is the prospect that we stand on the thrgéhold of a

new chapter in the suﬁject; there is today, ag gver, an
exhilarating vitality on the frontier it is our privilege to
explore. I, for one, lock very much forward to the years io

cComea
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Tentative predictions for higher boson resonances
Kinetic supermultiplet U(6) x U(6) x 0(3) = (6,8,1)

J T =0 T = 1 T = 4

(156C £ 50 )4-

2 N A (1310 £ 15) KE (1430
£0(12%3 ~ 20) €

4

15)

— (1270 + 30)« . Two possibilities:
1 B (1215 = 15) _
(1215 ¥ 15)e- (1) ¥ = K (1175)

K" (1100 £ 40)

(1180 £ 60)+ - P
1 4 _(1090 % 45) | 3P K' =g [1215)

(990 £ 70)¢ - K" (1050 * 40)
- ¢*(390) 2
0 | (970 £ 50)4 K (725)

¢ (730) 7

The predictions in this table contein an additional assumpiion:
that the mixing between the two T = 0/ 2++ megons is maximal
(like ({7-6-)). The masses are in MeV. The input data are under=-
lined. Arrows indicate the predicted masses. A possible com—

pletition of the 0"  nonet with 0° and &° is also indicated.

Figure 1
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APPENDIX

Ever since I was asked to speak at Oxford, I have been
haunted by thoughts of pyramids and the awesome fate of trying
to continue the series started in 1962. With infinite=
dimensional Tepresentations in the offing, and with ail that
vent before, I believe Figure 5 of the pyramid sequence may
well convey the spirit of Physics of 1965. For the idea I

am indebted to Professor Okun.
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1965

""Now this will stand for centuries?!”

Figure 5
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