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ABSTRACT

The problem of relativistically boecsting the unitary represent-
ations of a non-compacti spin~containing rest-symmetry group is solved
by starting with non-unitary infinite~dimensional representations of
& relativistic extension of this group, by adjoining to this extensiocn
four space~time translations and by then applying Bargmann-Wigner
equations to guarantee a unitary norm. The boosting problem consider—
ed here is the Tirst step towards the solution of the problem of coupl-
ing of such infinite-dimensional representations which is briefly

investigated,
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paper is devoted o the corresponding problem of relativisztic
extension for possible non—compact rTest symmetries. Once solwvad,

it becomes possible in principle to couple such infinite dimensisnal
multipliets in wmoiion.

In Sectiion 2 we outline the general procedure for embedding =
rest-symnetiry into a relativistic manifold., In Section 3 we consider
as an example the non—compact rest-symmetry U6, 6); and show that
the required extension is n@ (u{6, 6) © U(6, ). The rvest~
symmetry U(6, 6) was chosen simply because it happens to contzin the
successful compact rest-symmetry U(6) ® U(6) as a subgroup. The
point of departure of our method in constructing infinite-dimensional
representations of U(6, 6) & U(6, 6) is to resduce the group with
respect fo non—-unitary representations of a spin-contairing subgroun
U(6, 6). Tre space—-time iranslations T; are then introduced in a
fundamental maexuer to induce a unitary norm through the standard
application of Bargmann—-Wigner equations, The final symmetry after
the application ¢f the equations for orne~particle states is of
course the rest~symmetry U(6, 6)., In Section 4 we show that the
maximal residual symmeitries for S-matrix elemenis involving two,
three or four independent momenta are GL(6, C), U (3, 3)
and GL(3, C). The Clebsch-Jordan problem for three-particle ceupling
has in general noi been solved, There is however one simple soluble
example which we give in 3ection 4. We wish to stress that the Intesresi
of this paper is mainly methodological and that it may not provide 2

realistic model.

2, THE GENERAL PROCEIUER

In this section we review some of the relevant concepis in non-
compact group theory and also summarize the essential content ol zep:zra
I and IIT pertaining to the relaiivistic extension of any rest-

symmetrTy group.
Let us denoite the compact and non—-compact generators of a symmetry

group G by Gc and Gmc respectively. Thuas, symbolically,




[-Gc. , Gc'} = “‘Gc
{Ge s Gncl
[th ’ anc‘} T —a Gc

+ Gac

"

{(2.1)

The standard procedure in non-compact theory 1ls to decompose unitary
irreducible representations of G reletive to those of the maximal
compact subgroup, viz. G itself. Since the former are infinite-
dimensional in any one representation there will necessarily occur
an infinite number of (finite~dimensional, irreducible and unitary)
representations of Gc . Thus G will be represented by infinite-
dimensional hermitizn matrices: Gc are block=diagonal with each
block relating to one O, representation, while G,. are block oif-
dizgonal thereby acting as shift or iransition operators between

nearby qc representaiicns.

To define precisely the concepts cf a rest-symmeiry group, wheiher
compact or not, one must introcduce transiations ?J « These, in

general, satisfy the symbolic commutaticn relations

P,pl=o0 , [GP) =.iP. 2.2

: ~
The rest—symmetry subgroup G( F } of G will, by definition, commute

with the energy F; y

N
a( p ) may thus be termed "the little group". In paper I G was u(s, 6)
and G(‘$ y was the compact U{8) & U(6).

' , A : ~
Given a spin~containing rest-symmeiry G( P } our problem is to
find G as its relativistic generalization. The procsdure applied in

I to compact rest-symmetries was essentially to assign well-defined




Lorentz tensor trensformaiion properties to the gener

&
end thereby to generate the full G by acting on the G(’F ) with pure
) i

s a P .
Lorentz transformziions; for example G P ) = U6 scmorphic
) ] i °
to the 36 matrices. T! , 6.,.T) , where 6,71  corresponds <o
the pure spin transformation. The action of Lorents transformations
G}r'ro on these litile—group generateors 1ls thereby specified and

Fal
completes G( b ) to & = GL(6, C) with the 72 matrices

T, T

b ]
) Q-;:IVT '

»

I'or non=-compuct rast—-symmetries our procedure will be identical. Ve
perform pure Lorentz transformations (lying outside G(‘% ) but forming
A .

part of G) on the G( b ) generators and thereby close on the algebra

of G, The case G('} ) = U(6, 6) is treated in the next section.*

Having found G we shall next supplement it with translations;
this i= an integral part of the relativistic boosting procedure.
We have used in I and shall again in this paper use the translaztions
in an absolutely fundamental way to define a unitary norm for multi-

plets of the little group G P Y, when in motion. Since this point

has not been fully appreciated we wish to go over it carefully once

again,

A11 finite-dimensional representations of a non-compact group
like 314 (the homogeneous Lorentz group) are non—unitary. Only for
infinite~dimensional representations can one define a unitary norm.
Thus, if éL; were a rest-symmetry at lsast certain unitary represent-
ations would correspond to particles with spins ranging over zall
integers or half-integers 36 v do+l yeeees OO . These re~
presentations mey or may not be useful in physics but in the past
the more urgent problem was to describe a relativistically moving
particle of one definite spin j , and the relativistic aspects of
the problem in any cese called for the use of the non-unitary finite-

dimensional representations of éL; . It was Dirac's and Wigner's

* We must stress that the various U(6, 6) subgroups of G have
completely different connotations., There is the litile~group

G(‘B Y = U(6, 6); then there is the &4 ~containing subgroup of
(Dfrac) matrices U(6, 6) . These must be carefully distinguished,
though they possess the common subgroup U(6) & U(6).

T T T




great coniributicn to recogrize that a physically satisfactory unitary
norm could indeed he defined in such cases because one z2djoined the
space~time translations T to §.4 @and considered the full inhomo=
geneous Lorentz group 1{4 = g ® L4 . This group equally

is non~compact but its unitery (infinite-dimensional in the momenium
variable) representztions are constructed (i the BARCMANN~-WICNER
(1948) method) from certzin momentum—dependent finite-dimensional
representations of '&..4 , 2 positive definite norm for which is
guaranteed by imposing on the representation functions certzin
equations of motion. These Bargmann~Wigner equations have one purpose:
to project out just the positive definite class of these functions.

To take a concrete example, 1f the spinor i‘;& corresponds to a non-
unitary representation of ;2,4 , or more properly SL{2, C), the Direzc
spinor 4y (p) which satisfies ‘Q){P) = Y (p) corresponds to a
perfectly unitary representation of the Poincaré group Iy ®‘{-d

with the norm given by

s B '
) = 2 ?T T (p) WP ()  (2.)

pro T

This norm perteins to moving states of spin &,

| Now in I we started with the non-u;;itéry represente.‘tions of the
non-compact group U{é, 8) (= T(12)). By adjoining the four transla ion*
operators '& of T4 and after imposing Bargmann-ﬂlgner equatlons,
we once again recovered a unitary probablllty—oonsevv1np- norm similaxr
to 2 4) for moving particles m.'t;h o f 1y vevees 12, The important
omt - a.nd this is shown in detall in III - is that one-par:blcle
states possess not 3us‘t sU(3) & I£.4 " but the larger symrne%ry

(v{6) & U(6))P . This may indeed be stetes as a theorem:

* It must be recognized however that &herea;s the algebra of -& xf_‘,
closes on itself, that of & structure like 'Q@L{(é,&) does not. As
shown in III the full closure.requires f43 momenta, znd since these
momenta possess no physical significance Tz == U(6, 6) is’an
intrinsicilly broken symmetry, As. statda before, one-pérticle (rest)
states show U(é.) @ U(6) symmetry revertheless, which i§ further reduced
for two and higher particle states, The problem of residual symmetries

is gonsidered in Section 4.
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and (2.2), the appropriate uniteary norm for moving one-particle

states is of the type {2.4) which have G( @ } a5 the little-group

gymmetry in the rest frame » = O {cf. equation {2.3)).

3. THE HYPER-SYHMMETRY NIZThOD

Since the generators of the spin—-internal symmetry group can
only be incomplete Lorentsz tensors it is necessary to zdjoin new
generators so as to make the tensors whole. Thie leads in a unigue

way to an enlarged algebra,.

The operators which musi be brought in to make the relativistic
completion will not provide any additional conmserved guantities.
They do not commute witk ¥, : all such commuting members being,
by definition, in the algebra of the 2ittle groupr. In ordsr to
discover what they are one can apply the following criteria:

- ) _ A

1) The generators J of the little group G( b ) commute-

with the energy
LT ®.] = o (3.1)

!

2) The generators J include the spin roiations J :;j Wbich

in any realistic relativistic itheory are coupled to the momenta,

hence

[

P vV ) {3.2

[j-;' ?y{—} = -t ( ;.k } )

3) The pure Loren:z transiormations K,  which, by definition,

o

affect the energy, cannci be found among the J .

4) The relativisticzlly complete algebra G must include the

Lorentz group in the form tT;i y Ko )

These regquirements 2re sufficient to make the procedure unigue.
If, for example, the little group is taken as U(6) @ U(6) with

generators




(3.3)

ther the Lorentz iransforrzations must be 0., and the translations
P Thg full group is then eagily shown to incorporate the

144 (v, T4) (®8=1,...., 16; 4 = 0,...., 8), this being just
the non—-compact U(&, 6). This case was dealt with in I. There it
was shown tkat the natural way to employ the finite-dimensicnal {and
therefore non-unitary) representations of U(6, &) was to make use

of equations of mction {Bargmann~Wigner equations) which served to
restrict the physical states to positive definite sectors of the
Gilbert space. We skhall adopt the same attitude here for the

infinite-dimensional razpresentations.

H

ittle group is taken to be U{6, &) iteelf,

[

Suppcse now that the

P

This group has bteen chosexn to provide illustrative example only and
may not be the group of iinal physical interest. Exploiting the
isomorphism of thke group with Dirac-~like matrices, represent the

little group generators Ti) by

I

e

\

1 o , )
T 4 XC ! x 7 cnd J th T° « T, (3'4}
where the subscripts ¢ and ne 1abel:the'compacf and non-compact

parts of the algebra respeciively. For the translations we can take

sinée the time—like component of this matrix evidently commutes with

the little group matrices., The pure Lorentz transformations must then

be

0“’ .

P AL

~
H

x4 (3.6)

Filling out the algebra by taking repeated commutators we find it

necessary to include the operators

KDos T o e K s Y T x (3.7)




which go to make up the algebra of U(6, &) & U(6, 6):

g - K e (T - Kh)

——
Lt
.

(o]

R

The form (3.5) adopted for the translations means thet the momenta
transform like components of the (12, 12} and (12, 12) representations of

u(6, 6) & T(5, 6). )

The next cuestion to be settled concerns the nature of the re-
presentations of U(6, 6) @& U(6, 6) to be employed. Since we are
following the viewpoint of I in which the physical states involve a2
number of redundant components determined by the Bargmarn~-Wigner
equations, we can wffcord ¢ accept non-unitary representations of
the full algebra, reguiring only thet ithe repressntations ¢f the l1ittle
group U(6, 6)\# contained therein shall be unitary. The 1litile group
U (6, E)P appropriate to & particle with. 4-momentum Pk is obtained
from the 'Tg by applying a sultable Lorentz boost . It can other-

wise be defined as the set of matrices which commute with y'x“tz.

There is in addition to the subgroups U(6, &) p o enother U{6, &)
which contains the Loreniz iransformations. This has been called the

Dirac subgroup, U{(6, 6) . in Section 2., It is generated by
(¥

—

e

N 1 Cennd K
T

As explained esrlier, ths Bargmann-Wigner eguations will guarantee
the existence of a unitary ncorm even though cone starts with pon-
unitary representations or U(4, 6)_D . Thus it will be quite
sufficient to take finite~dimensional representations for this sub=-
group anrd to build the infi

group. with block-dizgonzl representations of U{, 6), . The subgroup

[

-7 N . - a - oo - + . .
U6, 6)3 in our work rlays the role of the maximal 'compset subrroup in

conventional theory of non-—compact groups.

The construction of representations of U(6, &) & U(6, &) is
considered next. We shai! employ the method of Feynman et al.
DOTHAN, GELL-MANY and ¥LO'EMAN (1965)) whick has the advantage of
directness. Wore important, ii produces only the "degenerate ro=
presentations, i.e., those assoclated with discretes sigenvelues of

the Casimir operators. These are more amenable ¢ physical inter—

.= B R




pretation than tre continaum representations.

4 representation of the algebra (3.4) and (3.7) may be teken

in the form

-—

AL T e T A Tt oL TiT A
J C - \P {: I) + ’ lj‘ nC '\\/ (n,c'. | L ‘\{J
PO Trul S R L E e T :
~ o - ’q/ ﬂs [ 1 "'\."}'} / LS Wil - {/ !T‘-l‘- ! \{'! (-“9)
wkere symopols @f end ~% denote respectively 24-component column

and Tow vectors and we require Bose—like commuiation relations for

Y and ; 3
j

(4, 1 = ® TR B

(3.10}

and

iH
e

(v, ¥

it is simplest to think of and *P as Bose~like guarks. Since
the little groﬁp, gensrated by the T; , must be represented by unitary

mairices we require that

(%)

AV 3 C(2.11)
(‘} ig) - Jr

a—

Supposing now that A is related %o the adjoint of by an equation

of the form

v o= v oM (3.12)

T - ~, o (
L, Yoe ™ g = 0 o (3a3)




This fixes ™ (apart Ifrom trivial modifications) to be of the form

Mo o=z A
‘ fo (3.14)
and so we find in addition

SRS
K

1
?_.
o
P

h =\
3.15;

Unfortunately the condition {3.11) is not enough to assure unitarity
for the little group since the metric (3.14) is indefinite. In order
to fix this we first split Qf into two parts «#+ according to the

sign taken by % T3:

where

49}
-
[...J
~1

S

\

vets v, - B Vs (

tox

The commutation relations between these parts are then

Ty, v 5 S0 v

(v, v ) = @ e

[“f";; uf.r _‘1 =y Q- e Ty) e

The generators (2.9) whea expressed in terms of iP* take the forms

F o= {".',4-«(6 \i/.q- a ‘K Y F\{/-' J j—"‘c = '\;4- T T("\i/f + "‘E‘:.‘V.M-CT" ‘}“,
KC = \}/.a- th"\‘h— +¢-N{ctiq/ / Kpe = ’J;»-r YoacW_. - A‘;— [N N

(3.19)




so that the { 3 T

o BTE even {++ or ==) and 3he Kt\odd \F= oI —=+,. This
means that if we con arrange that 'x};+ operate within the negative

and positive sectors of the Hilbert space while 4 _ makes transitions
vetween them, then the J, - being even - will have non-vanishing
matrix elements only between-states in the same sector whefeas the
will have them only beiween states in opposite sectors., This,
together with (3.11) will assure that the J; generate unitary re-

presentations of the little group.

The cruciel step then is to fix the metrical character of $P+
and q, . Considered as (fictitious) field operators the components
of QH-(“¥-) must create or annihilate "particle states" of positive

(negative) norm. Ln the two~component T =—-space if we write
. B S T R T A A PR
&4

then (3.14) reads

r

. ¥ ¥ r- =7 W F
Yy ‘:ﬁ_} = ()b B AN I (3.21)

—
-

and hence, using (3.17

[ b b} = 1 Cho, i) -1 1

i

This means that the &, are to be regarded as creation operators and

—

tte b, as annihilation operators. The adjoints a* 'andi b are.

then, respectively, annihilation and creation operators.-

The operators 34 and kii{ of the Dirac group are seen tc be
made of products of one creation and one annihilation operator while
the others, 'Th and !(J , are made og products of two creatlon oxr

two annihilation operators. This means that ihe operators of the




Tirac group will be represented in block—diagonal form while the
others will consist ¢f elements connecting adjacent blocks. The
representation appears as a tower of finite=dimensional (non~unitary}

representations of U(6, 6)D .

For the construction of representations it is convenient to re-

group the generaiors into two sets

My = BPy, 4 a%a

N® . TPE, 4 obb (3.23)

where A y, B take the values 1, 2, ..., 12, In terms of these

generators the old set can be expressed by

-y B VA + B )

jc = MA LYcT)g , Y 7Ny tﬁ%‘ TB

B % YA ) B LA 3.24
K(_ - M’\ (Y(_T )B , Kl“\t = MR (PEr\Cl )"3 ( )

The pﬁi are seen to be the generators of U(6, 6)_D . The represent-
ations may be constructed by fixing on a "lowest level" and zpplying
the generators PlE and N: to it re?eatedly. The fﬁf will lead to
new levels while the M, fill out each one, This method of
generating representations with M and N is discussed in the
appendix. Typically, a representation starting off with the U(5, G)D

singlet V(1) will be found to contain the sequence

n - — — L \.} \
TO ® 2 G ”‘—*-’{?.i} (5i4c) © .. (3.25)

i.e, traceless tensors symmeiric in upper and lower indices. Implicit
in this is the restricticn to quarks of type 1, i.e. we are keeping
quarks and anti-quarks of type (6, 1) and (1, &) and not using (1, 6)
and (6, 1).




¥We shzll deal with the problem of picking out physical states from
these representations in the same fasbhion as was done previocusly (see
I) for the case of the compact little group (U(8) =x TU(6)) n - Thet
iz, we shall reduce the full multiplet with respect to the 1ittile
group U(6, &) b and project out one of the resulting (unitary) multi-
rlets. Consider Tirstly the system at rest, for which the little group
is generaled by the ﬁ'é . Since the distinction betwesn 1k+ and 4/“
defined by (3.16) and {3.17) is invariant so far as the 3'i are

concerned, we can impose the condition
(3.26)

and produce 2 representaiion of the 1ittle group at rest U(6, 6}?

by operating with the surviving generators, namely
~ i I P
Prh‘“— . l‘l/‘r and ne o q"f Zm’-_f by \fL-g— (3‘27)

o

Having decided that the physical states at rest are tc be gener—
ated by the operators {(3.27) we can re~arrange these operators into

the form
M) - DB ¢ &3 G)

o ) ‘;3.28)

where we have adopted the suggestive notation

i’f’( (;‘r \

!\i/.qu =

~
+
18
Pammmet®
[t}
<
——
g
)
>
~
-~
p g
fa g

f-.“-\. 1 " )
&, (2)/ ' (3.29)

and correspondingly




R [T, ehe))
Y t‘r)‘

though, for the present discussion we ghall need only the operators
- A

{3,29) with }, D¢ . The oreation operators contained in (3,29)
satisfy the conditiouns

X B - A
(10")A aglp) = ¢

(v 1)a P50 = 0

IR
From this it follows that the states created by applications of My
- S [ - A . :
and hf\gx, s&y W, 4 [p] » will satisfy the conditions
(Fy ="

NS

(Xo“\)nf’@ %

1
Ay ‘ll p‘l i = o for lower indices

and

(3.22)
B, _ &'
(TQ*‘{%(

\Q = for upper indices
- A'{BH_

These states can now be set 1n motion by applying a Lorentz boost

L

P
Since the Lorentz transformations come within U(6, 6) , they will be
represented by block—-diagonal matrices, for example

B, - Af A; . 'B:-~ S
. A _ \ ‘
L N . | _ ( \
h|p()'- - -ﬂ’ LA, LP‘} q:LA‘fQ;--. (L )B: \3‘33/
If we adopt a family of boosis L‘P with the property
™o L - :
LP " LP X (3.34)

then the Llittle group at
- L_P U(s, 6)? L:‘. The representation (3.29) of U(6, 6)-?

1
correspondingly carried into a representation of U(6, 6)

i

st U8, é)g 'is carried intoﬁﬁ(é,‘é)P
iz

, namely




- TR _ A/ Ay | g:“, .A | i\ 8, _
oW =Y, e D) s

ﬁf“x“
which satisfies the Bargmann~Wigner equations:

for lower indices

F\""—g\"l_‘
(¥ -w ) Yan, . 0] = 0

1 .. " . ‘ (3-36)

(V'*‘ “‘) B,/ W/ A n;l-- [H = O  for upper indices

A
(3.37)
NEG) < BP0 3 G) 4 by} ot ip)

where

u

(tl+m)§ B8 =0 o (f =) by (p) = o (3.38)

- - )
these operators being the boosted forms of b , @ g, i.e.
- “B a1y YR
a :
e} = b \y)\_i—p )B

o (3.39)

To summarize this discussion we stress that the essential content of
the above is to say that -‘;[’/}‘L-,'\.V and \T/}'M T ‘\P are hermitian

forms and their hermiticity is guaranteed in an arbitrary Lorentz frame




oy the Dargmann~Wigner sguations.

At this stage we are requiring (6, 6) symmetry in the rect Trame
so that there can be nc mass breaking. The levels in the tower are
completely degenerate., The lifting of the degeneracy could be effect-
ed by supposing that the mass coperator has components proportional
to Casimir operators of variocus subgroups. The U(é) @ U(6) sub~
group is the most obvious cendidate, For the representations we
are considering which are made out of fully symmetrized tensors, the
U(6) @ TU(6) Casimir operators are determined by the numbers of upper
and lower indices at each lewvel in the tower. Since only the sum
of these numbers varies from one level to the next, it (and its powers)
are the only numbers on which the mass operater could depend. In a

linear approximation this could give a mass formula of the form
T‘:’\“ - O+~ b

where y denotes the nunber of gquarks (indices)'comprising the particle,
Some evidence has been given by FREUND (1965) that such a relation

of vhysical masses with ¢ = O indesed exists.

This is analogous to the treaiment of the.hydrogen aton
level system as a representation of the non-compact 0(4, 1) with
the energy given as a function of the Casimir operators of the

compact subgroup 0(4).

Another possibility for breaking the mass iz to use instead of

U(6) (X U(6) one of the non-compact subgroups, SL{6, C), for example.

4. RESIDUAL SYMMETRIES AND THE COUPLING PROBLEM

(i) Assuming that the rest staies of a2 system furnish a re~

presentation of the little group G ? Yy = u(s, 6)3 , We wish %o
enguire into the maximum residual symmeiry that may be exzpeciad for
many=-particle states lr" - P> and for the correspoﬁding_s-matrix
elements,

(ii) For two—particle states we select the frame for which

b'ﬂ‘f. = bg_)\ = P\\J - Plﬁ = -0

and look for those transformations Iﬁ of U(6, 6); that commuie

_ 0
with Ke} y the Lorentz boost along the Z -axis., These are simply:

N o ,1 — . 4 —
T, N N ¥

! HP R Bt va A 3 7 ¢3 iy 2




and constitute a GL(6, o) group®. The compaci subgroup TTJ, 'Tfl
: W
"Tg_] ) T';z.’ is the We-spin collinear group .
(iii) TFor three-particle states we may set P'g = P*a = Pf?
= 0. The generators of GI._.(6, ¢c) which commite further with l(:.
eve T, T 1‘; , J.j,, T: giving U(3, 3). Thus, the

compact subgroup is hers the coplanar group U(3) & U(3).

(iv) Finaliy for four-particle states and higher we just bave

oL (3, C) as the non-compzcet extension of U(3).

Thus we encounter the following chain of little group symmetries

in general

G = GiH) - Gl - G, b ly) — G[P‘F‘-f’:fq)qv

which for our case read

Vb, 0) ® Uib, 6 = U8 b), ~ GL(E, <), -
i U(-s!"s)r‘vhr; -y G:iL (3,()
(4.1)
When translated io the compact sugroups Gc ( 'rl - Pn) with respect
to which the infinite-dimensional representations of G(p, ... ha )

zre decomposed,we have the familiar chain

s ® u(@)j_r . ULG)M«; -~ [e)Y® U(s)%%h - UG

If one wishes to set up a phenomenclogical S=matrix theory which
exhibits these maximal residual symmetries one is faced with finding
the G Be - - b“ ) content of the discreite hypermultiplet represeni-
ations of G( % ) = U(5, 6)$ nd restricting oneszelf to (boson)
quarks of first kind) one has in mind the following hypermultiplet

sequences:

*

This can be obtained using the simple procedure outlined by HARARI

and LIPKIN (1965) by looking for those 7& which commute with }A
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Meson Hypermulitiplet

G(p ) Series: (1, T) @ (6 %)

@
~
o
2
!
.
@
—~
i
Ch
\é}:l
P
o

LI

Boosted Series: 1 @ 143 @& 5940 © 126412 (% ...

Barycen Hypermuliioiet
G( % ) Series : {58, 1) (& (126, 6) @& (252, Z1) + .v...

Doosted Series: 364 3 16016 & 411684 + ...

_, (4.2)

One can construct & fully [3(6, 6)]L invariant type of coupling;
in that case one would use the fully boosted series, with the power~
ful result then that there is Jjusi one fundamental {zeroth order)
coupling <constant fTor all members of the hypermﬁltiplet. On the
other hand, 1f one wishes to take into account higher order correciions
to this fundamental couplings so that the maximal residual coupling
is CL (6, Cl@ one must first solve the problem of finding the
GL(6, C} ,, content of G('; ) = U(6, 6). The general reduction
problem from a non=-gompact group relative to cne ¢f its non=—-compact
subgroups is to our knowledge not solved in literature. However,
we believe that among the various GL\N(6, C) hypermﬁltiplet gseries

which cccur are the following:
Mesons : I @ 35 @ 405 B veeen

Baryons : 56 @ TOO ® 4538 ® ... (
4,3)

The next piece of information required is the Clebsch~Cordan
expansion for coupling fwo or more infinite-dimensional‘hypefmultiplets
of QL(6, C)W . There is certainly no indication of this préblem
Q'being tackled in the literature. However the case of Clebsch-Cordan
coefficients for 3L(2, C}“r has been worked out (BISIACCHI and
FRONSDAL (1965), DOLGINOV and TOPTYGIN (1960)) and for illustration

we give the appropriazte formalism,
In this example we neglect unitary indices, corresponding to =a
rest-symmetry U{2, 2), and consider the three-meson interaction only.

The meson hypermultipiet series is



(1& l) @ (2y 2) @ (3, 3) + e e
or _ (4.4)
I3 15 @ 84 + .....

after applying the Lorentz boost. In performing the SL(2, C)

reduction we encounter the series

1 @ 33 5 + ceaes

an’ infinite number of times. Since we kave no physical criteria for
selecting one of these ssries rather than another, we choose from this
SL{ 2, C) set one arbitrary series for which one Casimir operator
takes the value ™ , (the other Casimir operator is zero since the
series starts with . = 0). It is this particular case which has
been studied extensively and for which Clebsch~Jordan coefficients
have been provided. Folloewing BISIACCEI and FRONSDAL (1965) we

couple three such irreducible representatiocns of SL(E, C) in the

form
Z 3\ 1— J\ Z { _’h 1 }3 ) \ \‘n> \&;ﬂ'ﬂ;_) } Wy / (4 5)
bbb neony Ny .My Ty b, Ma My e

bbb is the well-known Wigner 3} - symbol and the first few
G Ty Ty

[ i3

b functions have been tabulated, For example the coupling
Lot My

of the SU(2)W scalar 100 to two SU(2),, vector particles ¥ having

W1 = { involves the Clebsch-Gordan coefficient

< TN

e () e N0 N

wmom) Lo oo/ 2 5000 S 1)




This represents ths ratio of the P,ww coupling to the 3 i

coupling coefficient Qv {
L"n‘ b Ny

ther coupling reiations arc straightforwardly deduced from (4.5)
and the detalled formulnc given by DOLGIEQOV and TOPTYGIN and

BISTACCHI and FRONSDAL,




SUMMARY AND CUTLOOK

The major contribution of this paper is the procedure developed
in Section 3 for relativistic boosting of infinite~dimensional hyper=—
multiplets of a non=-compact restﬁsymmeﬁry'group'G{'ﬁ'). The procedure
involves construetion of infinite~dimensional non-unitary represente
ations of the full relativiétically—extended symmetry group O relative
to its.(spin—containing) nen-compact Dirac sugroup GI) s the unitarity
of the norm for the hypermultiplet in motion being guaranteed by the
intrecduction of momenta and an application of Bargmann-Wigner equations.
Restricting oneself to the subspace of quarks of firet kind, the
boosted hypermultiplets consist of a series or a tower each component
of which corresvonds to 2 U{12) multiplet whose physical content
{after applic&fion of Bargmann-Wigner equations) is precisely that of
a compact U(6) @ TU(6). Before the application of the equations
the symmetry is U{6, 6) @ U(6, 6). The final symmefiy, however, is
intrinsically broken, For the multiplet at rest it is precisely the
symmetry of the little group U(6, 6) and it reduces progressively to
its smaller subgroups for S-maitrix elements invoiﬁing itwo, three o
four independent momenta, The theory developed in thié paper is
completely analogous to the '13 & ﬁ(lE) theory of Paper I, wkere
G(‘ﬁ ) equalled the compact U(6) & U(6). ~Although the hypermultiplets
possess a perfectly unitery norm, the ﬁnitarity of the exact Sematrix
is incompatible with any symmetry higher than SU(3) and_eveﬁ that in
the limit when mass differences are neéleoted. In this:respéct the

present theory shares all the failing or virtues of the ﬁ(12} theory.

Before considering the physicél outlook for a hypermultipiet
scheme of the type described, let us list the unsolved mathematical

problems which must be tackled before furither pvrogress can be made.
These are:
1)} ‘The reduction of a hypermultiplet of G(ﬁ } relative to a
A
(non=compact) subgrouy of & P Y.

2) The Clebsch-Cordan problem.

From the physical point of view, the major value of a ﬁheory like
that of this paper lies in its prediction of higher multiplédts and

their respective coupling cocefficients. Even though the intrinsic




symnetry breaking could automatically lead fto masg differences among the
various components of the hypermuliiplet, it would be a miracle if

the resulting mass specirum had any relevance to physics; Ior

examﬁie it is too much to hope that the much-to~be-desired result of
increasing mass values for increasing spin could follow simply Irom

the intrinsic symmetry breaking. The situation here is rather analogous

-
+ 4

to tke hydrogen atom, where the use of the non-compact group O4

gives correcotly the level sequence, though its use provides no inform-
ation in respect of the level values., The point is that the origin

of all symmeiries we are discus£ ing must lie in the idealizations

and accidents of the underlying dynamics: +the dynamics both of the
forces which give rise to the hypermultiplei in -the first place, and
also of the forces which makes two or more hypermultiplets interact
with each other. The hope that both these types of forces give riss
to the same symmetry pattern is a hope which only further experiment

can justify.




LPPENDIX

On_ Discrete Representations of U( v , v )Y &) U{ v , ¥)

DOTHAN, GELL~MANN, NE!EMAN and FEYNMAN have given a method for
constructing some discrete representations of U(6, 6), the rest
symnetry, through the application of Fock space technigues. In
thiéar case the reduction is carried out relative to the compact sub-
group U(6) (3 U(6) by introducing creation and amnihilation
operators and defining U{6, 6) group generators in terms of thesze,

We shall adopt the same method to obtain some of the discrete series
for our overall group U(§, 6) @ U(6, 6) and carry out the reduci~
ion relative to non-unitary representations of the subgroup U ‘6. 6}.a .
In the second stage of appliying Bargmann-Wigner equations tke siruciure

represents a boosited Feyoman tower,

Since the case U(v ,v) & U( v , v) is no bharder to treat we
begin with two types of creating and annihilation operators which obey
the commutation rules (A, B = 1, .vees ¥V )

- it r~3 ; 1 33 N 8

[aA} 0"} = o, [bAr" '.89

L]

[,L,g, (13 } ' E LA, a-Gf) =z .. = FD

(4.1)

These relationg are equivaleni to those for the AP stated in Section 3.

Next we construct the operators (cf. Eq. (3.13)).

B .19 . B — B _ iH — . 8
}/ﬂA - 1: \)Q 5 O N / NA - l’) G»g\ T O L‘\ (A_Z)

I

t is then eesy to verify from (A.l) that

] _ -
N ; Me) e oMl - 5B Mo
3 > » 3 84,0
I:Mﬁ , Ne Vs SA Ne - 8¢'NA




] iy ' o I
Ing NS - sP M - 58w, (5.3)

With the further specifications (cf. Eg. (3.26))

.
Te o i b3 " et . B
b™ o= b, ibo)¢ %y =0 (), (A8
fo s (1), )
e A e
the realiiy conditions
' X
M‘r = Yo M"?;,c y; N = AC'(D,N' Y“

show that M , N together generate the group U( v ,v )& U( v, ¥),
M on its own generates the U{ VvV ,V ),a - subgroup and it is with
respect to this group that we intend to decompose some discrete
Uv,y)® U({v, v ) representations. The latter we obtain by

the action of creation operators contained in N on some lowest state.

If we define the vacuum state 10> by
afle> = b, ey = oo
- Al : (4.5)
. L A
we find that the Casimir operator NA takes us ouk of the vacuum

‘state into (aa'if" ) lo®> . Thus it is necessary to define our

lowest state by

> = 2R (@) ey (5.6)

and impose the conditions

NRLES = A HEY (g wvBimg) 18> = o



to guarantee that we are dealing with en irreducible meson represent-

ation™,

Let us concentrate on the meson series which is built up from
tf{>'by repeated action of ithe operators N. We assert that‘subject

to (A.7) we do in fact arrive at an irreducible meson representation

of U(v,v) @ U( V,V) in the form

GU) @ Vo) © ., (swe) @ . (4.9)

where

) .. e ‘ ‘ ~ |
‘\g ii y = (N;N@' + N;NR-. + N.:Ng-— + N:I\,Z__ - \rag_¢> LE>

D

c.oC,
{Npy Ng - \L> (£.10)

i3

[
To prove this assertion we must show that h}A hig when acting
[t

A
3 D
and that {bJE Nz - ?df NA') creates no new antisymmetric tensor.

on a state in the repressentation is proportional to N" or U

* Similar conditions should of course be imposed for all other
Casimir operators. We do not know il these.follow from (A,7) in
- general. Also anzlogous definitions of the lowest states have to
te supplemented for the bvaryon hypermulitiplet series, etc. Fer

instance the lowest querk state will read

l§a> = 2 9.0, (%732)" 10> (5.8)

P
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To show <his we offer the Iollowing induciive argument:

(i) Condition (4.7) is ir the nature of an eigenvalue eguation

for A . It leads to the following recurrence relations between the

expansion coefficients f{,  of (4.8},

\ -~y i I} . A o "\ - . R R
g.h” - A }'..-\ \_M".-l)(?'f.w y)rgi“.ﬂ = ; e ]
(2.11)
N £
“with ¥ ;= 0. ‘The spectrum of A cen in principle be determined by
converting (4.11) intc » differential equation, However, the soluiion
with A = C is e=zsg

to obtain and for this case we have the repidly
converging series
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-1—)
[
’!‘
H
Paln
,-—
e
-
e
| |
+1
T
<
)
—
e
—
[ #]

Therefore the eigenvalue A = O Dvelongs to the discrete specirunm

and for simplicity we adhere to this wvalue for tbe rest of the

discussion.

(ii) Comsider next the expression NA g+ On the lowest

state this gives after some traightforward manlpulation;

NZNg TU)

if

2R Gl ")UC"“&*@%)[“" o>

it

(1-v) 5 i)
(£.13)

That is to say we do indeed produce no new 143 representation.

3
(3i1) TFinally consider the expression (NENg - N? \\}A )

On the lowest state it produces
8D

— SVEENE 8 (P
V ooy = (NSHD - N N, )

(8.14)

| ¥




Hence, on \§ﬂ>, only the symmeirized pari produces a new tensor.

(iv) We now wish to extend conclusions (ii) and (iii) to apply

to every one of the hypermultiplet tensor components @E gz‘::
" We 'will not aitempt to give a complete proof but will offer instead
the following plausibility argument: Since the commutator of two
N 's is an M we can always re—arrange faciors in a product of several

N 's sc as to bring & selected palr into adjacent positions at the
right-hand ead. In the course of this, a number of states with fewer

N 's multiplied by M "¢ appear, The M multiplication is a trivial
reshuifling and can be igncred. By an inductive argu@ent we may assume
tkat producis with fewer N's have been glready dealt %ith. Thus no
generality is lost by bringing the selected pair to the righi-hand end ,
wvhere by arguments (i1} and (iii)} only the symmetrized traceless part
of the peir is relevant. Since this procedure can be carried out with
all indices we deduce thatirom the preducts of N t's acting.on the lowesd
state only the symmetrized and traceless parts need be retained. This

justifies the series (A,9).

The Feynman construction of U(6,6) representationsdepended on
the assumption of Bose statistics for the creation and annihilation
operators. One could construct other representations with different
symmetry types by generalizing to para~Bose statistics. This wiil

be shown in deitail elsewhere.
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