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ABSTRACT

The problem of relativistioally boosting the unitary represent-

ations of a non-compact spin-containing rest-syinmetry group is solved

"by starting with non-unitary infinite-dimensional representations of

a relativistic extension of this group, by adjoining to this extension

four space-time translations and "by then applying Bargmann-Wigner

equations to guarantee a unitary norm. The "boosting problem consider-

ed here is the first step towards the solution of the problem of coupl-

ing of such infinite-dimensional representations which is briefly

investigated.





1. IXTROSUCTIOK

It appears reasonably •well established that known "baryons and

mesons at rest car. be classified as ir.ultipiets of a compact spin-

containing symmetry ^roup 313(6) (3AXITA, GuHSEY and RADICA1T).

In analogy with the i-:ell™::novra. energy-level structure in atomic"

and nuclear physios, it has further been conjectured (BAH'J'T,

BUDIitt and FROFSDAh, EOTTiAN, GSLL-KAini and DIE'EMA5) that there may

indeed exist a very large nuafler of such multipiets and that these

may correspond ir: an idealised limit to the infinite-dimensional

•unitary representations of a non-compact rest-symmetry group contain-

ing SU(6) a& a iiuVvocG.,

A "basic proi":'J.••:••-•:• vrhich arises with all spin—containing rest-

symaetry groups (corr-pac-; or non-compact) is that of their reiativ-

istic extension. For SU(6) this problem was solved "oj FULTO5T and

TffiSS (1965), HUHL (1965) and BACEY and HUYTS (1965) - the relativ-

istic extension found being Ta& 31,(6, C) ** - and for Tj(6) >̂ U(6)

by SALAM, DELBOUKGO and STRATEDEE (1965). Indeed for LT(6) g) U(6)

it was the relativistic extension fa © U(l2) which was postulated

first. Only later was it recognized (SALAM, DELBOURGO, HASHID and

5TRATHDES, II addendum and III; XATO, DASK52J and G~ZLL~lUJIbl) that the

U(12) multiplets had the content*** of U(6) 5̂ U(6). The present

*?or example with no spin-orbit coupling the hydrogen atom exhibits

SO(4) symmetry at rest. When this compact group is embedded in the

non-compact group 30(4, l) the degeneracy structure is correctly re-

produced for a spsoial class of unitary irreducible representations

(BARCY, BAHtPP, BITSIrTI and PROKSDAL) though nothing can be inferred

about the actual energy values.

** stands for tie saitifold of four space-time trarialations.

*** Historically MiHSHAK and 0KU30 (1964) were among the first to

emphasize the importance of the non-chiral compact group U(6) >: L(6).
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paper is devoted to the corresponding problem of relativistic

extension for possible non-compact rest symmetries. Once solved,

it "becomes possible in principle to couple such infinite dimensional

multipleta in inoiion,

In Section 2 we outline the general procedure for embedding a

rest-symmetry into a relativiatic manifold. In Section 3 we consider

as an example the non-compact rest—symmetry U(6, 6); and show that

the required extension is 7^.® (U(6, 6) 0 U(6, 6). The rest-

symmetry U(6, 6) was chosen simply because it happens to contain the

successful compact rest-symmetry U(6) © U(6) as a subgroup. The

point of departure of our method in constructing infinite-dimensional

representations of U(6, 6) @ U(6t 6) is to reduce the group with

respect to non—unitary representations of a spin—containing subgroup

U(6, 6). The space-time translations ~H are then introduced in a

fundamental manner to induce a unitary norm through the standard

application of Bargmann-Wigner equations. The final symmetry after

the application of the equations for one-particle states is of

course the rest-symmetry U(6, 6), In Section 4 we show that the

maximal residual symmetries for S-matrix elements involving two,

three or four independent momenta are GL(6, C), U (3, 3)

and GL(3, C). The Clebsch-Gordan problem for three-particle coupling-

has in general not been solved. There is however one simple soluble

example which we give in Section 4. We wish to stress that the interesi

of this paper is mainly methodological and that it may not provide a

realistic model.

2. THE GENERAL PROCEDURE

In this section we review some of the relevant concepts in non-

compact group theory and also summarize th© essential content of papir-3

I and III pertaining to the relativistic extension of any rest-

symm e t ry group.

Let us denote the compact and non-compact generators of a symmetry

group G by G. and 0 respectively. Thus, symbolically,
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(2.1)

The standard procedure in non-compact theory is to decompose unitary

irreducible representations of G relative to those of the maximal

compact subgroup, viz, Gc itself. Since the former are infinite-

dimensional in any one representation there will necessarily occur

an infinite number of (finite-dimensional, irreducible and unitary)

representations of G . Thus G will "be represented by infinite-

dimensional hermitian matrices: G- are "block-diagonal with each

block relating to one Gc representation, while G^t are block off-

diagonal thereby acting as shift or transition operators between

nearby G. representations,

To define precisely the concepts of a rest-symmetry group, whether

compact or not, one must introduce translations \ . These, in

general, satisfy the symbolic commutation relations

LPtP] = o .'(2.2)

The rest-symmetry subgroup G( P } of G will, by definition, commute

with the energy ?0 ,

G( b ) may thus be termed "the little group". In paper I G was U(6, 6)

and G( |> ) was the compact TJ(6) <£? U(6).

Given a spin-containing rest-symmetry G( b ) our problem is to

find G as its relativistic generalization. The procedure applied in

I to compact rest-symmetries was essentially to assign well-defined
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Lorentz tensor transformation properties to the generators of C:( a ';

and thereby to generate the full G by acting on the G( \ ) with pure

Lorentz "transformations; for example Cf( f> ) - U(6) is isomorphic

to the 36 matrices. T 1 , 6°rs~P » where 6̂ »t T corresponds to

the pure spin transformation. The action of Lorents transformations

<Tor T° on these little-group generators is thereby specified and

completes G( j> ) to G = GL(6, C) with the 72 matrices

For non-compa.ct rost-cymmetries our procedure will be identical. We

perform pure Lorentz transformations (lying outside G( J> ) but forming

part of G) on the G( J> ) generators and thereby close on the algebra

of G, The case G( f> ) = U(6, 6) is treated in the next section.*

Having found G we shall next supplement it with translations}

this is a-n integral part of the relativistic boosting procedure.

We have used in I and shall again in this paper use the translations

in an absolutely fundamental way to define a unitary norm for nrulti-

plets of the little group G( b ), when in motion. Since this point

has not "been fully appreciated we wish to go over it carefully once

again.

All finite-dimensional representations of a non-compact group

like £.4 (the homogeneous Lorentz group) are non-unitary. Only for

infinite-dimensional representations can one define a unitary norm.

Thus, if §[4 were a rest-symmetry at least certain unitary represent-

ations would correspond to particles with spins ranging over all

integers or half-integers <L , J<>-H f CO . These re-

presentations may or may not be useful in physics but in the past

the more urgent problem was to describe a relativistically moving

particle of one definite spin / , and the relativistic aspects of

the problem in any case called for the use of the non-unitary finite-

dimensional representations of L̂» , It was Dirac's and Wigner's

* We must stress that the various U(6, 6) subgroups of G have

completely different connotations. There is the little-group

G(£ ) = U(6, 6); thfin there is the elj -containing subgroup of

(Eirac) matrices U(6, 6) . These must be carefully distinguished,

though they possess the common subgroup U(6) 0 U(6).
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great contribution to recognize that a physically satisfactory "unitary

norm could indeed Toe defined in such cases because one adjoined the

space-time translations T^ to i,̂  and considered the full inhomo-

geneous Lorents group I £ ^ = "]^ <E> £,4 . This group equally

is non-compact but its unitary (infinite-dimensional in the momentum

variable) representations are constructed (in the BARGLTAlIN-lflGNEIl

(1948) method) from certain momentum-dependent finite-dimensional

representations of "KM , a positive definite norm for which is

guaranteed by imposing on the representation functions certain

equations of motion. These Bargmann—Uigner equations have one purpose:

to project out just the positive definite class of these functions.

To take a concrete example, if the spinor ty, corresponds to a non-

unitary representation of ^ , or pore properly SL(2, C), the Dirac

spinor i|̂  (ji) which satisfies gr l^£h) 3-W-^Ct)) corresponds to a

perfectly unitary representation of the Poincare group T^ (&> 0L4

with the norm given by

This norm pertains to moving states of spin %•.

Now in I ve started -with the non-'unitary representations of the

non-compact group U{6, 6) (= U(12)). By adjoining the four translation*

operators R of "C and after imposing Bargmann-'K'igner equations,

we once again recovered a unitary probability-conserving1 norm similar

to (2.4) for moving particles with Of = 1, 12. The important

point - and this is shown in detail in III - is that one-particle

states possess not just SU{3) © "̂ JL̂  but the larger symmetry

(_U(6) & U ( 6 ) ) K . This may indeed be states as a theorem:

* It must be recognized however that whereas the algebra of (4

closes on itself, that of a structure like T^@\Xi.^tb) does not. As

shown in III the full closure requires 143 momenta, and since these

momenta possess no physical significance ~Q x TJ(6, 6) is''an

intrinsically broken symmetry. As-stated before, one-p&rticle (rest)

states show U(6) 3 U(6) symmetry nevertheless, which is further reduced

for two and higher particle states* The problem of residual symmetries

is considered in Section 4.



Given & s t ruc tu r e ~'Q :•: G, ^ i t h coirmvutEtian r e l a t i o n s (2,1)

and ( 2 . 2 ) , the appropr ia te u n i t a r y nornr; for moving one -pa r t i c l e

s t a t e s i s of the type (2.4) which have C( {> ) as the l i t t l e - g r o u p

symmetry in the r e s t frame j> = 0 (cf. equation ( 2 . 3 ) ) .

3. THE HYPER-SYMMETRY K3TK0D

Since the generators of the spin-internal symmetry group can

only be incomplete Lorenta tensors it is necessary to adjoin new

generators so as to make the tensors whole. This leads in a unique

way to an enlarged, algebra.

The operators which must "be brought in to make the reiativistic

completion will not provide any additional conserved quantities.

They do not comnute with P, : all such commuting members "being,

by definition, in the algebra of the little group. In order to

discover what they are one can apply the.following criteria:

1) The generators J of the little group G( l> ) commute-

with the energy

[ T^ 'P, ~] - 0 (3-i)

2) The generators J include the spin rotations J -• which

in any realistic reiativistic theory are coupled to the momenta,

hence

(5,2)

3) The pure Lorenxs transformations b(tc which, by definition,

affeot the energy, cannot "be found among the T .

4) The relativisticaily complete algebra G must include the

Lorentz group in the form ( "T;," , K^± ) •

These requirements ire sufficient to make the procedure unique.

If, for example, the little group is taken as U(6) (x) U(6) with

generators

- o —
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(3.3)

then the Lorentz transformations must "be (T- and the translations

V . The full group is then easily shown to incorporate the
1 4 4 ( Y & T j ) (R = I,...., 16; -J = 0, . ..., 8) , this "being just

the non-compact U(6} 6), This case was dealt with in I. There it

was shown that the natural way to employ the finite-dirnensicnal (and

therefore non-unitary) representations of U(6, 6) was to make use

of equations of motion (Bargmann—Wigner equations) which served to

restrict the physical states to positive definite sectors of the

Hiltsert space. We shall adopt the same attitude here for the

infinite-dimensional representations.

Suppose now that the little group is taken to be U(6, 6) itself.

This group has "been chosen to provide illustrative example only and

may not "be the group of final physical interest. Exploiting the

isomorphism of the group with Dirac-like matrices, represent the

little group generators 3"̂  "by

where the subscripts .c and r^c lahel the compact and non-compact

parts of the algebra respectively. For the translations we can take

since the time-like component of this matrix evidently commutes with

the little group matrices. The pure Lorentz transformations must then

be r

1il « 1 (3.6)

Filling out the algebra by taking repeated commutators we find it

necessary to include the operators

" ^ T ' X"1 (3.7)



which go to make up the algebra of U(6, o) (x.) U(6, 6):

(3.8)

The form (3-5) adopted for the translations means that the momenta

transform like components of the (12, I2~) and (T2, 12) representations of

tl(6, 6) <§ U(6, 6).

The next question to "be settled concerns the nature of the re-

presentations of LT(6, 6) © U(6, 6) to be employed. Since we are

following the viewpoint of I in which the physical states involve a

number of redundant components determined "by the Bargrnann-Viigner

equations, we can afford to accept non-unitary representations of

the full algebra, requiring only that the representations of the little

group U{6, 6) ;> contained therein shall "be unitary. The little group

U(6, 6) b appropriate to a particle with . 4~momentuin j> is obtained

from the X? by applying a suitable Lorenta boost , It can other-

vise be defined as the set of matrices which commute with b<* X-i.

There is in addition to the subgroups U(6, 6) . , another U(6, 6)

which contains the Lorents transformations. This has been called the

Dirac subgroup, U(6, 6)^ in Section 2, It is genera-ted by
^

As explained earlier, the Bargmann-tfigner equations will guarantee

the existence of a unitary norm even though one starts with pon—

unitary representations ol' U(6, 6).^ . Thus it will be quite

sufficient to take finits-dimensional representations for this sub-

group and to build the infinite matrices corresponding to the full

group, with 'block-cLiagoiiS-1 representations of U(6, 6)^ . The subgroup

U(6, 6) yy in our work plays the role of the maximal "compact subgroup in

convEntional theory of r>on-ccrcpaci groups.

The construction of representations of U(6, 6) ^ U(6, 6) is

considered next, T<fe shall employ the method of Feyr.man ;et al.

(DOTHAItf, GBLL-MAITS" and xC'EMAU (1965)) which has the advantage of

directness. More important, it produces only the "degenerate" re-

presentations, i.e. those associated with discrete eigenvalues of

the Gasimir operators. These are more amenable to physical inter—



pretation than the continuum representations.

A representation of the algebra (3-4) and (3.7) may be taker.

in the form

where symbols * ™* + d ^ ° t e respectively 24-oon>ponent column

and we require Sose-like commutation relations fo
and TOW vectors

4/ and \j, ;

(3.10)
and

It is simplest to think of '̂/ and "ty as Bose-like quarks. Since

the little group, generated by the To , must be represented by unitary

matrices we require that

" *" _ -r'l (3.11)

Supposing now that ^ ^s related to the adjoint of ̂  by an equation

of the form

^ ~- V M ' (3.12)

where IA - M ' defines the metric, then.(3.11) requires that .

- o

- 9 -
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This fixes K[ (apart from trivial modifications) to be of the form

and so we find, in addition

(3.15)

Unfortunately the condition (3.11) is not enough to assure unitarity

for the little group since the metric (3.14) is indefinite. In order

to fix this we first split \fy into two parts *^^ according to the

sign taken "by yox3 ;

(3-16)

where

•Yc-Cj ̂ t - k y* (3.17)

The commutation relations between these parts are then

(3.18)

1 J -̂ ̂ T

The generators (3.9) when expressed in terms of ty take the forms

(3.19)

- io -



so that the '-.-. are even (r-r or — ) and the £• „ odd (H— cr -+). This

means that if we can arrange that ty operate within the negative

and positive sectors of the Kilbert space while ^_ makes transitions

between "them, then the X^ - being even - will have non-vanishing

matrix elements only between states in the same sector whereas the

will have them only between states in opposite sectors. This,

together with (3.11) will assure that the T^ generate unitary re-

presentations of the little group.

The crucial step then is to fix the metrical character of -'<f'.̂

and 4, . Considered as (fictitious) field operators the components

of '4-+C'
v}'_) IIJUS"t create or annihilate "particle states" of positive

(negative) norm. In the two-component T -space if we write

/ b , \ *~ ( T ut n <* \ _ f u r,/ V* •£. r Y } )
Y U J ' • ^-2o>

then (3.14) reads

L^ , ^ 1 -- ( tOi ; L**, ftp J - u<

and hence, us ing (3-1?)>

(3.22)

This means that the ̂ ^ are to be regarded as creation operators and

the \>^ as annihilation operators. The adjoints (X . and: t" are

then, respectively, annihilation and cremation operators.

The operators J and \L of the Dirac group are seen to be

made of products of one creation and one annihilation operator while

, are made oB

two annihilation operators. This means that the operators of the

the others, T^t and K̂  , are made oB pxoducts of two creation or



Dirac group will be represented in block-diagonal form while the

others will consist of elements connecting adjacent blocks. The

representation appears as a tower of finite—dimensional (non-unitary)

representations of U(6, 6) .

For the construction of representations it is convenient to re-

group the generators into two sets

*» - '^K ft.

A "

where A , B take the values 1, 2, ..., 12, In terms of these

generators the old set can "be expressed by

The M. are seen to be the generators of U(6, 6). . The represent-

ations may be constructed by fixing on a "lowest level" and applying

the generators M R and N'A to it repeatedly. The N A will lead to

new levels while the Nft fill out each one. This method.of

generating representations with M and [\i is discussed in the

appendix. Typically, a representation starting off with the U(6, 6)

singlet \ptO will be found to contain the sequence

i.e. traceless tensors symmetric in upper and lower indices. Implicit

in this is the restriction to quarks of type 1, i.e. We are keeping

quarks and anti-quarks of type (6, l) and (l, 6) and not using (l, 6)

and (6, 1).

- 12 -



We shall deal with the problem of picking out physical states from

these representations in the same fashion as was done previously (see

I) for the case of the compact little group (U(6) x U(6)) . That

is, we shall reduce the full multiplet with, respect to the little

group U(6, 6) j, and project out one of the resulting (unitary)"multi—

plets. Consider firstly the system at rest, for which the little group

is generated "by the T ^ . Since the distinction between ty and \|/_

defined "by (3.16) and (3.17) is invariant so far as the T* are

concerned, we can impose the condition

•vj, = o . (3.26)

and produce a representation of the little group at rest U(6, 6) •?

hy operating with the surviving generators, namely

^Lc = ̂ T U^'Ht, (3.2T)

Having decided that the physical states at rest are to "be gener-

ated "by the operators (3.27) we can re-arrange these operators into

the form

(3.26)

where we have adopted the suggestive notation

(3.29)

and correspondingly

- 13 -



V ^ A ( - Y ) ' ' " ' (3.30)

though, for the present discussion- we shall need only the operators
A.

(3.29) with \u "> 0 . The creation operators contained in (3.29)

satisfy the conditions

(3.31)

Prom this it follows thai; the states created by applications of r\ I p
, r ~ N _ ii,<3,..

and U U ), say •*!/. . f fl , will satisfy the conditions

l o W e r i n d i c e s

and (3.32)

(-fo + * \ \ \p '* " = 0 f o r uPP e r indices

These states can now "be set in motion by applying a Lorentz boost L Q .

Since the Lorentz transformations come within U(6, 6) they will "be

represented "by 'block-diagonal matrices, for example

L L (L )(L^j , (3.33)

If we adopt a family of boosts L -p with the property

U P *\ U ^ ' ^ . • (3.34)

then the little group at rest U(6, 6)-£ is carried intc-:iJ(6, 6) f =

= L. U(6, 6)* LT,1. The representation (3.29) of U(6, 6)-? is

correspondingly carried into a representation of U(6, 6) , namely

- 14



which satisfies the Bargmaan-Wigner equations:

y - ** )ft, ^ ̂  ̂., ui o for lower indices

( ^ - * • w ) f0r u p p e r indices

The states ^i}>) may "be generated, directly with the operators

(3.37)

wnere
•\ A - ^ . ^ 3 "~

< /ft ' ' * ^ «v~i Vjp — <r*̂  J ^fttj1) - O (3.38)

these operators "being the "boosted forms o f b , & g , i.e.

To summarize this discussion we stress that the essential content of

the ahove is to say that y Y ^ ^ and yy,^ t t ̂
 a r e herniitian

forms and their hermiticity is guaranteed in an arbitrary Lorenta frame

- 15 -



oy the Bargrnann-Wigner equations.

At this stage we are requiring U(6, 6) symmetry in the rest frame

so that there can "be no mass "breaking. The levels in- the tower are

completely degenerate. The lifting of the degeneracy could be effect-

ed "by supposing that the mass operator has components proportion".!

to Casimir operators of various subgroups. The IT(6) @ U(6) sub-

group is the most obvious candidate. For the representations we

are considering which are made out of fully symmetrized tensors, the

U(6) (x> U(6) Casimir operators are determined by the numbers of upper

and lower indices at each level in the tower. Since only the sura

of these numbers varies from one level to the nest, it (and its bowers)

are the only numbers on which the mass operator could depend. In a

linear approximation this could give a mass formula of the form

where yv denotes the number of quarks (indices)' comprising the particle,

Some evidence has been given by FREUJTD (1965) that such a relation

of physical masses with a. = 0 indeed exists.

This is analogous to the treatment of the hydrogen atom

level system as a representation of the non-compact 0(4, 1) with

the energy given as a function of the Casimir operators of the

compact subgroup 0(4).

Another possibility for breaking the mass is to use instead of

U(6) (x) U(6) one of the non-compact subgroups, SL(6, C), for example.

4. RESIDUAL SYMMETRIES AM) THE COUPLING PROBLEM

(i) Assuming that the rest states of a system furnish a re-

presentation of the little group G( 'C ) = U(6, 6 ) - , we wish to

enquire into the maximum residual symmetry that may be expected for

many-particle states 1^ - • j>,v > and for the corresponding S-matrix

elements.

(ii) For two-particle states we select the frame for which

and look for those transformations X: of U(6, 6) «• that commute

with K01 , the Lorentz boost along the Z -axis. These are simply:

,

16



and constitute a GL(6, c) group*. The compact subgroup "T , J ,

"̂  t ' ^ViT ^s ^ e W-spin collinear group .

(iii) For three-particle states we may set b = lilv. = b,

= 0. The generators of GL(6, C) which commute further with \C^.

are T } , 7 ^ , J~ £ , T^ giving Tl(3, 3). Thus, the

compact subgroup is here the coplanar group U(3) @ U(3).

(iv) Finally for four-partiole states and higher we just have

GL(3| C) as the non-compact extension of U(3).

Thus we encounter the following chain of little group symmetries

in general

which for our case read

(4.1)

When translated to the compact sugroups G ( ji, .. j?̂  ) with" respect

to which the infinite-dimensional representations of G( j), ---

are decomposed/we have the familiar chain

If one wishes to set up a phenomenological 3-taatriz theory which

exhibits these maximal residual symmetries one is faced, with finding

the G( b, . - - \>w ) consent of the discrete hyperraultiplet represent-

ations of G( \ ) = U(6, 6 ) * (and restricting oneself to (boson)

quarks of first kind) one has in mind the following hypermultiplet

sequences:

* This can be obtained using the simple procedure outlined by HARAHI

and LIPKIN (1965) by looking for those YR. which commute with y .
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Meson Hypermuitiplet

0( f ) Series s (l, T) Q (6 S) Q (21, 2l) © (56, 3

Boosted Series: 1 @ 143 (¥) 5940 (?) 126412 (+}

Baryon Hyperrnultiplet

G( I ) Series ; (56, I) (+> (126, I ) <$ (252, 21) +
Boosted Series: 364 @ 16016 (+} 411634 +

(4.2)

One can construct £, fully [p(6, 6)] invariant type of coupling;

in that case one would use the fully boosted series, with the power-

ful result then that there is just one fundamental (zeroth order)

coupling constant for all members of the hypermultiplet. On the

other hand, if one wishes to take into account higher order corrections

to this fundamental couplings so that the maximal residual coupling

is GL (6, G)^ one must first solve the problem of finding the

GL(6, G) W content of G( 'j ) = U(6, 6). The general reduction

problem from a non-compact group relative to one of its non-compact

subgroups is to our knowledge not solved in literature. However,

ve believe that among the various GL (6, C) hypermultiplet series

which occur are the following:

Mesons : 1 @ 35 <2> 405 0 .

Baryons : 56 {+) 700 © 4536 © ....
(4.3)

The next piece of information required is the Clebs'ch-Gordan

expansion for coupling two or more infinite-dimensional hypermultiplets

of GL(6, C) . There is certainly no indication of this problem

being tackled in the literature. However the case, of Clebsch-Gordan

coefficients for 3L(2, G } ^ has been worked out (BISIACCHI and

FROSTS DAL (1965) , DOLGIHOV and TOPTYGITT (i960)) and for illustration

we give the appropriate formalism.

In this example we neglect unitary indices, corresponding to a

rest-symmetry U(2, 2), and consider the three-meson interaction only.

The meson hypermultiplet series is



(1, 1) © (2, 2) g> (3, 3) +

or (4.4)

1 © 15 @> 84 +

after applying the Lorentz "boost. In performing the SL(2, C)

reduction we encounter the series

1 © 3 © 5 +

an-' infinite number of times. Since we have no physical criteria for

selecting one of these aeries rather than another, we choose from this

SL(_ 2, C) set one arbitrary series for which one Casirair operator

takes the value TV , (the other Casimir operator is zero since ths

series starts with j.. = 0 ) . It is this particular case which has

"been studied extensively and for which Clebsch-Gordan coefficients

have been provided. Following BISIACCHI and FRONSDAL (1965) we

couple three such irreducible representations of SL(2, C) in the

form

. U

I i < i v H \ is the well-known Wigner 3 1 -symbol and the first few

\ , ' " " \ functions have been tabulated. For example the .coupling

of the SU(2) scalar Po to two SU(2) w vector particles T having

W = 0 involves the Clebsch-Gordan coefficient

0 ° v/ iS..c) €^)

where "c ̂  (. j j



This represents the ratio of the f-.TTtr coupling to the 3

coupling coefficient [" o o o ~l •

Other coupling relations arc straightforwardly deduced from (4.5)

and the detailed formulae given "by DOLGIRQV and TOPTYGIU and

3I3IAGCHI and FRO1TSDAL.

- 20 -



SUMMARY AED OUTLOOK

The major contribution of this paper is the procedure developed

in Section 3 for relativistic boosting of infinite-dimensional hyper-

multiplets of a non-compact rest^symmetry group G( p ) . The' procedure

involves construction of infinite-dimensional non-unitary represent-

ations of the full relativistically-extended symmetry group G relative

to its (spin-containing) non-conpact Dirao sugroup GT\ , the unitarity

of the norm for the hyperraultiplet in motion "being guaranteed by the

introduction of.momenta and an application of Bargmann-Wigner equations.

Restricting oneself to the subspace of quarks of first kind, the

boosted hyperraultiplets consist of a series or a tower each component

of which corresponds to a tf(l2) multiplet whose physical content

(after application of Bargmann-Wigner equations) is precisely that of

a compact U(6) <S u^o"). Before the application of the .equations

the symmetry is U(6, 6) <3 U(6, 6 ) . The final symmetry, however, is

intrinsically broken. For the multiplet at rest it is precisely the

symmetry of the little group TJ(6, 6) and it reduces progressively to

its smaller subgroups for S-matrix elements involving two, three or

four independent momenta, The theory developed in this paper is

completely analogous to the "T^ © tJ(l2) theory of Paper I, where

G( p ) equalled the compact U(6) @> U(6). Although the hypermultiplets

possess a perfectly unitary norm, the unitarity of the exact S-matrix

is incompatible with any symmetry higher than SU(3) and even that in

the limit when mass differences are neglected. In this respect the

present theory shares all the failing or virtues of the ff(l2) theory.

Before considering the physical outlook for a hypermultiplet

scheme of the type described, let us list the unsolved mathematical

problems which must be tackled before further progress can be made.

These are;

1) The reduction of a hypermultiplet of G( p ) relative to a

(non-compact) subgroup of G( p ) .

2) The Glehsch-Gordan problem.

Prom the physical point of view, the major value of a theory like

that of this paper lies in its prediction of higher multiple'ts and

their respective coupling coefficients. Even though the intrinsic

- 21 -



symmetry "breaking could automatically lead to mass differences among the

various components of the hypermultiplet, it would be a miracle if

the resulting mass spectrum had any relevance to physics; for
V

example it is too much to hope that the much-to—be-desired result of

increasing mass values for increasing spin could follow simply from

the intrinsic symmetry breaking. The situation here is rather analogous

to the hydrogen atom, where the use of the non-compact group 0 1

gives correctly the level sequence, though its use provides no inform-

ation in respect of the level values. The point is that the origin

of all symmetries we are discussing must lie in the idealizations

and accidents of the underlying dynamics: the dynamics both of the

forces which give rise to the hypermultiplet in-the first place, and

also of the forces which makes two or more hypermultiplets interact

with each other. The hope that both these types of forces give risa

to the same symmetry pattern is a hope which only further experiment

can justify.
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APPENDIX

On Discrete Representations of U( v , V ) (x) TJ ( v , V)

DOTHAU, GELL-MAirar, US'EMM and FEYMAU have given a method for

constructing some discrete representations of XI(6, 6), the rest

symmetry, through the application of Fock space techniques. In

fr<£iT case the reduction is carried out relative to the compact sub-

group XI(6) (3cs U(6) by introducing creation and annihilation

operators and defining U(6, 6) group generators in terms of these.

Me .shall adopt the same method to obtain some of the discrete series

for our overall prroup U(6, 6) (x) U(6, 6) and carry out the reduct-

ion relative to non-unitary representations of the subgroup U'$; 6). .

In the second stage of applying Bargmann-Wigner equations the structure

represents a boosted Feynman tower.

Since the case U(v ,v) © Xl( V >v) is no harder to treat we

begin with two types of creating and annihilation operators which obey

the commutation rules (A, B => 1, v )

a

(A.I)

•These relations are equivalent to those for the •%[/ stated in Section 3-

Next we construct the operators (cf. Eq_, (3.tt)).

It is then easy to verify from (A»l.) that

- 23 -



With the further specifications (cf. Eq. (3.2c))

(A.4)

the reality conditions

show that h , M together generate the group U( v , v ) <£} U( v , v ) ,

fJ\ on its own generates the U( V , V ) subgroup and it is with

respect to this group that we intend to decompose some discrete

U ( v , v ) (£> U ( v , v ) representations. The latter we obtain by

the action of creation operators contained in hi on some lowest state.

If we define the vacuum state io> by

we find that the Casimir operator W, takes us out of the vacuum

'state into (Aft b
 A ) (o> • Thus it is necessary to define our

lowest state by

If > - I f, [^ L ). |O> (A<6)

and impose the conditions

- o (i_
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to guarantee that we are dealing with an irreducible meson represent

ation*.

Let us concentrate on the meson series -which is built up from

if> "by repeated action of the operators f*o . We assert that subject

to (A.7) we do in fact arrive at an irreducible meson representation

of U( v , v ) Q U( V , V ) in the form

where

U> (A.IO)

To prove this assertion we must show that |sj ̂  KSn when acting

on a state in the representation is proportional to U^ or 6f t

and that ( N? W11 — M-fl M> ) creates no new antisymmetric tensor.

* Similar conditions should of course be imposed for all other

Casimir operators. We do not know if these.-.follow from (A,7) in

general. Also analogous definitions of the lowest states have to

be supplemented for the "baryon hypermultiplet series, etc. For

insta-nce the lowest quark state will read

(A.8)



To show this we offer the following inductive argument:

(i) Condition (A.7) is in the nature of an eigenvalue equation

for \ . It leads to the following recurrence relations "between the

expansion coefficients £.v of (A.6),

kA. J..L J

with f = 0. The spectrum o f A cs.n in principle "be determined' "by

converting (A.11) into a differential equation. However, the solution

with A = 0 is easy to obtain and for this case we have the rspidly

converging series

^ *) j rTTTi [ k + t Cv-i) ] }

Therefore the eigenvalue \ = 0 "belongs to the discrete spectrum

and for simplicity we adhere to this value for the rest of the

discussion.

(ii) Consider next the expression K)A Ni B . On the lowest

state this gives after some traigbtforward manipulation, •

** K) &H + *

v) SA
C 'fi

(A.13)

That is to say we do indeed produce no new 143 representation.

(iii) Finally consider the expression ( W 1 Jyj _; — Kî  KJA )

On the lowest state it produces

(A.14)



Hence, on \Jf-̂>, only the symmetrized part produces a new tensor.

(iv) We now wish to extend conclusions (ii) and (iii) to apply

to every one of the hyperraultiplet tensor components AL A
no —

¥e"will not attempt to give a complete proof "but will offer instead
the following plausibility argument: Since the commutator of two

N 's is an M we can always re-arrange factors in a product of several

(\i ' s so as to "bring a selected pair into adjacent positions at the

right-hand end. In the course of this, a number of states with fewer

M 's multiplied "by V\ 's appear. The M multiplication is a trivial

reshuffling and can "be ignored. By an inductive argument we may assume

that products with fewer (vi's have been already dealt with. Thus no

generality is lost by bringing the selected pair to the right-hand end ?

where by arguments (ii) and (iii) only the symmetrized traceless part

of the pair is relevant. Since this procedure can be carried out with

all indices we deduce thatfrom the products of N 's acting on the lowest

state only the symmetrized and traceless parts need "be retained. This

justifies the series (A.9).

The Peynman construction of U(6,6) representations depended on

the assumption of Bose statistics for the creation and annihilation

operators. One could construct other representations with different

symmetry types by generalizing to para-Bose statistics. This will

be shown in detail elsewhere.
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