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THEORY OF GROUPS AND THE

SYMMETRY PHYSICIST

1. INTRODUCTION

Quantum theorists have never doubted that the theory of groups

was invented specifically for use in physics. An arrogant and ungrate-

ful minority has even held that not only was the relevant theory

invented for physicists but also by physicists. This claim, of course

is wild, irresponsible, certainly false so far as the past is concerned.

It may however acquire more substance in the future. This is be-

cause one of the frontiers in mathematics today lies with theory of

non-compact groups. It so happens that during the last year symmetry

physics has also begun to find non-compact group theory fruitful

for applications in particle physics. The physicist needs newer

results. Barring an urgent interest on the part of the competent

group theorists, he will doubtless make numerous conjectures and

proceed to use them. I very much.hope that these are not all event-

ually found false.

During the course of this lecture I wish to speak of some very

recent successes of the group-theory method in classification schemes

for the so-called elementary particles. I shall briefly sketch some

particular problems in the representation theory of non-compact groups

in which the. physicist thinks he would like progress made. In all

humility, let me say, the important point in application of a math-

ematical discipline is not always the insights that a physicist can

specify in advance. Still more important could be those that we at

present have no inkling of, and which one might successfully only

bring to bear when the complete theory is available.

The first question that arises is:-

Why has group theory played such an important, such an

intimate role, in the development of quantum mechanics in contrast

say to classical mechanics ? The reason has been spelt out by Yang and

Wigner; it lies in one basic circumstance; it lies in the basic

postulate of quantum theory that the quantum states of a physical
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system form a linear manifold.

To illustrate, let us consider the group of space rotations, the

rotation group O3. Throughout the history of physics we have started

with the assumption that laws of physics remain unchanged for space-

rotations. In the final analysis it is an empirical postulate, to be

tested by its consequences. We build this postulate into classical

physics by demanding that any equations of motion we may write

down should remain invariant with respect to rotations. In a rather

subtle way the postulate leads to conservation law of angular momentum.

A naive application however of this rotation invariance to classical

trajectories - to planetary orbits for example - merely tells us that,

given a certain orbit, we may infer by rotation the existence of

other physically possible ones.

Now this is an important result, but by no means a very fruit-

ful result. It does not lead to new insights. Contrast this with the

case of quantum mechanics. The same statement can be made about

quantum orbits. In quantum theory there is however the further

postulate that all possible orbits form a linear manifold and that one

can select from this manifold a linearly independent complete set

in terms of which all the orbits can be expressed linearly;

i.e. I ¥>= ) a. j ¥ .

3

Now denote the rotation operator corresponding to a rotation

g by U(g). From rotation invariance, if ^> is an orbit

I T'>= U(g) J Y> is another possible one. Specialise to

From completeness, therefore,

a..\¥.>. Clearly the a .. give us at once

j

a representation of the rotation group g. With the quantum postulate

of the orbits forming a linear manifold, we immediately strike a

level of richness with the mathematical representation theory of

groups, unsuspected, unconceived of at the level of classical dynamics.
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Let us pursue this further. In quantum theory we are con-

cerned only with unitary representations. This is connected with

the quantum mechanical theory of measurement. I shall not go

into the measurement theory of physics in any detail but we • shall

accept for the rest of the lecture that we shall always deal with

unitary representations. Write an infinitesimal unitary rotation

operator in the form

U(g) «- 1 +ie J j = 1,2,3
J J

The standard commutation relations for the hermitian operators

Jj_ (J;, = Ji, ) of 0- read:-

[J., J.] = ie... J.
i 3 13k k

2 2 2 2
with J = J1 + 3 + J as the Casimir invariant which commutes wiih

~"~ J. Ld O

all three J.. Now it is well known, that the compact group 0 posses-

ses finite-dimensional two-valued unitary representations, labelled

by two numbers j and 3 • symbolically

J I L 3 3 > = 3(3 + 1) I 3»3 3 >

* Jo 3g 3* Jo '*

where j can take integral or half-integral values; 0, —, 1, 3/2, . . .

and 3 ranges between +3 and - j . The invariance postulate for space

rotations, combined with the completeness of the basic states

Y$.> allows us therefore to state that the physical (Hilbert) space

of any quantum mechanical system can be realized in terms of a

discrete basis; as a direct sum of the irreducible unitary rep-

resentations of the rotation group 0 :

I H > = . . . . © 3 , J 3 > ®

The group description if you like has become an essential part of

the "kinematic" structure of quantum theory. The quantum number
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j is called the total angular momentum - the spin - of a pure

state j j,jo > (in units of Planck's constant -ft), j is the component

of the spin along the z-axis. Both ]' and j are quantised; both

are integers or half-integers. We all know that quantisation., the

discreteness of physical quantities is the essence of quantum

mechanics. The contact with representation theory of groups

automatically guarantees that j and j are quantised.

To state the vocabulary I shall henceforth use :- the totality

of the (2j + 1) states (i. e. the (2j + 1) vectors)

labelled with the two quantum numbers j and-js j3« j will-be designated

as a (2j+l)-fold multiplet consisting of (2j + 1) components cor-

responding to a representation of 0q of dimensionality (2j --• 1).

The multiplet of particles is directly associated with the basic set

oi independent vectors which correspond to a given irreducible

representation of the group. In the sequel we shall be faced with the

converse problem, given the dimensionality of a multiplet and the

labelling quantum numbers for the states, find the underlying

invariance group. In particle physics the task of the experimental

physicist in recent past has been to classify more and more particles,

more and more resonances, in multiplets, each distinct multiplet being

characterised by the value of some (one suspects) Casimir invariant. The

task of the symmetry physicist has consisted in identifying the

possible invariance group for the underlying dynamics. Once the

group is known, the conservation laws - like the conservation of

angular momentum - which are implicit in the invariance postulate,

then provide a whole host of new and testable relations between

experimental magnitudes.

- 4 -
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2. "KINEMATIC" CLASSIFICATION OP PARTICLES -

THE INTERNAL SYMMETRIES

I have discussed the quantisation of spin of a system at rest

in terms of the compact group ()„. The automatic manner Ui

which representation theory of groups takes care of the discreteness

of physical quantities, and gives rise to a multiplet structure

set the pattern for all future classification schemes in particle

physics. To illustrate I shall have to go briefly over the experimental

situation in the subject as it has developed from the year 1926 onwards.

Around 1926, two so-called elementary particles were known

to physics; the proton and the electron. These are tiny chunks
-24

of matter; the proton with a mass of around 10 . grams, the

electron some 2000 times lighter. Both are electrically charged,

the proton positively and the electron negatively. They were

elementary in the sense that all matter - all the 92 atoms - were

then (erroneously) believed to be made from just these two objects.

Protons and electrons are not just simple chunks of matter.

Both these particles carry intrinsic spin; group theoretically

the particles corresponded to the spinor representation of 0 , with

j = 1/2, 3,= 1/2, -1/2. In the vocabulary I have used earlier

the proton (or the electron) formed a two-fold (2j + 1 = 2) multiplet.

The two possible states of a proton represented by ] j = 1/2, j =+l/2>

and 1 j = 1/2, j = - l /2> were also called the states of left and

the states of right polarisation by the physicist.

The astonishing thing about these two particles was - and

still is - the numerical equality of the electric charge they carried.

The masses of the electron and the proton are so different. Thc-

electric charge, like angular-momentum, seems however to be

quantised - quantised in integral multiples of just one fundamental

unit. This is a most mysterious fact but one which we must in-

corporate in our description of nature.

With the success of the group theory ideas in understanding

quantisation of spin, the pattern seemed clear for a group-theoretic

description of charge-quantisation. The group-representations of
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a rotation-group in two-dimensions are labelled as is well known

by positive or negative integers. Assume that there exists a two-

dimensional "internal" space - call it the "charge space", and

assume that all equations of motion are invariant for rotations in

this space. This rotation-invariance will imply, through the

quantum mechanical procedure sketched earlier both charge-

quantisation as well as charge-conservation. The pattern is

the same as that for the three-dimensional rotation group; the

logical argument is the same. The difference however is that

contrasted to the three-dimensional physical space the new twin-

dimensions of "charge space" apparently possess no direct physical

significance. The space has conveniently been called the "internal

space", associated perhaps with some internal structure of protons

or electrons. Even so no-one has had the courage actually to write

equations of motion displaying an explicit dependence on the co-

ordinates of this space. Put it another way; in the case of space-

rotations, the rotation group itself is physically significant and

not only the infinitesimal generators JL , J~, J,,. For the internal

space, the rotation itself is hardly significant at all; it's only

the Algebra of the infinitesimal generators and their eigenvalues

which make physical sense. The internal-symmetry physicist

has no use for the Group: he has ample use for its Algebra.

Till 1930, the only known "internal" characteristic of an

elementary particle was just this one quantised entity - the electric

charge. In 1930, with Chadwick's discovery of the neutron, there

came a break. The neutron was the third "elementary particle";

it was almost as massive as the proton but carried no electric

charge. The proton and the electron attracted when close together

through the intermediacy of the classical electrostatic force. For

a proton-neutron system, the electrical force was naturally irrelevant

since the neutron carried no electrical charge. Two neutrons, or

a proton and neutron,however?did exhibit a strong attraction when

close to each other. This clearly was a new force of nature. At

comparable distances one found empirically that it was at least one iv,-;

- o -



drcd times stronger than the electrical force. Thus to an excellent

approximation - to the approximation that one could neglect electrical

forces relative to the nuclear - protons and neutrons were two

states of just one single entity - the so-called nucleon.

Now one had encountered the situation of a particle existing

in one of two possible (polarisation) states before. One had seen

that a spin j proton or an electron possesses two polarisation

states 1 j = | , jg = +l> and | j = | , j = - |> . Could one once

again invent a new "internal" space - three dimensional this time -

and invent three infinitesimal rotation generators I,, Io, !„, with
L O Q

commutation relations

i ] k
I.
k

The spinor representations of this new group could then be identified

with the nucleon. This suggestion originated with Kemmer, Heisenberg,

Breit and several others around ;1934-38. The new "internal-space"

was named the "isotopic space"; the nuclei, which are composites

of nucleons, formed multiplets, corresponding to the irreducible

representations of the isotopic-rotation group. All nuclei carried

isotopic-spin, in addition of course to the ordinary spin which hence-

forth I shall call Poincare" spin.

The next development in particle physics came in 1935 with

some speculations of Yukawa. Yukawa recalled that all accelerating

electric charges emit electro-magnetic radiation in accordance with

Maxwell's laws. The quantum aspects of the electro-magnetic force

are the photons. Yukawa raised the question; what is the analogue of

a photon for the nuclear force? What type of radiation do nucleons

emit when they are accelerated? He conjectured that there exist

in nature photon-like objects, the so-called mesons, particles

with masses intermediate between electrons and nucleons, which

are emitted by accelerating nucleons. From the group-theoretic

point of view, these particles,if they did exist/would once again

correspond to irreducible representations of the isotopic group.

Further,if like photons 'these are emitted - shed by nucleons - singly
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at a t ime, conservation of isotopic spin would demand that their

I-spin be integral and not half-integral .

Yukawa's ideas were put forward in 1935. These were

persuasive ideas; the search for the part icles was interrupted

by the war, but just after, in 1947, Professor F . C. Powell

announced the discovery of the Yukawa par t ices - the so-called

"pions". There were three pions, corresponding to an isotopic

spin 1 = 1,

1 = 1, I 3 - 1 >

JT° -> | I = 1, Ig = 0 >

7T -» | I = 1, Ig = -1>

The Poincare' spin J of the part icles turned out to equal zero .

These part icles , in contrast to nucleons,were spinless. Summarising,

the classification scheme of part icles concerned with the nuclear

force (and let us recal l that the electron is not one of such particles)

proceeds in t e r m s of three characer t i s t i cs : -

(1) An "external" character is t ic , Poincare' spin J, Group-

space 0

(2) Two "internal" charac ter is t ics ,

(a) Isotopic spin, Group-space O1

(b) Elect r ic charge Q, Group-space O" .

The internal symmetry associated with isotopic spin was not an

exact symmetryj it was exact only if electromagnetic forces were

neglected in comparison with the nuclear forces.

Note the l inear relation :-

Q = I + i for nucleons

= I for mesons
o

We will encounter the general relation of which the above are

special cases later; it is clear,however, that a relation oi this
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type would imply a connection between the charge-space O" and

the isotopic space O'

After 1947 came further experimental discoveries . A whole

host of new objects were discovered; part icles with different

m a s s e s , charges , Poincare' and isotopic spins. By no s tretch of

imagination could one call these "elementary par t ic les" , any

more . But whether these were or were not composites of any

simpler entities one had to find a quantum description for these.

In January 1964 the situation could be summarised as follows:-

As a result of patient and painstaking experimentation,

both with cosmic rays and the giant acce le ra tors at CERN, Brook-

haven, Dubna, Berkeley and elsewhere, one could classify the

newly-discovered par t ic les into the following multiplets:-

(1) 8 par t ic les of Poincare' spin \ (the nucleon family)

(2) 9 par t ic les of Poincare' spin 3/2 (excited nucleons)

( 3 ) 8 mesons of Poincare" spin zero

(4) 9 excited mesons of Poincare' spin one.

It is i r relevant for my purposes to go into details concerning these

multiplets; in part icular , the identifying nomenclature etc. within

a multiplet is completely i r re levant . However there is one

common point I need to i l lustrate about these multiplets, and

for this I shall refer to the 8-fold nucleon multiplet which consisted

of the following "components" :-
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A°

I Q Y -
3

P ) I \ 1 1

n J \ 0 1

i f | 1 1 0

0 0 0

-1 -1 0

TABLE 1

This 6-fold of particles - all of nearly equal mass., all of same

Poincare' spin - consists of 4 distinct isotopic multiplets

(p,n), (A), (E'E £ ) and (2 ? £ ). For each multiplet empirically

the quantum number Y ( =2(Q - I,J)-the so-called hypercharge -

possesses the same (integral eigenvalue). Fixing on I and Y,

clearly there must exist a higher symmetry group, a higher

invariance,perhaps a group of rank 2 since we are dealing with

at least two simultaneously diagonalisable operators Io and Y.

That there was some higher symmetry at work in the physics

of the nuclear interaction was clear quite early, around 1956-1957.

That the way to progress lay along a systematic search for a

compact group of rank 2 was only very imperfectly understood

till 1961. The major uncertainty in the approach was of course

always experimental. I have blandly stated that the nucleon
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multiplet was found to consist of 8 members, all of Poineare"

spin \ t and I have specified the I-spins and hypercharge Y for

each particle as if every experimentally discovered object

carried a chain around it with a label on which one could read

off its characteristics. In real life things are never like this;

till this day for example one does not experimentally know with

more than 95% statistical confidence that the Poincare' spin of

the £ and 'Z. particles is indeed |*h. My colleague Professor P.r.

Matthews has given an illuminating illustration of the difficulties

which beset the work of an experimental physicist. There is

only one experiment a particle physicist can performs he can

scatter one set of particles off another and by counting the numbers

which fly off in a collision in a given direction try to find the spins

and isotopicr spins,etc., of the different end-products. It's like

playing a hose of water on a statue in a dark room and being allowed

to collect the water that splashes off from the statue's face. One

can appreciate the hardships of the experimental physicist if one

were posed the problem of delineating the statue's features by

measuring only the quantities of water that splashed off per

square inch of its surface.

Returning to the classification problem, there are but four

semi-simple Lie groups of rank two, A , B , C and G One of

the most misleading aspects of the situation was the tradition that

seemed established from the days of classical physics in the subject

of using rotation groups like O" and O It may sound extremely

trite to you but one of the important break-through's was to realise

that since one was using two-valued representations of the. groups

concerned, the isomorphism of O with A & U? could be exploited

to pose the problem of internal symmetries in the following manner:-

Associating I-spin with the group structure Ug

and associating hypercharge Y with the group structure XL,

find a group of rank two which possesses both U and U as sub-

groups, and has an 8-dimensional representation with the independent

vectors, with characteristics indicated in the Table 1.
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There

Once again let me stress, no working physicist can ever

state a physical problem in this form except after the event.

are so many reservations, so many hesitations, so much one must

take on trust and^most difficult of all,so much one must discount.

But this,don't forget,is after all the joy of discovery in physics.

Stated in the form I have used above,the problem had one

solution; the higher symmetry group must be A ^;U^j this solution

was first proposed by the Japanese physicists - Oknuki, Ogawa

and Saw ad a in 195 9. The U symmetry was named "unitary

symmetry". Unfortunately the Japanese authors made a wrong

physical identification of particles; the representations of the

group they happened to choose did not decompose in the manner

of Table 1. A later version given simultaneously and independently

in 19 61 by M. Gell-Mann in California and by Y. Ne'eman working

at Imperial College fitted facts better.

This was encouraging, but not encouraging enough. In

addition to the 8-fold multiplet of nucleons, there was also the

other multiplet consisting of 9 excited nucleons with the following

assignments:- T

N*++

3/2

N
0

- J

* +

Y

Y'

o

-1

TABLE 2
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Now there is no S-component irreducible representation of the

group U(3)j the nearest whose (U x U ) decomposition would

yield the eigenvalues shown in Table 2 for the generators IQ and

Y must contain 10 objects. One crucial particle was missing;

a particle which from the group-theoretic structure of the rep-

resentation concerned must possess 1=0, Y = - 2. The empirical

formula Q = I + Y/2 would give its electric charge as -1. The

particle was given the name £f in absentia. The fate of the U(3)

symmetry hung on its discovery.

This as I said earlier was the situation in January 1964.

In February 19 64, among a scan of millions of photographic bubble-

chamber pictures, two fT's were discovered at Brookhaven. The

production and decay of these particles is spectacular; the fact

that there are just two known specimens of the particle made them

highly precious. The higher symmetry scheme UQ was fully
o

vindicated; the "isotopic-spin" group U had been generalised

to the "unitary-spin" group LL as the still higher, the still more

embracing, symmetry of the nuclear force.

The next lot of developments came pretty soon after, in

September 1964. And these were still more spectacular. At this

stage, as I said earlier, one had a total of 4 complete multiplets:-

N (nude on) J = i , number of particles 8

N (excited nucleon) J = 3/2, number of particles 10

M (meson) J = 0. number of particles 8

M (excited mesons) J = 1. number of particles 9

TABLE 3
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One had two va r i e t i e s of quantum n u m b e r s : -

(1) External , Poincare ' -spin; group s t ruc tu re 0 ^ U •

(2) Internal , I -spin and hypercharge Y; group s t ruc tu re !!„

Now when counting the numbers of pa r t i c l e s in any in terna l U(3)

mult iplet , no account had been taken of spin polar iza t ions , of spin

mult ipl ici ty. Supposing we do t r e a t each Poincare ' spin polar izat ion

as dis t inct ; the count would then be a s fol lows:-

N (nucleons) J = •§ 8 x (2J + 1) = 16 dist inct pa r t i c l e s

N* (excited nucleons)J-f,10 x (2J + 1) = 40 " "

M (mesons) J = 0, 8 x (2J + 1) = 8.

M' (excited m e s o n s ) J = l , 9 x (2J + 1) = 27

In September 1S64, the question was ra i sed ; i s it conceivable

that one did have in na ture a symmet ry higher than U(3), a symmet ry

compr is ing both "external1 1 Poincare ' spin and the ' ' in te rna l" unitary

spin for which al l nucleons - both those which we have called

excited and those that a r e unexcited - appear as just one multiplet-

and the same thing happening possibly for m e s o n s . Could we possibly

obl i terate the distinction of ex terna l and in te rna l s y m m e t r i e s ? Could

we think up a symmet ry group with both U(3) and U(2) as subgroups?

The obvious candidate was U(6). This was t r ied in September 1964

by F . Gursey , LB Radicati,, and B. Sakita. Among its i r reduc ib le r e p -

resen ta t ions U(6) does p o s s e s s two r ep re sen ta t i ons , with dimensional i t ies

35 = 8+27 and 56 = 16 + 40. These p rec i se ly a r e the numbers of

dist inct known pa r t i c l e s . On the face of it U(6) could be the

st i l l higher symmet ry of nuc lear in te rac t ions we were looking for .

The impor tance of U(6) was th i s : other pa r t i c l e s may now

be discovered exper imenta l ly ; we would expect them to cor respond

to higher r ep re sen t a t i ons of the U(6) group. The k e y - s y m m e t r y s e e m s

to have been d iscovered . The compact group U(6) s e e m s to combine

internal as well as external spin attributes.
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3, DYNAMICAL CONSIDERATIONS AM) NON-COMPACT

GROUPS

So far so good. One was making progress but where was the

dynamics? How was one to understand this merging of the "external"

Poincare' and the "internal" unitary spin? But even before one

could look at the problem in depth, one should give the technical

problem connected with spin a clearer perspective.

I presented earlier the theory of Poincare' spin, starting with

the symmetry group of rotations in three-dimensional space.

This may be adequate for a system at rest but for a moving system

one must use relativistic kinematics. One must consider invariance

for space-time rotations; one must consider the Lorentz group.

Now the Lorentz group is a non-compact group. All its

unitary representations are infinite-dimensional. For identification

with the finite multiplets of spinning particles we would like to

use the finite-dimensional representations.

The Dirac-Wigner resolution of this perplexing dilemma

is well known. Within the group-theoretic context, Wigner was

the first to realize clearly that for spin-representations, it was not

the homogeneous Lorentz group which was relevantj it was the

invariance for the inhomogeneous group - the group which includes

four translations in addition to the 6 rotations, the so-called

Poincare' group - which was of importance. Wigner was the first

to study in a classic paper of 1939 in Annals of Mathematics, the

unitary representations of the Poincare' group. As is well known,

this was the beginning of the theory of induced representations.

Wigner was able to show that one could indeed define a unitary

norm for the finite-dimensional representations of the homogeneous

Lorentz group provided the four translations were properly taken

into account. For particle-like representation of the inhomogeneous

Lorentz group - i, e, for representations for which the Casimir
2 2 2 2 2

invariant P = P -P, -Po-P_ possesses positive eigenvalues,

the second Casimir invariant
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2 (P i

(J X - LJL

2 2 2
reduces to the 0 invariant J, + Jo + JQ we have encountered

before, in the rest frames of the particles concerned. Dirae

of course/vvith his great physical insight,had generated precisely

such representations of the Poincare" group in 1928 using his

electron equation.

The moral for the systematics of particle physics was

clear. If one wished to work with a relativistically invariant

symmetry scheme which should (1) incorporate 11(3), (2) provide

a unitary norm for finite-dimensional representations, one must

consider as the minimal acceptable extension, the non-compact in-

homogeneous group SL(6,C). This would be the minimal group

with both SL(2, C) (the homogeneous I^orentz group) as well as

U(3). as subgroup. And its maximal compact subgroup is indeed

U(6) - the group we have been exploiting for the particle multiplets.

This was a suggestion made by B. Sakita and W. Ruhl early this

year.

For reasons which I cannot go into here ray colleagues Drs.R.

Delbourgo, J. Strathdee and I (and independently Sakita, Wali, Beg and

Pais in USA) preferred to work with a larger (inhomogeneous) non-

compact group U(6, 6). Our ignorance of mathematical literature in

January 1965 when this work was done was so abysmal, and our pro-

cedure was so completely motivated by "the dynamical requirements oi'

physics that once we had fixed on the type of non-compactness we need or

we gave it a new name; we called the group U(12), U(12) because it fell

in the sequence of U(l), U(2), U(3) and U(6); -^Twiddle to display its

non-compact character. The group U(6, 6) contains SL(6,C) as a sab-

group, its maximal compact sub-group being U{6) x U(6). It rep-

resented a symmetry higher than the SL(6,C).

At this stage one must remember one is not just trying to

reproduce the multiplet structure of elementary particles. The

intention is deeper - the intent is to make a go at the dynamics.
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Again it would take me too far from my present topic to discuss

what we achieved. Suffice it to say, we succeeded brilliantly

in parts. In the exuberant days of January and February when

we were investigating what is called the three point function, we

felt we had solved the whole of nuclear physics. When we came

next to the four point function, the naive application of the sym-

metry ideas gave some predictions which agreed with experiment

and others which did not.

One could trace the reasons for the successes with the three

point function and the failure with the four point quite readily.

The inhomogeneous U(6, 6) group contains 143 translations and

143 rotations. The physical space-time allows for just 4 trans-

lations. The remainder were the translations in the internal

spaces. The inevitable, the honest corollary of marrying space-

time invariance with internal symmetries, should be to treat all

the translations at the same level. Even we were not prepared

to do so. We approximated to the physical situation by breaking

the exact invariance in selecting a sub-set of translations,; We

could trace back in this approximation procedure,and the residual

symmetries it left,the seeds of our successes and also our failures.

Are approximate internal symmetries something one should

feel ashamed about? At the present stage of the subject's develop-

ment there is only one answer:' . No. As I empahsised earlier,

apart from the conservation of charge and conservation of Poincare*

spin, no other internal symmetry is exact. You may recall

very early in my lecture I said the proton and the neutron are two

components of the same physical entity, the nucleon, to the

extent that one can neglect electro-magnetism. Recall that this

(approximate - approximate to one part in a hundred) identity

of the proton and the neutron was at the heart of the isotopic

spin concept. The entire classification based on the isotopic group-

and,per se, the unitary group - was approximate. With the in-

homogeneous U(6, 6) the idealisation is carried still furtherj

the symmetry is exact if one considers all the 143 translations.
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The physical situation with just 4 translations is an approximation

to it. The moral was; one must learn to sharpen one1 s mathematical

approximation technique for application to the four point function.

I have described so far one aspect of the use of non-compact

groups in recent physical theory. There is a completely different

aspect which is also currently being developed. Recall that the

major problem with the non-compact groups is the unitarity of

their representations. All finite dimensional representations of

such groups are non-unitary; it's only the infinite-dimensional

representations which are unitary. If to each component of a

unitary multiplet there corresponds a distinct particle or a

distinct energy level, clearly the infinite-dimensional represent-

ations are not too pleasant to work with. This is because one

does not always have in physics an infinity of particles or an

infinity of energy levels to correspond to the infinite dimensionality

of the representation. Following Dirac and Wigner one has

tended to escape this dilemma for spin-multiplets by postulating

invariance for an inhomogeneous group structure. The intro-

duction of translations then allowed us to use the finite dimensional

representations, the unitarity of the norm being restored through the

translations in accordance with ideas of induced representations.

But there are some situations in physics where we do indeed

possess an infinity of energy levels and one might perhaps use

the infinite-dimensional unitary representations without involving

the inhomogeneous group. One of the most famous of these cases

is the case of the Hydrogen atom - the very first system to be

studied in quantum theory. This case is so instructive that I shall

give it in some detail. The Hamiltonian for the hydrogen atom

in a — potential has the form

2 2

H = £- - e/r
2m '

where, as usual, we postulate that _r and p are conjugate operators

following the standard rules of quantum mechanics;
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i. e. r = x., £ = p.

[x,,, p. ] = ith 5..

The angular-momentum operator has the conventional definition :-

_J = £ x p_

Define now the so-called Lenz-vector

It has been known since 1936, with the work of Hulthen, Bargmann,

Fock and others that the operators J and the operators M = •• p^ A

close on the Algebra of the coxnpact group SO{4). Notice the

very curious manner in which the Hamiltonian makes its appearance.

The representations of the relevant SO(4) are given in terms

of two numbers (k, 1) where

K = | (J + M)

L = 1 (J + M)

2 2

There is one further restriction K - L- = 0 which follows

from the equations of motion. The hydrogen energy levels are

therefore among the infinite sequence of SO(4) representations
with k = S. : -

(0,0); (i,i-) (1,1); (3/2, 3/2);

As I remarked earlier this is a very special problem, a very

special Hamiltonian and very special group structure which has

emerged.

Where do non-compact groups come into this? Quite recently

Barut, Budini and Fronsdal and Gell-Mann, Ne'eman and Dothan

have made the remark that one can introduce four additional non-

compact generators N which when commuted with Ĵ  and _M close

on the Algebra of SOfl, 4). Further,one representation of this non-
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compact group consists of the entire infinite sequence

(0,0), &£). (1,1), 3/2, 3/2),-

mentioned above. For this very special problem then the non-

compact group SO(1, 4) is the correct dynamical group. Perhaps

there are other cases where non-compact groups might likewise

solve completely the dynamics of the system.

Now no progress is possible in the consideration of non-

compact groups and the application of the ideas sketched above

till at least one knows the sequences of unitary representations

of these groups. This is the prime essential. In this respect

it is crucial to remember one thing. As you may see in all my

recital, the physicist revels in discrete numbers; it is there-

fore the so-called degenerate series which are usually of interest

to him. Further his emphasis is always on the Algebra, on the

diagonalisation of the generators and usually not with the group

or the function space it acts on. After the representation theory

is available will come the heart-breaking task of reducing products

of representations. Even in our wildest of hopes we cannot

believe that mathematicians will lift a finger to help us solve

this problem. But perhaps we shall be pleasantly deceived 1-
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