INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

THEORY OF CORRECTIONS TO UNITARY SYMMETRY FORMULAE*

G. Furlan

Istituto di Fisica dell Università, Trieste
F. Lannoy
C.E.R.N., Geneva
C. Rossetti**
C.E.R.N., Geneva
G. Segrè

Istituto di Fisica dell'Universita, Torino

TRIESTE
June 1965

[^0]
SUMMARY

A systematic analysis of the equal time commutation relations of the generators of an algebra with certain physical operators is made. A method is then introduced whereby considering matrix elements of such commutators between physical one-particle states and using completeness and invariance under spacemime translations, corrections to broken symmetry group theoretical formulae are obtained. Several appliaations to weak electromagnetic and strong interactions are then made.

One of the most powerful tools for studying the physics of elementary particles has been the use of symmetry groups. In particular, $\mathrm{SU}_{3}{ }^{1}$ has led to very many well-verified predictions ooncerning the classificstion and behaviour of elementary particles and promising results appear a.lso to follow from the application of still higher symmetry groups.

It is nevertheless still not well understood why some of the group theoretical predictions are so good despite the fact that the breaking of the symmetry is large and the group theoretical results correspond to a quasi-perturbation theoretical approach in this breaking.

We shall present a method for studying in some cases the correctjons to simple group theoretical formulae and thereby attempt to achieve an understanding of the validity of these results. A first step along this dection has been taken in Refs. (2) and (3) in which the renormalization of the weak interaction current vertex due to symmetry breaking was estimated. This paper will be devoted to a generalization of the method and to its application to a wider class of problems.

The method is based on studying the equal time commutators of the generators of the group algebra, as constructed from the integral over all space of the fourth components of the currents. This method has been repeatedly emphasized by GELL-MANN 4 over the course of the past few years and has the advantage that the commutation relations remain unchanged even when the symmetry is broken and therefore the currents are no longer conserved.

We shall show how to construct a scheme for evaluating corrections to group theoreticsl formulae by a judicious use of commutators, completeness and invariance under space-time translations.

Sections 2 and 3 contain a general outline of the method wich was applied in Refs. (2) and (3) to the renommalization of the weak current and bhow how it may be generalized to treat a wider class of problems. Section 4 treats the influence of kinematical factors and the choice of frame of reference for evaluating the corrections and Section 5 shows how the corrections may be evaluated. The method is finally applied to mass formulae in Section 6 and to relations between electromagnëtic form factors in Section 7. An appendix containing some numerical resultis
on the evaluction of corrections to mass formulae is also included; they are in reasonable agreement with experiment,

2. GENERAL OUTIINE OF THE METHOD

One of the fundamental consequences of the invariance of a theory under a group is the existence of a set of conserved currents TH associated with the group transformations. The fourth components of these currents, integrated over all space, which we shall call generalized "charges" are the generators of the infinitesimal transformations of the group (at time t)

$$
\begin{equation*}
Q_{\sigma}(t)=\int J_{0}^{(\sigma)}(\bar{x}, t) d^{3} x \tag{2.1}
\end{equation*}
$$

If we asslume the symmetry to correspond to a (semi-simple) Lie group, the generalized charges satisfy the equal time commutation relations

$$
\left[Q_{\sigma}(t), Q_{\rho}\left(t^{\prime}\right)\right]_{t=t^{\prime}}=C_{\sigma \rho}^{6} Q_{G}(t)
$$

where the $\mathbb{C}_{G}^{G}{ }^{G}$'s are the structure constants of the Lie algebra. In the following, we shali always employ the generators in the standard form. Recalling the Racah notation 5 , we label as Q i the mutually-commuting (always at equal times) generators and Q_{α} those corresponding to the non-null roots α. In a given representation the operator Q_{α} connects the state $|m\rangle$ belonging to a wejght m only with the state belonging to the weight $\boldsymbol{m}+\boldsymbol{\alpha}$.

$$
\begin{equation*}
\langle\mu+\alpha, \vec{p}| Q_{\alpha}\left|m, \vec{p}^{\prime}\right\rangle=c(\alpha, m) \delta^{(3)}\left(\vec{p}-\vec{p}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

Where $C(\alpha, \omega)$ is a constant determined by the group structure. For instance, if we consider the state belonging to the highest weight M of a given representation, we have

$$
\left\langle M_{i} \vec{p}\right| Q_{\alpha}\left|M-\alpha_{1} \vec{p}^{\prime}\right\rangle=\sqrt{M^{\prime} \alpha_{i}} \delta^{(3)}\left(\vec{p}-\vec{p}^{\prime}\right) \quad\left(2.2^{\prime}\right)
$$

the $\alpha ;$'s being the components of the root α.
The equal time comatation relations hold even when the symmetry is broken, that ie to eay when the currents are not all
conserved, and the $Q_{\text {gre }}$ no longer constants in time. A set of one-particle states, however, which formed an irreducjble representation of the group in the symmetry limit now contains admixtures of other representations as the states are eigenstates of the total Hamiltonian which contains both a symmetry-preserving and a symmetry-breaking part. The action of this symmetry breaking is then reflected in the matrix element of Q_{α}, which now equals

$$
\begin{equation*}
\langle\mu, \vec{p}| Q_{\alpha}\left|m-\alpha, \vec{p}^{\prime}\right\rangle=C(\alpha, m) F^{|\alpha|}(p) \delta\left(\vec{p}^{\prime}-\vec{p}\right) \tag{2.3}
\end{equation*}
$$

and, in the particular case of the highest weight

$$
\left\langle M_{1} \vec{\beta}\right| Q_{\alpha}\left|M-\alpha, \vec{j}^{\prime}\right\rangle=\sqrt{M_{i \alpha i}} F^{(\alpha)}(p) \delta\left(\vec{p}^{\prime}-\vec{p}\right)
$$

the deviation of $\boldsymbol{F}^{(\alpha)}$ from unity being a measure of the symmetry breaking* It is then clear that the above-defined quantity $F^{(\alpha)}$ is simply connected with the quantity $G^{(\alpha)}$ considered in I and II (which in the limit of zero momentum transfer is the renormalized coupling constant), $F^{(\alpha)}=G^{(\alpha)} / G_{0}^{(\alpha)}$. In addition Q_{α} now has also non-vanishing matrix element between one- and many-particle states. The reason for this is that a multiplet of particles transforming (in the symmetry limit) as an irreducible representation of our group no longer has well-defined transformation properties under all group rotations, but only under tho wish leave unchanged the total Hamiltonian, i.e., which correspond to constants of the motion.

We have already said that the deviation of $F(\alpha)$ from unity, i.e., of $G^{(\alpha)}$ from $G_{0}^{(\alpha)}$, is a measure of the symmetry breaking; another is given by the matrix element of the commutator of the total Hamiltonian H and a "charge" Q_{α} between ne-particle states and many-particle states; it is, of course, clear that Q_{α} commutes with the symmetry-preserving part H_{S} of the

[^1]Hamiltonian, but no longer with the breaking part H_{B}. Then the non-vanishing matrix elements of the $\mathcal{Q}_{\alpha}^{\prime s}$ between one- and manyparticle physical states can be connected with those of $\left[Q_{\alpha}, H\right]$ because

$$
\begin{equation*}
\langle M| Q_{\alpha}|m\rangle=\frac{\langle M|\left[Q_{\alpha}, H\right]|m\rangle}{E_{m}-E_{M}} \tag{2.4}
\end{equation*}
$$

where $|n\rangle$ stands for a m-particle state and E_{x} is the total energy of the $|x\rangle$ state. In the limit of exact symmetry the numerator in the r.h.s. of (2.4) vanishes being of order f, where \mathcal{F} is a dimensionless coupling constant characterizing the strength of the symmetry-breaking Hamiltonian.

In this paper we will examine how, by an appropriate use of the Lie algebra of the group and of completeness, we can treat a wide class of phenomena in order to obtain, as a first approximal-. dion, relations valid in the exact symmetry limit, and then the corrections to these relations due to the approximate validity of the symmetry in nature.

As for the applications of our method in this paper we shall no noncerned only with SU_{3} implications; in so far as SU_{3} is concerned we shall employ the de Swart convention ${ }^{6}$ for the generators. We define the generalized charges corresponding to the non-zero roots of SU_{3} as

$$
\begin{equation*}
Q_{A}^{(\pm)}=\int\left(J_{C}\right)_{A}^{(\pm)} d^{3} \times \sim A^{(\pm)} \tag{2.5}
\end{equation*}
$$

$A=I_{1} k, L$.
Were the symbol \sim means: "has the same SU_{3} transformation properties as". The I -like operators are translation operators in the I-spin subspace, in the sense that they connect states With $\Delta I=1$; in the same manner the L-like operators are translation operators in the U-spin subspace and the same is for the K-like operators in the V-spin subspace (see Fig. 1). For the generators corresponding to the null roots we choose $Q_{3} \sim I_{3}$ and $Q_{y} \sim Y$ (the hypercharge). In some cases we use also the electric charge $Q=Q_{3}+\frac{1}{2} Q_{Y}$.

Fig. 1

In what follows we often use the commutators of the total Hamiltonian H with the "charges" $Q_{A}^{ \pm}$. We define:

$$
\begin{align*}
& {\left[Q_{A}^{ \pm}, H\right]=\mp N_{A}^{ \pm}} \tag{2.6}\\
& (A=I, K, L)
\end{align*}
$$

It is clear that, if

$$
H=H_{S}+H_{B}
$$

H_{s} being the symmetry-preserving part and H_{B} the symmetrybreaking part of the Hamiltonian, as long as we consider a breaking which transforms under SU_{3} like hypercharge, then $N_{\kappa}^{ \pm} \sim K^{ \pm}$ and $N_{L}^{ \pm} \sim L^{ \pm}$whereas $N_{I}^{ \pm 3}$ is zero.

From (2.6) and (2.5) and making use of the dynamical equation

$$
\left[Q_{A}^{ \pm}, H\right]=i \dot{Q}_{A}^{ \pm}
$$

we can write

$$
N_{A}^{ \pm}=\mp i \int \frac{\partial}{\partial t}\left(J_{a}\right)_{A}^{ \pm} d d^{3} x=\mp i \int\left(\partial_{\mu} J_{\mu}\right)_{A}^{ \pm} d^{3} x
$$

and putting

$$
\left(\partial_{\mu} J_{\mu}(x)\right)_{A}^{ \pm}=D_{A}^{ \pm}(x)
$$

we have

$$
\begin{equation*}
\left[Q_{A}^{ \pm}, H\right]=\mp N_{A}^{ \pm}=i \int D_{A}^{ \pm}(x) d^{3} x \tag{2.7}
\end{equation*}
$$

where the $D_{A}^{ \pm}$are Lorentz scalars.
As far as we are concerned, we shall always consider matrix elements of operators between physical states, i.e. eigenstates of the total Hamiltonian; we have then, using (2.7), the following -5-
relation between the matrix element of a N_{A} and the corresponding Q_{n} :

$$
\begin{equation*}
\langle a| N_{A}^{ \pm}|b\rangle= \pm\left(E_{a}-E_{b}\right)\langle a| Q_{A}^{ \pm}|b\rangle \tag{2.8}
\end{equation*}
$$

E_{x} being the total energy of the state $|x\rangle$: If $|a\rangle$ and $|b\rangle$ ere one-particle states belonging, in the symmetry limit, to the same irreducible representation, then $E_{Q}=E_{b}$ as long as the Hamiltonian preserves the symmetry, and we find obviously that N_{A} is zero; but if the symmetry is broken by a part of the Hamiltonian of strength $!$, we find that $\left(E_{a}-E_{b}\right)$ is a quantity off), ie. a measure of the broken symmetry. On the contrary if $|a\rangle$ and $|b\rangle$ do not belong to the same representation, then, as already stressed, the matrix elements of $Q_{A}{ }^{*}$ can be different from zero only if the symmetry is broken and, in this case, they are of the first order in the breaking as one easily sees by reading (2.8) in reverse order:

$$
\begin{equation*}
\langle a| Q_{A}^{ \pm}|b\rangle= \pm \frac{\langle a| N_{A}^{ \pm}|b\rangle}{E_{a}-E_{b}} \tag{2.9}
\end{equation*}
$$

and noting that N_{A} is of order f by its definition, whereas $E_{a}-E_{b}$ has, in this case, nothing to do with the breaking. By using (2.7) we can also write the matrix elements of the Q_{A} is as

$$
\begin{equation*}
\langle a| Q_{A}^{ \pm}|b\rangle=-i(2 \pi)^{3} \frac{\langle a| D_{A}^{ \pm}(a)|b\rangle}{E_{a}-E_{b}} \delta\left(\vec{p}_{a}-\vec{p}_{b}\right) \tag{2.10}
\end{equation*}
$$

a form which will prove to be very useful and often employed.
Consider now a physical operator M, whose matrix elements are measurable, and assume that it has well-deftyed transformation properties under group rotations, say

$$
\begin{equation*}
\left[Q_{n}, M\right]=M_{A} \tag{2.11}
\end{equation*}
$$

M_{f} being determined from the group algebra. One can then obtain * In the following, we shall call such matrix elements the "offsymmetry" matrix elements.
relations between the matrix elements of M and those of M Teak. ing the matrix element of (2.1.1) between two suitable one-particle states $|a\rangle$ and $|a '\rangle$, which, of course, are taken to belong to the same irreducible representation in the symmetry limit, and using completeness we have

$$
\begin{aligned}
& \langle u| M_{A}\left|a^{\prime}\right\rangle= \\
& \quad=\sum_{\alpha}\left\{\langle u| Q_{A}|\alpha\rangle\langle\alpha| M\left|a^{\prime}\right\rangle-\langle\alpha| M|\alpha\rangle\langle\alpha| Q_{A}\left|\alpha^{\prime}\right\rangle\right\}^{(2.12)}
\end{aligned}
$$

Of course, in the symmetry limit only the one-particle intermediate states $\left|\alpha_{j}\right\rangle$ belonging to the same representation as $\langle a\rangle$ and $\left|a^{\prime}\right\rangle$ contribute to the sum; we can then write (2.12) in the fora

$$
\begin{aligned}
& \langle u| M_{A}\left|u^{\prime}\right\rangle= \\
& \quad=\Sigma_{i}\left\{\langle u| Q_{A}\left|a_{i}\right\rangle\left\langle u_{i}\right| M\left|u^{\prime}\right\rangle-\left\langle u^{\prime}\right| M_{\mid}\left|a_{i}\right\rangle\left\langle a_{i}\right| Q_{A}\left|a^{\prime}\right\rangle\right\}+C
\end{aligned}
$$

were, calling $\neq \alpha$ the sum over all physical states which do not belong to the same irreducible representation as and a^{\prime},

$$
\begin{align*}
C=\not Z_{\alpha}\{ & \left\{\alpha\left|\hat{Q}_{A}\right| \alpha\right\rangle\langle\alpha| M\left|a^{\prime}\right\rangle- \tag{2.14}\\
& \left.-\langle a| M|\alpha\rangle\langle\alpha| \varphi_{A}\left|a^{\prime}\right\rangle\right\}
\end{align*}
$$

ie genro in the symmetry limit and should be regarded as a (small) correction term to the relation

$$
\begin{aligned}
& \langle Q| M_{A}\left|a^{\prime}\right\rangle= \\
& =\sum_{-i}\left\{\left\langle\alpha^{\prime}\right| Q_{A}\left|a_{i}\right\rangle\left\langle a_{-i}\right| M\left|a^{\prime}\right\rangle-\left\langle a_{1}\right| M\left|a_{i}\right\rangle\left\langle u_{i}\right| Q_{A}\left|a^{\prime}\right\rangle\right\}
\end{aligned}
$$

Fain as a first approximation.
Ninth the ais o (2, 20) the convection term can be written as

$$
\begin{equation*}
C=i(2 \pi)^{3} \neq \alpha\left\{\frac{\langle a| D_{A}(0)|\alpha\rangle}{E_{\alpha}-E_{\alpha}}\langle\alpha| M|\alpha\rangle \delta\left(\vec{p}_{\alpha}-\vec{p}_{\alpha}\right)\right. \tag{2.16}
\end{equation*}
$$

$$
\left.-\langle u| M|\alpha\rangle \frac{\langle\alpha| D_{A}(\alpha)\left|\alpha^{\prime}\right\rangle}{E_{\alpha^{\prime}}-E_{\alpha}} \delta\left(\vec{b}_{\alpha^{\prime}}-\vec{r}_{\alpha^{\prime}}\right)\right\}
$$

The breaking or the symmetry is explicitly taken into account by $D_{A}(0)$ and therefore if we are not interested in still higher order corrections in the symmetry breaking we may take the symmetry init values of all other quantities. This means, for instance, That the mass of the particle a can be considered as equal to \therefore At of particle a^{\prime} and that the matrix elements of M in (2.16) af oe calculated in the symmetry limit. This is a consistent Morkure when the symmetry breaking is not too large. We would Fire so emphasize, however, that our method is not equivalent 0 a perturbation theoretical one in that we make use of the fact $\therefore \therefore$ No states $\langle a\rangle$ are physical eigenstates to take the physical , ales for the matrix elements of M in (2.15) and not just a \cdots. $\therefore, 4$ is then, as we have stated before, caused by the fact that te states $|a\rangle$ do not transform like an irreducible representation a" the symmetry group, but contain admixtures to all orders in f. " strow representations.

? STU RULES

From the formula (2.13) we can, by specifying the nature of tho Mi operator, obtain a large number of sum mules connecting the Various matrix elements of M with those of M_{A}.

Te shall in this section examine the most interesting results \therefore \% obtain if we choose for M some particular operators.
(i) First of ail, we can identify M with another generator \cdots better, generalized charge Q_{A}; in such a case, the commuter :na mile

$$
\begin{equation*}
\left[Q_{A}, Q_{A^{\prime}}\right]=c_{A A^{\prime}}^{A^{\prime \prime}} Q_{A^{\prime \prime}} \tag{3.3}
\end{equation*}
$$

\therefore CAA $_{A}^{A}$ being the structure constants of the algebra) allows us \therefore obtain relations between coupling constants. In particular, in : mw II it was shown how to obtain relations between the bare waling constant of a current and the renomalized one by considerLag the commutator of opposite charges. Taking the commutator

$$
\begin{equation*}
\left[Q_{\alpha}, Q_{-\alpha}\right]=\alpha^{i} Q_{i} \tag{3.2}
\end{equation*}
$$

between physical states corresponding to the highest weight of a given irreducible representation one has

$$
\begin{equation*}
\left\langle M(p)\left[Q_{\alpha}, Q_{-\alpha}\right] \mid M\left(p^{\prime}\right)\right\rangle=\alpha^{i} M_{i} \delta\left(\vec{p}-\vec{p}^{\prime}\right) \tag{3.3}
\end{equation*}
$$

and then, inserting in the commutator a complete set of intermediate physical states, if follows that

$$
\begin{equation*}
\left\{F^{(\alpha)}(p)\right\}^{2} \delta\left(\vec{p}-\vec{p}^{\prime}\right)+\delta\left\{F^{(\alpha)}(p)\right\}^{2}=\delta\left(\vec{p}-\vec{p}^{\prime}\right) \tag{3.4}
\end{equation*}
$$

Were the term in $\left\{F^{(*)}\right\}_{i s}^{\hat{z}}$ the contribution of the one-particle intermediate state corresponding to the weight $M=\alpha$ (see formula (2.3)) and $S\left\{F^{(a /}\right\}^{2}$ is given by the contribution of all other states in the completeness relation. As it has been discussed in i and IT, the fact that the matrix elements of Q_{∞} between ar oneparticle and a manymarticle state is $\mathcal{O}(f)$ implies that the usivesion of $\left\{F^{(x)}\right\}^{2}=\left\{G^{(\alpha)} / G_{0}^{(\alpha)}\right\}_{\text {from unity is } O\left(f^{2}\right) \text { reproducing }}$ the result of ADmOTLO and GAmP ${ }^{7}$. An examination of tire connection term $\mathcal{S} F^{2}$ then allows us to determine the magnitua. ah th deviation. In II we have done, as an example, the explicit eveluatron of the renormalization of the strangeness changing vector current due to the breaking of SU_{3} symmetry under some simplify ing assumptions (as the one of taking into account only the lowest mass intermediate states sad so on obtaining for δF^{2} the verne of. 0.067 which leads us to the conclusion that tho renomalization effect due to the breaking of SU_{3} does not change the universality relation in any remarkable way.
(ii) The second case we shall consider is that in which M \therefore an $N_{f}-1$ ike operator, i.e. the case in which Mitself is a commutator of a change \mathcal{O}_{A} and the total Eamiltonian; this allows us to obtain elutions, valid at the first order in the breaking, among the energies o. the various particles belonging $-9-$

So e riven supermilviplet in the symmetry fimit. Taking suitable ifuits one obtains then "mass formulae". Interesting results can Rieo be obtained taking, instead of N_{A}, its "densing" D_{A}. Goraceches the commator between a Q_{A} and a D_{A} we shall do bur wiles which interconnect directly the masses of the particies. Anj in the symmetry linit we are led to the SU_{3} mass fomulee. \because rain difterence between these relations and the ones obtained \% concidering N_{A}-like operators is that in this case we have no $" a$ aiori" choice between linear and quadratio mass fomulae. \cdots An the commatator between Q_{A} and N_{A} we obtain linean or wavetioness Somulee, for both bosons and fermions, as differm \therefore a Limits of our erengy relations. This is a consequenoe on work$\therefore \because \therefore$ no invariant operators.

On the contrary, is we take the commutator between a Q_{A} and \therefore Dit we are led to a coveriant expression which now involves asses for fermions and squared masses for bosons.

Mese two cases will be discussed in Section 6 where we show $\therefore \omega$. ae e simple application of our method, one can derive the Crabical SU_{3} mass Comulae and discuss the possibility of evaluaThe o(f^{2}) comrections. An explicit evaluation of the correctSons is also acne for the case of pseudoscalar mesons.
(iii) Fruitof information can also be obtainea by consicerwa tie case in which M represents a current. A previous \because Fraision of much a type of commatator has been done in I. In : o.... ? of the poosent paper we shall discuss the particular case e electromegnetic curnent and we shall see how our method Anges us to obtain relations mong the form factors of different
 \therefore : brocking.
\therefore a particuler case, we easily obtain the classioal SU_{3} \therefore ansas anong magnetio moments. We notice that the corrections \therefore trib onse of the first order in the strength oi the breakas to the fact that while the off-symmetry matrix elements of O'd ane suitil, the aene does not happen for the correspondjr: curwents whinh could have off-symmetry matrix elsments difer-

The sum rules we obtain in the various cases have a common structure as we have shown in the general treatment of Section 2. A11 our sum rules are of the type (2.13), i.e., we have a relation velid as a first approximation in the symmetry limit and a correotion term which takes into account the breaking of the symmetry. Ciearly, any relation of (2.13) type actually constitutes a continuous set of sum rules depending on which value we teke for the momenta of the considered external particles. A complete disoussion of our cum rules car thus not be done without an examination of the various - rames of reference.

The problem of the dependence of our relations on the common Fonentum \vec{p} (and consequently of the best sum rule) is a display a ? the fact that the method based on the introduction of the energy denominators gives a non-covariant separation between the single-and many-particle contributions. In other words, though the choice of the frame of reference does not change the physical content of the sum rule, it gives a different splitting between the zero order terms and the corrections. In particular, starting Iron: the same relation, one can obtain sum rules which look formally Qifferent by taking different values of \vec{p} *. In the following section we shall then be concerned with the problem of the choice of the frame of reference and we shall see that in some cases, there exists an "a priori" frame in which one can define the best sum mule, i.e. the one for which the correction is smallest.
A. TIE CHOICE OF THE FRAME OF REFERENCE

Olearly, a deteiled discussion of the correction (2.14) and its explicit evaluation depends first of all on the nature of the operato. M. We shall then distinguish between the various cases $\cdots \sin$ Scetion 3.

[^2](a) We shall first refer to the case in which M is itself a "charge". If M is a charge, $M=Q_{A}$, so is M_{A}, as the "charges" satisfy the commutation relation of the group algebra. A particular case of that type has been discussed in detail in I, where it was shown that the correction was smallest in the frame $\left.\ddot{p}^{*}\right) \rightarrow \infty$ (\vec{p} being the three-momentum of the external particle). We shall merely sketch the argument of I : if $M=\hat{Q}_{A}$, the correction term (2.14), taking into account (2.10), can be written as
$$
C=\bar{H}_{\alpha}\left(C_{\alpha}^{\prime}-C_{\alpha}^{\prime \prime}\right) \delta\left(\vec{p}_{4}-\vec{r}_{\alpha}\right)
$$
where
\[

$$
\begin{equation*}
C^{\prime}=(2 \pi)^{6} \frac{\langle\mu| D_{A}(\alpha)|\alpha\rangle\langle\alpha| D_{A},(\alpha)\left|\alpha^{\prime}\right\rangle}{\left(E_{\alpha}-E_{\alpha}\right)^{2}} \delta\left(\vec{p}_{\alpha}-\vec{p}_{\alpha}\right) \tag{4.2}
\end{equation*}
$$

\]

and analogously for $C_{a}^{\prime \prime}$, where, as previously said, we have put $E_{a}=E_{Q}$. Now, for kinematical reasons

$$
\langle a| D_{u}(a)|\alpha\rangle=\frac{d_{A}^{\alpha}\left(\Delta^{2}\right)}{\sqrt{4 E_{\alpha} E_{\alpha}}} \frac{1}{(2 \pi)^{3}}
$$

Where $\Delta^{\hat{2}}=\left(p_{\alpha}-p_{\alpha}\right)^{2}$ and $d_{A}^{i \alpha}\left(\Delta^{2}\right)$ is a Lorentz invariant function; then, dropping the functions, C ' can be written in the form

$$
\begin{equation*}
C^{\prime}=\frac{d_{A}^{\alpha \alpha}\left(\Delta^{2}\right) d_{\alpha}^{\alpha \alpha^{\prime}\left(\Delta^{2}\right)}}{m_{\alpha}^{2}-m_{\alpha}^{2}}\left(\frac{E_{\alpha}+E_{\alpha}}{\sqrt{4 E_{\alpha} E_{\alpha}}}\right)^{2} \tag{4.4}
\end{equation*}
$$

where we have taken into account that $E_{a}=\left(m_{u}^{2}+\vec{p}^{2}\right)^{t / 2}$ and, as a consequence of the δ function $E_{\alpha}=\left(m_{\alpha}^{2}+\vec{p}^{2}\right)^{1 / 2}$. The kinematical factor in the brackets reaches its minimum value one foriphemand its maximum of $\left(m_{\alpha}+m_{4}\right) / 4 m_{\alpha} m_{4}$ for $f \rightarrow 0$ and $d_{A}^{\alpha \alpha}\left(\Delta^{2}\right)$ is expected to be an increasing function of the time-like variable $\Delta^{2}=\left(\rho-p_{a}\right)^{2}=$ $=\left(E_{X}-E_{a}\right)^{i}$, so that the minimum of $\mathcal{A}_{A}^{2 \alpha}\left(\Delta^{2}\right)$ should also be reached Et $|\vec{m}| \rightarrow \infty$, i.e. when $\Delta^{2} \rightarrow 0$.

Unfortunately the effect of the kinematical factors is not Eimays so unambiguous, as we shall see explicitly when we treat the case of the mess formulae. The above discussion was presentod only as an example of the type of analysis winton should be
performed prior to making an explicit evaluation of the corrections due to intermediate many-particle states.

This particular case, in which the frame $|\vec{\beta}| \rightarrow \infty$ is a privileged one, has been extensively studied in Ref. (3). Nevertheless, we will treat it also here as a good example of the method for calculating the corrections of the form (2.14) to a sum rule in the frame $|\vec{p}| \rightarrow \infty$.

If limit ourselves to the two-particle intermediate state contributions, then Eq. (4.2) becomes

$$
C_{\alpha}^{\prime}=(2 \pi)^{6} \int \frac{\left.\langle a(p)| D_{A}\left|\alpha_{i}\left(p_{1}\right) \alpha_{z}\left(p_{2}\right)\right\rangle\left\langle\alpha_{1}\left(p_{1}\right) \alpha_{2}\left(p_{2}\right)\right| D_{A^{\prime}}\left|\alpha^{\prime}(p)\right\rangle\right)}{\left(E_{1}+E_{z}-E_{a}\right\rangle^{2}} d^{3} p_{i} d^{j} p_{z} \delta\left(\vec{p}_{i}+\vec{p}_{z}-\vec{p}\right)
$$

$$
=\frac{1}{(2 \pi)^{3}} \frac{1}{2 E_{\alpha}} \int \frac{d^{3} p_{i} d^{3} p_{2}}{4 E_{1} E_{z}} \frac{\delta\left(\vec{p}_{1}+\vec{p}_{z}-\vec{p}\right)}{\left(E_{1}+E_{z}-E_{a}\right)^{2}} \phi_{\text {inv }}^{\alpha}
$$

$\phi_{\text {ins }}^{\alpha}$ being a Lorentz invariant function depending on the invariants of the problem. To take the limit $|\vec{p}| \rightarrow \infty$ we transform (4.5) to a more useful form by means of the substitution

$$
P=p_{1}+p_{2} ; \quad y=p_{1}-p_{2}
$$

and wa choose as invariants

$$
S=P^{2} ; \quad \Delta^{2}=(P-p)^{2} ; \quad p \cdot q
$$

By integrating over $d^{3} P$, we rewrite (4.5) as

$$
\begin{equation*}
C_{\alpha}^{\prime}=\frac{1}{2} \frac{1}{(2 \pi)^{3}} \cdot \frac{1}{2 E_{a}} \int \frac{d s}{\sqrt{p^{2}+s}} \frac{1}{\left(\sqrt{p^{2}+s}-\sqrt{\vec{p}^{2}+m_{u}^{2}}\right)^{2}} J^{\alpha}(s) \tag{4.6}
\end{equation*}
$$

where

$$
J^{\alpha}(s)=\int d^{4} q \delta\left\{(P+q)^{\varepsilon}-4 m_{i}^{2}\right\} \delta\left\{(P-y)^{q}-4 m_{i}^{2}\right\} \theta\left(p_{i}+q_{0}\right) \theta\left(p_{0}-q_{u}\right) \phi^{\alpha}\left(s, \Delta^{2}, r q\right)
$$

In the limit| pi $\rightarrow \infty$ we have $\Delta^{2}=0$; we can then evaluate the invariant integral of in any frame where $\Delta^{2}=0$. In particular, we can choose the frame $\vec{p}=0, p_{0}=m_{\mu} ;$ in that frame,
from $\nu=\Delta^{2}=(P-r)^{Q}$, we have $P_{0}=\left(s+m_{2}^{2}\right) / 2 m_{4}$ and from $S=P_{0}^{2}-\vec{P}^{2}$ follows $|\vec{P}|=\left(s-m_{a}^{2}\right) / \& i m_{a}$. In this way we obtain in the limit $|\vec{j}| \rightarrow \infty$

$$
\begin{aligned}
& \mathcal{J}^{\alpha}(s)=\frac{\pi}{2} \frac{1}{s-m_{a}^{2}} \int_{\eta_{1}}^{\eta_{2}} d \eta \phi^{\alpha}\left(s, \Delta^{2}=0, p \cdot q=\eta\right) \\
& \eta_{1,2}=\frac{s+m_{4}^{2}}{2 s}\left(m_{1}^{2}-m_{2}^{2}\right) \mp \frac{s-m_{\alpha}^{2}}{q s} \sqrt{\left\{s-\left(m_{1}-m_{2}\right)^{2}\right\}\left\{s-\left(m_{1}+m_{2}\right)^{2}\right\}}
\end{aligned}
$$

and taking the limit in (4.6), we finally obtain

$$
\begin{equation*}
\lim _{1 \rightarrow i \rightarrow \infty} c_{\alpha}^{\prime}=\frac{\pi}{2} \frac{1}{(2 \pi)^{3}} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{d s}{\left(s-m_{\alpha}^{g}\right)^{3}} \int_{\eta_{1}}^{\eta_{2}} d \eta \phi^{\alpha}\left(s, \Delta^{2}=0, p \cdot y-\eta\right) \tag{4.7}
\end{equation*}
$$

The above formula is useful for numerical computations, but it is surely not the most elegant one. Writing down the limit of (4.6) as

$$
\lim _{|\vec{p}| \rightarrow \infty} c_{\alpha}^{\prime}=\frac{1}{(9 \pi)^{3}} \int \frac{\mathcal{N}^{s}}{\left(S-m_{\alpha}^{2}\right)^{q}} \lim _{\left(\lim _{1 \rightarrow \infty}\right.} \mathcal{J}^{\alpha}(s)
$$

using the formal equality

$$
\int d s=\frac{2 m_{a}^{2}}{\pi} \int \frac{d^{4} p}{p^{2}-m_{u}^{2}} \delta\left\{(p-p)^{2}\right\}
$$

and reintroducing our original variable p_{1} and p_{2} one has finally

$$
\begin{align*}
\lim _{(\hat{p} \rightarrow \infty} C_{\alpha}^{\prime}= & \frac{2 m_{2}^{2}}{(2 \pi)^{4}} \int \frac{d^{4} p_{1} d^{4} p_{2}}{\left\{\left(p_{1}+p_{2}\right)^{2}-m_{\alpha}^{2}\right\}^{3}} \delta\left\{\left(p_{1}+p_{2}-p\right)^{2}\right\} \delta\left(p_{1}^{2}-m_{1}^{2}\right) \delta\left(p_{2}^{2}-m_{2}^{3}\right) . \\
& \cdot \theta\left(p_{10}\right) \theta\left(p_{2}\right) \phi^{\alpha}\left\{\left(p_{1}+p_{2}\right)^{2}\left(p_{1}+p_{2}-p\right)^{2},\left(p_{1}-p_{2}\right) p\right\} . \tag{4.8}
\end{align*}
$$

This is a covariant expression for the two -particle contribution to the correction at $|\vec{p}|=\infty$ and this form can be immediately generalized to many-perticle intermediate state contributions.
(b) The second case we are interested in is that in which M is itself a commutator between a "charge" $Q_{A^{\prime}}$, and the total Hamiltonian: $\quad M=\left[H, Q_{A}\right] \equiv N_{A^{\prime}}$
-14-

The expression for the correction in this ease is analogous to the one of the previous case; the only difference lies in the fact, that in the formula corresponding to (4.2) only one energy denominator appears

$$
\begin{equation*}
C_{\alpha}^{\prime}=(2 \pi)^{6} \frac{\langle\alpha(p)| D_{n}|\alpha\rangle\langle\alpha| O_{n}\left|\alpha^{\prime}(p)\right\rangle}{E_{\alpha}-E_{a}} \delta\left(\vec{p}-\vec{P}_{\alpha}\right) \tag{4.9}
\end{equation*}
$$

so that the correction behaves like $1 / p$ as $\left|\tilde{p}_{0}\right| \rightarrow \infty$. Of course, also the fundamental term which constitutes the particular case of (2.15), behaves like $4 / p$ as $|\vec{p}| \rightarrow \infty$. We are thus interested in the evaluation of the $\lim _{\text {Pl om }} p C$ and it is easily shown that the Formula

$$
\begin{gather*}
\lim _{\left(\ddot{p}_{1} \rightarrow \infty\right.} \frac{2 m_{1}^{2}}{(8 \pi)^{4}} \int \frac{d^{4} p_{1} d^{4} p_{2}}{\left\{\left(p_{1}+p_{z}\right)^{2}-m_{4}^{2}\right\}^{2}} \delta\left\{\left(p_{1}+p_{2}-p_{p}^{2}\right\} \delta\left(p_{1}^{2}-m_{1}^{2}\right) \delta\left(p_{2}^{2}-m_{2}^{2}\right)\right. \\
\cdot S\left(p_{1_{6}}\right) \theta\left(p_{z_{2}}\right) \quad \phi\left\{\left(p_{1}+p_{2}\right)^{2},\left(p_{2}+p_{2}-p\right)^{2},\left(p_{1}-p_{1}\right) \cdot p\right\} \tag{4.10}
\end{gather*}
$$

analogous to (4.8) holds: However, the framel|$\vec{p} \rightarrow \infty$ does not have such a preferred character as in the preceding case and one should also be interested in the frame $\vec{p}=0 ;$ taking the $\vec{p}=0$ limit at the stage analogous to the (4.6) one obtains immediately

$$
\lim _{1 p \rightarrow \infty} C_{\alpha}^{\prime}=\frac{\pi}{s m_{a}} \frac{1}{(2 \pi)^{3}} \int \frac{d s}{s^{3 / 2}} \frac{\sqrt{\left(S-\left(m_{1}-m_{2}\right)^{2}\right\}\left\{s-\left(m_{1}+m_{2}\right)^{2}\right\}}}{\sqrt{s}-m_{a}} \phi_{0}^{\alpha}(s)(4.11)
$$

the invariant function ϕ^{α} in the $|\vec{p}|=0$ limit becoming a function of S only.

$$
\text { (s' If, instead of } N_{n} \text {, we. consider its density } O_{n}(v) \text {, }
$$ the expression we obtain for the corrections is slightly different because we have no momentum conservation between $2(p)$ and $a^{\prime}(p)$. He obtain in this ouse

$$
\begin{equation*}
C=\psi_{\alpha}\left(C_{\alpha}^{\prime}-C_{\alpha}^{\prime \prime}\right) \tag{4.12}
\end{equation*}
$$

$$
\begin{align*}
& C_{\alpha}^{\prime}=i(2 \pi)^{3} \frac{\langle a(p)| D_{A}(0)|\alpha\rangle\langle\alpha| D_{A^{\prime}}(0)\left|a^{\prime}\left(p^{\prime}\right)\right\rangle}{E_{\alpha}-E_{a}} \delta\left(\vec{p}-\vec{p}_{\alpha}\right) \\
& C_{\alpha}^{\prime \prime}=-i(2 \pi)^{3} \frac{\langle a(p)| D_{A}(0)|\alpha\rangle\langle\alpha| D_{A}(0)\left|\alpha^{\prime}\left(p^{\prime}\right)\right\rangle}{E_{\alpha}-E_{a}} \delta\left(\vec{p}-\vec{p}_{\alpha}\right) \tag{4.13}
\end{align*}
$$

If we choose the system $\vec{p}^{\prime}=\vec{\beta}$ the correction reduces (apart from a $-i(2 \pi)^{3}$ factor) to the above-discussed form (2.9) and then we can use (4.10) for the explicit evaluation of the oorrections in the frame $|\vec{f}| \rightarrow \infty$. A further discussion on the choice of the frame in this case will be carried out in Section 6.
(c) Finally we shall examine the case in which the operator M is not directly connected to the breaking of the symmetry, i.e. the case in which the matrix elements of M between oneand many-particle states are not of order f, but are different from zero also in the exact symmetry limit. This is the case. in which M represents, for instance, the electromagnetic current. A two-particie intermediate state correction term is given by (see (2.16)):

$$
C_{\alpha}^{\prime}=i(\nu \pi)^{3} \frac{\langle a(p)| D_{n}(0)\left|\alpha_{1}\left(p_{i}\right) \alpha_{2}\left(p_{2}\right)\right\rangle}{\bar{E}_{1}+E_{2}-E_{a}}\left\langle\alpha_{1}\left(p_{1}\right) \alpha_{2}\left(p_{2}\right)\right| M\left|\alpha^{\prime}\left(p^{\prime}\right)\right\rangle \delta\left(\vec{p}_{1}+\vec{p}_{2}-\vec{p}\right)
$$

The answer, if any, to the question in whioh frame the correction is the smallest, clearly depends in the asymptotic behaviours of M the matrix elements of M, and nothing can be said until we specify the nature of M.

5. DISPERSIVE EVALUATION OF THE CORRECTIONS

For an explicit evaluation of the corrections to our formulae, we need to be able to calculate the ϕ^{α} functions, which in turn requires a knowledge of the matrix elements of the function $D_{A}(0)$ between one- and many-particle states. We shall limit ourselves to the contribution of two-particle states, though our treatment is, in principle, generalizable.

We start by considering the Lorentz invariant quantity*

$$
\begin{equation*}
R=\sqrt{(q \pi)^{3} s E(p) E\left(p_{1}\right) E\left(p_{z}\right)}\langle a(p)| D_{A}(o)\left|\beta_{1}\left(p_{1}\right) \beta_{z}\left(p_{2}\right)\right\rangle \tag{5.1}
\end{equation*}
$$

In this expression it is understood (see Eq. (4.9)) that R is multiplied by a δ^{3} function which guarantees three-momentum conservation $\vec{p}=\vec{p}_{1}+\vec{p}_{2}$. To visualize the fact that there is no fourmomentum conservation we introduce a time-like vector $\Delta=\left(p_{1}+p_{2}-p\right) ; \Delta^{2}=\left(E_{1}+E_{z}-E\right)^{2}$. Then we consider Δ^{2} as the (mass) ${ }^{2}$ of an effective spurion which carries off the energy, and which is described by the field $D_{A}(0){ }^{*}$, so that it has the transformation properties of D_{A} under internal and spatial symmetries. The fact that it is coupled to our system is a display of the breaking of the symmetry and, of course, the "coupling constant" is of the order of f. In other words, R can be considered as describing the scattering process $a+$ spurion $\rightarrow \beta_{1}+\beta_{z}$

Fig. 2
R will depend on the inveriant variables

$$
\begin{align*}
& s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p\right)^{2}, \quad u=\left(p_{2}-p\right)^{2} \\
& p_{1}+p_{2}=p+\Delta, \quad s+t+u=m_{2}^{2}+m_{1}^{2}+m_{2}^{2}+\Delta^{2} \tag{5.2}
\end{align*}
$$

and to evaluate it we shall use a dispersion-like approach. This means that we assume for R analyticity properties in s, t, u with the poles and cuts required by unitarity. Then we shall do a "pole

[^3]approximation" by retaining only the pole contributions. In this way, the final result will depend on physical parameters only (i.e., physical matrix elements evaluated for special values of the kinematical variables) and, in particular, it will be shown that R in this approximation can be expressed in terms of the physical mass differences, without any hypothesis on the transformation properties of the symmetry-breaking Hamiltonian.

To make things clearer it is convenient to work out an explicit example. Let us consider the case where $D_{n}=D_{\kappa}^{+}$and a is " π " $\beta_{1} a \quad " \rho_{"}$ and β_{2} a " $K_{"}$ meson dropping charge indices. As to the analyticity properties of R in this case, we can say that in the variables there are a pole at $s=m_{a}^{q}$ and a cut starting from $\left(m_{n}+2 m_{n}\right)^{2}$, in the variable u a pole at $u=m_{*}^{2}$ ond a cut for $u \geqslant\left(3 m_{\pi}\right)^{2}$, in the variable t a pole at $t=m_{n}^{2}$ and a cut for $t \geqslant\left(m_{k}+2 m_{k}\right)^{2}$. Graphically, the situation is pictured in Fig. 3

As we mentioned at the beginning, we shall limit ourselves to the pole approximation in all applications. This approximation is in agreement with the whole spirit of our calculation and we believe it can give a reasonable indication for the total correction.

Now, on invariance grounds, we may write

$$
\begin{equation*}
R(s, t, \mu)=\left(p \cdot \varepsilon^{(\rho)}\right) R_{1}+\left(p_{2} \cdot \varepsilon^{(\rho)}\right) R_{z} \tag{5.3}
\end{equation*}
$$

(where $\varepsilon_{\mu}^{(\rho)}$ is the ρ-meson polarization vector) and for each R_{i} we shall take an expression of the form

$$
\begin{equation*}
R_{i} \simeq \frac{A_{i}}{s-m_{k}^{2}}+\frac{B_{i}}{t-m_{k^{*}}^{2}}+\frac{C_{i}}{u-m_{W}^{2}} \quad i=1, e \tag{5.4}
\end{equation*}
$$

where A_{i}, B_{i}, and C_{i} are the residua at the poles and they can be expressed in terms of matrix elements of physical operators between physical states. In particular, they are given by matrix elements of $D_{i,}$ and of strong currents between one-particle states.

To be more definite let us study in detail the contribution at the $S=m_{n}^{2}$ pole. Using standard reduction techniques, we find $\langle\pi| D_{k}^{+}(0)|\bar{k} \rho\rangle=i \int d^{4} x\langle\pi|\left[D_{n}^{+}(0), J_{\mu}^{(P)}(x)\right]|\bar{k}\rangle \frac{\partial\left(-x_{0}\right) \xi_{\mu} e^{-i p_{1} x}}{\sqrt{(2 \pi)^{3} \ell E_{1}}}(5.5)$. and the corresponding discontinuity around the \bar{k}-pole at $s=m_{k}^{q}$ is

$$
\begin{equation*}
\frac{\pi(2 \pi)^{3 / t}}{\sqrt{2 E_{1}}} \sum_{\alpha=\bar{k}} \delta^{4}\left(p_{1}+p_{2}-p_{\alpha}\right)\left\langle\pi i D_{k}^{+} \mid \bar{K}_{\alpha}\right\rangle\left\langle\bar{K}_{\alpha \alpha}\right| J \cdot \varepsilon|\bar{k}\rangle \tag{5.6}
\end{equation*}
$$

Next we introduce the definitions

$$
\langle\pi(p)| D(o)\left|\vec{K}\left(p_{\alpha}\right)\right\rangle=\frac{1}{(2 \pi)^{3}} \frac{1}{\sqrt{4 E E_{\alpha}}} F\left\{p_{\alpha}^{2}, m_{\pi}^{2},\left(p_{\alpha}-p\right)^{2}\right\}
$$

$$
\left\langle\bar{K}\left(p_{\alpha}\right)\right| J \cdot \varepsilon\left|\bar{K}\left(p_{z}\right)\right\rangle=\frac{1}{(2 \pi)^{3}} \frac{1}{\sqrt{4 E_{2} E_{\alpha}}}\left(\varepsilon \cdot p_{2}\right) G\left\{m_{\alpha}^{2}, p_{\alpha}^{2},\left(p_{\varepsilon}-p_{\alpha}\right)^{2}\right\}
$$

where F and C_{i} are the form factors describing the corresponding \therefore.....phiivu) and (ko)vertices. We find for Eq. (5.6)

$$
\begin{equation*}
\frac{\pi(z \pi)^{3 / t}}{\sqrt{2 E_{1}}} \delta\left(s-m_{k}^{2}\right) F\left(s=m_{k}^{2}, m_{n}^{2}, \Delta^{2}\right) C_{1_{k}}\left(m_{k}^{2}, s=m_{n}^{2}, m_{p}^{q}\right) \tag{5.8}
\end{equation*}
$$

and the coefficient of the δ-function is just the residuum at the pole. The quantity $C_{k}\left(m_{k}^{2}, m_{k}^{2}, m_{\rho}{ }^{2}\right)=g_{\rho k \kappa}$ is the $\rho k \kappa$ coupling constant while $F\left(m_{k}^{2}, m_{\pi}^{2}, s^{2}\right)$ will be discussed later. Using analogous considerations the following can be derived in a straightforward way:

$$
\begin{align*}
& R_{1}=\frac{F\left(m_{k}^{2}, m_{\pi}^{2}, \Delta^{2}\right)}{m_{k}^{2}-5} g_{\rho_{k k}}+\frac{F\left(m_{p}^{2}, m_{k^{*}}^{2}, \Delta^{2}\right)}{m_{k^{*}}^{2}-t}\left\{1+\frac{m_{\eta}^{2}-m_{x}^{2}}{m_{k^{*}}^{2}}\right\} g_{k^{*} k \pi} \\
& R_{2}=\frac{F\left(m_{\pi}^{2}, m_{k}^{2} \Delta^{2}\right)}{m_{\pi}^{2}-u} y_{\rho ; \pi}+\frac{F\left(m_{p}^{2}, m_{k}^{2}, \Delta^{2}\right)}{m_{k^{*}}^{2}-t}\left\{1+\frac{m_{\pi}^{2}-u_{k}^{2}}{m_{k}^{2}}\right\} y_{k^{*} k \pi} \tag{5.9}
\end{align*}
$$

Our final step is the evaluation of \mathbf{F}. To this end, let us consider

$$
\langle\pi(p)| J_{\mu}^{\left(k^{*}\right)}\left|\bar{K}\left(p_{\alpha}\right)\right\rangle=\frac{1}{(2 \pi)^{3}} \frac{1}{\sqrt{4 E E_{\alpha}}}\left\{\left(p_{\alpha}+p\right)_{\mu} F_{1}\left(\Delta^{2}\right)+\left(p_{\alpha}-p\right)_{\mu} F_{2}\left(\Delta^{2}\right\}_{5.10}\right)
$$

where, as a manifestation of the non-conservation of the current $J_{\mu}^{\left(k^{*}\right)}(x)$, we have two form factors, $F_{i}\left(\Delta^{q}\right)$ and $F_{q}\left(\Delta^{\ell}\right)$. The matrix element of D_{k}^{+}then equals

$$
\begin{equation*}
\langle\pi(p)| D_{k}^{+}\left|\bar{k}\left(P_{d}\right)\right\rangle=\frac{i}{(2 \pi)^{3}} \frac{1}{\sqrt{4 E E_{\alpha}}}\left\{\left(m_{n}^{2}-m_{k}^{2}\right) F_{1}\left(s^{2}\right)-\Delta^{2} F_{2}\left(\Delta^{2}\right)\right\} \tag{5,12}
\end{equation*}
$$

By comparison, we obtain

$$
\begin{equation*}
i F\left(m_{k}^{2}, m_{n}^{2}, \Delta^{2}\right)=\left(m_{x}^{2}-m_{n}^{2}\right) F_{1}\left(\Delta^{2}\right)+\Delta^{2} F_{z}\left(\Delta^{2}\right) \tag{5.12}
\end{equation*}
$$

In particular, in the $\operatorname{limit}|\vec{p}| \rightarrow \infty, \Delta^{2} \rightarrow 0$ we obtain

$$
\begin{equation*}
i F\left(m_{k}^{2}, m_{n}^{q}, 0\right)=\left(m_{k}^{2}-m_{n}^{2}, F_{1}(0)\right. \tag{5.13}
\end{equation*}
$$

where $F_{i}(\sigma)=C_{k \pi}^{k+} \tau^{*}\left(\eta\right.$ being the renormalization ratio $\left.G / G_{0}\right)$ and then, in the symmetry limit, reduces to the simple $C_{\alpha \pi}^{\kappa^{*}}$ Olebsch-Cordan coefficient*

* In this respect, it is worthwhile mentioning the analogous result which holds for spin- $\frac{1}{2}$ particles. If we define

$$
\left\langle P_{i}\right| D_{A}\left|P_{1}\right\rangle=\frac{1}{(2 \pi)^{3}} \sqrt{\frac{m_{1} m_{1}}{E_{i} E_{2}}} \bar{u}_{2} u_{1} F^{A}\left[m_{1}^{2}, m_{2}^{2},\left(\beta_{1}-r_{2}\right)^{2}\right] \quad \text { (5.111) }
$$

it is easy to derive the relation

$$
\begin{equation*}
\text { i } F^{A}\left(m_{1}^{i}, m_{i}^{2} 0\right)=\left(m_{1}-m_{2}\right) C_{i 1}^{A} r^{A} \tag{1}
\end{equation*}
$$

With Eq. (5.13) our final goal is achieved and, in the limit $\left|\operatorname{Ha}^{2}\right| \rightarrow \infty$ we obtain for R_{i} (neglecting higher-order terms in the mass difference)

$$
\begin{align*}
& R_{1}=i C_{k \pi}^{k} g_{g_{k}} \frac{\left(m_{k}^{2}-m_{n}^{2}\right)}{S-m_{k}^{2}}+i C_{k+p}^{k} g_{k+k \pi} \frac{\left(m_{p}^{2}-m_{k}^{2}\right)}{t-m_{k}^{2}} \\
& R_{z}=i C_{k \pi}^{k} g_{j \pi \pi} \frac{\left(m_{n}^{2}-m_{k}^{2}\right)}{u-m_{\pi}^{2}}+i C_{k+\rho}^{k} g_{k=\pi} \frac{\left(m_{k}^{2}-m_{k}^{2}\right)}{t-m_{k}^{2}} \tag{5.14}
\end{align*}
$$

The fact that D_{x} is an operator which is proportional to the symmetry breaking is reflected by the R_{i} 's being proportional to the difference of masses of particles belonging to the same representation, namely π and k and ρ and $K *$. It is rather remarkable, however, that no assumption has been made on bow the symmetry is broken in calculating R (at least in the pole approximation). AII that has been used is the fact that our states are eigenstates of the total Hamiltonian. Regarding the possibility of improving our calculations, we notice that a simple way of taking into account the higher-lying states would be to ascribe a S - dependence to the form factors of Eq. (5.7). In. the same way we could "dress" every vertex introducing the final state interactions.
6. ON THE MASS FORMULAE AND THEIR CORRECTIONS
6.1 It is well known that in the symmetry limit the masses of all the particles in a given supermutiplet should be exactly the same, but if in the Hamiltonian a breaking effect of strength f is present, then the masses of the components will differ by a quantity $O(f)$. There exist, however, particular linear combinations of such mass differences which are valid up to a higher order in f; such combinations are the so-called mass formulae and their agreement with experimental data is expected to be particularly good (as long as f is not too large) as the corrections are expected to be $O\left(f^{2}\right)$. In particular, believing in 'SU 3 , if one makes some assumptions on the breaking Hamiltonian and treats the breaking as a small perturbam
tion, one gets the well-known relations among the masses of particles of a given supermultiplet ${ }^{9}$:

$$
\begin{align*}
& 4 k-3 \eta-\pi=0 \\
& 4 k^{*}-3 \omega 0-S=0 \tag{6.1}\\
& 2 N+2 \equiv-3 \lambda-\Sigma=0 \\
& N^{*}-y^{*}=y^{*}-E^{*}=\Xi^{*}-\Omega^{-}
\end{align*}
$$

where it is common convention to consider the particle symbols as their masses for fermions and as their squared masses for bosons; in the vector meson formula, moreover, one introduces the eighth component of the octet $\omega_{c}+\omega \sin +\varphi \cos \theta$, i.e., as a mixture of the physical particies ω and φ^{10}. It should, however, be emphasized that these conventions are introduced into the theory from the outside and they are not actually supported by any firm theoretical arguments: In particular, the choice between linear and quadratic mass formulae seems to be rather arbitrary, being really supported only by the agreement with experimental data. Te will show in this section how, using suitable commutation relations and completeness, one can obtain the SU_{3} mass formulae as a ifint of more general formulee.

As mentioned in Seotion 3, we can obtain mass formulae in two different ways. The first one, based on the consideretion of $N_{A}-$ like operators, provides actually relations which conmect the nergies ${ }^{l l}$ of the various constituents of a supermultiplet. Clearly, from these one obtains immediately relations among masses or squared masses (both for fermions amd bosons) by taking suitable iimits for the external momenta. It should be emphasized that both formulae, the linear and the quadratic one, bave actually the same validity in so far as SU_{3} and its breaking are concerned, the difference between the two consisting only in the role plaid by kinematical factors, as remarked in Section 2.

The second method, based on the use of the commutator between a "charge" Q_{A} and a "divergence" D_{A} requires the further assumption that the D_{A}^{\prime} s themselves belong to an octet. The relations
we obtain in this way are linear combinations of masses in the fermion case and of squared masses in the boson case; the coefficients, depending on some kinematical factors ana "form factors", reduce to the well-known coefficients of the SU_{3} mass formulae if we neglect corrections of order higher than two in the symmetry breaking. Thus, we obtain in this case linear mass formulae for fermions and quadratic for bosons, no matter which frame of reference we choose.

Moreover, our method enables us to evaluate explicitiy the second order corrections to the mass formulae; however, as we shall see later, it is not easy to establish in which frame of reference the corrections should be expected to be minimel, that is, there are no completely general arguments in fevour of a partioular frame of reference. Nevertheless, on the basis of some beuristic model we can believe that, at least in the second case, the frame $p \rightarrow \infty$ should be preferred.
6.2 We shall derive here the energy sum rules using the abovementioned method. To reach our goal, we remember now the definition (2.6) of the N_{A} operators. Then we assume, as usual, that the SU_{3} breaking part of the Hamiltonian (as far as the so-called seni-strong interactions are concerned) \sim the hypercharge \mathbf{Y}. It is then clear from the group algebra that $N_{A} \sim G_{A}$ and thus

$$
\begin{equation*}
\left[Q_{A}^{ \pm}, N_{A}^{ \pm}\right] .=0 \tag{5.2}
\end{equation*}
$$

Aと I, K, L.
I: we keep in mind that the operators Q_{A} and thus also N_{A}, are transiation operators in the A-spin subspace and we work in the V-spin subspece

$$
\begin{equation*}
\left.\left[Q_{k}{ }^{ \pm}, N_{k}\right]_{-}\right]^{0} \tag{6.3}
\end{equation*}
$$

or in the -spin subspace

$$
\begin{equation*}
\left[Q_{L}^{ \pm}, N_{L}^{ \pm}\right]_{-}=0 \tag{6.4}
\end{equation*}
$$

it is clear that one can obtain relations among the energies of the constituents of different I -spin multiplets in a given SU_{3} represent--23-
ation. It is simply a matter af taking matrix elements of (6.3) or (6.4) (between suitable one-particle states belonging in the whmetry limit to a given SU_{3} representation) using completeness and taking into account, as a first approximation, only the oneparticle intermediate states (belonging to the same irreducible representation).

Each single term one obtains in the development commutator, taking into account only the abovementioned states, is clearly Of), ss N_{A} itself is $O(f)$. The contribution of the remaining states is $O\left(F^{2}\right)$ and it constitutes the correction to the relation obtained which in First approximation (order p) equals zero.

If now, in the evaluation of the corrections, we limit ourselves to the f^{2} order it is clear that the matrix elements between ore-partiole states of the "charges" Q_{A} can be simply taken as Given by their symmetry limit since the introduction of $F^{(A)}$ contributes to the corrections only with terms $O\left(f^{3}\right)$, the difference between $F(A)$ Fid 1 being itself $O\left(f^{2}\right)$. In other words, we can use (2.2) instead O. (2.3) for the matrix elements of Q_{n}.

As a practical example, we shall consider the case of the pebucosoalar mesons; we consider then, for instance, the matrix element of (6.3) between K^{+}and K^{-}states. Introducing a complete set of physical intermediate states, expliciting the one-particle intermediate state contribution and using (2.8) and (2.14), we have

$$
\begin{align*}
& O=\left\langle k^{+}(p)\right|\left[Q_{k}^{+}, H_{k}^{+}\right]_{-}\left|k^{-}(p)\right\rangle=\left\langle k^{+}(p)\right| Q_{k}^{+}\left|n^{0}\right\rangle \\
& \left\langle\pi^{0}\right| H_{k}^{+}\left|k^{-}(p)\right\rangle+\left\langle k^{+}(p)\right| Q_{k}^{+}|\eta\rangle\langle\eta| H_{k}^{+}\left|k^{-}(p)\right\rangle \\
& -\left\langle k^{+}(p)\right| H_{k}^{+}\left|n^{0}\right\rangle\langle\pi 0| Q_{k}^{+}\left|k^{-}(p)\right\rangle- \\
& -\left\langle k^{+}(p)\right| H_{k}^{+}|य\rangle\langle\eta| Q_{k}^{+}\left|k^{-}\left(p^{\prime}\right)\right\rangle+C \tag{6.5}
\end{align*}
$$

:s that one finally has

$$
\begin{equation*}
4 E_{k}(b)-3 E_{r}(b)-E_{\pi}(b)=C \tag{6.6}
\end{equation*}
$$

where we have dropped the overall δ function which states that $\beta^{\prime}=\vec{F}$ and all the energies of the particles should be evaluated for the same value p of the three-momentum; the correction term C is given by

$$
\begin{equation*}
C=2(2 \pi)^{6} \not_{\alpha} \frac{\left\langle k^{+}\right| D^{+} k|\alpha\rangle\langle\alpha| D^{+} k|k-\rangle}{E-E_{k}} \delta\left(\vec{F}_{\alpha}-\vec{p}\right) \tag{6.7}
\end{equation*}
$$

which clearly shows the $O\left(f^{2}\right)$ character of C and is of the form of (4.9), as discussed in Section 4.

Eq. (6.6) represents a continuous set of mass sum rules, one Cor each value of the momentum, which contains the linear mass formula as the limit value for $p \rightarrow 0$:

$$
\begin{gather*}
4 \mu_{k}-3 \mu_{4}-\mu_{n}=C_{0} \tag{6.8}\\
C=2 \lim _{b \rightarrow 0} C \tag{6.9}
\end{gather*}
$$

and the quadratic one as the $p \rightarrow \infty$ limit

$$
\begin{gather*}
4 m^{2} k-3 \mu_{4}^{2}-m_{n}^{2} \geq C \infty \tag{6.10}\\
C_{\infty}=\lim _{p \rightarrow \infty} 2 p C \tag{6.11}
\end{gather*}
$$

In order to determine whether (6.8) or (6.10) is the a prior better relation, we shall compare the two corrections. For this purpose, we note that, if we write the physical masses as

$$
\mu_{a}=\mu_{0}+\delta_{a}
$$

Wiobeing the octet bare mass and $\delta_{\alpha} \subset(f)$ the renormalization effect due to the symmetry breaking. (6.8) gives

$$
4 \delta_{k}-3 \delta_{\psi}-\delta_{\pi}=c_{0}
$$

and (6.10)

$$
4 \delta_{k}-3 \delta_{4}-\delta_{\eta}=\frac{c_{\infty}}{2 \mu_{0}}-\frac{1}{2 \mu_{0}}\left(4 \delta_{k}^{2}-3 \delta_{n}^{2}-\delta_{n}^{2}\right)
$$

so that we should have

$$
C_{0}=\frac{C_{i n}}{2 \operatorname{Ln} 0}-\frac{1}{2 \sin }\left(4 \delta_{k}^{2}-3 \delta_{4}^{2}-\delta_{\pi}^{2}\right)
$$

In order to establish if there exists a better a priory mass fOrmula, we shall try to see if the further commotion in the $\overrightarrow{0}^{2} a^{\prime}$ s Mitch appear in the expression of the quadratic formula, improves a. Worsens the value of the correction. We are thus led to ampere $C o$ to $C o s / 2 u_{0}$. Remembering now (4,3) and taking into account tine fact that, as a consequence of the Wigner-Eckart theorem, one has

$$
\begin{equation*}
d_{A}^{a b}\left(\Delta^{2}\right)=C_{A}^{a b} d_{A}\left(\Delta^{2}\right) \tag{6.12}
\end{equation*}
$$

the $C_{A}^{a b}$ being the SU_{3} Ciebsch-Gordan coefficients. From (3.7) sa one say that C is a sum of terms of the type

$$
\begin{equation*}
C^{\prime}=C_{k^{+}}^{k^{+}} C_{k^{+}}^{\alpha k^{-}} \frac{\left.\sum d_{k+}\left(\Delta^{2}\right)\right\}^{2}}{u_{\alpha}^{2}-w^{2} k} \frac{E_{\alpha}+E_{k}}{4 E_{\alpha} E_{k}} \tag{6.13}
\end{equation*}
$$

were $E_{k} 2\left(F^{2}+u^{2} k\right)^{1 / 2}, E_{\alpha}=\left(\bar{F}^{2}+\omega_{\alpha}^{2}\right)^{1 / 2}$, wa a being the invariant mass of he intermediate state; and $\Delta^{2} x\left(p_{\alpha}-p\right)^{2}=\left(E_{\alpha}-E k\right)^{2}$ is the squared momentum transfer. From (6.1.3) it follows that

$$
\frac{c_{c}^{\prime}}{c_{\infty}^{\prime} / 2 \omega_{0}}=\frac{\lim _{p \rightarrow 0} c}{\lim _{b \rightarrow \infty} \frac{2 p c}{2 \omega_{0}}} \times\left\{\frac{d_{k}+\left[\left(\omega_{\alpha}-\left(\alpha_{k}\right)^{2}\right]\right.}{c_{k}+(0)}\right\}^{2} \frac{a_{u}!a_{k}}{2 \mu_{\alpha}} \frac{h_{0}}{u_{k}(6.14)}
$$

\therefore xe said in Section 2 , it is now reasonable to suppose the "tom actors" $d_{A}\left(d^{2}\right)$ be increasing functions of Δ^{2} when Δ^{2} becomes luger and timewike (ie., when Δ^{2} approaches, and subsequently wis the singulenity region) In this west, d (A^{\prime}) will reach its

 (Gi $\alpha+4 i k$) $/ 2 i \alpha \alpha$ is smaller than one (4α being greater than wick) wheres $\mathrm{H}_{\mathrm{c}} / \mathrm{H}_{k} \geq 1$. Thus it is not easy to ascertain a priory her ike correction is smallest and consequently conclude whether the linear or the quadratic mass formula is better (at least without raking specific hypotheses on the behaviour of the form factor". Ar explicit evaluation of the corrections has beer made along
the lines suggested in Sections 4 and 5 , for the squared mass formula as well as for the linear one. In both cases, the numerical value of the calculated correction is in satisfactory agreement with the experimental values. The details of calculation (assumptions, approximation, numerical values) are given in the appendix.

We have discussed in some details the mass formulae for the pseudoscalar meson case. It is, however, clear that exactly the same argument can be given for the other SU_{3} mass formulae. Formulae of the (6.3) and (6.4) type taken between physical states belonging in the symmetry limit to other irreducible representations, Give relations of the (6.6) type corresponding to the various SU_{3} mass formulae.

For instance, taking the matrix element of (6.3) between a proton and a Estate, one has

$$
\begin{equation*}
2 E_{N}(b)+2 E_{\equiv}(b)-3 \bar{E}_{\Lambda}(b)-E_{\Sigma}(b)=c_{3} \tag{6.15}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{B}=2(2 \pi)^{6} \Sigma_{\alpha} \frac{\langle P| D_{\alpha}^{+}|\alpha\rangle\langle\alpha| D_{k}^{+}|\equiv-\rangle}{E_{\alpha}-E} \delta\left(\vec{F}_{\alpha}-\vec{p}\right) \tag{6.16}
\end{equation*}
$$

where we have made in C_{B} the approximation $E_{p}=E \equiv=E=\left(\omega_{0}^{2}+b_{b}\right)^{1 / 2}$ and dropped the δ function stating $\vec{P}_{p}=\overrightarrow{P_{i}}=\vec{p}$.

For the $3 / 2$ resonances, $\mathrm{Eq} .(6.3)$ taken between N^{+t} and $\equiv^{* 0}$ and subsequently between $>^{*+}$ and Ω^{-}, gives

$$
\begin{aligned}
& \left(E_{N *}-E_{y *}\right)-\left(E_{y *}-E_{\equiv} *\right)=\frac{1}{2 \sqrt{3}} c_{1} \\
& \left(E_{y *}-E_{E^{*}}\right)-\left(E_{\equiv}-E_{\Omega^{-}}\right)=\frac{\lambda}{2 \sqrt{3}} c_{2}
\end{aligned}
$$

where, with the usual conventions

$$
\begin{aligned}
& C_{1}=2(2 \pi)^{6} Z_{\alpha} \frac{\left\langle N^{*}\right| D_{k}^{+}|\alpha\rangle\langle\alpha| D_{k}^{+}\left|E^{*}\right\rangle}{E_{\alpha}-E} \delta\left(\vec{p}_{\alpha-}\right) \\
& C_{2} 22(2 \pi)^{6} Z_{\alpha} \frac{\left\langle\gamma^{*}\right| D_{k}^{+} \mid \alpha>\langle\alpha| D_{k}^{+}|\Omega\rangle}{E \alpha-E}
\end{aligned}
$$

Don the rector meson it is then olear that one has a formule like (6.6) substitutine the corresponding vector mesons inplace of tie pseudoscalan mesons; obviously, in order to obtain a good agreement with experimental data one should replace the η with a mixture or wond q and the ratio of the mixture determined, as usual, fron experimentel data, the $\omega-\varphi$ mixing angle not being predicted by SU_{3}.

Fo conclude this section, we would like to emphasize that our rules, obtained as a consequence of formulae like (6.3) and (6.4) and completeness, should be valid also if the breaking Hamiltonian does not simply \sim the hypercharge. In fact, the same mass formalae (snd the same method for evaluating the corrections) hold for every breaking Hamiltonian auch that at least one of the following relations is verifjed

$$
\begin{align*}
& {\left[Q_{k}^{+},\left[Q_{k}^{+}, H\right]\right]=0} \tag{6.17}\\
& {\left[Q_{L}^{+},\left[Q_{L}^{+}, H\right]\right]=0} \tag{6.18}\\
& {\left[Q_{k}^{+}\left[Q_{L}^{+}, H\right]\right]=0} \tag{6.19}
\end{align*}
$$

In juthticular, when wosking in U-spin subspace, it is easily recognized that (6.18) is satisfied for every breakinc Hamiltorian of He type $H_{B} \sim Z_{\mu}\left(Q_{\mu}+b_{n} Y\right) Q^{n}$ because $Q_{\sim} Q_{3}+\frac{1}{2} Q_{\gamma}$ is a $U-\operatorname{spin}$ somian; this fact sugeests that the mass formulae written down for pertiojes of the same charge should be valid also if onetekes into aocowt the efmultaneous breaking of SU_{3} (suppoced $\sim \boldsymbol{\gamma}$) and the aiectromarnetic interaction.
6.3 The second method which allows us to obtain mass formulae is bssed on the hypothesis that the divergences D_{m} belong to an octet; we admit in particular the validity of the equal time commutetion relations

$$
\begin{equation*}
\left[Q_{A}^{ \pm}(t), D_{A}^{ \pm}(\bar{x}, t)\right]=0 \tag{6.20}
\end{equation*}
$$

Fi $=$ I, k, L.
for every value of \bar{x}. We choose for simplicity $\bar{x}_{r o}$ and \vdash zo and we work, as in the previous case, in the V-spin subspace
taking the matrix element of

$$
\begin{equation*}
\left[Q^{+} k, D^{t} k\right]=0 \tag{6.21}
\end{equation*}
$$

between suitable physical states and using completeness,
We start by considering the pseudoscalar meson case. We obtain

$$
\begin{align*}
& O=\left\langle k^{+}\right|\left[Q^{+} k, D_{k}^{+}\right]\left|k^{-}\right\rangle=\left\langle k^{+}\right| Q_{k}^{+}\left|n^{0}\right\rangle\left\langle n^{0}\right| D_{k}^{+}\left|k^{-}\right\rangle \tag{6.22}\\
& \left.-<k^{+}\left|D_{k}^{+}\right| n_{0}\right\rangle\left\langle n^{0}\right| Q^{+} k\left|k^{-}\right\rangle+\left(\mu^{-}-n_{0}\right)+C
\end{align*}
$$

The matrix elements we need are of the type $\left\langle p_{2}\right| Q^{+} k\left|p_{1}\right\rangle$ and $\left\langle p_{2}\right| D^{+} k\left|p_{1}\right\rangle$. As far as the first one is concerned, we remark that, as done before, we can take for it its symmetric value, the deviations being of the order f^{2}. For the second term, we can use Eq. (5.11)
$\left\langle Q_{2}\left(p_{1}\right)\right| D_{k}^{+}\left|p_{1}\right\rangle=\frac{1}{(2 \pi)^{3}} \frac{i}{\sqrt{4 E_{2} E_{1}}}\left(u_{12}^{2}-u_{1}^{2}\right) C_{21}^{k^{+}} G\left[\left(b_{2}-b_{1}\right)^{2}\right]$
where $C_{21}^{k^{+}}$is the appropriate Clebsch-Gordan coefficient and the form factor $G(O)=\pi$ (the renormalization ratio). Moreover, for the purpose of simplifying the derivation, we assume $\vec{p}_{2}=\vec{p}_{1}=\vec{p}$. In so doing, Eq. (6.22) becomes

$$
\begin{equation*}
\left(\omega_{n}^{2}-u^{2} k\right) \frac{G_{n k}\left(\Delta_{n}\right)}{\sqrt{4 E E_{n}}}+3\left(u^{2} y-u^{2} k\right) \frac{G_{n k}\left(\Delta^{2}\right)^{2}}{\sqrt{4 E_{4}}}=O\left(f^{2}\right) \tag{6.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{n}^{2}=\left(E_{u}-E_{n, \eta}\right)^{2}=\left(\sqrt{\bar{p}^{2}+u u^{2} k}-\sqrt{p^{2}+u u^{2} \pi_{1} \eta}\right)^{2} \tag{6.25}
\end{equation*}
$$

We note now that the coefficients of the two squared mass differences differ by terms which are of the order f and which an be collected in the corrections on the r.h.s. Thus Eq. (6.24) gives the wellknown mass formula

$$
\begin{equation*}
4 u^{2} k-3 \mu^{2} y-\mu_{n}^{2}=O\left(f^{2}\right) \tag{6.26}
\end{equation*}
$$

Sif craer to obtain the mass formula for the baryon octet, it is now sufficient to take the commutator (6.21) between a proton s.rd a^{-}, apply the standard rules of our game End use Pa . (5.. ' ') for the matrix element of D_{k}^{+}between syin- $\frac{y}{z}$ states
$\left\langle p_{2}\right| D_{k}^{\dagger}\left|b_{1}\right\rangle=\frac{i}{(2 \pi)^{3}} \sqrt{\frac{m_{2} u_{i_{1}}}{E_{2} E_{1}}} \bar{u}\left(p_{2}\right) u\left(k_{1}\right)\left(\mu_{2}-m_{1}\right) G\left[\left(p_{2}-b_{1}\right)^{1}\right]$
which involves linear mass differences. Thus, we get the mass Cormula

$$
\begin{equation*}
2 u_{\equiv} \equiv+2 \mu_{N}-3 \mu_{\Lambda}-\mu_{\Sigma}=O\left(f^{2}\right) . \tag{6.28}
\end{equation*}
$$

It is important to realize the different role that thep-dependence hes in this case and in Subsection (6.2). Here the classical SU 3 mess formulae can be obtained independently of the value of p which cones in only when we discuss the corrections. On the contrary, in the previous section we have actially energy relations ard $\bar{i} i f f e r e n t$ choices for p can give different "mass formulae".

Finally, we would like to point out that it is possible to do the whole derivation of Eqs. (6.26) and (6.28) takjng into account the complete form of $\left\langle h_{2}\right| Q{ }^{t} k\left|h_{1}\right\rangle$ (i.e., inoluding form factors and kinematical factors) In this case, no kinematioal fectors anpesr ir the I.h.s. of Eq. (6.28) and the only approximation we make is to take the renormalization ratios $\mathcal{Z}=1$ (which actuaily cortribate to the cormections with $\mathcal{O}\left(f^{3}\right)$ temms). In this way, we would get for (6.24) a more complicated expression involving form factors ovelueted in different points. Fowever, if we perform the limit $\left|\vec{p}_{i}\right|=\left|\overrightarrow{P_{n}}\right|=|\vec{p}| \rightarrow \infty$ all the arguments of the form factors tend to zero and we get again Eqs. (6.26) and (6.28)* (after multiplication bylpi). Thus, the choice of thelphoorerence frame presents some definite advantages. It allows a clear-cut separation of the corrections (in the sense pointed out above) and, as shown in

[^4]Section 4, the many-particle contribution can be put in the covariant form (4.10). Moreover, we can give here the same discussion of Subsection (6.2) about the magnitude of the corrections: in fact, the r.h.s. corrections of Eq. (6.26) and. (6.28) are exactly given by Eqs. (6.7) and (6.i5). Applying the same considerations we can presumably believe that the corrections assume their minimum value as $p \rightarrow \infty$.

7. RELATIONS FOR FORM FACTORS AND MAGNETIC MONENIS

In this section we would like to discuss the case in which the operator M of Eq. (2.13) is a current density ${ }^{\text {le }}$. As a particular example, we shall choose the electromagnetic current, though our argument will be quite general and , in principle, applicable also to other currents*. The electromagnetic current transforms under SU_{3} rotations as the charge, ie, it is a scalar in the U-spin space. As a consequence, we have

$$
\begin{equation*}
\left[Q_{L}^{ \pm}(t), J_{\mu}(\vec{x}, t)\right]=0 \tag{7.1}
\end{equation*}
$$

The operators are taken at equal times and from now on we shall consider $t=0, \vec{x}=0$. Following our usual procedure, we consider the matrix element of the commutator (4.1) between (physical) proton and Σ^{+}states, we insert a complete system of intermediate states and keeping the lowest contributing states we$g \ominus t$

$$
\begin{aligned}
& \left.\left\langle P\left(p_{2}\right)\right| Q_{L}^{+} \mid \Sigma\left(p_{1}^{\prime}\right)\right)\left\langle\Sigma^{\top}\left(p_{1}^{\prime}\right)\right| J_{\mu}(0)\left|\Sigma\left(p_{1}\right)\right\rangle- \\
& -\left\langle P\left(p_{z}\right)\right| S_{\mu}(0)\left|P\left(p_{i}^{\prime}\right)\right\rangle\left\langle P\left(p_{2}^{\prime}\right)\right| Q_{L}^{+}\left|\Sigma^{+}\left(p_{1}\right)\right\rangle+C=0 \quad(7.2)
\end{aligned}
$$

where

$$
C=\not \mathcal{F}_{\alpha}\left\{\langle\beta| Q_{L}^{+}|\alpha\rangle\langle\alpha| S_{\mu}(\alpha)\left|L^{+}\right\rangle-\langle\beta| J_{\mu}(0)|\alpha\rangle\langle\alpha| Q_{L}^{+}\left|\Sigma^{+}\right\rangle\right\}\left(7.2^{i}\right)
$$

Se can remark that the correction C is of the first order in the symmetrymbeaking interaction. We introduce now the following relation

$$
\langle P(p)| Q_{L}^{+}\left|\Sigma^{+}\left(r^{\prime}\right)\right\rangle=
$$

$$
=-\sqrt{\frac{m_{p} m_{I}}{E_{p} E_{2}}} \delta\left(\vec{p}-\vec{p}^{\prime}\right) \bar{u}_{p}(p)\left\{\gamma_{0} G(\bar{t})+q_{0}+(\bar{E})\right\} u_{2}\left(p^{\prime}\right)
$$

where $q_{q}^{q}=\bar{E}=\left(E_{p}-E_{L}\right)^{2}=\left(\sqrt{\vec{p}^{2}+m_{p}^{z}}-\sqrt{p^{2}+m_{z}^{z}}\right)^{2}$ and we adopt the normalization $C(0)=\Pi(\lambda$ in the symmetry limit). The presence of the

* For a discussion of the weak current case, see Ref. (2).
additional term $\varphi_{0} f(\bar{E})$ is another consequence of the breaking of the symmetry (it disappears in fact as $m_{p} \rightarrow m_{k}, q_{0} \rightarrow 0$). It can be verified that its presence does not alter our final conclusions, so that we shall omit it in order to make the formalism simpler.
Moreover

$$
\begin{aligned}
& \langle P(p)| J_{\mu}(0)|P(r)\rangle= \\
& \quad=\frac{1}{(2 \pi)^{3}}\left(\frac{m_{\mu}^{2}}{E \epsilon^{\prime}}\right)^{1 / 2} \bar{u}(p) e\left\{\gamma_{\mu} F_{1}^{p}(t)+\frac{\hbar_{\mu}}{2 m_{p}} \sigma_{\mu \nu} q_{\nu} F_{q}^{p}(t)\right\} u\left(p^{\prime}\right) \text { (7.4) }
\end{aligned}
$$

In Bo. (7.4) $q=p-p^{\prime}, t=q^{\ell}$ and $F_{1,2}^{p}(t)$ are the usual electromagnetic form factors normalized to 1 at $E=0$ $\left(F_{1}^{\prime}(0)=F_{z}^{p}(0)=1\right) . k_{p}$ is the anomalous part of the magnetic monent (in e/zmpunits). An analogous relation can be written Cor the electromagnetic vertex of the Σ^{+}and in so doing we introduce the quantities $F_{1}^{\boldsymbol{\Sigma}}(t), \quad F_{q}^{\boldsymbol{\Sigma}}(t)$ and $\boldsymbol{k}_{\boldsymbol{\Sigma}}$ (anomalous magnetic moment in units $\left.e / 2 \mathrm{~m}_{z}\right)$. It is important to notice that in Eos. (7.3) and (7.4) we are using the physical masses for the involved particles. This is due to the fact that the states we are considering are physical states, eigenstates of the total Unmiltonian (not completely invariant). In this way, we already introduce in the kinematical factors a display of the violation of the SU_{3} symmetry.

If we insert these definitions of Eq . (7.2), we find

$$
\begin{aligned}
& e \bar{u}_{p}\left(p_{2}\right)\left\{\left[r_{\mu} F_{1}^{P}\left(t_{2}\right)+\sigma_{\mu \nu} q_{2} F_{2}^{P}\left(t_{2}\right)\right] \frac{r_{1} r_{2}^{\prime}+m_{p}}{2 E_{j}^{\prime}} \gamma_{0} G\left(\bar{E}_{2}\right)-\right.
\end{aligned}
$$

$$
\begin{align*}
& =(2 \pi)^{3} \sqrt{\frac{E_{1} E_{2}}{m_{1} m_{\Sigma}}} \cdot C \tag{7.5}
\end{align*}
$$

where

$$
\begin{array}{ll}
q_{1}=\left(p_{1}^{\prime}-p_{1}\right) ; q_{1}^{2}=t_{1} ; \quad \bar{t}_{1}=\left(p_{2}-p_{1}^{\prime}\right)^{2} ; \vec{p}_{1}^{\prime}=\vec{p}_{2} \\
q_{2}=\left(p_{2}-p_{2}^{\prime}\right) ; q_{2}^{2}=t_{2} ; \quad \bar{t}_{2}=\left(p_{2}^{\prime}-p_{1}\right)^{2} ; \vec{p}_{2}=\vec{p}_{1}
\end{array}
$$

From this expression we see at once that, even negleoting the correction $C=O(f)$, nothing very definite can be said. In fact, owing to the presence of the two arbitrary momenta p_{i}, f Eg. (7.5) allows a comparison between form factors evaluates in the different points t_{1} and t_{8}. To avoid this difficulty, it is agejin convenient to choose the best sum rule, ie., to consider the configuration of $\left|\overrightarrow{r_{i}}\right|,\left|\overrightarrow{p_{z}}\right|$ which minimizes C. With the same arguments as before, this is achieved by choosing $\vec{p}_{1} \rightarrow \infty$, $\vec{p}_{i} \rightarrow \infty$ but $\vec{p}_{Q}-\vec{p}_{1}=\vec{h}$ fixed. In this limit

$$
\begin{align*}
& q_{1}=(\vec{k}, 0) ; q_{2}=(\vec{h}, 0) ; p_{1}^{\prime}=p_{2} ; p_{2}^{\prime}=p_{1} \\
& t_{1}=t_{2}=-k^{2}\left\langle v ; \vec{t}_{1}=\vec{t}_{2}=0\right. \tag{7.6}
\end{align*}
$$

Using the free Dirac equations for the external spinore, Eq. (7.5) $\operatorname{becomes}(r \approx 1)$

$$
\begin{align*}
& e \bar{u}_{p}\left(p_{2}\right)\left\{\left[\dot{f}_{\mu} F_{1}^{p}(t)+\sigma_{\mu \nu} q_{\nu}, F_{2}^{p}(t) \frac{k_{p}}{q m_{p}}\right]-\right. \\
& \left.-\left[\gamma_{\mu} F_{1}^{\Sigma}(t)+\sigma_{\mu \nu} \vartheta_{\nu} F_{z}^{\Sigma}(t) \frac{k_{\Sigma}}{2 m_{z}}\right]\right\} u\left(r_{1}\right) \\
& =(2 \pi)^{3} \lim _{\left(\operatorname{F}_{2} i, \prod_{i} 1 \rightarrow \infty\right.} \sqrt{\frac{E_{1} E_{q}}{m_{p} m_{2}}} C \tag{7.7}\\
& \begin{array}{l}
\vec{p}_{2}-\vec{r}_{1}=\vec{h}
\end{array} \quad q=p_{2}-p_{1}=(\vec{h}, 0) ; t=q^{q}
\end{align*}
$$

Thus we get the result

$$
\begin{align*}
& F_{1}^{p}(t)=F_{1}^{\Sigma}(t)+\delta F_{1} \\
& \frac{h_{1}}{i_{2}} F_{2}^{p}(i)=\frac{h_{2}}{m_{2}} F_{2}^{c}(i)+\delta F_{2}
\end{align*}
$$

In particular, at $t=0$ titecond relation gi".

$$
\begin{equation*}
h_{p}=h_{\Sigma} \frac{m_{1}}{m_{\Sigma}}+\delta k=h_{\Sigma}\left(1+\frac{m_{1}-m_{\Sigma}}{m_{\Sigma}}\right)+\delta h \tag{7.9}
\end{equation*}
$$

and going over to the total magnetic moments

$$
\begin{align*}
& \mu_{p}=\left(1+h_{p}\right) \frac{e}{2 m_{p}} ; \quad \mu_{\Sigma}=\left(1+n_{\Sigma}\right) \frac{e}{2 m_{\Sigma}} \\
& \frac{\mu_{z}}{\mu_{p}}=1-\frac{1}{1+n_{p}} \frac{m_{\Sigma}-m_{p}}{m_{i}}-\frac{\delta n_{i}}{\mu_{p}} \tag{7.10}
\end{align*}
$$

In this way, we recognize two different types of corrections, boti of order f to the symmetric limits $k_{p}=k_{\Sigma}, \mu_{p}=\mu_{\nu}$. The first one which is proportional to the mass difference, is of e kinematical origin in the sense that it is due to the fact of taking correctly into account the physical masses of the particles. In Eq. (7.10) for instance, it produces a correction $\approx-9 \%$. The Eecond term $\delta \boldsymbol{h}$ is related to the existence of non-aiagonal matrix elements for the generator Q_{C}^{+}and it can be treated using the fomalism discussed in Section 2. The simplest set of states to be introduced in C of $E q$. (7.2) would be those contamining one nueleor $\left(\Sigma^{+}\right)$and one pseudoscalar meson, the matrix elements $\langle\rho| S_{\mu}|P \pi\rangle$ and $\left\langle\Sigma^{+}\right| J_{\mu}\left|\Sigma^{+} \pi\right\rangle$ could then be evaluated using data for photoproduction when known or even calculated in a simple model.

Unfortunately, one usually cannot obtain all the relations between electromagnetic form factors of particles in a given representation by taking matrix elements of one commutator. For Whe baryon octet there are nine magnetic form factors, including the $\Sigma^{3} \wedge$ transition, and only two of them are inearly independent corresponding to the F and D coupling of the current.

In order to obtain a general formula whose matrix elements five all the required relations between magnetic moments, we observe that if we put briefly

$$
I_{\mu}^{e \cdot m}=M
$$

$M \sim Q$, the electromagnetic charge,

$$
\begin{equation*}
M=M_{3}+\frac{1}{2} M_{y} ; M_{3} \sim Q_{3}, M_{y} \sim Q_{y} \tag{7.11}
\end{equation*}
$$

Then from the commutation rules of the algebra one bas

$$
\left[Q_{A}^{I}, M_{i}\right] \sim M_{A}^{ \pm}
$$

and $(i=3, y)$

$$
\begin{equation*}
\left[Q_{A}^{-}, M_{A}^{+}\right] \sim \Sigma_{i} c_{i} M_{i} \tag{7.12}
\end{equation*}
$$

It is then clear that a suitable combination of the commutators $\left[Q_{A}^{-},\left[Q_{A}^{+}, M\right]\right]$ should reproduce M itself.

We find that
$\left[\left[M, Q_{k}^{+}\right], Q_{k}^{-}\right]=M_{3}+\frac{3}{8} M_{y}$
$\left.\left[M, Q_{L}^{+}\right], Q_{L}^{-}\right]=0$
$\left[\left[M, Q_{I}^{+}\right], Q_{I}^{-}\right]=2 M_{3}$
(the second relation is a trivial one because $\left[M, Q_{L}^{ \pm}\right] i s$ already zero) and the required general formula is

$$
\begin{equation*}
3 M=\left[\left[M, Q_{k}^{+}\right], Q_{k}^{-}\right]+\left[\left[M, Q_{I}^{+}\right], Q_{I}^{-}\right] \tag{7.14}
\end{equation*}
$$

The simplest single formula which enables us to obtain all the desired relations between form factors and their corrections of order f is

$$
\left[\left[J_{\mu}^{e . m}(x), Q_{k}^{+} I, Q_{k}^{-}\right]+\left[\left[J_{\mu}^{e . m}(x), Q_{I}^{+}\right], Q_{I}^{-}\right]=3 J_{\mu}^{e . m}(x)\right.
$$

In the frame in which the three momenta of the initial and final particle are equal, we find as zero order approximation (i.e., neglecting all the mass differences) the following nine relations between the nine magnetic moments

1. $\sqrt{3} \mu_{I A}+\frac{3}{2} \mu_{A}+\frac{1}{2} \mu_{\Sigma_{N}}+\mu_{N}=0$
2. $\mu_{\mathrm{B}^{3}}+\mu_{H}+\mu_{\mu} \mu^{2}=0$
3. $\mu_{N}+{ }^{2} \mu_{2}=0$
4. $\sqrt{3} \mu_{2 A}+\frac{1}{2} \mu_{2}+\frac{3}{2} \mu_{A}+\mu_{\equiv}=0$

5.

$$
\mu_{Z}+2 \mu_{I *}=0
$$

7. $\left.-\sqrt{3} \mu_{\Sigma \lambda}+\varepsilon\left(\mu_{\Sigma_{-}}+\mu_{L^{+}}-\mu_{\Sigma}\right)\right)+\frac{1}{2}\left(\mu_{\equiv}{ }^{+}+\mu_{p}\right)=0$
8. $\frac{3}{2}\left(\mu_{p}+\mu_{\equiv}-1-\sqrt{3} \mu_{2 n}=0\right.$
9. $\mu_{p}+\mu_{I^{*}}-\mu_{A}-\mu_{L_{\nu}}-\frac{2}{\sqrt{3}} \mu_{L A}=0$
the first eight of which are obtained by taking matrix elements between two $\boldsymbol{p}, N, \Sigma^{-}, \Xi^{+}, \Xi^{*}, \boldsymbol{\Sigma}^{+}, \Sigma_{0}$, and Λ states respectively and the nineth between a Σ_{∞} and a $\mathbf{\Lambda}$. Of course, only seven of these are linearly independent and the calculation was made in the lowest approximation, keeping only one-baryon intermediate states. Corrections to these relations can naturally oe calculated, as discussed in the previous example. We wish to emphasize that if we are interested in the first order correction, we should introduce many-particle intermediate states between S_{μ} and only one Q, i.e., consider only terms of the type

$$
\langle a| J_{\mu}\left|\alpha_{1} \alpha_{2}\right\rangle\left\langle\alpha_{1} \alpha_{2}\right| Q\left|a^{\prime \prime}\right\rangle\left\langle a^{4}\right| Q\left|a^{\prime}\right\rangle
$$

and anelogous ones, but no terms like

$$
\langle a| Q\left|\alpha_{1} \alpha_{2}\right\rangle\left\langle\alpha_{1} \alpha_{2}\right| J_{\mu}\left|\alpha_{3} \alpha_{4}\right\rangle\left\langle\alpha_{3} \alpha_{4}\right| Q|a\rangle
$$

which are of order ℓ^{2}. Thus, since the matrix element of a Q between two one-particle states reduces in this approximation to a simple coefficient, we can always apply, in evaluating the corrections, the metbods previously discussed.

Analogous considerations could be developed also for strong "charges". Assuming a Yukaws-like coupling between baryons and mesons sum ruies could be derived for the different coupling constants.

ACKOWLEDGEMENT

The authors would like to thank Prof. S. Fhbini for suggesting several of the topics they have investigated and for contiruous heln, advice and encouragement throughout the course of this work. One of the authors, Gino Segre, would like to thank Prof. I, Van Hove and the Theoretical Division of CERN where part of this work was done and they all would like to expresa their appreciation to Prof. A. Salam, Prof. P. Budini and the IAEA for the hospitality extended to them at the International Centre for Theoreticel Physics during the final stage of this work.

We wish to calculate the corrections as displayed in (6.7) to the pseudoscalar octet mass formula. Like in Ref. (3), we simplify the problem by considering intermediate states containire one pseudoscalar and one vector meson. We further simplify our calculation by breaking the symmetry only on the lines and, as suggested in Section 5, making the pole approximation in the dispersive evaluation of the matrix elements of D (see Fig. 1).

Fig. 1

- denotes a pseudoscalar meson
\sim denotes a vector meson
(denotes the breaking of SU_{3}
We shall now give some of the details of the calculation, Focussing on the $|\vec{p}| \rightarrow \infty$ case

$$
4 m_{k}^{2}-3 m_{i}^{2}-m_{0}^{2}=C_{\infty}
$$

mere C_{∞}, remembering, Section 4 , can be written in the form

$$
C_{\infty}=\frac{1}{2} \frac{1}{\alpha \pi)^{2}} F_{\alpha} \int \frac{i^{1} s}{\left(s-m \alpha^{2}\right.} \int_{L_{i}}^{12} d q \phi^{\alpha}\left(s, A^{2}=\alpha, \operatorname{di}=r\right)
$$

and the invariant function ϕ^{α} is studied dispersively, as lr Section 5. Unfortunately, because of our simplified hypothesis, C_{∞} contains a divergent integral over S. A natural way to ret rid of this difficulty would be to introduce a strong interaction form factor instead of a point-like coupling between the vector and the pseudoscalar mesons. However, to avoid additional complications, we shall introduce an S-dependent vertex of the form

$$
g(s)=g_{s u_{3}} \frac{\Lambda}{s+\Lambda}
$$

where $\zeta_{\operatorname{sun}_{1}}$
is determined to be

$$
g_{s w_{1}}^{2} / 4 \pi=0.7
$$

my taking an average to the fit of the width of the K^{*+} (53 Mev)
and the $\rho^{+}(125 \mathrm{Mev})^{13}$, using the Hamiltonian

$$
\begin{aligned}
& i g_{S u_{3}} K_{\mu}^{* *}\left(K^{-} \partial_{\mu} \pi^{2}-\pi^{0} \partial_{\mu} k^{-}\right) \\
&+ 2 i g_{S u_{3}} \rho_{\mu}^{+}\left(\pi^{-} \partial_{\mu} \pi^{0}-\pi^{0} \partial_{\mu} \pi^{-}\right)+\cdots
\end{aligned}
$$

Wo have moreover, again for the purpose of simplifying calculations, than the (mes differences) ${ }^{2}$ found in the evaluation of the matrix laments of D in the polis approximation, as given by their firstorder broken sub, limits, that is to say

$$
\begin{aligned}
& m_{n}^{2}=m_{0}^{2}-\frac{2}{\sqrt{3}} \delta m^{2} \\
& m_{1}^{2}=m_{0}^{2}+\frac{2}{\sqrt{3}} \delta m^{2} \\
& m_{n}^{2}=m_{0}^{2}-\frac{1}{\sqrt{3}} \delta m^{2}
\end{aligned}
$$

whicin implies, using the known values of the masses 13

$$
\begin{aligned}
& m_{0}^{2}=(410 \mathrm{Mer})^{2} \\
& \delta m^{2}=12.75 \cdot 10^{4} \mathrm{Mer}^{2}
\end{aligned}
$$

Similarly, for the vector meson masses, we find

$$
\begin{aligned}
& M_{0}^{2}=(848 M e V)^{2} \\
& \delta M^{2}=12.8 \cdot 10^{4} \mathrm{MeV}^{2}
\end{aligned}
$$

Finality, we present the value of C_{∞} calculated for two different wallies of the cutoff $\Lambda: \Lambda_{1}=\left(2 M_{B}\right)^{2}, M_{B}$ being the mean baryon mess and $\lambda_{2}=\frac{1}{2} \lambda_{1}$

$$
\begin{aligned}
& C_{\infty}\left(\Lambda_{1}\right)=0.55 \mathrm{~m}_{0}^{2} \\
& C_{\infty}\left(\Lambda_{2}\right)=0.19 \mathrm{~m}_{0}^{2}
\end{aligned}
$$

experimental value $\quad C_{\infty}^{e x p}=0.36 \mathrm{~m}_{0}^{\ell}$

As an indication, we have also evaluated the correction in the $\vec{\beta}=0$ limit, using a formica of the (4.11) type. Now, taking Anger mass formae, ref.

$$
\begin{aligned}
& m_{\pi}=m_{0}-\frac{2}{\sqrt{3}} \delta m \\
& m_{4}=m_{0}+\frac{e}{\sqrt{3}} \delta m \\
& m_{k}=m_{0}+\frac{1}{\sqrt{3}} \delta m
\end{aligned}
$$

we find

$$
\begin{aligned}
& m_{0}=368 \mathrm{MeV} \\
& \delta m_{0}=195 \mathrm{MeV} \\
& M_{0}=846 \mathrm{MeV} \\
& \delta M=78 \mathrm{MeV}
\end{aligned}
$$

and for the two values of the cutoff C_{0} equals

$$
\begin{aligned}
& C_{0}\left(\Lambda_{1}\right)=0.79 \mathrm{~m}_{0} \\
& C_{\psi}\left(\Lambda_{q}\right)=0.27 \mathrm{~m}_{0} \\
& \text { experimental value } \quad C_{0}^{e \times p}=0.54 \mathrm{~m}_{0}
\end{aligned}
$$

REFERENCES

2. K. GELL-MANN, Ce1. Tech. Report, CTSL-20 (1961) (unpublished)
Y. NE'EMAN, Nucl. Phys. 25, 222 (1961)
3. S. FUBINI and G. FURLAN, Fhysics 1, 229 (1965) (referred to as F)
4. G. FURIAN, F, IANTOY, C. ROSSETTI and G. SEGRE (to be published) (referred to as II)
5. N. GELT-MANN, Phys. Rev. 125, 1067 (1962)
M. GELL-MANH, Physics 2,63 (1964)
6. G. RACAF, Princeton Lectures (1951)
7. J.J. DE SWART, Rev. Mod. Phys. 35, 916 (1963)
8. N. ADEMOLLO and R. GATTO, Phys. Rev. Letters 13, 264 (1964)
9. Y. NAMBU arid J.J. SAKURAI, Phys. Rev. Letters 11, 42 (1963)
10. Ref. 1 and S. OKUBO, Prog. Theoret. Phys. 27, 949.(1962)
11. J.J. SAKURAI, Phys. Rev. Letters 2, 472 (1962)
S.I. GLASHOW, Phys. Rev. Letters 11, 48 (1963)
12. See also F. GURSEY, T.D. LEE and M. NAUENBERG, Pbys. Rev. 135 B, 467 (1964)
13. S. COLEMAN and S.L. GLASHOW, Phys. Rev. Letters, 6, 423 (1961)
J.3. A. ROSENFELD et al., Rev. Mod. Phys. 36, 977 (1964)

[^0]: * The research reporred in this document has been sponsored in part by the Air Force Office of Scientific Research through the European Office, Aerospace Research, United States Air Force.
 $* *$
 On leave from Istinuto di Fisica dell Universita, Torino.

[^1]: * We notice a slight change between our present notation and the one used in I and II; in I and II, in fact, we have included the uncenormalized coupling constants $G^{(\alpha)}$ in the definition of the ourrents.

[^2]: *This occurs for instance in the case of mass formulae obtained sea the commatator $\left[Q_{A}, N_{A}\right]$ (see Section 6) where the linear one corresponds to $\vec{\beta}=0$ and the quadratic one to $|\vec{p}| \rightarrow \infty$.

[^3]: FFor a model in which, for instance, the divergence of the strangeness changing vector current is proportional to the field of the κ-meson, see Ref. (8).

[^4]: *Here we did not play all the game but a detailed calculation of this sort is given in the example of Section 7.

