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SUMMARY

A systematic analysis of the equal time commutation relations

of the generators of an algebra with certain physical operators

is made. A method is then introduced whereby considering matrix

elements of such commutators between physical one-particle states

and using completeness and invariance under space-time translations,

corrections to broken symmetry group theoretical formulae are

obtained. Several applications to wealc, electromagnetic and strong

interactions are then made.





THEORY OF CORRECTIONS TO UNITARY SYMMETRY FORMULAE

1. INTRODUCTION

One of the most powerful tools for studying the physics of element-

ary particles has "been the use of symmetry groups. In particular, SU-»

has led to very many well-verified predictions "concerning the classifica-

tion and behaviour of elementary particles and promising results appear

also to follow from the application of still higher symmetry groups.

It is nevertheless still not well understood why some of the group

theoretical predictions are so good despite the fact that the "breaking of

the symmetry is large and the group theoretical results correspond to a

quasi-perturbation theoretical approach in this breaking.

We shall present a method for studying in some cases the correct-

ions to simple group theoretical formulae and thereby attempt to achieve

an understanding of the validity of these results. A first step along

this dection has been taken in Refs, (2) and (3) in which the renormaliza-

tion of the weak interaction current vertex due to symmetry breaking was

estimated. This paper will be devoted to a generalization of the method

and to its application to a wider class of problems.

The method is based on studying the equal time commutators of the

generators of the group algebra, as constructed from the integral over

all space of the fourth components of the currents. This method has

been repeatedly emphasized "by GELL-MAMf over the course of the past

few years and has the advantage that the commutation relations remain

unchanged even when the symmetry is broken and therefore the currents

are no longer conserved, '. •

We shall show how to construct a scheme for evaluating corrections

to group theoretical formulae by a judicious use of commutators, complete-

ness and invariance under space-time translations.

Sections 2 and 3 contain a general outline of the method which was

applied in Refs. (2) and (3) to the renormalization of the weak current

and show how it may be generalized to treat a wider class Of problems.

Section 4 treats the influence of kinematical factors and the choice of

frame of reference for evaluating the corrections and Section'5'Shows

how the corrections may be evaluated. The method is finally applied to

mass formulae in Section 6 and to relations between electromagnetic form

factors in Section 7. An appendix containing some numerical results'
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on the evaluation of corrections to mass formulae is also included;

"they are in reasonable agreement with experiment.

2. GENERAL OUTLINE OF THE METHOD

One of the fundamental consequence's of -the invariance of a

theory under a group is the existence of a set of conserved currents

Ji^ associated with the group transformations. The fourth

components of these currents, integrated over all space, which we

shall call generalized "charges" are the generators of the infinite-

simal transformations of the group (at time t )

(2.1)

If we assume the symmetry to correspond to a (semi-simple) Lie group,

the generalized charges satisfy the equal time commutation relations

where the CQ-O' S a r e 'the structure constants of the Lie algebra.

In the following, we shall always employ the generators in the

standard form. Recalling the Racah notation , we label as O i

the mutually-commuting (always at equal times) generators and Q ^

those corresponding to the non-null roots CK . In a given represent-

ation the operator Q& connects the state \*Vr>̂  belonging to a

weight net) only with the state belonging to the weight Pfn + ot,

•where CC<XvW-0 is a constant determined by the group structure. For

instance, if we consider the state belonging to the highest weight

fr\ of a given representation, we have

^ ^ C M ( ) (2.2-)

the 0( | 's being the components of the root <X .

The equal time commutation relations hold even when the

symmetry is "broken, that is to eay when the currents are not all
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conserved, and the Q are no longer constants in time, A set of

one-particle states, however, which formed an irreducible represent-

ation of the group in the symmetry limit now contains admixtures

of other representations as the states are eigenstates of the

total Hamiltonian which contains both &• symmetry-preserving and

a symmetry-breaking part. The action of this symmetry "breaking

is then reflected in the matrix element of C?Li, which now equals

and, in the particular case of the highest weight

the deviation of f from unity being a measure of the symmetry

breaking? It is then clear that the above-defined quantity f* '

is simply connected with the quantity G considered in I and II

(which in the limit of zero momentum transfer is the renormalized

coupling constant), f ^ s G** /fee* In addition Q ^ now has

also non-vanishing matrix elements between one- and many-particle

states. The reason for this is that a multiplet of particles

*L,r3.n::;forming (in the symmetry limit) as an irreducible represent-

ation of our group no longer has well-defined transformation

properties under all group rotations, but only under thô .o wliioh

leave unchanged the total Hamiltonian, i.e., which correspond to

constants of the motion.

We have already said that the deviation of v ' from unity,

i.e., of G ^from & c , is a measure of the symmetry breaking;

another is given by the matrix element of the commutator of the

total Hamiltonian {\ and a "charge" & ^ between sne-particle

states and many-particle statesj it is, of course, clear that

O oc commutes with the symmetry-preserving part H 5 of the

* ITe notice a slight change between our present notation and the

one used in I and II; in I and II,:in fact, we have included the

unrenormsliaed coupling constants G o in the definition of the

currents.
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Hsrriiltonian, hut no longer with the "breaking part r\^ , Then the

non-vanishing matrix elements of the Q J s between one- and many-

particle physical states can he connected with those of L.Q°t|H \

because

(2.4)

where ITI"> stands for a ro -particle state and Ex. is ^ e "total

energy of the | K^state. In the limit of exact symmetry the

numerator in the r.h.s. of (2.4) vanishes being of order ^ , where

Y is a dimensionless coupling constant characterizing the strength

of the symmetry-breaking Hamiltonian.

In this paper we will examine how, by an appropriate use of

the Lie algebra of the group and of completeness, we can treat a

wide class of phenomena in order to obtain, as a first approxima-

tion, relations valid in the exact symmetry limit, and then the

corrections to these relations due to the approximate validity

of the symmetry in nature.

As for the applications of our method in thiB paper we shall

>-• concerned only with SU\ implications; in so far as ST]\ is

concerned we shall employ the de Swart convention for the

generators. We define the generalized charges corresponding to

the non-zero roots of 5U-. as

(2.5)

v;} ere the symbol *v means: "has the same SU-, transformation

properties as". The 1 -like operators are translation operators

in the J. -spin subspace, in the sense that they connect states

vith A-i- <t } i" "the same manner the 1^ -like operators are

translation operators in the tj -spin subspace and the same is for

the K -like operators in the V-spin subspace (see Fig. 1),

For the generators corresponding to the null roots we choose

<J>V^V (the hypercharge). In some oases we use

also the electric charge Q •= ^p_ + i
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In what follows we often use the commutators of the total

Hamiltonian N with the "charges" (0 . We define«

ZQl, HI = T N* (2.6)
(A * I, K, L )

It is clear that, if • ;

H = H 5 + Ha

H^ being the symmetry-preserving part and H^ the symmetry-

breaking part of the Hamiltonian, as long as we consider a break-

ing which transforms under SU.. like hypercharge, then N **• K

and M, -%/ (_ whereas Nj. is zero.

From (2,6) and (2.5) and making use of the dynamical equation

ve can write

and putting

we have

[3*. HJ = * N* * -i [ D*<*; ̂** (2.7)

where the 0 are Lorentz scalars.

As far as we are concerned, we shall always consider matrix

elements of operators between physical states, i.e. eigenstates of

the total Hamiltoniattj we have then, using (2,7)» "the following
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relation between the matrix element of a M ^ and the correspond-

£". "being the total energy of the state l*X. If Ua.̂  and (t>>a.re

one-particle states belonging, in the symmetry limit, to the same

irreducible representation, then E^- £fa as long as the Ramiltonian

preserves the symmetry, and we find obviously that fs/n is zero}

exit if the symmetry is broken by a part of the Hamiltonian of

strength ^ , we find that (E^ - £ b) is a quantity C X / ) , i.e. a

measure of the broken symmetiy. On the oontrary if i<a>and i fe>^

do not belong to the same representation, then, as already stressed,

the matrix elements of C?^ * can be different from zero only if

the symmetry is "broken and, in this case, they are of the first

order in the breaking as one easily sees by reading (2.8) in

reverse order:

and noting that N is of order J: by its definition, whereas E^- £.

hag, in this case, nothing to do with the breaking. By using

(2.7) we can also write the matrix elements of the £?«'« a a

a form which will prove to be very useful and often employed.

Consider now a physical operator \A , whose matrix elements

are measurable, and assume that it has well-defirjsd transformation

properties under group rotations, say

n , M7 = MA , C2.il)

being determined from the group algebra. One can then obtain

* in the following, we shall call such matrix elements the "off-

symmetry" matrix elements.

-o-
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relat,i ,y.-s Z^ZMQQU the matrix elements of f̂ | and those of M Tak-

ing the matrix element of (2.1l) "between two suitable one-particle

stavsE ja'> and ltt.'>, which, of course, are taken to "belong to the

Ear'-: irreducible representation in the symmetry lirsit, and using

completeness we have

(2.12)

Of course, in the symmetry limit only the one-particle intermediate

states\il^)"belonging to the same representation- as |«2.̂  and l<a/>

contribute to the sum; we can then write (2.12) in the form

(2.13)

-t C

•«3rs, calling ^-u the sum over all physical states w"hich do not

elong to the same irreducible representation as u and m./fbe

(2.14)

±c aero in the symmetry limit and should be regarded as a (small)

correction term to the relation

,-| M U7 - X 6

vs..lid as a f i rs t approximation,

'•Tith t,rs aid of (2,10) the cor.reotion term can be written v̂

C s xtin)

(2.16)
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:.:he "breaking of the symmetry is explicitly taken into account by

Dflfo) and therefore if we are not interested in still higher

order corrections in the symmetry breaking we may take the symmetry

:. ifr.it values of all other quantities. This means, for instance,

T.'r-.'-.i the mass of the particle O. can be considered, as equal to

.rar. of particle a/ and that the matrix elements of Ml in (2,16)

::v;/ oe calculated in the symmetry limit. This is a consistent

"••.v;-;c.iure when the symmetry breaking is not too large. We would

'..•:.'.•:i to emphasize, however, that our method is not equivalent

::,o •-:. perturbation theoretical one in that we make use of the fact

•••••-• "he states | cZ'> are physical eigenstates to take the physical

,ilue3 For the matrix elements of M in (2.15) and not just a

•••:UG up to a {riven order in perturbation theory. The correction

•-.'"• *-4} is then, as we ha.ve stated before, caused by the fact that

the states /<X) do not transform like an irreducible representation

••-.•" the symmetry group, but contain admixtures to all orders in f *

•->'.' other representations.

-JUTV;

irroiii the formula (2.13) we can, by specifying the nature of

K( operator, obtain a large number of sum rules connecting the

Lous matrix elements of M with those of M a •

"ve shall in this section examine the most interesting results

-•.-'•-c, obtain if we choose for 1̂ 1 some particular operators,

[l) First of all, we can identify M with another generator

better, generalized charge Cp,; in such a case, the commuta-

•", rule

*. C\ „, being the structure constants of the algebra) allows us

V'otain relations between coupling constants. In particular, in

•;Ci II it was shown how to obtain relations between the bare

">lint'"" constant of a current and the renormaliaed one ''oy consider-

the commutator of opposite charges. Taking the commutator
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between physical states corresponding to the highest weight of a

given irreducible representation one has

rJ (3.3)

and then, inserting in the commutator a complete set of intermediate

physical states, if follows that

( 3' 4 )

vhere the terra in jF 5 is the contri'bution of the one-pa.rticle

intermediate state corresponding to the weight M - •* (see formula

(2.3')) a^d <S }Fta { is given Toy the contri'bution of all other states

in the completeness relation. As i t has been discussed in I and

I I , the fact that the matrix elements of Q^ between an one-

pa-.rtiole and a many-particle state is O(-f)Implies that the

ie\iftUon of fF(a"JZ* f^""/cS"J from unity is Oif*} reproducing

t:he result of ADSTvOLLO and GATTO . An examination of thr- cor-ect-

ion term <S f then allows us to determine the tnagriitud.. '., thin

deviation. In II "we ha.ve done, as an example, the explicit evalua-

tion of the renormalization of the strangeness changing vector

current due to the "breaking of SU\ symmetry under some simplify-

iv; ••• assumptions (as the one of taking into account only the lowest

•r.aLss intermediate states and so on) obtaining for S F the vah.;e

of 0.067 which leads us to the conclusion that Vre renormalizatior;

effect due to the "breaking of SU, doas not chs-nge the universality

relation in any remarkable way.

(ii) The second case we shall consider is that in which /"

is an PVn -like operator, i.e. the case in which M itself is a

oo;r.i;.uT,ator of a charge <j?fi and the total Hamiltonian; this

allows us to obtain rela-ions,valid at the first order in the

breaking, among the energies ol' the various particles 'belongin

-9-



•j c. i-iven supermultioiefc in the symmetry limit. Taking suitable

limits one obtains then "mass formulae". Interesting results can

p-lso be obtained taking, instead of NA , its "densicy" Q .

Cor.side ring the commutator "between a Qn and a D^, we shall do

.vun rules which interconnect directly the masses of the particles,

- ••-.ir, in the symmetry limit we are led to the SU- mass formulae.

•••••:"- .r~in difference "between these relations and the ones obtained

by considering //-like operators is that in this case we have no

V- priori" choice between linear and quadratic mass formulae.

•-'..M-i- !;he commutator between Q. and V^ we obtain linear or

-v- -• :•• ratio mass formulae, for both bosons and fermions, as differ-

'••::; limits of our energy relations. This is a consequence of work-

•'.'-...-• with !:o invariant operators.

Or. i;he contrary , if we take the commutator between a Q^ and

'- iO^ we are led to a covariant expression which now involves

r:;saes for ferir.ions and squared masses for bosons,

T'hese two cases will be discussed in Section 6 where we show

.•:;;'..% as a. simple application of our method, one can derive the

o'.astiical SU-, mass formulae and discuss the possibility of evalua-

••• ; :re OC-f *) corrections, An explicit evaluation of the correct-

ions is also done for the case of pseudoscalar mesons.

(iii) Fruitful information can also "be obtained by consider—

••_.•.•.." the case in which M represents a current. A previous

•.-: ~-.-;-'j.•;sion of f.uch a type of commutator has heen done in I . In

:V'r: ..::, 7 of the present paper we shall discuss the particular case

"..".e electromagnetic current and we shall see how our method

-.: v 'j\,_es us to obtain relations among the form factors of different

. .• ....,-.ie3, valid in the symmetry limit and their corrections due

. •. . :- o breaking,

' :; 5 part-icular ca.se, we easily obtain the classical 3U,

.••...•...:;. c-:"s asong- magnetic moments. We notice that the corrections

• -,•. Lr. this case of the first order in the strength of the break-

:.••:••- .;••.!•'! to the fact that while the off-symnetry matrix elements of

..:,-. 6-' !c are small, the same does not happen for the correspon:!-

:i.r. :-• currents whir-.h could have off-symmetry matrix elements diffsr-

(-•'••- iT-om sere slso in the symmatry limit.
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The sum rules we obtain in the various cases have a common

structure as we have shown in the general treatment of Section 2.

All our sum rules are of the type (2.13), i.e., we have a relation

valid as a first approximation in the symmetry limit and a correct-

ion term which takes into account the breaking of the symmetry.

Clearly, any relation of (2.13) type actually constitutes a continuous

set of sum rules depending on which value we take for the momenta

of the considered external particles, A complete discussion of our

sur. rules can thus not be done without an examination of the various

fra:r.es of reference.

The problem of the dependence of our relations on the common

momentum p (and consequently of the best sum rule) is a display

of the fact that the method based on the introduction of the

energy denominators gives a non-covariant separation between the

singie-and raany-particle contributions. In other words, though

the choice of the frame of reference does not change the physical

content of the sum rule, it gives a different splitting between

the zero order terms and the corrections. In particular, starting

fro.r. the same relation, one can obtain sum rules which look formally

different by taking different values of f? *. In the following

section we shall then be concerned with the problem of the choice

of the frame of reference and we shall see that in some cases,

there exists an "a priori" frame in which one can define the best

sum rale, i.e. the one for which the correction is smallest.

/;. THE CHOICE OF THE FRAME OF REFERENCE

Clearly, a detailed discussion of the correction (2.14) and

its explicit evaluation depends first of all on the nature of the

operator M . We shall then distinguish between the various cases

••• .;•'•:---.d i n S e c t i o n 3 .

;'his occurs for instance in the case of mass formulae obtained

"rom the commutator [Q* , t/$2 (see Section 6) where the linear

one corresponds to --jo = o and the quadratic one to (̂ >/—> °° •

-11-



(a) We shall first refer to the case in which M is itself a

"charge". If M is a charge, M * Q^ , so is Mft , as the "charges"

satisfy the commutation relation of the group algebra. A particular

case of that type has "been discussed in detail in I, where it was

shown that the correction was smallest in the frame ljo*i -» i» ( i? being

the three-momentum ofthe external particle). We shall merely sketch

the argument of I : if M= QA , the correction term (2.14), taking

into account (2.10), can Toe written as

(4.1;
where

and analogously for C^, where, as previously said, we have

Now, for kinematical reasons

(4.3)

2 2 uci 2
where A = (£>.- p ,) and ot. (<4 ) is a Lorentz invariant function;

then, dropping the 5 functions, C can be written in the form

(4.4)

where we have taken into account that t a- (n*̂ -*- i> '" ) and, a.s a

conseauence of the £ function £ t-- (WK, •+ io*)'
8. The kinematical

t* « i '

factor in the brackets reaches its minimum value one forjjo/->&o and
2. . > •<*•* 2

its maximum of (»*»«+•*»;,_)U.M̂ >,for -4 -> o and ct. (A j is expected to

be an increasing function of the time-like variable A = i\o - jpa) -

~ Ct - £" ) » so that the minimum of da (A ) should also be reached

at|^(-^wQ , i.e. when A — > o .

Unfortunately the effect of the kinematical factors is not

>-:i*jays so unambiguous, as we shall see explicitly when we treat

the case of the mass formulae. The above discussion was present-

ed only as an example of the type of analysis which should be

-12-



per for:;i 3d prior to making an explicit a valuation of the corrections

due to intermediate many—particle states.

This particular case, in which the frame ij> j ~? oa is a privileged

one, has "been extensively studied in Ref. (3). Nevertheless, we

will treat it also here as a good example of the method for calcula-

ting the corrections of the form (2.14) "to a sum rule in the frarce

I jo I -+• CO •

If •we limit ourselves to the two-particle intermediate state

contributions, then Eq. (4.2) "becomes

I4i J /

A "

d)ilAV "being a Lorentz invariant function depending on the invariants

of the problem. To take the limit |j?j—> o<> we transform (4.5) to

a more useful form by means of the substitution

ana ve choose as invariants

By integrating over cl P , we rewrite (4.5)

i air)1
 ida

wfc e re

In the limitij»j-v <» we have A «. o ; we can then evaluate the

invariant integral tf in any frame where A ~ o . In particular,

we can choose the frame f-o > f>o - ̂ ^ 5 i-n that frame,

-13-



from O-42* £p- h )
X , we have £ = (i'+wlVi^and from S - £

- >
follows IPitiS-utlMtim^* In t h i s way we o"btain in the l imi t fp*B>

a.nd taking the limit in (4.6), we finally obtain

The above formula is useful for numerical computations, "but it

is surely not the most elegant one. Writing down the limit

of (4.6) as

using the formal equality

and re-introducing our original variable «a and jo one has finally

(4.8)

This is a covariant expression for the two-particle contribution

to the correction atjj?!- «> and this form can be immediately

generalized to many-particle intermediate state contributions.

(b) The second case we are interested in is that in which M

self a commutator betw

Hamiltonian; M = [M ,

is itself a commutator between a "charge" (£) ,, and the total

-14-



The expression for the correction in this case is analogous to

the one of "the previous case; the only difference lies in the fact

that in the formula corresponding to (4.2) only one energy

denominator appears

? _

so tha t the co r rec t ion behaves l i k e "f/p as (£/-> ©n . Of course,

also the fundamental terra which c o n s t i t u t e s the p a r t i c u l a r case

of (2 .15) , behaves l i k e */(•> as jp / -> 00 . We are thus i n t e r e s t e d

in the evaluat ion of the $•** p C and i t i s e a s i l y shown tha t the
/f>f-»t»

formula

(4.10)

analogous to (4.8) holds-. However, the frame 1 p 1 ~> <*> does not

have such a preferred character as in the preceding case and one

should also be interested in the frame j? - <? j taking the j? - <=>

limit at the stage analogous to the (4.6) one obtains immediately

JL

the invariant function (u in the jpi = o limit becoming a function

of S only.

b') , instead of Mrt , we. consider its density

the .expression we obtain for the corrections is slightly different

."because we have no momentum conservation between Ct-Cp) and a'tp') .

We obtain in this case

C = a-, ̂  , - v- , i , 4 < 1 2 )



with

(4.13)

If we choose the system ĵ< - |? the correction reduces (apart from

a -<(tir) factor) to the above-discussed form (2.9) and then

we can use (4.10) for the explicit evaluation of the corrections

in the frame tf i -> <*> . A further discussion on the choice of the

frame in this case will "be carried out in Section 6.

(c) Finally we shall examine the case in which the operator

M is not directly connected to the "breaking of the- symmetry,

i.e. the case in which the matrix elements of M between one-

and ma.ny-particle states are not of order I , but are different

from zero also in the exact symmetry limit. This is the case

in which M represents, for instance, the electromagnetic current.

A two-particle intermediate state correction term is given by

(see (2.16)):

The answer, if any, to the question in which frame the correction is

the smallest, clearly depends in the asymptotic behaviours of M

the matrix elements of M , and nothing can be said until we

specify the-nature of H

5. DISPERSIVE EVALUATION OF TEE CORRECTIONS

For an explicit evaluation of the corrections to our formulae,

we need to be able to calculate the <p functions, which in turn

requires a knowledge of the matrix elements of the function O^C^)

between one- and many-particle states. We shall limit ourselves

to the contribution of two-particle states, though our treatment

is, in principle, generalizable.

We start by considering the Lorentz invariant quantity*

~ ~ ~^Tf^ t (ht can be m-itten as

-16-



-- \lttn) S (5.1)

In this expression it is understood (see Eq.. (4.9)) that £ is

multiplied by a 5 function which guarantees three-momentum

conservation p* « ^ + pj • To visualize the fact that there is

no four-momentum conservation we introduce a time-like vector

A =(pi+ Pi - p J ; A - (t t + £» - £ ) • Then we consider A as

the (mass) of an effective spurion which carries off the energy,

and which is described by the field D/}(P ) *, so that it has the

transformation properties of D» under internal and spatial

symmetries. The fact that it is coupled to our system is a display

of the "breaking of the symmetry and, of course, the "coupling

constant" is of the order of ̂  . In other words, R. can be

considered as describing the scattering process d+ spurion —> A T/$*

Fig. 2

(i, will depend on the invariant variables

S = (. p, •+ p£) , t = c p - p ) ,

- IP •* S + •+ /A (5,2)

-:r;d to evs.luate it we shall use a dispersion-like approach. This

means that we assume for R. analyticity properties in s » t , M with

the poles and cuts reo^uired by unitarity. Then we shall do a "pole

*For a model in which, for instance, the divergence of the strange-

ness changing vector current is proportional to the field of the

>C-rr,eson, see Ref. (8).
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approximation" by retaining only the pole contributions. In this

way, the final result will depend on physical parameters only (i.e.,

physical matrix elements evaluated for special values of the .

kinematical variables) and, in particular, it will be shown that

H. in this approximation can be expressed in terms of the physical

mass differences, without any hypothesis on the transformation

properties of the symmetry-breaking Hamiltonian.

To make things clearer it is convenient to work out an explicit

example. Let us consider the case where Ofl a DK and <X is "TT(,
it

p,4 a. "f,, anc* /J« a **»/ meson dropping charge indices.

As to the analyticity properties of (L in this case, we can say

that in the variableSthere are a pole at s - *M^ and a cut

starting from Ct*»K + t t*ifl) , in the variable w a pole at <A * \^*v

and a cut for n ^ ("̂  Mv j£ , in the variable t a pole at t* <*«J*
99

and a cut for t J t w « -* I w ^ J • Graphically, the situation

is pictured in Fig. 3

• -nct>>

ig. 3

As we mentioned at the "beginning, we shall limit ourselves

to the pole approximation in all applications. This approximation

is in agreement with the whole spirit of our calculation and we

believe it can give a reasonable indication for the total correct-

ion ,

Wow, on invariance grounds, we may write
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<itS,t,M ) « ( p - £K'') R.1 + (p 4. *
<f)) ft, (5.3)

(where £'%s the § -meson polarization vector)

and for ea-ch R^ we shall take an expression of the form

where f\- , gt' , and C- are the residua at the poles and they can be

expressed in terms of matrix elements of physical operators between

physical states. In particular, they are given by matrix elements

of Drt and of strong currents between one-particle states.

To be more definite let us study in detail the contribution

at the S-=n*^ pole. Using standard reduction techniques, we find

nd the corresponding discontinuity around the K -pole at s- m K

Next we introduce the definitions

T.

where F and C, are the form factors describing the corresponding

t'. ~ -OJJUI'I^U) and (.kKfJvert ices. ¥e find for Eq. (5^6)

(5.8)
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and the coefficient of the $ -function is Just the residuum at the

pole. The quantity QK Lv*{ , t*** t \*A'
L ) = %pK«

 i s the ?«* coupling

constant while fri(tv*K
!y **« ^ ) will be discussed later. Using

analogous considerations the following can lie derived in a straight

forward way:

1 ^ - s **•<« **, . t

I

Our final step is the evaluation of P , To this end, let us

consider

where, as a. manifestation of the non-conservation of the current

3"c (y } » w e have two form factc

matrix element of D^ then equals

T (y ) » w e have two form factors, F"( C^ /
&nd Fj(^lJ. The

(5.11)

By comparison, "we obtain

(512)

In p a r t i c u l a r , in t h e l i m i t | p j - > «o , A -> o we o b t a i n

(5.13)

where F (o)-» C"^ ̂  ( "£ "being the renormalization ratio **/'%) and then, in

the symmetry limit, reduces to the simple Ci<n Clebsch-Gordan coefficient*

* In this respect, it is worthwhile mentioning the analogous

result which holds for spin-J particles. If we define

it is easy to derive the relation

V F A ( * ( * , * M / , O > = <**»,-U«,> ^ r " (5.13')
-20-



With Eq. (5.13) our final goal is achieved and, in the limit (f>*| ->

we obtain for R. ̂  (neglecting higher-order terras in the mass

difference)

c»
t - *****

The fact that D^ is an operator which is proportional to the

symmetry "breaking is reflected "by theft* 's "being proportional to

the difference of masses of particles "belonging to the same re-

presentation, namely tr and ^ and f and K* . It is rather remark-

able, however, that no assumption has "been made on how the symmetry

is "broken in calculating R, (at least in the pole approximation).

All that has been used is the fact that our states are eigenstates

of the total Hamiltonian. Regarding the possibility of improving

our calculations, we notice that a simple way of taking into

account the higher-lying states would "be to ascribe a S —dependence

to the form factors-of Eq., (5.7) • In-the same way we could "dress"

every vertex introducing the final state interactions,

6. OST THE MASS FORMULAE AHD THEIR CORRECTIONS

6,1 It is well known that in the symmetry limit the masses of all

the particles in a given supermultiplet should be exactly the same,

but if in the Hamiltonian a breaking effect of strength $ is present,

then the masses of the components will differ by a quantity Ot-fK

There exist, however, particular linear combinations of such mass

differences which are valid up to a higher order in * j such

combinations are the so-called mass formulae and their agreement

with experimental data is expected to be particularly good (as long

as Jf is not too large) as the corrections are expected to be £?(f J.

In particular, believing in-SIK, if one makes some assumptions on

the breaking Hamiltonian and treats the breaking as a small perturba-
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tion, one gets the well-known relations among the masses of
q

particles of a given superraultiplet :

- 1 = O

N*-Y* * V*- = * = =V-

where it is common convention to consider the particle symbols as

their masses for fermions and as their squared masses for "bosons;

in the vector meson formula, moreover, one introduces the eighth

component of the octet (J^^ -*-G^ AU*.© +t^cx>a Q , i.e., as a

mixture of the physical particles <L> and cP . I t should, however,

be emphasized that these conventions are introduced into the theory

from the outside and they are not actually supported "by any firm

theoretical arguments-. In particular, the choice between linear

and quadratic mass formulae seems to be rather arbitrary, being

really supported only by the agreement with experimental data.

*-e will show in this section how, using suitable commutation relat-

ions and completeness, one can obtain the SIT, mass formulae as a

limit of more general formulae.

As mentioned in Section 3» we can obtain mass formulae in two

different ways. The first one, based on the consideration of Na -

1 iike operators, provides actually relations which connect the

•energies of the various constituents of a supermultiplet.

Clearly, from these one obtains immediately relations among massen

or squared masses ("both for fermions amd bosons) by taking suit-

able limits for the external momenta. It should be emphasized that

"both formulae, the linear and the quadratic one, have actually the

same validity in so far as SU- and its breaking are concerned, the

difference between the two consisting only in the role plaid by

kinematical factors, as remarked in Section 2.

The second method, based on the use of the commutator between
a "charge" Q ^ and a "divergence" "OA requires the further assumpt-
ion that the 1} 's themselves belong to an octet. The relations

A
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we obtain in this way are linear combinations of masses in the

fermion case and of squared masses in the "boson casej the coeffi-

cients, depending on some kinematical factors and "form factors3',

reduce to the well-known coefficients of the SU mass formulae if

we neglect corrections of order higher than two in the symmetry

breaking. Thus, we o"btain in this case linear mass formulae for

ferraions and quadratic for bosons, no matter which frame of

reference we choose.

Moreover, our method enables us to evaluate explicitly the

second order corrections to the mass formulae; however, as we

shall see later, it is not easy to establish in which frame of

reference the corrections should be expected to be minimal, that

is, there are no completely general arguments in favour of a part-

icular frame of reference, nevertheless, on the "basis of some *

heuristic model we can believe that, at least in the second case,

the frame p-^oo should be preferred,

6.2 We shall derive here the energy sum rules using the above-

mentioned method. To reach our goal, we remember now the defini-

tion (2.6) of the 1\/̂  operators. Then we assume, as usual, that

the SU, "breaking part of the Hamiltonian ( as far as the so-called

semi-strong interactions are concerned) /\̂  the hyperchargeV . It

irj then clear from the group algebra that Nj^Q f t and thus

- O (6.2)
ft* "I i ̂ i ^ .

1: ¥e keep in mind that the operators Qftand thus also N^» ?-re

translation operators in the ("\ -spin subspace and we work in the

V -spin subspace

" u (6.3)

or in the —spin subspace

it is clear that one can obtain relations among the energies of the

constituents of different X -spin multiplets in a given SU, represent-
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ation. It is simply a matter of taking matrix elements of (6.3)

or (6.4) (between suitable one—particle states belonging in the

symmetry limit to a given SU, representation) using completeness

and taking into account, as a first approximation, only the one-

particle intermediate states (belonging to the same irreducible

representation).

Each single term one obtains in the development commutator,

taking into account only the abovementioned states, is clearly

5.3 K/a itself is O(.?). The contribution of the remaining states

i:s Oil"1) and it constitutes the correction to the relation obtained

vhich in first approximation (order ̂  ) equals zero.

If now, in the evaluation of the corrections, we limit our-

10elves to the £ order it is clear that the matrix elements between

one-particle states of the "charges" Qn can be simply taken as

p-iven by their symmetry limit since the introduction of r contributes

to the corrections only with terms O(£*), the difference between f*-*'

;.•.;• id 4 being itself O C?1") • In other words, we can use (2.2) instea.d

<r:" (2.3) for the matrix elements of G^fj.

As a practical example, we shall consider the case of the

paeudoscalar mesons; we consider then, for instance, the matrix

element of (6.3) between K and K states. Introducing a complete

;>et of physical intermediate states, expliciting the one-particle

intermediate state contribution and using (2,8) and (2.14), we have

0-

that one finally has
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where we have dropped the overall 5 function which states that ̂  t

and all the energies of the particles should "be evaluated for the

same value J3 of the three—momentum; the,correction term C is

given by

which clearly shows the Glf1) character of C and is of the form of

(4.9)) as discussed in Section 4.

3q. (6.6) represents a continuous set of mass sum rules, one

for each value of the momentum , which contains the linear mass

formula as the limit value for ji-̂ C :

Co * ^

and the quadratic one as the U-*t>a limit

(6,n)

In order to determine whether (6.8) or (6.10) is the a priori

"better relation, we shall compare the 'two corrections. For this

purpose, we note that, if we write the physical masses as

the octet "bare mass and S^tOC^} the renormalization

effect due to the symmetry "breaking. (6.8) gives

4 8 «. - 'i So^ — "Sti "̂  Co

and (6.10)

so that we should have
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In order to establish if there exists a better a priori mass

formula, we shall try to see if the further correction in the 6^'

*•.']• ich appear in the expression of the quadratic formula, improves

o" worsens the value of the correction. We are thus led to

• v5r.pa.re Co to *"°Ci /'Zl&tt' Remembering now (4.3) and taking into

account the fact that, as a consequence of the Wigner-Sckart

theorem, one has

(6.12)

Cft being the S'CU Clebsch-Gordan coefficients. Prom (3.7)

nan sr.y that C is a sum of terms of the type

where E^. 2 CT> ̂ ^«•) f ̂  u. *(l> *-tu'O, W-^being the invariant mass of

the intermediate state; and A1" x (̂ pot-lp̂  ~ (,t<*-'E>O is the

squared momentum transfer. From (6.1-3) it follows that

.\:~ vre said in Section 2, it is now reasonable to suppose the "form

:"a::;,ors" O^C^io be increasing functions of jf^ when £ ^ becomes

f A*i.

l^-r^er and time-like ivi.e., when & approaches, s-nd subsequently

runs the sinpula.rity region;. In this vrasy, G; 1&1") will reach its;

minimum value for Â= O , i . e . U -* <w> . The f actor (_ci ̂ ^•A<-iM^iJJi

• (_ civcrt*-*)) in (3.14) will then be greater than one; the factor

V>U«+ ̂ tc^/lAi-iK is smaller than one ( U\ot,being greater than O^K.)

whsroor. UJU> /UUn.— 4- • Thus i t is not easy to ascertain a. pr ior i

whfcr: the correction, is smallest and consequently conclude whether

•!:he linear or the quadratic mass formula is better (at least without

making specific hypotheses on the behaviour of the form factor) .

An explicit evaluation of the corrections has been made ajorj;~
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the lines suggested in Sections 4 and 5 » for the squared mass formula

as well as for the linear one. In both cases, the numerical value of

the calculated correction is in satisfactory agreement with the

experimental values. The details of calculation (assumptions,

approximation, numerical values) are given in the appendix.

We have discussed in some details the mass formulae for the

pseudosoalar meson case. It is, however, clear that exactly the

same argument can "be given for the other SU-. mass formulae.

Formulae of the (6.3) and (6.4) type taken "between physical states

•belonging in the symmetry limit to other irreducible representations,

give relations of the (6.6) type corresponding to the various 3U-.

mass formulae.

For instance, taking the matrix element of (6.3) between a

proton and a Z. state, one has

£ . C^ (6.15)

with

where we have made in G-^ the approximation t > - t •» — E CUl+V)

and dropped the S function stating lpT

For the 3/2 resonances, Eq. (6.3) taken between Kj and
•+,• • + • —

and subsequently between > and i j . , gives

where, with the usual conventions
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U!or i-hv- vector meson it is then clear that one has a formula

like i'o.o) substituting the corresponding vector mesons in place of

Uie pseudoscalar mesons; obviously, in order to obtain a good

agreement with experimental data one should replace the *"*! with a

mixture or' CO and dj and the ratio of the mixture determined, as

usual, from experimental data, the to-^ mixing angle not being

predicted by SU~.

To conclude this section, we would like to emphasize that our

rules, obtained as a consequence of formulae like (6.3) and (6.4)

and completeness, should be valid also if the breaking Hamiltonian

does not simply A7 the hypercharge. In fact, the same mass formulae

(and the same method for evaluating the corrections) hold for every

breaking Hamiltonian aich that at least one of the following relations

is verified

- O (6.19)

In particular, when working in O -spin subspace, it is easily

recognised that (6.18) is satisfied for every "breaking Hamiltonian

of1 the type Bf^ """IMIQ.W+W'OQ, because Q-wQi •••^Qy is a U-spin

snalar; this fact suggests that the mass formulae written down for

P«r;ioles of the sane charge should be valid also if one:takes into

account the simultaneous breaking of SIT (supposed >\> Y ) a.nd ths

eiectroma^netio interaction.

6.3 The second method which allows us to obtain mass formulae

is based ori ^ne hypothesis that the divergences D^ belong to an

octet; we admit in particular the validity of the equal time

commutation relations

1 Cx,t)l - O (6.20)

for every value of "x . We choose for simplicity Vto and V" *

and we work, as in the previous case, in the V —spin subspace



taking the matrix element of

between suitable physical states and using completeness.

We sta.rt "by considering the pseudoscalar meson case. We

obtain

(.6.22)

The matrix elements we need are of the type

and <. (pt I O^wt \\>^> • As far as the first one is concerned, we

remark that, as done "before, we can take for it its symmetric value,

the deviations being of the order £ . For the second term, we can

use Eq.. (5.H)

tc V- {6.23)

Cwhere C ̂ , is the appropriate Clebsch-Gor&an coefficient and the

form factor €?(G ) — I*C (t'heVrenormaiization ratio). Moreover, for

the purpose of simplifying the derivation, we assume

In so doing, Eq. (6.22) becomes

(6.24)

wriere

(6.25)

!\re note now that the coefficients of the two squared mass differences

differ by terras which are of the order tf and which can he collected

in the corrections on the r.h.s. Thus Eq. (6.24) gives the well-

known mass formula

\ ) (6.26)
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.i.n order to obtain the mass formula for the baryon octet> it

is now sufficient to take the commutator (6.21 ) "between a proton

and a Z , apply the standard rules of our game and use Kq, (5.. I1}

far the matrix element of D between spin-Sr. states

6.27)

which involves linear mass differences. Thus, -we get the mass

formula

(6.28)

It is important to realize the different role that the\>—dependence

he.s in this case and in Subsection (6.2), Here the classical SU\

aass formulae can be obtained independently of the value of V>

which comes in only when we discuss the corrections. On the

contrary, in the previous section we have actually energy relations

and different choices for h can give different "mass formulae'1.

Finally, we would like to point out that it is possible to do

the whole derivation of Eqs. (6.26) and (6.28) taking into account

the complete form of ^-tal ti k l h ( ^ (i.e., including fnrr.n factors

and kinematical factors) In this case, no kinematical factors

appear in the l.h.s. of Eq. (6.28)and the only approximation we make

is to take the renormalization ratios £-l(which actually contribute

to the corrections with Ot{ )terms). In this way, we would get for

(6.24) a more complicated expression involving form factors evaluated

in different points, However, if we perform the limit I Pj = t t**f -IP. -* °°

all the arguments of the form factors tend to a^ro and we get

again Eqs. (6.26) and (6.28)* (after multiplication bylj?i) . Thus,

the choice of tbe|t*'l=o» reference frame presents some definite

advantages. It allows a clear-cut separation of the corrections

(in the sense pointed out above) and, as shown in

"Here we did not play all the game but a detailed calculation of

this sort is given in the example of Section 7-
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Section 4, the many-particle contribution can "be put in the covariant

form (4.10). Moreover, we can give here the same discussion of

Subsection (6.2) about the magnitude of the corrections: in fact,

the r.h.s. corrections of Sq. (6.26) and-(6.28) are exactly given

by Eqs. (6,7) and (6.15). Applying the same considerations we

can presumably believe that the corrections assume their minimum

value as p-*co.
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7. RELATIONS FOR FORM FACTORS AND MAGNETIC MOMENTS

In this section we would like to discuss the case in which
12

"the operator r\ of Eg.. (2,13) is a current density , As a

particular example, we shall choose the electromagnetic current,

though our argument will "be quite general and, in principle,

applicable also to other currents*. The electromagnetic current

transforms under SU., rotations as the charge, i.e., it is a scalar

in the U —spin space. As a consequence, we have

TThe operators are taken at equal times and from now on we shall

consider t •=. O t X =. O . Following our usual procedure, we

consider the matrix element of the commutator (4.1) "between

(physical) proton and 2L states, we insert a complete system of

intermediate states and keeping the lowest contributing states we

Set

(7.2)

where

c -
:,,'e can remark that the correction C is of the first order in the

symmetry-breaking interaction , We introduce now -,he following

relation

2

where <j> =£*££, - 6 ) ~(^ fi + *̂*p - Vjo*-* *>* ) and we adopt the normal

i za t ion C|Co )-ft . ( i i n the symmetry l i m i t ) . The presence of the

* For a discussion of the weak current case, see Ref. (2).
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additional term qo rUfcJ is another consequence of the "breaking

of the symmetry (it disappears in fact as m — > w£ t *a -> & ) . It

can be verified that its presence does not alter our final conclusions,

so that we shall omit it in order to make the formalism simpler.

Moreover

5
In Sq. (7-4) <3 s |i-jo' , t ; ̂  and f\f $ tt ) are the usual

electromagnetic form factors normalized to 1 at t - O

^ F('O) =• f̂  Co j r i. J. fe, is the anomalous part of the magnetic

moment (in Q/lw\9 units) , An analogous relation can "be written

Tor the electromagnetic vertex of the S- and in so doing we

introduce the quantities f\ it)i »̂ ^-^ a n^ **y (anomalous

magnetic moment in units &fiim ). It is important to notice that

in Eqs. (7.3) and (7.4) we are using the physical masses for the

involved particles. This is due to the fact that the states we

are considering are physical states, eigenstates of the total

Kamiltonian (not completely invariant). In this way, we already

introduce in the kinematical factors a display of the violation

of the SU symmetry.

If we insert these definitions of Eq. (7.2), we find

[ f &

(7.5)

wh e r,e
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From this expression we see at once that, even neglecting the

correction C = OCf ) » nothing very definite can "be said. In

fact, owing to the presence of the two arbitrary momenta -4».. , ^

So, (7.5) allows a comparison "between form factors evaluate; in

the different points t^ and t$ . To avoid this difficulty, it

is again convenient to choose the best sum rule, i.e., to consider

the configuration of [>}% I , If^j which minimizes C . With the

same arguments as before, this is achieved by choosing fi -> o=>,

p* -> 00 but f»£ ~ f̂  = ^ fixed. In this limit

; s

t t

using the free Dirac equations for the external apinors, Eq.. (7.5)

becomes (^ ^ 1 j

- C^TT)J ^ f - * i!^-^- C (7 7

Thus we get the result

In particular, at t™& t*: v- 'econd relation gi~ :

^ L Tfe (7.9)

and {;oiv.g over to the total magnetic moments
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In this way, we recognize two different types of corrections,

"both o f o r d e r -̂  t o t h e s y m m e t r i c l i m i t s fcp = k £ , ^ 4 - M i • T ^ e

first one -which is proportional to the mass difference, is of a

kinematical origin in the sense that it is due to the fact of taking

correctly into account the physical masses of the particles. In

Sq. (7.10) for instance, it produces a correction « - <f % . The

second term 5 It is related to the existence of non-diagonal matrix

elements for the generator (£L and it can he treated using the

formalism discussed in Section 2. The simplest set of states to

be introduced in Q of Eq. (7.2) would be those contamining one

nueleor; ( i ) and one pseudoscalar meson, the matrix elements

^ I1 I $M ! P *) and <^Z*| T,̂  ll*Try could then be evaluated using

data for photoproduction when known or even calculated in a simple

model.

Unfortunately, one usually cannot obtain all the relations

•between electromagnetic form factors of particles in a given re-

presentation "by taking matrix elements of one commutator. For

x/jc baryon octet there are nine magnetic form factors, including

the I*A transition,and only two of them are linearly independent

corresponding to the F and D coupling of the current.

In order to obtain a general formula whose matrix elements

f-rive all the required relations between magnetic moments, we

observe that if we put briefly

<*s C? , the electromagnetic charge,

Then from the commutation rules of the algebra one has



and • < * O , Y ) (7."! 2)

It is then clear that a suitable comlDination of the commutators

££T £t?JT ^ 3 ] should reproduce M itself.

We find that

f C M , <?,*! , <?;] -- 8

(the second relation is a trivial one 'because f M cj?"jis already

zero) and the required -general formula is

The simplest single formula which enables us to obtain all the

desired relations "between form factors and their corrections of

order J is

In the frame in which the three momenta of the initial and final

particle are equal, we find as aero order approximation (i.e.,

neglecting all the mass differences) the following nine relations

between the nine magnetic moments
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6.

7.

8.

9 <?
Ml

the first eight of which are obtained by taking matrix elements

between two f> , » , r , I * i I M ; T ) Tt » and A states

respectively and the nineth between a £„ and, a A • Of course,

only seven of these are linearly independent and the calculation

was made in the lowest approximation, keeping only.one-baryon

intermediate states. Corrections to these relations can naturally

be. calculated, as discussed in the previous example. We wish to

emphasize that if we are interested in the first order correction,

we should introduce many-particle intermediate states between X

and only one (0 , i.e., consider only terms of the type

and analogous ones, but no terms like

< a / t? / of, tfj ) <U, U, t T^ t rf, ^ >< ^ < I d? I a'>

which are of order f . Thus, since the matrix element of a <J/

between two one-particle states reduces in this approximation to

a simple coefficient, we can always apply, in evaluating the

corrections, the methods previously discussed.

Analogous considerations could be developed also for strong

"charges". Assuming a Yukawa-like coupling between baryons and

mesons sum rules could be derived for the different coupling

constants.
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APPENDIX

We wish to calculate the corrections.as displayed in (6.7)

to the pseudoscalar octet mass formula. Like in Ref. (3)» we

simplify the problem by considering intermediate states contain-

ing one pseudoscalar and one vector meson. We further simplify

our calculation by breaking the symmetry only on the lines and,

as suggested in Section 5» making the pole approximation in the

dispersive evaluation of the matrix elements of D (see Fig. I).

\
Fig. 1

denotes a pseudoscalar meson

•"̂ yN denotes a vector meson

(2) denotes the "breaking of SU.

We shall now give some of the details of the calculation,

focussing on the fi?j — ? ©o case

where C ^ ,remembering Section 4? can be written in the form

and the invariant function <p is studied dispersively, as u,

Section 5« Unfortunately, because of our simplified hypothesis,

C ^ contains a divergent integral over $ . A natural way to

,?et rid of this difficulty would be to introduce a strong inter-

action form factor instead of a point-like coupling between the

vector and the pseudoscalar mesons. However, to avoid additional

complications, we shall introduce an S "dependent vertex of the form
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•where is determined to "be

<3f^A* = o.q
h./ ttaking an average to the fit of the width of the K (si Mev)

and the Q (115 'lev) , using the Hamiltonian

e have moreover, again for the purpose of simplifying calculations,

;.kor. th«v (ir,̂R« differences) found in the evaluation of the matrix

lements of D in the pole approximation, as given "by their first-

j'der 'broken SIT., limits, that is to say

I _

4

V?
whioh implies, using the known values of the masses

i^l = UiO He*/ ) ^

Similarly, for the vector meson masses, we find

"Hr.ally, we present the value of C M calculated for two different,

values of the cut-off /\ : /V = (Z M, ) M l̂Deing the mean "baryon

ness and A a - ^ A J

C (A3 ) = O. 19 **?

value <r; ~ C3. J

As an indication, we have also evaluated the correction in the

p - o limit, using a fonnula of the (4.11) type. Kow, taking

: i n e : . r ; r i M 3 f o r m u l a s }
 r v . g . s

- Ij*- _*.. : _ ' . S-.



we find

and for the two values of the cut-off

t X P
experimental value Co is O. &**
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