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SUMMARY

A systematic analysis of the squal time commutation relations
of the gererators of an algebra with certain physicel operators
ig made. A method is then introduced whereby considering matrix
elements of such commutators between physical one-particle states
and using completeness and invariance under space~time traqglations,
corrections to broken symmetry group theoretical formulae are
obtained, Several applications to weak, electromagnetic and sirong

interactions are then made.
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THEORY COF CCORRECTIONS TO UNITARY SYMMETRY FORMULAB
1. INTRODUCTION
One of the most powerful tools for studying the physics of element=-
ary parﬁicles has been the use of symmetry groups. In particular, SU31
has led 10 very many well=-verified predictions ‘concerning the classifica-
tion and behaviour of elementary particles and promising reéults appear

also to follow from the application of still higher symmetiry groups.

It is nevertheless still not well understood why some of the group
theoretical predictions are so good despite the fact that the breaking of
the symmetry is large and the group theoretical results correspond to a

guasi=-perturbation theoretical approach in this breeking.

We shall present a method for studying in some cases the correct-
ions to simple group theoretical formulae and thereby attempt to achieve
an understanding of the validity of these results., A first step slong
this dection has been taken in Refs, (2) and (3) in which the renorm;&iza-
tion of the wesk interaction current vertex due:to symmetry breéking'was
estimated., This paper will be devoted to a generalization of tﬁe method

and to its application to a wider class of problens,

The method ie based on studying the equal time commutators of the
generators of the group algebra, as constructed from the integral over
all space of the fourth components of the currents. This method has

4

been repeatedly emphasized by GELL-MANN = over the course of the past
few years and has the advantage that the commutation relations remsain
unchanged even when the symmetry is broken and therefore the cu;rents

are no longer conserved,

We shall show how to construct a scheme for evaluating correctidna
to group theoretical formulae by a judicious use of commutators, complete—

ness and invariance under space-time translations,
t

Sections 2 and 3} contain a general outlinefof the method which was
applied in Refs., (2) end (3) to the renormalization of the weak current
end show how it may be generalized to treat a wider class of problemé.
Section 4 treats the influence of kinematical factors and the choice of
frame of reference for evaluating the corrections and Section‘Bishdwé
how the corrections may be evaluated, The method is finaily apﬁliedito
mass formulae in Section 6 and to relations between electromagnetic form

factors in Section 7. An appendix containing some numerical reésults
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on the evalustion of corrections to mass formulae is also included;

they are in reasonable agreement with experiment.

2. GENERAL OUTLINE OF THE METHOD

One of the fundamenial consequences of ‘the invariance of a
theory under a group is the existence of a sef{ of conserved currents
_T}i(r)a.ssociated with the group transformations. The fourth
components of these currents, integrated over all space, which we
shall call generalized "charges" are the generators of the infinite-~

simal transformations of the group (at time t )
Qo = e (X t)dx (2.1)

If we assume the symmeiry to correspond to a (semi-simple) Lie group,

the generalized charges satisfy the equal time commutation relations

[Qe (13, Qg ()], 1= Cge Qg (1)

where the C,E.g's are the structure constants of the Lie algebra.

In the following, we shall always employ the generafors in the
standard form. Recalling the Racah notation 5, we label as

the mutually—commuting (always at equal times) generators and QN
those corresponding to the non=-null rcots K. Ina given represent—
ation the operator (Y4 connects the state 1M belonging to a
weight ny) only with the state belonging to the weight om+ol .

<'w~+oh-‘(: | Qu i B = Claym)y %c‘b)(—‘?*?u) (2.2)

where C(q\m) is a constant determined by the group structure, For
instance, i1f we consider the state belonging to thehighest weight

M of 2 given representation, we have _
KB Qu M= B oM 3 (BT e

the O{,'s being the components of the root O .

The egqual +ime commutation relations hold even when the

symmetry is broken, that iz to esy when the currents are not all

wle
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conserved, and the (Dcara no longer constants in time, A set of
one=particle states, however, which formed an irreducible represent—
ation of the group in the sjmmetry limit now contains admixtures

of other representations as the states are eigenstaites of the

total Hamiltonian which contains both & symmetry-preserving and

4 symmetry-breaking part. The action of this symmetry breaking

is then reflected in the matrix element of Q“, which now equals

<k B Qufw-ot B = Clatym) T(p) B (LF) (2.3)

and, in the particular case of the highest weight

<ML Qo M= BTS2 vw?“’" (MDSGFLE) (231)

the deviation of 1‘ }fro'n unity being a measure of the symmetry
breaking¥ It is then clear that the above~defined quantity F‘d’
is simply connected with the quantity Gu’con31dered in T and II
(which in the limit of zero momentum transfer is the renormalized
coupling constant), F) = GU‘)/G(“) In addition G)o( now has
2180 non=vanishing matrii elements between oﬁe- and many-particle
states, The reason for this ig that 2 multiplet of particles
transforming (in the symmetry 1limit) as en irreducible Tepresent—
ation of our group no longer has well-defined transformation
properties under all group rotations, but only under tho~» wiich
leave unchanged the total Hamiltonian, i.e., which correspond to

constants of the motion.

We have alreaay sald that the deviation of F("() from unlty,
i.e., of G*Vrron C}° , is a measure of the symmetry breaking;
another is given by the mairix element of the commutator of the
total Hamiltonian H and a “charge" R o Detweer ne=particle

tates and many-particle stetes; 1t is, of course, clear that

Q‘xcommutes with the symmetry~preserving part H5 of the

it

* We notice a slight change between our present notation and the
one used in I and IT; in T and II, in fact, we have included the
unrenormalized coupling constants o ot ’1n the definition of the
surrents,
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Hamiltonian, but no longer with the breaking part HE . Then the
non-vanishing matrix elements of the Qc('s between one~ and many-
particle physical stiates can be connected with those of '):Qoh\—\]

hecause

LMiQuimy = <MILQ« HYm> (2.4)
EEnq"EElﬂ

where {M> stands for a m-particle state and E x is the total

energy of the | X7 state., In the limit of exact symmetry the
numerator in the r,h.s. of (2.4) vanishes being of order g, where
? is a dimensionless coupling constant characterizing the strength

of the symmetry-breaking Hamiltonian.

In this paper we will examine how, by an appropriate use of
tkte Lia algebra of the group and of completeness, we can treat a
wide class of phenomena in order to obtain, as a first approxima-.
tion, relations valid in the exact symmetry limit, and then the ’
corrections to these relations due to the approximate validity

of the symmetry in nature,

As for the applications of our method in this paper we shall

implications; in so far as SU, is

3 3
concerned we shall employ the de Swart convention 6 for the

T2 noncerned only with SU

generators. We define the generalized charges corresponding to

the non—zero roots of 3U, as

3
(x) — (D .
QA = g(‘)").a bBKNA(t} (2.5)
/\“I\K\L.

“1.ore the symbol s means: "has the same SU3 transformation
wroperties as™, The I =iike operators are translation operators
in the 1 -spin subspace, in the sense that they connect states
wits Al=4 ; in the same manner the L =like operators are
translation operators in the |J -spin subspace and the same is for
the W =like operators in the W =spin subspace (see Fié. 1),

For the generators corresponding to the null roots we choose
Qyay~ 1y end (y~Y (the hypercharge).  In soms cases Wwe uge
also the electric charge @) = Q3 + % QY \
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Fig. 1

In what follows we often uze the commutators of the total
Hamiltonian H with the "charges" Q: . We define:

(Qa, H1 =5 N, | (2.6)
(A= 1, K, L)

it is c¢lear that, if

H = Hg+ Hg
Pis being the symmetry~preserving part and H, the symmetry=~
breaking part of the Hamiltonian, as long as we consider a break=-
ing which transforms und;r SU, like hypercharge, then hﬁ: ~ rY

Loyt 1 -,
and N~ whereas MI is zero.

From (2.6) and (2.5) and making use of the dynamical equation
- + . g
Ld&!’ P{] = A q%
w& can write
.+

-+
. - E W (R ¥ 1
N§3;4 Jf%(l",)naix-+4/(0ﬂ;4;a A x
and putting '
b *
O Ju0), = Do

we have

-

(D7, HI = = N, = "f":f‘“‘""‘* (2.7)

*
where the C% are Lorentz scalars. |

As far as we are concerned, we shall always consider matrix
elements of operators between physical staies, i.e., eigensiates of
the total Hamiltonian; we have then, using (2.7), the following

-5-.




relation between the matrix element of a ﬂdn and the correspond-

ing (?ﬁz _
la|NE[BY = *(Eq-E)<Kal &y ib) (2.8)

EK being the total ensrgy of the state IX)'. If lad and {b)are
crne=particle states belonging, in the symmetry 1limit, to the same
irreducible representation, then Eq= Eb as long as the Hamiltonian
preserves the symmetry, and we find obviously that NQ is zeroj

out it the symmetry is broken by a part of the Hamiltonian of
strength  , we find that (€, - 6,)1s a quantity Of), i.e. &
measure of the broken symmetry. On the contrary if {Qd and (bd
¢o not belong to the same representation, then, as slready stressed,
the matrix elements of 624 * pan be different from zero only if
the symmetry is broken and, in this case, they are of the first
order in the breaking as one easily sees by resading (2.8) in

reverse order:

(alNgih> -
a-E, (2.9)

dal @b = ¢

and noting that Nﬂ is of order f by ite definition, whereas E,- E‘-,
hag, in this case, nothing to do with the breaking. By using

(2.7) we can also write the matrix elements of the (Qn‘s as

N HROIDS
Eo - E,

a form which will prove to be very useful and often employed.

ICY| cpj (bY = -4 tm)} Scp,;_ ﬁ.’ (2.10)

Consider now a physical operator M , whose matrix elements
are measurable, and assume that it hag well=defined traneformation

properties under group rotations, say
@, , M1 = ™M, ' (2.11)

}ﬁﬂ}ming datermined from the group algebra, Cne can then obtain

* in the following, we shall call such matrix elements the "off=

symmetry" matrix elements.

L, e me me O A A BNt - T N
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relations teiween the matrix elements of M and those of P%. Tal~
ing the matrix element of g2.1+) between two suitable one-particle
gtaiee {@yand ik’y, wkich, of course, are taken to belong to the
? ’
geme lrreduclble representation in the symmetry limit, and using
completeness we have
{aiMylaty

) _ (2.12)
2 L ) alQuleddl Miar) — dalmidddatt @l oty

4 A a

Of course, in the symmetry limit only the one=~particle intermedisate
ztates[Q;)belonging to the same representation as (@Y and la’y
contribute Yo the sum; we can then write (2.12) in the form
{al Mty =
(2.13)
= 20 Jdal Qulagdcad M) -¢al M asad ylas) + ¢
calling Eigthe sum over all physical states which do not

T D TR
Wil gy

- . - . . Y
belong to the same irreducible representation asa and wa’,

C = X, {(a{@n{az><c(lz‘fiia‘>——
{2.14)

~Lal MK Gyla’>

i zero in the symmetry limit and should be regarded as a [small)

carvection term to the relation

|
ﬁ’
-
~,
5
S
'C
\/
LS
<
old
2
F.
’\/
4'\
4
2
- F
Y
N
19
A,
o
L

Tith tre &id o {2.10) the covrectlon bterm canm be written

* ol 3 ‘ \ L : d ot
C = <n)’ 4, “;j_":’“)uwna> S - )
“l

(2.16)

~dalmiy LIS Sep 7]
t-'q/ - bd
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-he breaking of the symmetry is explicitily taken ianto account by

it vaiues of

-

ﬂ{o, and therefore 1f we are not interesited im still higher
" 2ll other guantitiss., This means, for instance,
the mzas of the particle @ can be considered as sqgual to

of particle @' and that the matrix elements of M in (2.16)

2y e calculated in the symmetry limit. This is & consistent

voasiuare when the symmetcry breaking is not too large. We would

¢ emphasize, however, that our method is not equivalent

z periuirbation theoretical one in that we make use of the fact

are physical eigenstates to take the physical

2lues for the mairix elements of M in (2.15) and not just a

un %o 2 given order in perturbation theory. The covrrection

-4} ds tken, as we have stated before, caused by the fact that

e shtates ja) do not transform like an irreducible representation

tre symmetry group, bult contain admixtures to all orders in P

representations.

SUW RULES

¥rom the formula {2,13) we can, by specifying the nature of

the

i operator, obtain a large number of sum rules conne~iing

sricus matrix elements of M with those of M,.

this section examlne the most interesting resulis

-+

He shall in

s obbtain i we choose for M some particular operators,

+
I—;J
b
o

et of ali, we can identify M with another generator

better, generalized charge G%,; in such a case, the commuta-

noTHLE
nl’l
- C ‘ f= 1
lQA O’q] AR Qn" VIes )
{_\1”
o~ X - -
“ape feing the structure constants of the algebra) allows us
otain relations between coupling constants., In particular, in

e IT it was shown how 1o obtain relations beiween the bare

suptling constant of a curvent and the rencrmalized one by considsr—

the commutator of oppozite charges. Taking the commutator

—B

T me e e v TR m——




(L, Q.u] = 044"@; (3.2)

tetween physical states corresponding to the highest weight of a

given irreducible representation one has
. - - <

and then, inserting in the commutator a complete set of intermsdiate

physical states, if follows that

[\ 2 -7 'y ¢ : - =y
[FG ) 8- e SIF) = SG-F) 09

Z

b7, . . . .
fls the contribution of the one-particle

where the term in | F
intermediate state corrssponding to the weight M-« (see formula
/ N @iyl
(2,3Y) and S{FT

in the completeness relation., As it has been discussed in I and

is given by the contribution of all other states

TI, the fact that the matrix elements of &y between an one-
particle and 2 meny-perticle state is O(f)implies that the
levizition of {Fh”f2= } Y “Nerom unity is CDCPQJTep?oducing

ihe resuld of ADEVOLLO and GATTO . An examinasion of ihr corweci-
ion term & Fz then allows us to determine the magrnitud. -  whis
deviation. In II we have done, 28 an example, the exnlicii evalua~-
tion of the renormalizaticn of the strangeness changing vecior
current due Lo the breaking of SU3 symmetry under some simplify-
ine ascumpbions (as the one of taking into account only the lowast
nas3 intermediate states znd so on) obtaining for ) Flz the value

of 0,067 which leads us %0 the conclusion that tte rensrmali

b

e’fect due to the breaking of SU, doas not changs the wnivars:

3

Telztion in any remarkazble way.

™

{11} 7The second case we shall consider is that in which
o ~like coerator, i.e. the case in which M itself is a

commutasor of a charge é&z and the total Hamilvonian; this
allows ug to obtaln relziions,valid at the first order in the

breaking, among the energiss ol the variocus pacticlss belonging




o 2 given supermuliiplet in the symmeiry limit., Taking suitable
ilnits one obtains then "mass formulae", Interesting resulis can

20 be obtained taking, instead of N, , its "densicy" Dy -

sidering the commutator between a @y and a Dy we shall do

re ol whlch iuterconnect directly the masses of the pariicles.

PR

[

.miin ia the symmetry limit we are led to the SU. mass formulae,

) 3

rain difference batwesen these relations and the ones gbtained

considering ﬁﬁ‘wlike operators 1s that in this case we have nc

choice between linear and quadratic mass formulze.

Cing bhe commutator between C% and Nﬁ we obtain linear or

nz3s Tormmelae, Tor both bosons and fermions, as differw
iimivs of our erergy relations., This is a consesguence o work-
“ith na dnvariant operators.

Cr. the contrary , 1f we take the commutator between a Q% and
D, we are led ‘o a covariant expression which now involves

fermions and squared masses for bosons,

two cases will be discussed in Sedion 6 where we show
sov, az & simple application of our method, one can derive the
CLnBSsLCal SJ3 mass Tormulae and discuss the possibility of evalua-
ToGhE G(Ff) corrections, An explicit evaluation of the correci-

is alzo acne for the case of pseudoscalar mesons.

(1i1) Fruitful information can also be obiainad by consider—
ng the cese in which M represents a current., 4 previcus
“mouasion ol suck a type of commutator has been done in I . In

s 7 of the orosent paper we shall discuss the particular case

‘¢ elecirvomazgnetlc current and we shall see how our wmethod

3
@

“.es us to obtain resations smong the form factors of different
sles, valid in the symmetry limit and their corwvsctiorns due

-2 hreskingz,

varticular case, we easily obtain ithe claasical 3SU
soLons anong ragnetic moments. We notice that the corrac

i othnis csse of the first order in the strenglth of the break=—
w2 1o the fact that while the off-gymmetry matrix elements of

-+

“
& ote oare smell, the ssme does nob happen for the corresponi-

b
<t
0]
IR
P
[
L‘}
w
vy
I

poo currents whinh could have off=symmetry matrix eleme
iren zners alse in the symmatroy iimit,

-10-~
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The sum rules we obtain in the various cases have a common
structure as we have shown in the general treatment of Section 2,
411 our sum rules are of the type (2.13), i.e., we have a relation
valid as a first approximation in the symmetry limit and a correct-
ion term which itakes into account the breaking of the symmetry.
Cizarly, eny relation of (2.13) type actually constitutes a continuous
set of sum rules depending on which value we take for the momenta |
ci the consldersd external particles. 4 complete discussion of our

gum Tules can thus not be done without an examination of the wvarious

s

s of reference.

b3

AT

a

The problem of the dependence of our relations on the common
momenhun %; ‘and consequently of the best aum rule) is a display
»f the fact that the method based on the introduction of the
energy denominators gives a non-covariant separation between the
single-and many-particle contributions, In other words, though
“he choice of the frame of reference does not change the physical
content of the sum rule, it gives a different splitting between
the zero order terms and the corrections. In partibular, starting
{row the same relation, one can obtain sum rules which look formally
different by teking different values of # *, 1In the following
section we shall then be concerned with the problem of the choics
of the frame of reference and we shall see that in some cases,
4

there exists an "“a priori"™ frame in which one can -define the best

gum rule, i.e. the one for which the correciion is smallest.

‘ THE CHOICE OF THE FRAME OF REFERENCE

Slearly, a detsiled discussicn of the correction (2.14) and
itz explicit evaluation depends first of all on the nature of the

anerater M . We shall then distinguish between the various cases

i

in Seoetion 3,

This occurs for instance in the case of mass formulae obtained
“rom the commutator{(?n ,Aﬁq] (see Section 6) where the linear

cne corresponds to o= @ and the quadratic one to (fi-> 0.

_11_




(a) We shall first refer to the case in which M is itself a

"charge", If M is a charge, M= d}A , 80 is P1n y 2s the “"chargeg™

satisly the commutation relation of the group algebra. 4 particular

%)
o

:58 0of that type has been discussed in detail in I, where it was

vin that the correction was smallest in the framelFi~aua( F being

i}
‘-JJ
o

the three-momentum ofthe external particle). We shall merely sketch
tre argument of I : if M= Q%, the correction term (2.14), taking
into account (2.1C), can be written as
! " -y -
C = Z&((Cd*cd)g(paq- ?u'}

(4.1)

wharea

C i':. & 'rr)(' {:L[ DA(‘?JI d><d[ DAJ(OJf "L'> (4.2)

(8, ~ E4)%

é;(%ia' EL),

p " . . . . -
and arnalogously for C;, where, as previously said, we heve putf,, =g, .

Now, for kinematical reascns

o o
Jdaly 1

alournd = Sall) L (4.3)
4E. £, G

7 s
vhere A = (p, - dee and ciﬂ (AF) is a Lorentz invariant function;

L} * ’ L3 L]
ihen, &ropping the § functions, C can be written in the form

C'=

dy 4ty s ( g, Ea)z s

Wij -~ Mi {A Ed Eq.

- . - : -3 { 1
where we have taken inte account that €,= (Mdi+ P ) ¢

and, as a
sonsequence of the & function Eg= (Mﬂi “+ Fg)ﬂa The kinematical
factor in the brackets reaches its mininum value one f riﬁ%ﬂaand
its maximum of(wa.,'*m,.,.)z/.a,m_‘m‘for f -»o and of:d(a?j is expected to
be an increasing function of the time~like variable Ae= (= pol =
= (£, Eﬂ)‘?, so that thezminimum of d:“(A?) should also be reached

at}?,q.ﬂ y l.e. when A"~> © .

Unfortunately‘the effect of the kinematicsal factors is not
Livays sao unambdigucus, as we shall see explicitly when we treat
the case of the mass formulas. The above discussion was present-—-
24 oniy as an example of the type of analysis which shouléd be

-] D




due to intermediate many~rarticle states.

Tbis particular case, in which the frame {p| ~ oo is a privileged
. has been exftensively studied in Ref, (3). levertheless, we
will treat 1t also here as a good example of the method for calcula-
ting the corrections of the form (2.14) to a sum rule in the frame
Il = oo -

Ifwe 1imit ocurselves to the iwo-particle intermediate state

contributions, then Eg. (4.2) becomes

Cl< em* J dat Dy Lok o 2Slle) s ol Do | 2003 %y ¥y S5 e
(ti +EZ "EQ) (4-5}
. _1_3 A [ d¥pdin  SPi<B, -B) 45"‘;
ol 2B, | TEE,  (Evgy- 6,0 T

o
Qbhn« being a Lorentz invariant function depending on the invariants

of the problem., To take the limit|[P|—> oo we transform (4.5) to

a more useful form by means of the substitution
P=prpy 4 = PP
and wa choose as invariants
Z g
S = P A = (P- p ) ; P-q ‘

By integreting over o> P , we rewrite (4.5) as
of

« 44 ds z ’ J sy )

et ae, | (Bles (pivs =V FZrud) (4.6)

(43

tja‘ 4 SP £ ? ' g i & 2
(s)= faf g olPeq)umlt SP-g)-ami}t O4g,0000-9,) Sbfs"lz Pq)

In the limit pi-» oo We have Al e ; we can then evaluate the
. . . ® 2 .
invariant integral i in any frame where d°zo . In particular,

.

we can choose the frame p=o , p, =wyj Iin that frame,

-13—




z -
from o= dz'z (P~ p ): , we have B =(s+milfom and from S$ = P°~ P

=y
follows [ Pie(5-m])jtimy . In this way we obtain in the limit [Pl oo

)

]
- S @ inl 2, . im
YUy 22_"...5‘:_"‘_(m.~mz) ~ _S___a. Vis = tm-mp)Bs - C'M*"“sle}

and taking the limit in (4.6), we finally obiain

oo 7}

is 2
am? [ (s —Omﬂ}3 A 45 (5,852 p44) (4.7)

(M amy ;)¢ 71

The above formula is useful for numerical computations, but it
iz surely not the most elegant one. Writing down the limit
of (4.6) as

‘ S
51— oo "Gy (5= )? uw-m
using the formal equality
£ ‘P :
fOIS = Emg ‘3' — S{[P-P)j
T PZ_ “a '

and re-~introducing our original variable e and p, one hag finally

‘ b L dep, o“p, . s
L"M Cﬂl = —“f P-i Pz S{(P( fP:)"P)zf S(Plg' lﬁl.z’ S(P‘:-Mé-)‘

S 2w~ | 7 .
b P R
&
- Q(PIQ) 8(?20) ¢ ?(P."‘f Pijil (P‘ + Pz—‘))g) (Pl_ P'&). P} . (4.8)

This is & covariant expression for the two=-particle contribution
to the correction at]pl“ o and this form can be immediztely

enerallzed to many—partlcle intermediate state contributions.

(b) The second case we are interested in is that in which M
is itself a commutator hetween a "charge" Qf-\" and the total
Hamiltonian; M = [k, Q4] = N,

y-




The expression for the correction in this case is analogous to
the one of the previous case; the only difference lies in the fact
that in the formula corresponding to (4.2) only one energy

dencminator appears

C"’; = (2rr)€ e Dy | o DLl Dy [ @psd

£ - ¢ ‘S(F - F.{) {4.9)

80 that the correction behaves like 1“, as [-Fi - e, Of course,
also the fundamental term which constitutes the particular case
of (2.15), behaves like Yp asipl-> = . We are thus interested

in the evaluation of the #'m pC  and it is easily shown that the

{plros
Tormula
‘. 2,;44_?_ ) o p dtp, S g
T T : g OUpepmpl} S(ptoml) SGp2-ml).

(Frow (E7)" 2“_,’*})2)2_ mi}Z

o
2 G
. Yp,y Oy Cﬁ{ﬂ’wi’zl,tiuwi-r)“,tp.—rz)-;n} (4.10)

analogous to (4.8) holds., BHowever, the framei‘r?l ~» « does not
have such & preferred character as in the preceding case and one
should also be interested in the frame = o ; taking ihe g =o

limit at the stage analogous to the (4.6) one obitains immediately

3. i v 4 ‘ S o 9, X
v Lz oy [ S WS"‘M‘;W’?}““’"’“'*‘Mﬂf¢<s)(4.n>
(ke o a NZ VS~ img °
N bl
the invariant function ¢ in the (pi=z o limit becoming a function

of & only,

(=Y 11, instead of N, , we. consider its density Da\ (0%,
the expression we obtain for the corrections is slightly different
because we have no momentum conservation between @ (p) and a‘Lp') .

de obtain in this case

C = AL (e, - Cy) - {4.12)
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with

CJ . ccgm) dacp)| Dﬂcw}u?G!l Dy.lo) | alpns SCE - B0

“o 7 Ca (4.13)
C: = -< @)} {aw | Dﬁr“’” ol Dy ap’d SCF‘-— P:l)

£y - &,

If we choose the system F«= | the correction reduces (apart from
a —1'(271‘13 factor) to the above-discussed form (2.9) and then

we can use {4.10) for the explicit evaluation of the corrections
in the frame (# 1 -» @ , A further discussion on the choice of the

frame in this case will be carried out in Section 6.

(¢} Finally we shall examine the case in which the operator
M is not directly connected to the breaking of the symmetry,
i.e. the case in which the matrix elements of M Dbetween one=~
and ma.n.y—pa.rticle states are not of order { y but are different
from zero also in the exact symmetry limit. This is the case .
in which M represents, for instance, the electromagnetic current.
A two=particle intermediate state correction term is given by
{see (2.16)):

C:ﬁ = *(‘(1?7)5 (QEP” anﬂ){o('{p,-) dB(Pilz<d'(P.

yep) | M1 @'pd (B +py-F)

The answer, if any, to the guestion in which frame the correction is
the smallest, clearly depends in the asymptotic behaviours of M
the mairix elements of M , and nothing can be said until we

specify the nature of M .

. DISPERSIVE EVALUATION OF THEE CORRECTIONS

W

For an explicit evaluaiion of the corrsctions to our formulas,
we need to be able to calculate the 5‘!5“ functions, which in turn
ragulres & knowledge of the matrix elements of the function Ch(O)

" between one~ and many-particle states, We shall limit ourselves
to the contribution of two=particle states, though our irsaiment

is, in principle, generalizable.

We start by considering the Lorentz invariant quantity™
g T r'éd»; ¢/5; P can he written as= ¢‘4'-.42 - [ -3

-1 6~




T3 - ; . .
R = Vam’s eg ep,) B {ap)| Dytod| Aip) Aypsd (5.1)

In this expression it is understood (see Eg. (4.9)) that R is
multiplied by =2 53 function which guarantecs th}ée—momentum
conservation p = P, ¥ fJ; . To visualize the fact that there is
ne four-momentum conservation we introduce a time-like wvector
A=(p,+ Py=p ) ) AZ: (E,+ €y - E)‘o' . Then we consider &2 as
the (mass)e of an effective spurion which carries off the energy,
and which is described by the field D,(2) *, so that it has the
transformation properties of E% under internal and spatial
symmetries., The fact that it is coupled to our system is a2 display
of the breaking of the symmetry and, of course, the “coupling
consteni" is of the order of { . In other words, R can bve

considered as describing the scattering process a+ spurion —p ﬂ:"/;é
A‘ILL-\ /b"i

b2
Fig. 2
¢ will depeund on the invariant variables

S = (P, + Pi)a , ‘t = (p.~j))2 ) WU = (P2-|fj£

H

i

Potps=p+d, S+EYU= g emle ity A (5.2)

2

2 wo evaluate it we shall use 2 dispersion~1ike‘ap?roach. This
means that we assume for R analyticity properties ins, &, u with

- the poles and cuts required by unitarity. Then we shell do a "pole

*For = model in which, for instance, the divergence of the strange-—
ness changing vectdr current is proportional to the field of the

K -meson, see Ref. (8).
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epproximation" by reteining only the pole contributions, In this
way, the final result{ will depend on physical parezmeters only {(i.e.,
physical matrix elements evaluated for special values of the
kinematical variables) and, in particular, it will be shown that

R in this approximation can be expre_ssed in terms of the physical
Mass differendes, w-i‘thout any hypothesis on the transformation

properties of the symmetry-breaking Hamiltonian.

To make things clearer it is convenient to work out an explicit
E
example. Let us consider the case where D” = D and 4 is v,
# .
Hy & "f“ and /;2 a 'K,, mescon dropping charge indices,.

As to the analyticity properties of R in this case, we can say

4

that in the variable S there are a pole at §= m and a cut
starting from (m, & ¢ mn)i , in the variable u a pole at w = wg'
end & cut for u 3 (3 mg )¢ , in the variable £ =2 pole at t:aui.
and a cut for &2 (M u+ £ img Jz . Graphbically, the situation

is pictured in Fig. 3

(™)
A R (b))

Wb
oy T T

qﬁ?D”’)'S(h)

Fig, 3

As we mentioned at ihe bveginning, we shall limit ourselves
to the pole approximation in all applications. This approximation
is in agreement with the whole spirit of our calculation and we

telieve it can give a reasonable indication for the total correct-
icn.

¥ow, on invariance grounds, we may write

=18~

g




Ris €,z (p-&7VR, + (P, &%) R 3 (5.3)

(where E-_)L%ls the § ~meson polarization vector)

and feor each Rq_ we shall take an expressicn of the form

Ai - Bi <
N I T -4
s M £ - u- g az4, &

where )., By, and C; are the residua at the poles and they can be
expressed in terms of matrix elements of physical operators between

vhyeical states., In particular, they are given by matrix elements

of D

. and of strong currents between one-particle states.

To be more definite let us study in deteil the contribution
0 .

[N

2t the S=im pole. Using standard reduction techniques, we find

o Nt - . ) td) - -, %
{wl t)gwlxe)u/d‘w LT[ 041, TC0] ks Fexlg e (5.5)
f@ms g &g,
and the corresponding discontinuity around the K -pole at Sz uu:

S

] 4 ) . - - -
7y’ 2o,z 0P rpy-pa) (TIDLIKSCKAl T- 21RO (5.6)

Vo2&,

N¥ext we introduce the definitions

- A 2 A 4
(ﬁ(wiDom{K(m)>=(§:£Wﬂi§ FYRQ,Wn,HM'Pij

(?C(m /'{ 3.& ;/\-(f’z/‘>‘-" I %CSF’QJ C[‘Mi, Faf/ (Pi'b.{)?_f
(27 Yh ey (5.7)

where ' and & are the form factors describing the corresponding

ST TN and(ka}vertices. We find for Eq. (5.6)

Lot

()t

S(s- k) Flszud, wl A1) G (ml, s:ud, w) (5.8)
ViE,




end the coefficilent of the 8 —function is just the residuum at the
H

-

pole, The quantity CK UMi , M, MA; } o= a?xﬁ is the P&k« coupling
constant while f?(mnfi “4i , A?) will be discussed later. TUsing

analogous considerations the following can be derived in = straight-

Torward way:

rl = P(VK,E‘ W%ﬁ A As) + E(Wf‘, Wf; , Az) 4 lME, "lMi
1 wl} - 3?«« i - € { + _;f_—'itsw‘xn'
i o
R.' = P(""‘ui, re 1.3? ) . . F‘(W;', M, a%) u.,,q- “‘if 1
3 ml o -u jf"ﬂn i ot { T ST

Our final step is the evaluation of F' , To this end, 1et us

consider

£ Tps) 'X ] Rpy= L 3(1’4 Plu T4 FLa®) + i, ‘“LF}“‘)&B.IO)

(2 w.

where, as a manifestation ol the non=conservation of the current

'xiaﬁﬁg j » W& have two form factors, F;Léijand Fb(AEJ. The

, +
retrix element of D then equals

(o] DYk poy = A 2 {wf-mbaoﬂ: - 8 Ewh} (5.1

By comparison, we obtain

< Flmd wl al) suml-wly Rty + ab Fat) 5.12)
: RN & .
In particular, in the limit (p)~> «, A =>¢& we obtain
“ ki -
£ Pt wd o) = mliowl) Fie) (5.13)

where F(Qy,c“*z( 7 being the renormallzatlon ratio G/q,) and tken, in

the symmetry 1limit, reduces to the simple C., Clebsch-Gordan coefficient™

* Iri this respect, it is worthwhile mentioning the analogous
result which holds for spin—% particles. If we define
= - A 2 9
Loyt DalPe) = (E“J’Vtife Wy u, F [k, o (po-b,)7] (5.11')
it is easy to derive the relation
N A ¢ 2 A A .
£~ F (g g, 0 ) = (g =waay) 5217 (5.13")
a2




With Eq. (5.13) our final goal is achieved and, in the limit |j'| -> «a

we obtain for f { (neglecting higher=-order terms in the mass

difference)
. oK i ¢ -k 4 4
= C (W ~mg) L (my, - m a )
R’i * ol 3?“&‘ “-,'i"l—:“_gi + Cku? ﬂk"x'ﬂ e “2
- > “ . c e G
R, =4 e (wﬁ-mf) ic” (2 - wbe)  (5.14)

i xa Foan U- mi * x@>ﬂkm,-—fﬂ::?“
-l

The fact that D, is an operator which is proportional to the
symmetry breaking is reflected by theil;'s being propoirtional to
the difference of masses of particles belonging to the same re=-
presentation, namely T and 4« and ¢ and K., It is rather remark-
able, however, that no assumption has been made on Low the symmetry
is broken in calculating R (at least in the pole approximation),
A1l that has been used is the fact that our states are eigenstates
of the total Haemiltonian. Regarding the possibility of improving
our calculations, we not{ce that a simple way of taking into
account the higher-lying states would be to ascribe a € —dependence
to the form factors.of Bq. (5.7). In- the same way we could "dress"

every vertex introducing the final state interactions,

6. ON THE MASS FORMULAE AND THEIR CORRECTIONS

6,1 It is well known that in the symmetry limit the masses of all
the particles in a given supermuliiplet éhould be exactly the same,
but if in the Hamiltonian a breaking effect of strength f is present,
then the masses of the components will differ by a quantity CX{).
There exist, however, particular linear combinations of such mass
differences which are valid up to & higher order iﬁ #r; such
combinations are the so~called mass formulae and their agreementi

with experimental data is expscted to bs particularly good (as long
as ¥ is not too large) as the corrections are expected to be O(ffL
In particular, believing in'SUB, if one makes some assumptions on

the breaking Hamiltonian and treats the breaking as a small psriurba-~

-2l




tion, one gets the well=~known relations among the masses of

9

particles of a given supermultiplet

4€-3Mm -1 =0

R * . i
K -3wo-§ =0
“ >3 (6.1)

IN+2E-3A~-3 =0

N¥-y* av*x_=%= =¥ Q7 |

where it 1= common convention to consider the particle symbols as
their masses for fermions and as their squared masses for bosons;
in the vector meson formula, moreover, one introduces the eighth
component of the octet o 00 AuD tPeend , i.e., 28 a
mixiure of the physical particles G and L? 10. It should, hoﬁever,
be emphasized that these conventions are introduced into the theory
from the cutside and they are not actually supported by any firm
theoretical arguments. In particular, the choice between linear
end quadratic mass formulae seems to be rather arbiirary, being
res2lly supported only by the agreement with experimental data.

"2 will show in this section how, using suitable commutation relat-~
ions and completeness, one can obtain the SU, mass formulae as a

3

iimit of more general formulae,

As mentioned in Section 3, we can obtain mass formulas in two

T

Tferent ways. The first one, based on the consideraiion of N5‘4

like operators, provides actually relations which connect the
nergles 1 of the wvarious constituents of & supermultiplet.
Ciearly, from these one obtains immediately relations among masses
or sqguared masses (both for fermions amd bosons) by taking suit-
oole limits for the external momenta. It should bte emphasized that
both formulae, the linear and the gquadratic one, have actually the

same vailidity in so far as SU, and its breaking are concerned, the

3

difference between the two consisting only in the role plaid by

kinematical factors, as remarked in Section 2.

The second method, based on ths use of the commutator between
z "charge" CQ’\and a "divergence" T)A requires the further assumpi-

ion that the 1;;3 themselives belong to an octet. The relations

-0



we obtain in this way are linear combinations of masses in the
fermion case and of squared masses in the boson case; the coelfiw-
cients, depending on some kinematical factors and "form factors™,
reduce to the well=-known coefficients of gHe SU3 mass formulae if
we neglect corrections of order higher than two in the symmetry
breaking. Thus, we obtain in this case linear mass formulze for
fermions and guadratic for bosons, ne matter which frame of

reference we choose,

Moreover, our method enables us to evaluate explicitiy the
second order corrections to the mass formulae; however, as we
shall see later, it is not easy to establish in which frame of
reference the corrections should be expected to be minimal, that
is, there are no completely general arguments in fawvour of a pari-
icular frame of reference. Nevertheless, on the basis of some -

heuristic model we can believe that, at least in the second case,

the frames \a—poo should be preferred,

6.2 We shall derive here the energy sum rules using the above=
mentioned method., To reach our goal, we remember now the defini-
tion {2.6) of the Ny operators. Then we assume, as usual, that

4

thio SU3 breaking part of the Hamiltonian ( as far as the so-called
seni=-strong interactions are concerned)Avs the hypercharge\f . It

is then clear from the group algebra that Np~({, and ihus
‘ + -
EQﬂt,iﬁﬁ-]_—O
Rl )

Ti we Xeep in mind that the operators CDﬂand.thus also N 4, are

(6.2)

transliation operators in the F\-spin subspace and we work in ihs

V -spin subspace

: T 11. ,

{Qu N |_=0 (6.3)
or in the ~spin subspace

(@t N.) =0 - (6.4)

it is clear that one can obtain relations among the energies of the

constituents of differentll -spin multiplets in a given SU’3 represent=

-2




ation, It is simply a matteraf taking matrix elements of (6.3)
or {6.4) {between suitable one-particle states belonging in the
syumetry limit to 2 given SU3 representat;on) using completeness
and taking into account, as a first approximation, only the one-
particle intermediate states (belonging to the same irreducitle

representation).

Buch single ierm one obtains in the development commutator,
zaking into account only the abovementioned states, is clearly O(H,
s Ng iteelf is O(f). The contribution of the remaining states
i5 Q) and it constitutes the correction to the relation obiained

whioch in first approximation (order*? } equals zero.

If now, in the evaluation of the corrections, we limit ocur-
s=lves to the 2zorder it is clear that the matrix elements between
one=pariticle states of the "charges" CQR can be simply taken as
#iven by their symmetry limit since the introduction of-F contrlbuuvg
10 the corrections only with terms O(#%, the difference between T (P

¢ 4 being itself O(§*). In other words, we can use {2.2) instead

a7 {2.3) for the matrix elements of CD&’

As a practical example, we shall consider the case of the

pseutoscalar mesons; we consider then, for instance, the mairix
slement of (6.3) between b{*and K states., Introducing a complete
set of physical intermediate states, expliciting the one-particle

intermediate state contribution and using (2.8) and (2.14), we have
3= LA, v LI!S = PN Q[ >
<no L (e D AT QN 1> <oy HLE e (0
- <k.*(b)lHJm°><n.°l Q+u Ik (p) > —
— <HE)IHT US> QR e ()y> + C (6.5)

2 that one finally has

-~

o~~~
O
s

4B ()-3E o (b) ~Enlb)

“24=




where we have dropped the overall O function which states that T;"?_F
and all the energies of the particles should be evaluated for the
same value P of the three-momentum; the. correction term T is

given by

C 2y D ocatele™ g, £y (6.0

EB\"EK

which clearly shows the O(#%)character of € and is of the form of

(4.9}, as discussed in Section 4.

Hg, (6.6) represents a continuous set of mass sum rules, one
for each value of the momentum , which contains the linear mass

formala as the limit value for }:-»0 :

Al =D Mg - M= Co 16.8)

Cso = ,Q.u.».. C ‘(6.9)
b0

and the quadratic one as the b-auo limit

étu.\?u_- Bh}ql —”Y\?n z . Cas (6.10)

Con » e 2pC (6.11)

¥ - &

In order to determine whether (6.8) or (6.10) is the a priori
better relation, we shall compare the two corrections, Forihis

varpose, we note that, if we write the physical masses as
prow = U +8Q

bisbeing the octet bare mass and EQ:O(?)the renormalization

effect due to the symmetry breaking. (6.8) gives
46&(—35&‘-6“'1 Co .
and (6.10)

2 2
48, - 3dy-T g = == L (08 ~3b,-%,)

sc that we should have



Qili = HM' -l

. A |
Co-‘l C 1 ("18&—-%5@‘-82“)

In order to establish if there exists a better a priori mass
: 2
Jerauln, we shall try to see if the further correction in the éqq's
which appear in the expression of the guadratic formula, improves
v Worsens the value of the correction. We are thus led to
campare (o to Ces fry;,. Remembering now (4,3) and taking into
account the fact that, as a consequence of the Wigner-Eckart

trheorem, one has

di" (o) = ¢ 20 g, () (5.12)

the C; being the SUS Clebsch=Gordan coefficients., From (3.7)
son sy that € is 2 sum of fterms of the type
z

wh v N 1 & _— —

+.. N

Cle e Oy 1M} TarEe

T _url I

o Wt thtK (6‘13)

yy . Yz
-1 1 3 . . . .
where B,z (P %ufu) , Ex (P wadl)) Whubeing the invariant mass of
the intermediate state; and A t(\)q-\)\z’?- (ta -—“Eu}'}‘ is the
souared momentum transfer. From (6.13) it follows that

.

el IV A § (g-uudt) |2

—_= P=0 B Qi Ol N
Clas /2000 b, XPC Ayt (o) Qe BK(6.14)

\7-70:.) p RN

sowe 38id in Section 2, it is now reasonable to supposs the "Joem
Taolove! dﬁ(ll‘)to be increasing functions of [\™ when &‘2 tecomes
lzreer and tine-like (i.e., when AZ spproaches, and subsequenily
rurgs the singularity regicn). In this Wasy,tiiiﬁq)will reach its
minimum value for A% Q y, 1.2, F—»M . The factor (d.(%m-{-ms"])f
. f\ c:qu»(o))_Zin (3.14) will “‘hen be greater than one; the [lactor
(it W) /204 is smaller than one { W oteing greater than tiw)

WAETROD wie /M > 4 . Thus it is not easy to ascertain a priori

vhie correction is smallest and consequently conclude whether
inesr or the guadratic mass formula is better (at least without

making specific hypotheses on itha behaviour of the form factor}.

An explicit evaluation of the corrections nas beer made along

-



the lines suggested in Sections 4 and 5, for the squared mass formula
as well as for the linear one, In both cases, the numerical value of
the calculated correction is in satisfactory agreement with the
experimental values. The details of caleulation (assumptions,

approximation, numerical values) are given in the appendix.

We have discussed in some details the mass formulae for the
pseudoscalar meson case, 1t is, however, c¢lear that exactly the
same argument can be given for the other SU3 mass formulze.

Formulae of the (6.3) and (6.4) type teken between physical states
belonging in the symmetry 1limit to other irreducible representations,
cive relations of the (6.6) type corresponding to the various SU,

mzss formulae.

For instance, taking the matrixz element of (6.3) between a

proton and a = state, one has

2;;-“(@)"‘2: E':i (b)"‘?)z,\(b)—-i?.i(b)z Ca (6.15)
with
Ca = 2(2n) X LPIDi x> <o) Dig T~ S(Fa-F) (626
Eq"

— _ T ez
where we have made in Qg the approximation Ep =L = = E = (\Wo *‘p?)
. . 2
and dropped the & function stating -\37 =F1 = '&;’ .

¥ O
nd :.‘é

44
For the 3/2 resonances, Eg. (6.3) taken between NY e
w+

and subseguently between pad and £, gives

(E\.H'r "‘Ey*)- (d"E-ylF ‘-E-i!i-) = _Z_‘.. Lo

N3
(Eyﬁ-— -_-_*) (E - En) .._’\...-—-C.-?_
= 23
where, with the usual conventions

C.,i = %('LT‘)‘ za\ <N*l'D+K\°(>4GHD+u_\Ek > 8(?@&‘5)
Tta-E

Cy 22 20)® —i“ ¥ DN e >y DY T 2> S (Fu-F )
Ex-E
-27-




er the vector meson 1t 1s then clear that one has s formula
like \56) gubstituting the corresponding vector mescons inplace of
viie pseudoscalar mesons; obviously, in order to obtain a good
agreement with experimental data one shoulé repiace the M with a
mixture of wiand ] and the ratio of the mixture determined, as
usual, {rom experimental data, the m-‘J{ mixing angle not bveing
vredicted by SUB'
To conclude this section, we would like to emphasize that our
rules, obtained as a consequence of formulae like (6.3) and (6.4)
and completeness, should be valid also if the breaking Hamiltonian
does not simply A4 the hypercharge, In fact, the same mass formulae
{end the same method for evaluating the corrections) hold for every
breaking Hamiltonian awch that at least one of thé following relations

is verified

EQ+K ! E‘ Q+K\ H]J =0 (6.17)
rat,, [Q%L;H}] =0 (6.18)

fat, [@, )l = O (6.39)

in particular, when working in U =spin subspace, it is esasily
rscogmized that {6.18) is satisfied for every treakins Hamiltonian
. : w L . ,
&t vhe tyve -HB,N'Z..(QM*"D-.,Y)Q becanse QvQrr1tQy is = U -spin

this fact sugrests that the mass formulae written down for

periicies of ikhe seme chsrge should be valid also if ons: taskes into
anccunt the simultaneous hreaking of SUB (supposed ~u Y ) and trs

alecuiromagnetic interaciion.

5.3 The second methcd which allows us to obtain mass formulae
is based on the hypothesis that the divergences DH belong o an

octety we admit in particular the validity of the equal timae

commutation relations

Caat (*).ﬁat Yl =0 (6.20)

—

el Wk
for every value of R . We choose for simplicity Jx0 and Yz o

and we work, ag in the previous case, in the V-spin subespace

B IR -
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taking the matrix element of

fa*te, Dl =0 - (6.21)

petween suitable physical states and using completeness.

We start by considering the pseudoscalar meson case, We

obtain

O~ Lt fQ w, DY KD = <K*l®+ulﬂ“><ﬂ°\0+ulk'7(6 )

~ <wtipd tae><nel QY WD 3 (y==no) + C

The matrix elements we need are of the type <v ) Gt te, >

and  Lpat DY IPD> . As far as the first one is concerned, we
remark that, as done before, we can take for it its symmeiric va}ue,
the deviations being of the order ¥2. For the second term, we céan

use Eg. (5.11)

e 6 1( )*

<aulpdI D) pr> 2 L, 1 (Wl C bo-be 2

(2n)® \U-i E:Ey b (6.23)
+

where (:ti ig the appropriste Clebsch~Gordan coefficient and the

form factor G(QO) =, (the renormetization ratig. Moreover, for

the purpose of simplifying the derivation, we assume F;;F‘ aE'.

Ir so doing, Eq. (6.22) becomes

(i~ )Y G (Al) +3(Li}'z1~ MK)M) 2 O(%")
JGEE. \J b ETy " (6.24)

Wwhere

1y &
e (Bamtpndt - (FR - T )™ 6

We note now that the coefficients of the two squared mase differences
differ by terms which are of the order 1? and which can be collected
in the corrections on the r,b.s. Thus Eq. (6.24) gives the wellw-

known mass formula

4 uly _’5&01 -~ 00 (6.26)
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<n order to obtain the mass formula for the baryon octen, it

is now sufficient to take the commutator (6.21) between a proton

—
)

:d & 2, 2pply the standard rules of our game znd use Fao., (5. ')

r

=2

- L . . . + .
for the matrix element of E% betwesn spln—%.states

":PLE—D‘*K \b‘> z \ 2 Uy 7 Biy akbé)UQb\)(mz*m\) G'E—(.\)i“b‘y‘j
(n) E2 T

which involves linear mass differences. Thus, we get the mass

formula
%;_+ZMN—BMA'M5_;C($7)_ (6.28)

1t is important to realize the different role that the‘>-dependence
nes in this case and in Subsection 6.2)., Here ithe classical SU3
nass formulae can be obtained independently of ihe wvalue of \:
which comes in only when we discuss the corrections., On the
contrary, in the previéus sectlion we have actually eunergy relations

and different choices for b can give different "mass formulae'",

Finally, we would like to point out that it is possible to do
the whole derivation of Egs. (6.26) and {6.28) taking into account
the complete form of < Pali Cl#g \h> (i.e., including fora factors
srd kinematical factors) TIn this case, no kinematicel faciors
sopear in the 1.,h.s. of Bg. (6.28)and the only approximation we make
is 4o take the renormalization ratiocs C=1(which actually contribuate

to the corrections withtj({g}terms). In this way, we would gel ifor

{5.24) a more complicated expression invelving Torm factors evaluated
in different pointe., However, if we perform the limit!ﬁl=!?&f¢ﬁ”‘*°ﬂ
all the arguments of the form factors tend o zwro and we get

sgain Eqs. (6.26) and (6.28)* (after multiplieation byigi). Thus,

the choice of the|fizw reference frame presents some definlte
advantages, It allows a clear-—cut separation of the corrections

(in the sense pointed out above) and, as shown in

*Jere we did not play all the game but a detailed calculation of

this sort is given in the example of Section 7.
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Section 4, the many-particle contribution can be put in the covariant
form (4,10)., Moreover, we can give here the same discussion of
Subsection (6.2) about the magnitude of the corrections: in fact,
the r.h.s. corrections of Eg. (6.26) and- (6.28) are exactly given

by Bas. {6.7) and (6.15). Applying the same considerations we

can presumably belleve that the corrections assume their minimum

value as \:m o,




7. RELATIONS FOR FORM FACTORS AND MAGNETIC MOMENTS

In this section we would like tn discuss the case in which
the operator M of Eg. {2.13) is a current deusity 12 45 oa
particular example, we shall choose the electromagnetic current,
though our argument will be quite general and, in principle,
applicable also to other currents®*, The electromagnetic current
transforms under SU3 rotatiors a8 the charge, i.e,, it is & scalar

in the U -spin space. As a consequence, we have
-t -
| QM) J/M(x,l:)] -0 (7.1)

The operators are taken at equal times and from now on we shall
consider £ = ©, X =0, Following our ususal procedure, we
consider the matrix élement of the commutator (4.1) between
(physical) proton and 2£+ states, we insert a complete system of
intermediate states and keeping the lowest contribuiing states we’

get

3

PG| QIS DS )| T [ITp)) -
={Pp 3001 [ Ppi 00 P L GHIT0D + ¢ = 0 (1.2)
where

C = ‘?—dflﬂ QA YLk | S I =P 30 A Xt 12‘*)}{7_;_-; ;

e can remark that the correction éﬁ is of the first order in the
syrmetry-breaking interacticn. We introduce now the following
relation
Y + 4 ] -
P [ Q@ e

cofine g Sr-n1) Wlpid¥o GUE) +¢ ?icéi} Ulp’) (T7.3)
l/EP g, WP e 1. z

2
. &7 I v R POt
wneret%=L=CEP-cI) -(V Pieim, — Vp + ) and we adopt the normal~

ization ((0) =R (4 in the symmetry limit). The presence of the

* Tor a discussion of the weak current case, see Ref, (2).
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additional term "'?o H(E) is another conseqguence of the breaking

of the symmetry (it disappears in fact as mo= W, g o ). I3
can be verified that its presence does not alter our final conclusiomns,
so that we shall omit it in order to make the formalism simpler.

Moreover

< Ppr | J. el Pierd =

—Hg
= i"’ -—-—d—mi) vy 1 e h: '-P ’ (7-4)
(E”J’(EE‘ M(P)é’gb.[':(t)-r f—h‘; G;u,,"?y ié(t)jbicp)

In Eq. (7.4) g=p-p’ L’:c{! and f'_:: (t ) are the usual
electromagnetic form factors normalized to 1 at & = ©

{’Ej‘("J = Féi)fo)r i ) k‘, is the anomalous part of the magnetic
moment {(in Q/Zam', units). An analogous relation can be written
for the electromagnetic vertex of the Z+ and in so doing we
troduce the quantities F;:(&), ,:2-1'(&) and k.‘.‘ (anomalous
magnetic moment in units é/gmz). It is important to notice that °
in Bas. (7.3) and (7.4) we are using the physical masses for the
involved particles, This is due to the fact that the states we ‘
are considering are physical states, eigenstates of the total
Yamiltonian (not completely invariant). In this way, we already
introduce in the kinematical factors a display of the wviolation

~nf the SU3 symmetry.

If we insert these definitiomsof Eq. (7.2), we find

— P P . -
& “P(Y’z) {[D‘ F (L) + 9., 4, t‘z(t,)] _Y_'E&E_:_’Z”__e.i: C(tz) -

i e = £ : 2 i, ) =
—n T‘E_:___z_ q‘((_"j [Y/" F‘I(&', * gy:ﬁhy%(tdlj I &

< cafr)g‘/f"f" - C (1.5)

where
| - L4, ->
¢11=(V‘1*t’1); qf;ti; Ei =(r2"l”1j y 'P’i""’é

' F o ¢ . “,1 H
"f;:"C'V’z‘f”e'“ ‘f;’ by G =('-t) (A
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From this expression we see at once that, even neglecting the
correction ( = O{-{) , nothing very definite can be s=zid. In
fact, owing to the presence of the two arbitrary momenta Jh ; 1{32
Za. (7.%) allows & comparison betweer form factors evaluatz=l in
the different points ti and L-E . To aveid this difficulty, it
i3 agsin convenient to choose the best sum rule, i.e., to consider
the configuration of ('F; H;Jff which minimizes C . With the
same arguments as beJore, tnls is achieved by choosing f»i ~y ga,

r‘): => oo but PQ f'i h fixed, In this limit
-y -
*-‘]i-:(lz,o); ?2:(&"0)" (R SR A

R R TR S (1.6)

-
L Y {

= b

1]

tUsing the free Dirac equations for the external spinors, Eq. {7.5)

b=

tecomes { ¥ =«

Iy » P k
e u?(pz)j(‘.ﬂﬁct}dca c’de-) P]

ALY

= [ ¥m ﬁzu_-J-e%y"in(“ jv‘(r,
£, £
3 ] 2
— £ ) detsz v‘_i__.__ .
= (P;i (P l=s v | M, 4y C (1.7)
I)i-"ia‘-h ‘11'{’2-?::(;‘;,0),' t-=<!t

Thus we get the result

P Iz
Fees= Fowrs & F

> ‘. (7.)
ke ey ke Flers S
M‘, 2 MZ
In particular, at £ =0 t%¢ ~econd relation gim e
kP = h)_‘fﬂ + §h = hr(i-f M).g. Sh (7.9)
My Mg

ang going over to the total magnetic moments
= (4 h e ‘ = (4 + 1 =

- > YL e o .
_fﬂf:_. £ £ iﬁ. (7.103

e 14n, iy Ao




In this way, we recognize two different,types of corrections,

both of order # to the symmetric limits hP =k, s fo = fhg o The
firs? one which is proportional to the mass difference, iz of a
kinematical origin in the sense that it is due to the fact of taking
correctly into account the physical mssses of the particles. In

Zq. (7.10) for instance, it produces a correction s~ 9% . The
second term 5\@ is related to the existence of noaniagonal matrix
elements for the generator Gaf and it can be tresated using the
formallsm discussed in Section 2., The simplest set of states teo

be introduced in ' of Eg. (7.2) would be those contamining one
niclieon (E:*) and one pseudoscalar mescn, the matrix elements
Pl 5P wd) and LE7 3;“ JZ*w) could then be evaluated using
data for photoproduction when known or even calculated in a simple

model.,

Unfortunately, one usually cannot obtain all the relations
hetween eleciromagnetic form factors of particles in a given re~-
presentation by taking matrix elements of one commutator, For
tne baryon octet there are nine magnetic form factors, including
the Z°A transition, and only two of them are linearly independent

corresponding to the F and D coupling of the current.

In order to obtain a general formula whose matrix elements
rive 2ll the required relations between magnetic moments, we

observe that if we put briefly

Q. A
35T

M~ &, the electromagnetic charge,

M = Ms-f- ;— My‘ ; M3~ (Qs , M\/ ~ (_?Y | (7.11)

Then from the commutation rules of the algebra one has




- I +
@, , M) ~ M,
and - la=3, ) (7.12
~y - * ~ 5o ]
['£¥gq ’ qul “a “4-?44
It is then clear that a suitable‘combination of the commutators

CQR ,[c?g, M]] should reproduce M itself.
We find that
- . i
= 3
[IM, Qu, @71 = mMpum,

-

[{™ 1, @l =0 | (7.13)

[im, @1, ¢ = 2m,

(the second relation is a trivial one because [bﬂt Q&fjis already

zero) and the required .-general formula is
3m o= (M, Q1001 + M, @1, &1 (7.14)

The simplest single formula which enables us to obtain all the
desired relations between form factors and their corrections of

order .1( is

- e it

(0305, @i 1,@:] + (3.0, 1,071 = 3 T

In the frame in which the three momenta of the initial and final
particle are equal, we find as zero order approximation (i.e.,
neglecting all the mass differences) the following nine relations

hetween the nine magnetic momenta

A

B T DI I A
2
3. /MN + 2/4/\[3 T O

-
4. Va/"zﬁ*%/ufu +§./,4‘\+/u;__,=o

5.: .//:Tﬂ .f/ME- -&/Mr.é.:'l‘.}

-
h}t)n




S Mae vt M0
7. -V?/V{ZA'Q’ 2(/4:_4-/,‘:,-/“:,) +§.(/u‘.-_._+/up)=o
T I Mpepse) - VE gm0 |

. Z =
Pt e - s T I

the first eight of which are obtained by itaking matrix elements
between two p 4 ¥ , L7, E7, ¢, K7, I, and A states

respectively and the nirneth between a £, and a A . Of course,
only seven of these are linearly independent and the calculation
was made in the lowest approximation, keeping only one=baryon
intermediate states, Corrections to these relations can naturally
ve calculated, as discussed in the previocus example. We wish to
emphasize that if we are interested in the first order correction,
we should introduce many-particle intermediate states between @;

and only one (? y i.2., congider only terms of the type
ol Tuld e e gl @[ A"S¢ar] @Lay

and analogous ones, but no terms like

<|‘.\I “?ldldz><dl JQIT/H ‘ ,,(3,(4)(&’9(4,(_’\7] "ﬂ")

Z
which are of order ae . Thus, since the matrix element of a (.?
between two one=particle states reduces in this approximztion to
a simple coefficient, we can always apply, in evaluating tue

corrections, the methods previously discussed.

Analogous conasiderations could be developed also for strong
"charges", Assuming a Yukawa-like coupling between baryons and
mesons sum rules could be derived for the different coupling

constants.,

mg?w
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APPENDIX

We wish to calculate the corrections as displayed in (&.7)
to the pseudoscalar octet mass formula, Like in Ref., {3}, we
gimplify the problem by considering intermediate statesg contain-~
ing one pseudoscalar and one vector meson. We further simplify
our calculation by bresking the symmetry only on the lines and,
as suggested in Section 5, making the pole approximation in the

dispersive evaluation of the matrix elements of [) (see Fig. 1).

i

/Jr" ______Af@/
N\ AN

N\

Fig, 1

—— denotes a pseudoscalar meson
~~ denotes & vector meson

(Xy denotes the breaking of SU3

We shall now give some of the details of the calculation,

Tocussing on the [ —» oo case

g

Am“_5m;_.mo ~

L'—
o T a0

where C;n yremembering 3ection 4, can be written in the foru

C 79
= 4{ (’5 (§ ‘Lo_‘_‘() 41!;_:.,{)

“nq the invariant function qé is studled dispersively, as 1ir

Seotlon 5. Unfortunately, because of our simplified hypothesis,
C.

~et rid of this difficulty would be to intrcduce a2 strong inter-

oo Contains a divergent integral over § . A natural way to

action form factor instead of a point=~like coupling between the
vector and the pseudoscalar mesons., However, to aveid additional

complications, we shall introduce an § —=dependent veriex of the form
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3(5) = ‘.35“;

S+

A

Where ffgu is determined to be
3

asguzi_//—« r = 0.7

*d
by taking an averape to the Tit of the width of the K (51 Mev)

A N
and the @7 (115 Mev)

“3

1 . . .
3, using the Hamiltonian

Ko (6t -ma )

T A R ST R

We have moreover, zgain for the purpose of simplifying calcoulations,

wien hhe (masg differencas)

ol ome
or Yrolen SU«R iimit
3
2 £
Mn T W\b
n L g
o " o
wx: = “"‘f

W

¥

which 1mplies, using the

£

found in the evaluation of the matrix

nts of O in %he pole approximation, as given by their first-—
& F ¥ )

that is to say

Silx Sl S

b

St

S’

wi.

known wvalues of the maseses 13

18. 75-104/‘4(:«’8

S mlz

Similarly, for the vector meson masses, we find

2

My, = (£4 8 Hev)?
12 8 10% Mevt

Smi=

Tinwlly, We present the value of Ca, calculated for two diffarent

values of the cut=olf A: Ai

ness and /\2 = g-/\i

= (£ M‘3 12’ Mgbeing the mean baryon

Cm(f\‘) = 0.454 MOZ
g
CN(AE ) = Q. 1? MO
e p
experimental value Co. Q.58 iamﬂ'g

a

f3oan indication, we have also evaluated the correciion in ihe

= Llimit, using a formila of the (4,11) type. Now, taking

IR

singnr mass formilas,; o

< £

S B Y PR T T




W g = W, = .J:?SW
m T W, ¢ 2 dwm
Y 0 vy
M, = M, v %Sw\ !
we find
m, = 368 MeV
Swm = 195 MeV
M, = £4¢ HeV

Sfﬂ = ‘?8 eV

and for the two values of the cut=off €, equals
CE(A() = 0.?9 My,

éxp
experimental value Co = Q.54 M, -
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