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THE U(12) SYMMETRY

1, INTRODUCTION

The search for a relativistic version of the spin-unitary spin
symmetry1 SU(6) led in early 1965 to a consideration of SL(6, C)2
and U(6,6)° (= T12)* = M(12)° = U,,(12)%) as two possible approxi-
mate symmetries for a phenomenological description of known
particles and their strong interactions. Even though one had recog-
nised right at the outset that symmetries of the SU(6) class must
be dynamical in origin, and that this origin is extremely obscure
at present, a certain amount of unpopularity has arisen over the
relativistic generalisations SL( 6,C) and U{(6, 6) on account of the
fact that they cannot per se be expected to represent the symmetry
of the S-matrix, At best they apply to a local interaction Lagrangian
and in a restricted sense to many-particle free states, Without
attempting to discover the origin of the postulated symmetry,
we gave in reference 41 a description of the symmetry in the con-
text of BARGMANN-WIGNER (B, W) equa’cions7 applied to finite-
dimensional representations of U(6, 6); in paper II this context was
extended to include U(6, 8) invariant phenomenological interaction
Lagrangian dengities { Sgi.d:) between the corresponding fields., Right
from the beginning it was recognized that notwithstanding the invariance
of &,;“1._ the resulting S-matrix could not be U(6, 6) invariant because
the B, W equations are not U(6, 6) covariantgo |

Accepting this heuristic description of the possible symmetry,
the crucial question which arises is whether one can systematically
identify within the theory expressions for some S~matrix elements
which display approximate residual symmeitries higher than just
SU(3). If such residual symmetrieg survive ~ and we know empiri-
cally that they do from the very existence of the SU(8) supermultiplet
structure itself1 and from the rather remarkable correlation of
experimental data achieved by considering the lowest baryon-meson.
veri:ex10 - the further question may be asked: "What reasons make

the approximations so good?'' This is then back to the dynamical
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problem with its intimate link with the dynamical origin of the
svmmetry in the {irsi pince, No systematic study of these problems
nas yoi been made;  the problem of residual symmetries has how-
cver been censiderably c:larifiedll. In this (frankly biased) review

we resiate the UJ(6, 6 theory incorporating some of this recent work;

we show ibat ibe theory has a logieal basis, that even though it
ases a non-compaci group it employs perfectly unitary represent-

ations, and that it does not violate unitariyy” nor aniiparticle con-
3
£

Jugation in the Tormulation of Ref. 4,

ek

e dogieal structure of the theory to be developed is the following:
(i} We may take it as an empirical fact that the known particles
al-rest correspond to the representations of & compact non-covariant
{6} & L{6Y group struc‘turelg. This structure is wider than SU(8),
incorporates more particles in the multiplets (Ref. 4. 4 addendum),
and forms the crucial point of departure of U(6, 6} versus S1.(6, C)
theory, I one is proceeding postulationally we may assume that
the existence of U{6) x U(6) structure is an abstraction which foilows
{rom the obseirvation that a {ree SU(3) invariant quark Lagrangian
happens to possess extra invariances (see sections 3 and 4) which
for gquarks at rest devolve to a U{6) ® U(6) symmetry.
{2) The B.W equations applied to the finite-dimensional non-unitary
representations of a U(6, 6) group reproduce precisely the relativistic
structure of such U(6) ® U(6) multiplets, no more and no less., The

3, W. equations can thus be locked upon ag the relativigtic boost,

generating for a single particle state what we may call the little

craup structure [ U{6) 8 U{6) ]V The introduction of momenta

through the use of the equations (just as in thecase of transition

from finite-dimensional representations of the homogeneous lLorentz
group 10 the unitary representations of the inhomogen;aous group)
allows for the introduction of a unitary norm for these multiplets,
Tudn normy in ot morely the norm for representiations of qu_ [ SU{3);-

i movroynonds 1o the group structure [ G(6) & T(6) ] R which for the

roat avstern rednces to U(6) B U{6), This was the content of section

4 of Paper T and is recapitulated in Section 3 of this paper.




{3) One can write free Lagrangians which yield field equations with
the same content of the B, W equations ag was done in Reference II.,

A local interaction Lagrangian among the multiplets of a higher
symmetry scheme must naturally possess at least the gymmeiry

of the free Lagrangian, and the interaction was therefore assumed

to possess the U(6, 6) symmetry. SCHWINGERM hzu shown that

for the meson~-meson interaction at least, the demand for relativistic
invariance imposes this minimal symmetry., We show in Section

4e that a U(6, 6) invariant quark-quark Lagrangian can lead in a strong
interaction limit to U{6) B U(6) bound state multiplets. The internal
congigtency argument then gives us a heurigtic reason for postulating
U{6, 6) invariant phenomenological interaction Lagrangiaris also for
ihe bound state composgite fields,

{4} The lowest order calculation for the baryon-meson vertex
function gives resulis for the ratio of proton electric and magnétic
form factors and the proton magnetic moment which are in good agree-
ment with experimentls. These resulis are an egsential consequence
of the starting assumption that the free-particle multiplet

struciure ig the B, W boosted U(6) 8 U(6) rather than U(6)'16, Unlike
51.{6, C), U(6, 6) does provide a definite value for the proton mag-
netic moment which agrees fairly with experiment., It would be

true to say that the explanation of the hitherto mysterious equality

of electric and magnetic form factors is the most striking prediction
of ﬁ(l 2) theory,

(8} To check whether these conclusions survive for higher order
nalculations of the vertex function, one must investigate the possible
residual symmetries of the general many-particle S-matrix
elements., For an n-particle system this symmetry can at

best be the intersection of every [ U{6) ® U(6)] by " It is found

that for the vertex function and all collinear processes this symmetry
is the so-called U(G)w symmetrqu. It happens that U(G)W and

(6, 6) effectively coincide on the mass shell of the vertex function;
however the reasons for the empirical survival of U(6)W {or U(6,6))

for the vertex function after unitarity corrections are taken into

account is obscure,




(G) We wish to make the important point thai the equality of elec-
tric and magnetic Jorm factors is a direct consequence of the U{(2, 2)
extengion of the l.oreniz group, and therefore irrespective of
whether SU(3) was ever invented or not, the extension of the homo-
geneous Lorentz group symmeiry SL{(2, C) to U(2, 2) was long over-

due, The U(2, 2) group with franslations admits oif two spins ’lg and

Yo, 04 TR

a new guantum number which in the past would have been designated

ios Ry £ being the Poincaré spin and k; - 4, presenting

“internal", just like the quantum numbers of SU(3); the for.. factor
couality is related to the conservation of ks“ (5 . Its appearance how-
ever 1s so analogous to Poincaré spin that {he situation §eama J{O mﬂ
for translations associated not only with Lorentz rotations hut also with
the full U{Z, 2). A study then of [ U(6) 8 U(6)], and all group theo-
retical questions connecied with it, is facilitated by erubedding

'1‘3‘/(12} theory in a larger framework, the so-called inhomogeneous

f}’(l 2) theorle which is treated in Section 6. The physical structure
outlined previously forms a substructure of this wider theory which
may provide us with a new method for studying the validity of the approx-
imation procedures. The inhomogenous ﬁ'(fl) or 6(12) theories are

s0 clegant that it is maddening one has not been able to make more

use of them for physical purposes.

(7) Section 5 summarises the experimental data against which has

been checked the prediction of ﬁ(l 2) theory.

2, THE MATHEMATICAL STRUCTURE OF U(6, 6)

The material pregented below is covered in great detail, The
impatient reader who ig not inclined to read through this section
iz respectfully urged to look up equations (2.1) - (2,4), (2,10) =~
(2.12), (2,21) - (2.24), (2,41) - {2.47) and (2,50) - (2,52), to
acquaint himself with the notation. A knowledge of sectiong (b)

and (e) will alno prove rather usefull




(a) The U(2, 2) Algebra

We may define a non-compact U(2, 2) algebra in terms of

sixteen 4 x 4 Dirac matrices,

b/R, =1 (/\‘ ) 5;\,:2%[_\},7\;] >€‘¥f,¥§ ) X{—'-Yur«kz.&’g

R a 4,.._-16' 5 /(;,\)':-0,4,:1,5 (2.1)

with -5 K/‘ ,K,, }' = A ﬂ'!"' ound ?_}N - [1,_1, _’i,_U(g-i%%

The UTp so defined obey the multiplication rules
Yf W o=-tGy + ?P.or
.(/\G-):V =4 (g,'\/.‘_yv - ?A‘,Xr) + SKA/&-V ¢ YK YL"
O;;;J. o;uv =L(?K«V 0:,» *‘%A/u fuﬂ‘%‘/&ﬁxﬁ _,rzg_’hd;%)
+ (?WC/‘ 0‘})\\) - %—1/4%\49 - e‘kl/-.v «‘E)

G e ¥e = b (90 1 %Yo - Gup b G e g, T,

U;l rﬁ' =_‘2rL 8“4/-? O';v
Ld’/"K’SOKYY\Y :LO-;;V"'?,};.V

(2. 3)

SRS N SRR S
We take v, hermitian (¥, - ¥, ) and Y anti-hermitian ( =

so that the set of y-matrices obeys the defining property

(AR (2. 4)




of the U(2, ) aligetrn;, tor, in the Pauli representation

Then of the total of sixteen, thero ave
: — . 4
g hermitian matrices: { g
L = N =T
8 anti-hermitian matrices: ¥y , (s- L O > b (o =¢
-— I3 — . At
where 07 =(83, , O3, )G“”v) , 0 = COo: , Sy, %%y -

A symbolic way to remember the set of matrices is to note that

in Pauli representation

. — .
/ i o ;
1 - o | =

so that all hermitian matrices are block diagonal and all anti-
hermitian matrices are block off-diagonal,

The U(2, 2) algebra will be realized by a set of matrices JR
which satisfy commutation rules analogous to those of the vy, ,

ia detail these being

L :JJ’JP\JJ '“L:In,,\ _.\Tg‘:[ n ]: Ig)]_g] =06

.[_
—3
-
~
[
%
1
b
<
',f“\
Yy
o
\r
L
T
\
Qo
>
<
[
\F
S

[\Tf;a_s"] :-LE}L&-} [I'S‘)TT] - J/‘

The normalisaiion of the siruciure congtants hag been adjusted so
Ro1 . ‘ .
that I = B ‘j./R constitutes the fundamental representation.

One can exhibit the structure of the algebra in an equivalent

basis which is useful for many purposes. This basis is defined

by the alternative set of generators



o

LRGBS - .
! X J}q J £ oho=15,84 (2, 7)

™ .

Lo

= - .
>

summarising the commutation rules to

I - l—- “g ﬁ’ ..(5 ™
L ‘jx&,‘]—z( J = “Tr - é’f Y (2.8)
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and the defining property of U(2, 2) ag the herimiticity condition

. r 3
(T ST
Wy _,(a’.,){& Jy Uﬁ,)g (2. 9)
where Y, is given by (2.4). In the form (2.7), (2.8) the rules
are immediately generalizable to U(n,n) with ¥ . (4 Lol ] 5 :—Lﬁ%"ﬁi.ug

There exists one last form of expressing the gener?ators of
U(2, 2) which comes from the isomorphism to O(4, 2), the real
orthogonal group in six dimensions with metric
. , \ '
Dmn = L*‘ -ty MN =,1,4,% 5,6 . (2.10)

N

This isomorphism is peculiar to U(4) only and does not generalize
to higher rank ''unitary groups'. It is best seen if we write the

y-matrices (bar unity) in the form YMN with the identification
I A S Y R R (2. 11)

The table (2.3) is then conveniently summarized by

S
Y PUR VB SR SV

e ; & i -
T gkmM %LN - ?K” Tin T3 S'I‘\LMN.LJ\/]‘_J)(2.12)

The analogue of (2,7) is




1 i Y \5 = \l
Yrn TR TMN /o
whence
' - M , f" ) - e T
- Jif;i_:"Mf\twl =L C:}‘;L.N Nim T odeM VKN -
‘ - - T. N (2.14)
~ Fkm dlwN - P KM

characteristic of angular momentum operators in 6 dimensions., The

associated real parameter rotations are of the types:

planes : Euclidean

06, 12, 13, 23, 15, 25, 35
planes : Hyperbolic

01, 062, 03, 05, 16, 26, 36, 56
The FEuclidean rotations are related to the hermitian JR, the

hyperbolic rotations to the anti-hermitian JR'
Irreducible representations of SU(2, 2) are classified by the eigen-

(T:f ao)

values of the 3 Casimir operators

In the alternative notations

I Nl i ™ = -

Cretedn g Tt 2 TG e f Sy - Taelue (g1
axplici vhile £ , , J
explicitly, while & TR L MN IIJJKLJMN and JMKJMLJNK NL

are linear combinations of C2 and CB'

(b) U(2, 2) Subgroups

We exploit the isomorphism to O(4, 2) for a systematic clas-
sification of all possible subgroups, by considering rotations in the

various subspaces of the 6-dimensional space,




|
Subgroup Tensor Vector Scalar
0(4,2) M, N 0,1,2,3,5,6
0{4,1) N = 0,1,2,3,5 M=6;N=0,1,2,3,5
1,2,3,5’6 P"I = O; N = 1’2,3,5’6
0(312) M, N O’1r213!6 M = 55 N = O,1,2,3,6
0’1,2,5,6< I‘I = 3; N = 091,2,5,6
0{4,0) MN = 1,2,3,5 ¥ =0,6; ¥=1,2,3,5 | SN = 0,6
|
0(3,1; M,N = 0,1,2,3 M= 5,63 ¥ =0,1,2,3 M,N = 5,6
6y1,2,3 M= 0,57 N =26,1,2,3 M,N = 0,5
0,1,2,5 M= 3,65 ¥ =0,1,2,5 M = 3,6
0(2,2) M,y = 0,1,2,6 M=3,5; ¥ = 0,1,2,6 K=13,8=5
O<3’O) M, N 1,2,3 M= 0’5965 N =1,2,3 M,N = 0,5,6
MY = 1,2,5 M=0,3,6; N =1,2,5 M,N = 0,3,6
0{2,1) M,N = 0,1,2 M=6,3,5; § =0,1,2 M,N = 6,3,5
MK =0,3,5 M=6,1,25 ¥ = 0,3,5 M,¥ = 6,1,2
M,% = 0,5,6 M=1,2,3; N = 0,5,6 MK = 1,2,3
TABLE 1,




Our entries in the table refer to JMN and we have listed the tensor,

vector and scalar fransformation characters relative to each Of4, )

A

subgroup, Significant subalgebras of U(2, 2} are the following :

Compact (1) 0{4) or U{2) & U(2) composcd of the generawors

-3
4 g

—
MR P 1, 7 The combinations

. R N — + Ti I
i (1£%.], J,;(’lffa} & refer to the U™ (2)
This is the maximal compact subalgebra and further
U(2) subalgebras are
=
{2) The ordinary spin group : 4, ¢

’

{3) The W-spin group :4)0“1%’(&(513)5061'

Non-compact {1) SO(4,1) composed of generators

Tan = (9, i§u¥;);M,N=0,1,2,3,5
The 5-vectoris ¥, = (V. , {5 ) and the

multiplication table of the Dirac algebra reads (‘-}..us z ‘u)

(MrN = -8y TGN
' ] 5 5 N i . . —
VoS =t 3im b - Frw ) +5 ELmniv %21
— A S g o aq (S J \
JKL— G“Mw = L L ‘?KN L T dL‘M KN C&&M N - t:arL_N F.MJ
+ (¢ + £ 1 j\
Fkm GLn - Grv Fim SemNT T
The two Casimir operators are
\JHJM ;J;.G-/A_,:rs—kl,{ )-é—( J‘MNTMN;-%’J;;UJ/“V'(}S'I)‘S. (2,1?)
IPor this algebra there exists an antisymmetric tensor B such that
T v -1
B . R ’ ] 2,18
iy » 5/; - 133 Yf* B ( )
Introducing the notation |
~10-

e 2 i b 10 NN e AR e . o . v e e e e o e s 1




DR % .
E)—-B EB . B”‘“’Q(E.—‘) (&)(E J{g&;’x"g aé’}d.
b NAT AN
(v, ) - (e )P () 2y

we find that in their indices

. RBLY - LS
ch(s :(XM 2 )ax(_l, ) (B l') > (B (YM -) are antigsymmetric
- ! -\ % (%>
{ Tp E;)o{ﬂ) , (B oy are symmetric

(2.19)

Note that the maximal compact subgroup of 0(4, 1) is U{2} ® U(2),

(2) SO(3, 2) composed of the generators

@“MN_(G*/N)T/“) S MM 20,1,%,3, €
Now (M = L}’/‘, s, - & ) and the multiplication table is

’ L& -
¥, Cun = L(?LM C - %Lw KM> — 3 TkMuig ET
\ ¢ q
T Tuw = 0% wa Tl *GimTon -~ Frm®iy - fiw Ten )

+ (?KM Giew =% kw Fim T E MmN X\r) (2. 20)

with £ _ A [ Note the identity . ¢ §n Ton = O

o rBE - gg‘i..nwl:r {N T
which is valid also for SO{4,1).] The Casimir operators are
‘T/us J—/us’ + Is dg and 2_6 ‘T/“ r i‘ Sy E/-‘“’
and analogously to SO(4, 1) we define C“,(B Ll g)d[&
. . =) [ Y ‘ A { “
for which ( C )uﬁcﬁf/‘)fbch‘é:“(gﬂyﬁ e J\'M%Cpor=&t}‘

Thus as bhefore,

-11-




- " YA Sty (4R : .
p"‘.ﬁ’ j (h’m C)o{(& ) (L_, l) { ) ge 3/“) are antisymmeiric

=1 ~
while {Tmn C")m’(s 4 C C STu N ) are symmetric

(2.21)

Unlike the previous case the maximal compact subgroup is now

U{2) 8§ U(1).

(3) Cases {1) and (2) corresponded to the maximal non-
compact subalgebras, These intersect to form the familiar homo-

geneous Lorentz group o?y,, or 0(3,1) or SL.(2,C) with generators 6“/“\; .
(4) SO(2, 2) with generators of the type

(“) Vi 'TS‘ Yia o T 5 ¥o ¥ Toy "(cyi{d‘ga

(5) SO(2,1), the 2+1 Lorentz groups, such as the 'B-spin]'7

7

subgroup with generators [ - s 5 oY, ‘h’&_ Oy

{c) Multispinor Representations of U(2, 2)

21
In the fundamental (quark) representation of U{(2, 2) an
infinitesimal transformation of the 4-component spinor Y, (K=1,2,3 ‘1)

is given by

e = ig, (a)f vy,

(5 .

The important point is the reality of the parameters <y . With
=a poaT A
i . '
W :@r'wr (& )d (2. 23)

ihis definition of the U(2, 2) group has the property of leaving

Sow . . .
b RPN invariant since

(_‘-.4( N : ﬂ;f " .
AT =g, ¥ '\(a}({; by virtue of (2, 4).

-12-
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All finite-dimensional {and therefore non-unitary) represent-
ations can be obtained by constructing multispinors which irans~

form as direct products of quarks, viz,

r‘g .°(l f!.' _\3' - d‘ :\J'fér
Ll)u‘_('b”. — SO{ S(‘: “'(g ,Jbr" (S )‘g"\fif‘&r (2.24)

where

AN ;Ls(l«u(c{'g, Tn,_):.axk‘(’:ﬁ_f I{:) (2.25)

The irreducible representations of SU(2, 2) will correspond to trace~
less tensors of well-defined symmetry characters and for con-
venience we list typical low-dimensional representations, introducing
brackets [ ] and } } to denote antisymmetry and symmetry in the

enclosed indices.

Dimensionality Youne Tableau
4 V. -
8 ¢ Tupl H
10 ¢ {4} ==
Ty T
20 Jf‘{dpﬂ =
20 ¥ Caply EP
3* 'ﬂf— T«ay] B

{ys} | Sl

24 & Leip}
ER T Eha
gg cy3) EB

[dp]
TABLE II

=13~



The Casimir operators C Cz, C3 are connected to the associated

l.l
Young tableaux. I.etting }.‘/J, v ) label the number of boxes in
the first second and third rows so that the dimensionality of the

representation is

-I—LC; —/u+\j{:\”y"*z)(_/“JV+()(1*33!‘:}&+LJ(v*l-j

we have typically

5 2
C,=1L+/"*l""? *3:\*'/-*—‘7
/ ete,

These multispinors may be reduced with respect to any particular
subgroup of U(2, 2) and we shall choose to do so under the larpgest
subgroup, the non-cornpact QI’ (4) or 0(3, 2) (and O(4, 1)) grouns,

I"or these subgroups in addition to ¥y we also nave [ B \H i \{“’
(and B_i %)T W ) invariant under an infinitesimal iransformation
i.e, Cv\(;a (and B’a(a } act like metric tensors. We now examine
in detail the decomf)osition of SU(2, 2) multispinors relative to
SO(3, 2). By substituting M = 5 for the 5-component indices

we discover the reduction relative to the homogeneous Lorentz

group immediately, (Also the decomposition of the multispinors

relative to SO(4, 1) follows by replacing C with B everywhere below, )

(1) Multispinors of rank 2
;h (‘J i -"-P:’ . - fb ; «
ka :kk’m}u q).vx +2[—, Ly w }ak C?HN p q’ua" (2. 26)

c.;b«f:, - d?[am;_\ * q)u,fz.i = C'og(;;* (¥ C)u({!, Py +5',U2w9'.,_4’m(2u27)

or 16=10@6—>1080501

-14-




(2) Multispinors of rank 3

The completely symmetric tensor decomposes as
- o \ . ‘
Yi“@“ﬁ =z (v Clag Yrun (2.28)

with the symmetry constraints

(C*t)ﬁrg['{d(gb-& = CC“ YK)&?L}{Q(/{L'(}:O

or
Ty Yoy = o
and o, ¥ ¥, = © reducing
to the set of 20 conditions
LR =z frwimn Tre qﬁ_m : (2. 29)

In the mixed gsymmetry case,

‘ ' | 2. 30
the irreducibility condition
jjg:oa@]r -+ ?[ﬁrjok 1—%13,“1(:; -0 (2, 31)
gives 4 subsidiary equations

\P = K'M"EIM (2.32)

Finally for the case of complete antisymmetry
.7 ‘ . X ) Q‘E) N
‘J(Lvt('aa'} = CoqLd(a' T CKMC.)Q\!_J, VM (2, 33)
N PR e .
i - = ives 16 const: t
again, but f_C Clw ; Traar] o gives onstraints

Yu =— InY (2.34)

-15-



Observe that the subsidiary conditions on the Sg (4) tensors
always give the correct number of independent gquantiiies to

comply with the SU(2, 2) irreducibility.

(3) Multispinors of rank 4

With completely symmetric upper and lower indices,

= {X‘k‘j ! Y&
> PPN ) T 2.3%)
@{o{r,j :I;LQK;_CJJ.(S QKLJMN (C uMN) (
~{UAY : - e
the tracelessness property Jd; ﬁ“’f’& =& giving O (Taw @ K MV
or
1 ~ . s
Pri, ke =¢KLII<M“’CPKM,K.L T“L*“M“IC‘P“‘-;HN(Q.:%)

These comprise 16 equations leaving 84 independent fields
as required,

The mixed symmetry situation corresponds to
— [——x“;] - N ‘rcg
. A \ ~ 3 -1
< lapy = 2 Lok c)d.(s LCPKL (c J

¥ (2.37)
-\
i q)KL‘M CC h/;v\ ) ]
Tracelessness gives G, ci)m_ + Tk Tm P y =6 or
& - ( i - o
PRL K = PuL v % Eximny P . =o (2. 38)

These are 15 conditions giving us the 45 independent quantities.

Finally for the case of complete antisymmeiry

Lrd] nES o , ‘ _1(cl!|
9 uay - Can(C )T iy @, (C7)
£ Can® (O ) e (1, C g B (C )
(2.39)

-1g-
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The 16 relations

CPH, + Pm o= P o+ S HVW “CP“-"‘ - qb""-” = (2. 40)
I

L« 7] =
of independent fields to 20.

follow from o and reduce the number

(d) The U(B, 6) algebra

The basic apparatus for U(2, 2) having been set up in the
previous subsections, the passage to U(6, 6) becomes straight-

forward, Analogously to (2,7) and (2. 8) the generators
JE (A,B, =1,..12) of the U(6, 6) algebra will obey the standard

commutation rules,

T A —C - A b o C
LJBJJDJ:ABJD_SD T e (2. 41)
with ‘T‘
oA — 2
k\l&v,J = Lb’o J X.)R

(2. 42)

One may pass to a "hermitian' basis by making use of the Ya

defined earlier together with the unitary spin matrices 1 (C=0,..8
which define the fundamental U(3) representation. Our convention

for the latter is as follows:

- . ) . . 22
i i 3" (i=..p) with A" defined by GELL-MANN

and  T° . 1/ V& . Thus

R _ T S W L o ;
T T =_%, (Qlo" '*"f{—& JT 5 ‘-,&,LL s, ¥ (2. 43)

LR
g
where ol

.c.-'»‘h. ,u‘ n. A
Mann and ,12 U e d ¢ R _ géh‘ug,‘f_g.

-“i&.tl. o .
, = (t,g,b. =1,...¢) have been given by Gell-

- l

1t followsg that

T, (TeTE -l (9 (2. 44)




23 y
In the alternative OKUBO basis  the nine U(3) generators

(r,s=1,2,3) obey

- Y N B . ’ ¢ ) Ly
;Tqﬁs]=525§-5275 T (ThTE) 0

and in the fundamental (3x3) representation possess the matrix

elecments L , = gq S, from which the connection with
the 7 is readlly establlshed_

We now construct the generators

---(. S —
(v )TN TS

(2, 46}
A:a.Q)B={$s 5 %, A4, S ors o= 02,3
The transformed commutation rules read
‘__'. ‘l\- .
[T, TH] = AT TR
3, 3870 = T
T i E A A
[J 5, J 5 ‘j = Al“ ) J
v b . yh Tk
[__T , Tr,] = F Jrv
. } L ik -
[3’5, jr\/:) - }’-}' (-:r‘v*) dea
o b — ¢ L‘i“' -:)-h \ 3 - -Tk. ~lz
- u"() s th - 4 c ((}KV )‘r‘ 4 ghr\ [ 3V }k—.‘ AV 3AUJKIU‘/

- 1 ) S i 4 ol
I SN U NP
_— Yl k i " e
(:T}A) Jjﬁ.] = ‘\A ‘3]'“’ J—‘-:' vt Epvir ¥R
. F o0 lk "‘h L\l .
['TP\S'; ‘Tvij - “;’ gi"‘" JUb e Jf’w
and
} . \)L __\(
L7y Tr] °F ¥
. - \jl‘ —k
= 3;, = AP T
P ""J - - ‘;l"‘j'h
U‘f, iy ) S s (2. 47)
-18-




P I
v B }
L-.:T;\., TVV}

[ T;'“;“, -‘j‘i«vl

"

C ok —k k vt -k
“‘dq ((‘;N"JV "aiwj_r\) "l"l (";M'VK '-‘P;S'

1l

i "ik —k _ N _ ok ;
R C PR T v B S

These commutators are conveniently remembered in the
0(4, 2) notation of (2.12) if we use ( 3°, T° )

> Y mw in place of
the J%, Then,

RS Copigh ~ ke

E\«‘J‘Sq] *“'{l 6“3

T - ’ ith o h

o= ) RS

L\] "SHN =‘§ l—MN

- TKL; M 4 L:F Fem %LN—' G e ‘}m;_) ¥

oy - b
+_§}€KLMNJ’T II__\TLAd -—%KN Ve

& B

Y
t Fem Tow - hem Iin “?—LNJKH] (2. 48)

The eleven Casimir operators of SU(6, 6) are easily built up in
the form

. - : A —-8& _C . A TC
C-THTR ¢, -T4727%,... Cu=Jg---7%

P

However, their appearance is considerably complicated when

1%
expressed in terms of the ¥ R for instance,

C-Q,CJ—‘ l‘r"u .

P = “sz-%shr-rh A "'.%,Jm.l‘rh.k)
D;é&'h' e _ k Y
Comg Léi}‘x‘ v + 37 /‘&73—6 e + 6735 I,«f};/-s-_ l

+ ILV ‘Tv‘i ‘]-,'iw-l

. ‘l"h ] ‘ ; h . . : . 'PJ

Lod'e [33“AMV (T, 3'3‘; T.e 1_1; T, J/-&v S RELN D
§

- bt ook giogh
Tls;LCIdA+_TiA$A"d§$‘JA&'~I$" u.sl

-19-




(e) Important Subalgebras of U(6, 6)

The systematic classification cannot be carried out as
readily as for U(2, 2) because there no longer exists an iso-
morphism with a rotation grouplg. We will therefore concentrate
only on those subalgebras which have conceivable physical

application,

3
Compact (1) Non-chiral1 U{6) ® U(6) composed of the

generators

o . 5 o
5‘(4&-&;)7 > _fz (a2% )T

This is the maximal compact subgroup and containg the further

L3

important subalgebras

17 Sl s
(2) U(G)W | B JH:%T 3 'Ya 23 Loy, 4, 54, 7
1 _—_" =2 C . . ]
(3) ue)y : v ,e T and its own subgroups such as
— -
(4) u3)ymue): T 5, 1,8
—_ — -3 "'-7 . -7
(5) Uy BU,(2): 1,0, T 0T, y»}(‘f
:-_Q 14 3 £ L" Tﬁ — V-:?' TJJ'
where © =(T,T%7 ) , Y 3 ¢

We recognize U1 (4) as Wigner's original supermaultiplet
g._g‘roupzqt and Uy (2) as the strange quark spin introduced by

LIPKINZ®,

Non-compact (1) The simplest relativistic extension of

2
the U(6) group, SL(6,C) with generators
—_— - - . - L
T, e T ,a T, ke T

By performing a unitary trick the non-unitary representations

2 .
can be obtained as those of a chiral U(6) ® U(6) having

-2 —

generators é(':j’_—_t'-r:)TL, I O

L
&
(2) The subgroup U(4) ® UB3): ¥, , T°

and its own subgroup SL(2,C) ® U(3) in terms of which we

carry out all our reductions later on.

(3} Algebras of the type
UIUf/‘f) & Uy(i,z) . R’R , T :f oY A/R
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This is significant to the extent that SU(3) may be badly broken
and one is generalising WIGNER'S Ug (4) group26

(4) Sp(12) subgroups consisting of 78 generators., It
is worthwhile to stress that the subgroup27 S'\fa(‘i) & U(3) is not

contained in §f)(1 2).

{f) Multispinor Representations of U(6, 6)

Under a homogeneous U(6, 6) transformation the quark spinor

undergoes the change "‘{Jﬂ — S: ‘I’g with
, R ' s
S:.o,xl, (L€ Tg)zup(‘a‘;aﬁ) (2. 50)

The adjoint (antiquark) spinor is defined by

T3 (40 ()G 21

-1 v A A . ,
iransforms under S = and leaves Y Y A invariant because
the parameters g R are real, Finite-dimensional non-unitary rep-
resentations of U(6, 6) may be built up from products of quarks and

antiquarks, These multispinors transform according to the general

rule,
-\“LCD‘., pf(c\&r - c ..|‘D ;CFDJ"'
j_ AR, — Sﬂ’ Ja ,"(S )C{CQ )D,.,, A A‘B'.“ (2.52)

where S is given by (2, 50). Relevant representations with their

dimensgionalities enclosed in brackets are

- - LAa8] —~LA&] ~ i#8f

3 . )
ff)ﬁ (143 ), @r_caj (4212 ) , ?{coj (Seor ) , ? {cog (5 940 )

: -~ — A
‘\,b{ﬁ,g,ck (ch)/}’[ﬁajc (5?'-2))%&9&(_3 ('2‘?'0) , ffBCDE) (3-'?'10_)

(2. 53)

-21-




Of especial importance are the reductionscl the products
12®12= 10 143
12 128 12 = 220 @ 364 & 572 & 572
143 ® 143 =10 143 9 143 @ 4212 O 5005 @ 5005 @ 5940

364 M 364 = 1 @ 143 @ 5940 © 128412
143 ® 364 = 364 © 572 @ 16016 @ 35100

For convenience we collect below the decomposition of
U(6, 6) multiplets with respect to the subgroups SU(2, 2) 8 SU(3)
and U{6) ® U(6) since these are the only ones to hold physical inter-

est,  Because the further reduction under SO(3, 2), SL(2, C),

subgroups of SU(2, 2) has effectively been carried out already in
section (c) we are only left to include the reduction of SU(8)
multiplets relative to its own subgroups SU(3) & 5U(2) and
SU_.£ (4) ® SUY(Q), which we do further on.,

(1) SU(2,2) & SU(3) Decomposition of some SU(E, 6)
multiplets

3 - (15,8) ® (15,1) ® (1,8)

4212 = (P4,30@® (8Y,1) @ lus,To) ® (45, 10) @ us,2) @&lis,9
® (%", 27) ® (27,3) @ (01,1) @ (15,27 )& (15,10) ® (15,3
@25 3)® U1 @ C1,13)® (L) @ (1,1)

5940 = (84,23) ® (P9, 2) @ (84,1) @ (45,10) & 45,1} @ (45,7)
@ (55,8) ® (07,8) ®Ee, 1] © (15,28 & U5s) & (I, 7%)
GU5,8)® (5,1)® (1,24) & (HE) & iy

220 = (2’ 7))@ (20,1) ® (U, 10)

CF2 = (W, 10) ® (,8) @ (% ,8)® (w,)6 (b ¢)
369 = (%,10)® (2,8} & (%, 1)
(2. 55)
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{2) SU(6) ® SU(6) Decomposition of some SU(6, §)
multiplets
ey - (60)® (6.6)®0O,1)® (351) © (135
by -G E) @ LT s) & (6,6)@ (6,6) @ (35,35) @)
ST )@ 6T ® 8y, ¢) @ (6,8) O )O3
@ (rgg,1) @1, 18)

§3%0 = (2,0 & (1L,0) ® (6,6) @6 6)® (3535 ) @& L)
® 2,5) @ (6,i%) @ (e ¢) ® (€ 12)@ (35,1) O35

@ (%os5,1) ® (1 %05)

520~ (0@ (1,2) O (7 ¢) @ (6,15)

$22 .(30,1) ® (,F0)® (&1 ,6)® (6 Cs ) @lss)
L YA =[S‘é,t) @ (1,56¢) @(2:, é,) €y (é,zi)

(2. 56)
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(3) SU3) ® SU(2) Decomposition of some 3U(6)

muliiplets
15 =(31) ® Ci3) @&,
79 = (45) © (L)@ (i) ®L0,3)@E 2(F %)

O (22,1) © (&, 1)@ (1)

YoS - (225)@(8S) ®(1,5) ®1%3) D oy
@ 0,3) ® 2(83) ® 2%+ 1) ©&k1) & C,1)

20 = (4) @ (¢,2)

70 - (04) @ (10,2)® (7,2 )® (1,2

§6 = (10,4) ® (&2)

(2.57)

(4) @1(4) ® SUy (2) Decomposition of some SU(6)

multiplets

The third entry in the brackets below refers to the hypercharge

P4 2,1) ® S, ,0)® 3 0) © G 10)® (¥,2,1)
(e 1)@ (2 21)@ (ha1) @ (21,0

@(1‘?{%{@) IS Cl&"l|o) D (\rl!o) © (-9/6’, :2,,-()

@ Cgri;']) @ (zi/li—z’)

=24«
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YOS = (i0,3,2) @ (3,2, () ® (4y,1) @ (4,2,1) @&i,i,0)
& C(C,E\fc) ) (15"‘,(,0) & Cl,f,o) @ C(,%zo‘)
O 491 ®F,2-1) @ (3 -2 1) “"0,3:2)

2w o= LY 00) ® (6,2[0) @ (4,1, -1)

70 = (2,1, ® (€,2,0) D Cio 2,0 )@, 1,0 )
E5-1) ® (1L,2,-1)
(2, 38)
§6 = (e, 1,1 ) (1012(0)@&(3‘4) @ (¢4 -2)
This completes all that we need to know about the homogeneous

U(6, 6) group and its subgroups for the forthcoming development.

3. TREE PARTICLE FORMALISM

(a) Bargmann-Wigner Equations as Relativistic Boosgts

Since the homogeneous group U(6, 6) is non-compact its finite~
dimensional representations are not unitary and so cannot be associated
~directly with physical particles., These representations in fact are
realize d in complex vector spaces with indefinite meiric, It is
possible, however, to project out the definite sectors in a simple
way and with these there is no obstacle to making a physical
interpretation,

Let us begin with a multispinor d’:ilak belonging to
some irreducible representation of U(6,5). For the invariant

scalar product we must take

e Q2 . ‘414"’;....

G- _ﬁ'\.‘q‘lu~ B B,i &'t * Ay, By
%(u... ¢, - @A‘M,__Lk’,,) K- )((n)Ai@/;j,A;~(3_l)

where the asterisk denotes complex conjugation and

&\, \l&. _[KD—)(D gs

Lo T ’ N (3.2)




In the Pauli representation of the Dirac matrices we have

L', NC i ) 1 )
; - 4 ' Ve [ -
oJ“ = c_.r_.-\.ta_ Lt ) bl
The form (3.1) is evidently not positive definite, A definite

subspace can be projected out simply by resiricting the set
B

QA A to those on which ¥, takes one value, for
1R s
example
¥ -
L © ‘ﬁ(; Ay - (—}'A-'L 2
. AL 1B B
(X / = i t
DJR.?, ¢ﬂi,"2,-'- CPﬂ-lﬂ'S,uwi‘ .
(3.3)
for lower indices and
, 2 B
AN =
N CPA R, = — P
i o T H;H’_z".. 2 (3.4)

for upper indices. The special virtue in this choice of signs
will be argued shortly,

The set of multispinors satisfying (3. 3) and (3. 4) is not
invariant under the full group. Rather, we have reduced the
U(6, 6) representation under the subgroup consisting of those
matrices S:’ for which

ST, SN
(3.5)

i, e, for which +
g~ LS

Thig is the maximal compact subgroup, U(6) ® U(6), The

indefinite space of the original representation breaks up in

this fashion into a collection of subspaces, invariant under

U{6} ® U(6), each of which is definite. The prescriptions (3, 3)

and (3. 4) single out a particular one of these,
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NS

It is easy to verify that under U(6) ® U(6) the basic spinors

¢ - g was?
and reduce in the following way
LPF)\ - C é.’ ! )+ @ ( f | G ) —

o, A

PP, o ) 6.

where the appended sign indicates the value taken by Y, in the

respective subspaces. If we apply antiparticle conjugation,
AT

and notice the property o . C = -X, then it follows that under

this operation
(6,1) — (1,2 ) }
and C'-,é) 5 (g.,l) ) (3.8)

The relative signs chosen in (3. 3) and (3. 4), it now appears,
assure the invariance of these equationsg under antiparticle
conjugation. The spinors }% and W?nin particular become
associated with (6,1) and (1, 8), or quark and antiquark, respect-
ively., The other set (1, 6) and (g, 1} are e::zchldc-:*d28 by (3, 3},
(3, 4)., From the producis of {6,1) and (1, é) alone we shall not be
able to construct all the representations of U{6) ® U(6).
Equations (3. 3) and (3. 4} are thus seen to constitute a restrictive
assumption, Insofar as the accommeodating of known particles
is concerned, it has not proved unduly restrictive

If the multispinors discussed above are taken to represent
the possible states of particles at rest then it is possible to set
them in motion by applying the appropriate relativistic boost3 .

Denote by (L ‘}_)S a family of Lorentz matrices for which
. -1
Ly T e - i){_‘;&cpm ~p X - P - t) (3.6)

-2

A




. 2 .
where ™ denoles the rest¥mass, ?L 2o We can then define

the state with momentumn weu by
1

R,
o
T Aok

In analogy with the reduction mentioned above of a U(8, 6)
representation with respect to U(6) & U(6) we can do the same

with respect to (U{6) ® U(6) )F’ defined as the subgroup for which

54‘!8“':* (3. 8)

30
It is just the little group . There is, of course, one subspace

which, in the iimit qg - ¢ goes into the space picked out by
equations (3, 3) and (3,4). This subspace consisis of the set

-
of q’&.:&,_ (pjsatisfying the relations,

By

ARG :
(¥ )R.| CPALA:L... (p) = q>a,n,,... (P

LY By By
[f{)ﬁi Cph.%..,(f’) = "’"‘deh... S PEREE (3. 9)
for lower indices, and
. &, -
u){)gf: CPJ}‘

for upper indices. The prescriptions (3.9} and (3. 10) will be
referred to as the BARGMANN-WIGNER equationsT.

/
joooo.

. %In. )
AL..,(F) =-m ‘ba‘».,v,,,(w (3,10)

Defining a linearly independent set of positive and negative

energy solutions of the Dirac equation by

o -k, -1 B :
“a CPJ:(LI:)QA y W P lbp)a ipeme 6=t 6 (8.11)

we can rewrite (3.7) in the form

=28 -




Sy . & & —
¢ ('F)a.u.R‘ (b)U»A {,1:)...4) 'ub“ C=P ) e (3.12)

Aﬁtﬁ.?,-.- vt 2 “—l'l,;‘..

which exhibits the multispinor ‘Pi’l'% (b) explicitly as a solution
of the B.W, equations. Evidently a transformation of U(6) R
U(6) on "B:t(;; . induces on @:"ﬂx (+) a transformation
of the little group U(6) ® U(6) }?.

In summary, the scheme for associating physical states.
with an irreducible finite~dimensional representation of the
non-compact group U(6, 6) lies in breaking up the indefinite space
into a set of subspaces each of which ig deﬁ_nite- and, moreover,
invariant under the compact group (U(6) ® U(B) )[, .  To character-
ize the physical states one keeps only those vectors whose com-
ponents vanish outside the subspace specified by the B, W,
equations (3.9), (3.10), Alternatively, one could reduce to
subspaces invariant under the U(6) ® U(6) specified by (3. 5)
and reqguire that the components of a physical state in each of

these be related through equation (3.12).

(b) Many-particle states

The group of transformations applicable on a l-particle state
with momentum P}“ consists of all those transformations in
U(6, 6) which commute with §, namely (U(6) ® U(6))y- The same
would be true of many-particle gtates provided there was no
relative momentum,

For a 2-particle state with distinct momenta Pys Py there
are two independent boosts operating and the only U(6, 6)
transformations which leave the momenta unafiected are those
which commute with gﬁl and ].’)2. Choosing the co-ordinate system
such that Pys P, lie in the 0-3 plane we require all those matrices
of U(6, 6) which commute with y, and s These are generated by

- — L

}G;’S. I 9 { L:C’,"IJ....X

_-t---l.

Sz
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where T¢ =t ¥, Y5, ... ete. This group may be labelled

T e,

(U(6) ) p, pa - It is otherwise known as U(E)’)W,l

.11 ¢

the "hybrid™ " U(8)", or the "lesser" group 8
Similarly, for the 3-particle state with momenta Pys Pgys Pg
confined to the 023 space the transformation group is confined

to those maitrices which commute with Yor Yo and Yy namely

which group may be 1abe11ed11 (U(3) ® U(3) )Plpzps'
Finally, states with four or more independent momenta

can be subjected only to those transformations which commute

with T/u namely those generated by TL or simply U(3).

Thus we have a hierarchy of 'little groups"

U({6) ® U(6) —» U(8) — U(3) ® U(3) = T(3)

which can be applied, for example, in S-matrix or form-factor
calculations4. Mass spectra which involve one 4-momentum
should be classified under U(6) & U(6). Coupling constants,
involving 2 momenta, should be classified under U(6) and scatter-
ing amplitudes, involving 3 momenta under U(3) ® U(3).

These considerations of course ignore the unitarity contiributions
of the many-particle intermediate states which can have at

most U(3) symmetry,

(c) Physical Multiplets

The association of U{6) ® U(G) multiplets with U(8, 6) rep-
resentations is given explicitly and in general by formula (3,12},
For practical calculations however there is an alternative .
formulation which is more useful, Since it involves a manipulation
of the Dirac indices only we shall for the moment suppress the
SU(3) indices.

It is a simple matter to verify the equivalence between the fol-
-t

lowing two ways of writing the second-rank multispinor ¢

which satisfies the B, W, equations,

-30-
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namely,

: S o )
‘#ffp) :.UL‘:(CJF) ‘Pa () m(i (-p) (3.14)

and

&
?E(F)z[(%m)mcpf,_n%ﬂ, (3.15)

In fact the connection is given by

1}

—a b
Qulp) = W P W Wi Cp) g (h)

ol

) . (#L .
‘?’g(}') = Z:—r-r-n EL("?) G w CF) “CF) (3.186)
and, conversely
@, () - 2w (T AR ) R AR

Notice in particular that fj/., “B‘ = o so that the vector <if)r»

characterizes the spin-~parity 1 part of the multiplet and ‘P,

- 3
characterizes the 0 part 1,

The multispinor +°‘ﬁ> satisfying the equations

| < e 3.18
‘\/f’/_mm)d\{/dtﬁzo S d C/}é—m«)(g “!"dfbfd_o ( )

which can be reduced into a symmetrical piece "f’“ﬂ:) and an

anti-symmetrical piece 4/[%1 may be dealt with in a similar
4

fashion giving

Yapy () [ UF om0 C), Th (p) (3.19)
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Y ) = () Ve C ) (p (3. 20)

where f’/“ \'(’/. - and where Cu((a. is the matrix infroduced
in Section 2, One can verify that vl P jand ‘g’/., { pJ correspond
to the O+ and 1+ parts respectively.

Let us apply these resulis to several of the smaller rep-

) 4
resentations .

(1) Meson 143 or (6,8)"

1B
The traceless U(6, 6) tensor CPH when subjected to the
B.W, relations simplifies as follows
I
a - lap
o ;= s "
_ L g Y. | (3.21)
—2/‘((/?*/“)( /"(P/u" SCP.;V'/‘“
[ s
where f#

/-ll"
multiplet respectively. From each can be separated an SU(3)

. 5 - -
and C}’s n corresgspond tothe 1 and 0 parts of the

singlet and octet part,
&7 \ ‘
UL NCPICE LY
O =0l @ ¥ (8)

)+

(3.22)

+ —_
{2) Meson 4212 or (15,15

The representation 4212 consists of traceless tensors with
a pair of lower indices anti-symmetrisized and a pair of upper
indices also anti -symmetrized, After applying the B. W,

equations it can be written in the form
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5 Le, E“ﬂ.l [S,Sz] -t Y ﬂs,;@';“

. s ' 1 { 1Y B - )
SRRITHR '““’f”/“)‘.ff“c)d.%%tmul G

(s.52) ,

i —ly £ ‘,AW
i‘((% +/N)3}‘C)0<‘0(Lq3“5£"rr'&3 LC Xg \/f, — fa )

I;lJ-_J \ﬂﬁ'&

—i'(C/?T/A)XCJ‘iO{J’ s/ucrr)CC‘iﬁ/ (/f'/ -

‘ s, 8, ) N 1 (!
() 5C ), Bocnn) O )

{(3.23)

J.,

The SU(3)~irreducible parts can be separated out in the usual

way by extracting traces etc; the content is as follows:

£5,5,7]
MYLIer, ]

-, @8 )

j CSiSy )
%""’Lr. T CP/J (3) @ CF o)

d) LS S-Lj

b]« {n

]

Pen (1) @ ¢ ()

. [3,5_2) | | |
q’-ss—(v, ) = c@’cs (_,)@ C(’Dys(g)@ ()PS,:(?,?—) (3.24)

: +
The Lorentz scalar, P . corresponds to a 0 particle, the
+
axial vectors d’,us* and C‘}Jrﬂ to 1 particles and the tensor

+ +
to 0 , 1 , and 2 particles which can be separated

”
without difficulty,

»
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@ (27 . ‘ P P . (3.25)
l/‘-v’ ) = CP(./U\,) — 'i (g/‘“' - = (ib(ljk)

/\4\
where 47(}”) and qs[}”} denote the symmetrical and anti-
symmetrical parts of 4>ﬁ,; respectively,

4+ — .+
The meson 5940 or (21, 21)
™, B
tengor 2' can be handled in a gimilar fashion,.

(AAL)
+ +
(3} Baryon 364 or (56,1)

characterized by the U(6, 6)

The fully symmetrical tensor ‘\?/CA‘AZP«_\)may be written
s 1 F )
LA 93) R ) ((/fé*-w) X/AC o(.p(L'D/“ﬂac\""r'zra.)

+ 2—‘;“1[_% ; ((/%{*""’V")Y{'C’)o{ld\zgr‘v’_sN:ha (3.26) _
- + c,\!dJ-Cl,?-,S)

where D/‘ satisfies (in addition to the Dirac equation)

(G D

/u/q /‘(b(‘".pa,f‘z) = O (3.27)

+ +
(4) Baryon 572 or (70,1)

The tensor of mixed symmetry type?‘}z: satisfying

AR, ARy 7

Jr - . _—
ToRh,JAy T lbff*& Ay da, = 0 tnd ffﬂq“z]ﬂ:f %ﬁ Al 'q2+ iz Ay 14,7
(2,4P)
32
may he written as
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fLAA]A mg(% ) C/xm wsv/{’»«hé

—

< R s
£ V—‘g.[gm ns (C/f-{+m¢) Y&‘Cjﬂz,d.sy(clwﬂ - E‘l_‘;}‘r"s ((/F/+w) Xg(d/“‘s“f/(/;’-‘“’“

2 v

*g ‘{é‘ nrr&[c/@‘""m)rc)da%d +(C/¥+w)yc)“°‘y ]

T () 5C ), Deeen s 5. 29)
where
U} J‘f %["‘; = (3. 30)
) Baryon 220" or (20,1)
t may be

The fully anti-symmetrical tensor ‘f’
7 7 Lrangh,l

writien

% ' S, }E (C%*""‘") .)o('a(?_ A/‘*K.&

+.’z—‘m 3 & Loy A w5 %3
where - ee J
&
U//‘* )u( A/“(’" =°
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(d) Kinetic Supermultiplets

33
A scheme has been proposed ~ wherein higher multiplets

are regarded as angular momentum enhanced recurrences of
lower ones, The so-called "kinetic supermultiplet’ is des-
cribed in terms of a reducible tensor which is obtained as

a product of a basic U(6, 6) irreducible tensor and kinetic
tensor components of the regular representation., The meson

143-fold leads, for example, to the fourth-rank tensor

! BD . & D
Q&C (F):'(kj/“)ﬁ ¢/uc
where
. D
Py mwCc =°

The new tensor contains states which are obtainable from those
in the 143 by compounding one unit of orbital angular momentum

+ 4 L+ +
with them, namely singlet and octet of spins ¢ ,1 ,1 , and 2 .,

{e) Mass Splitting

To conclude this section we give a brief discussion of
the modifications that are necessary when the massges are not
degenerate, The general procedure is to subdivide further the
U(6) ® U(6) invariant spaces until the gtage is reached where, in
the subspaces so defined, the masses are completely degenerate,
This reduction can be carried out in the rest~-frame to begin with -
the corresponding reduction for states with momentum E F0
being deduced from it by applying appropriate relativistic boosts,

The new feature is ihat the boosts, being mass dependeni, will

~-3G-
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differ from one subspace to the next, The resulting multispincr
will satisfy B, W-like equatiions,

Given the reduction to mass-degenerale subspaces in the

rest-frame,

By .. 4:)31--- B .

O SO B OO PR
ha Ay YAARg ") A kg ... ( .

where each of the multigpinors on the right-hand gide satisfies
the equations (3. 3) and (3.4), we can make the boost to states

with momentum p through an obvious generalization of (3.12),

namely
L Reg e By... B, ...
GPR.RL,,, £f); ()P,q';;\z,'_ C&""“‘) * Cbﬂ,ﬂ;--. CPJ""‘&]"'"‘ (3.33)
where
o ' : By skt
IRIAJ; (i’f'Yh.‘)— u'A (?;ML) L{.AL[})"”NL‘_) ?a‘al‘“( P,'ML)U.L (‘P‘N.
(3, 34)
with
' (3. 35)

b, ..
S IR (G S DL ARG LY

a.ay

Applying p to (3.33) we get, for example

MR _ B o, O (b,
£/f{)A‘ CFA:R),(F) :m1¢alnz---<l:’w1) MR NEY N

In order to find the equations satisfied by e ( P) it is necessary
to eliminate the Qbﬂn, o) from the right-hand side, that

is, to find some (p-independent) projections € (em ;) such that

A—,,A_?,...(P'm:')z(E(WL)(?)MA;.”(F) (3.36)
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Fa) S ) 2 e (B )R, )

-

AL LRy B
(/?)Az ?34.4/ (P_) = ;rm"’(E(m;)cb)‘q_d Prp“(\f’) (5.37)

2

for lower indices, and

By ...

d B i 84"' ! _
(%)B’: Pan,.. CP)= '*[.\; ™ (E(W':)CP)A,AL,,, (p) (3.38)

for upper indices. These equations represent the generalization
to the case of non-degenerate masses of the B.W equations (3., 9)
and (3,10). The problem lies in constructing, for a given
situation, the projections E (m;)

The projection E appropriate to a given case can be pro-
duced by the application of some simple rules which we now
derive. Since the projections depend only on the masses they
must be Lorentz invariant and, in the rest frame, they must
leave invariant the equations (3.3) and (3. 4). Replacing the 12~
valued indices A, B, ... by the Dirac~-SU(3) pairs ««, 6 s eic,
we see that the SU(3) st ructure of the projections is un-
restricted but that the Dirac structure must be built up from
the invariants AT‘Cuﬁ and &L-ﬂ)d@, Explicitly, for the
idirac multigpinor ‘i’f we can project out just the singlet and

triplet parts,
SR I AR Gl % Can )

(3.39)

.l—-ud,

y / - ‘o af A
- bb (&)4);, __&._’(cpf_ (c™)P 4’@/ Corn)
_38_
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which are easily verified by reference to (3, 15),

Now in reducing out a particular component from the U(6) &

U(6) multispinor

d)b.,... ) @a'.,s.

a,ag.., Uaryigy e
(where i, js+.. = 1,2 denote SU(2) indices) one performs a
succesgsion of trace and symmetrization or anti-symmetrization
operations which we need not go into., To reduce out the

analogous component of the corresponding U(6, 6} multispinor,

¢&1“' ¢[busn"'
AL Ag = %Y a1y
one performs exactily the same operations excepi that in the

case of the SU(2) trace

vk
S i .
‘ib& — L4 ch (3. 40)

one does insiead

Vi

; NP
c#f' N Eﬁf,u)%_” (3.41)

Thus the problem of constructing the projections needed for
the generalized B, W equations (3.37), (3. 38). is reduced to an
analogous but manageable problem of reducing a U(6) ® U(6)
multispinor under the SU(2) spin-group,

By way of example consider the mass splitting that comes
about when the U(6) ® U(6) symmetry is reduced to U(6). For

example
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(G,'(‘;) =1 -+ 35 for mesons,

and {56,1) = for barvons.

Hence this symmetry allows the mass of the meson singlet

(XO) to be split from the others and nothing more, The

projection is simply

““”“()Sdp

Aol f

AS oo
SCURY

BT EDUE AR RS

The B.W equations are thus

Yol (p)= Mas(#{fh Ci’(u(x )+m4¢2i<X0)

(F) Pu (o
e s [ ABE Ao “ W
+ -———u—_'c ) g.,, (ePo( (C ') ¢) (3 43)

foS
- M?.sq)d r

and
&S

rA ﬂ'bc = =W
(/r{)(g CPO““ F) 3§ ‘or
“"sr g (¢(5t— (C—-l)ﬂ’[bq]) e dok> (3. 44)

34
IFurther mass-gplittings can be effected in the same way .

—
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4. SUPERMULTIPLET FIELD THEQORY AND THE POSSIBLE
DYNAMICA L ORICIN OF THE T{12)

So far we have considered free particle stateg and
incorporated phenomenologically into them a U{6) & U{C)
symmetry, in the rest {rame., To see whether this higher
symmetry can persigt after all manner of relativistic inter-
actions one is faced with solving a dynamical problem, There
are egsentially just two types of dynamical procedures known
for attempting a solution of this: one is to begin with some sort
of fundamental Lagrangian theory with some built-in symmeiry.
The bound states, with their agsociated composite‘fields, will
of course exhibit this symmetry but may, for peculiar dynamical
reagons exhibit a symmetry which is still higher., The aifernative
procedure is the exploration of a bootstrap dynainics, which has in
fact a similar raison d ' &tre in that one starts with a congistency
postulate coupled with a primitive symmetry and shows that
dynamical accidents (like dominance of single-particle exchanges)
lead consistently to an effective higher symmetry for the particle
multiplets, The current algebra approach is similar in character,

We shall adopt the first approach in sections (a) and (e},
by seeking a basis for a U(6) ® U(6) multiplet structure of
the known particles within the dynamics of a quark l.agrangian,
assuming these arise as quark-antiquark composites. Thus
we start with the assumption of 3 Dirac quarks 4, ,\P; "q/s '

(P[- w , N novy ) and write the conventional free Lagrangian
agsuming only substitution invariance 83 , ’Q’; e Y, & “}’3
This implies mass degeneracy which then is the only postulate
needed at this stage. If has been recognized by YAMAGUCH136
and others that the resulting permutation-invariant Lagrangian
happens also to possess the continuous Lie-group symmetry of
SU{3). We show in section (a) that the symmetry is in fact
much higher : it is the symmetry (U(6) ® U(6) )F . We next

write down the only possible Lorentz invariant interactions for
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ihe three fields {x) consistent with G(6) & U(6), and find
that it must be full U(6, 6) invariant, As emphasized by Schwinger
this is where the strength of the local field concept comes in,

In gections (b)-(d) we discuss the problem of writing
phenomenociogical free and interaction Lagrangiansfor the
physical multiplets4, postponing to section (e} the problem
of showing how under suitable assumptions they can arigse as
quark composiies from the Lagrangian model of secticn (a),
viz, how the composite multiplets at rest again possess the
U(6) W U(6) structure and the effective quark-composite
interaction is U{6, 6) invariant to a good approximation. Clearly
the {ree ficld equations of the physical muitiplets must respect
thig 17(6) W U(6) structure while for the interaction terms we
once again postulate a U(6, 8) symmetry, both for internal
consistency and by analogy with the quark problem,.

By 5(12) we mean then the theory possessing for iis free
particle multiplets the U(6) & U{(6) structure relativistically
boosted through B. W, equationsg,together with a U(6, 6) invariant

L ).

The dynamical calculations of quark binding in (e) are
naturally approximate because of intrinsic difficulties in ob-
taining the complete solution to a Bethe-Salpeter‘ type of
equation, The work is nonetheless quite suggestive with

regard to the possible origin of I~.T(1 2),

(a) Quark Lagrangians

The free Lagrangian dengity of 3 Dirac quarks '\PA = \Pu,.
(r = 1, 2,3), which exhibits substitution invariance A, Ay —\}/3

iz evidently

£ ix) = q—,-"(x)(;a’~m)f Yo x) ) ﬁf

L1

?ff 5, &)

and the only transformations, not involving derivatives, that LF

ig invariant under are U(3) ® Ii+. However there exist

transformations which change £ _ by a divergence term

f

leaving the field equations intact). These are cobtained by
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2
writing the PAULI-LUBANSKI37 and CALOGEROJ8 spin

operators with the unitary spin matrices, and form the
[U(e) ®@U(6)) . 8roup. To understand this we note that

»

[ U{6) ® U(6) ] b has the generators Tj',. ¥ Ti' /m and

sl o ‘

Wi ) T° = € vin Oux BT /3w = 'YS'O;%VPVT}/“" (4.2)
wr-" (p) Th= o €Epver YT Pa T Jon } (4. 3)
hr‘ WD = huel) = o (4. 4>]
which in the rest. frame (E = 0) reduce to ‘ Tt e Tt

and W;GTi R LU’_;‘_TQ - -—O".rT‘s
Weyg T'} = 0 / [”FYS‘T& T om Y st O-ETJ

characteristic of U(6) ® U({6), For a general p the commutation
rules of [ U(6) ® U(6) ] b are
__3 o Th»— . Lijk . R
[U"sr | ) B J = 4 Erwkj\ l)%- u‘?)\ 1 /w\, +
- Y 4]1‘. ; * 1
> 14.’: T (h“P" -—hr\'-}rv)/w\

A -k . S

] ] ~ - . . (Y
Lo, TV, v T° ) "‘“,’v(%re“fff’u - 4ruCparpr ,,K)duw‘
+ epvra‘ b?« m

+ e G”‘P“’ be f CLI o ¥/t
. i r Tk ~ . \i"" L r -

[U“"m T , Y T ] = 4dV T, ( €aavp Wip - GK;\H» Wy )
. m .

"Ekppy By - Eappy W

4+ 2 i}jk T :
T

ph?r I - P?\Pr Guv Py P,x‘a K

- P»Jfa( %.\-r * ”“"ﬁw Iap~ mLthr 4w
(4. 5)
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An infinites—n o T {EY 8 U(6) ] b transformaticn causes

Byl =t AL e g ey L]

i N
Fadiag,in .
P ™ 5y S pe M L ;'?‘I‘,(é. ¢

and will of cour -2 rommute with the Dirac operator (¥ - wm),
Hence in mo ™ fu= space SIF ) = s§TFW LY —vw \%‘(.P)?J = ¢
The correspor. (i1¢ changes in co-ordinate space have the

form
5L %) = miof [ 0) s o T‘J('a( v (%))
£ N > TRy, . tg-m .
Pt ol (R0 ye T Y - wd bix))
- ' g“"oh ['\—;/(X) er-vlﬁ YEL.]S (L]}' 'M) \PU‘J]
(4.7)

and since thes: revuresent divergence terms the physical

content is unal: .re.. Observe that written in the U(6, 6) form,

s (p) - T el L ¢ ie ! v oc. i

Syp) = T el el g, tieS Upv + Cpg *Yr?g]‘“i’) (4. 8)
' t

with €1 =7 G}- < byt e

) »
‘:g ;\_ o i:.‘.'h.;y_)‘ Y]f\'k P)\ , (‘: |*§ = Ll -1'- ep‘“‘h Pvl')m,‘\

equation (4.6} ¢sn be recognized as Barnes' infinitesimal
17
PU(6, 6) transfor mation
The natur. of the U{6) ® U(6) 'invariance group' can be

appreciated by - riting the equal time commutator,

L, 00 YT B w) = Ottt ooy) g

—4d-
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We notice that not only is (4. 9) invariant under U(3) & Ef,
but also under the wider groupm U(6) & U(5). Indeed if we
regard the physical particle fields as guark composites
constructed effectively aé highly localised products of Ay and (43
then a U(6) ®@ U(6) multiplet classification is called for.
Coming to interaction Lagrangians, we know that there
exist 10 independent 4~Fermi couplings that are SU( 3) & T,
invariant, Now the basic expectation of a supermuliiplet
theory is that many of these (large) coupling constants are
in fact equal, Indeed if we postulate that the interaction is
at least U(6) ® U(6) invariant, then the extra requirement of
Lorentiz invariance leads us to a scalar coupling under U(6, 6)
as the smallest posgible group of invariance 40. i,e. we

are led to

iM ) - 3 {PA“) \}/A{x') .\Tz'&(ﬂ '\}46 ) (4.10)

Had we ingtead demanded SU(8) invariance only inthe static
limit, or SL(6,C) invariance as the relativistic generalization .

we should m ve the two Lagrangians

g0 - 2 [@RT - Frn )

o
\

PR I [U{: i f\l’)'l—' (Vs Tj‘?)z‘ * ‘;‘_(_{P_Trv T)"”)'L]
(4.11)

By the Fierz rearrangement theorem, the larger group U(6, 6)
implies iw-.t‘ J:‘ + i) and cﬂ\ I 3,_ and so¢ on,
Without further discussion we will take (4,1) and (4.10)

to define our model Lagrangian theory. The interaction and

mass term are U(§, 8) invariant while the irinctic ferm ¥ ¥, 2%

s
is not, Thig is a general feature of the U{12) T.agrangian
models for the physical muitiplets that we assume later., The

equal time commudtation relation of the unrenormalised Heisenberg
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fields ig given by (4. 9) and the propagator in the interaction

picture,

(ap o @B)_P (F +m)y AU (4.12)

i

"

shows explicitly how the U(6, 6) invariance is destroyed by the
40
"kineton' term J?,AB in the numerator,

From (4.1) and (4.10) we obtain the equation of motion
(W -w) 0 = 2 T ()Y, ) 5)
A TH = 9y, ) ¥ ) ) (4,13

Various other equations of motion are easily derived if we

remember that under an infinitesimal U(6, 6) transformation

there can only be a change in the Kinetic part of the free

Lagrangian
; i
g:f; = - '“JJ Y\z-,‘r o= - Gn’b'j\éx‘,\z (4.14)
where
oy 14 ; o 3
't(} R Yo T 11[/ = “"’Y{JR‘ v (4.15)

e & (-‘bl\ 4’)

We therefore have typical divergence equations,

LN Q:t = Q

9, %ké s 2y E e T
c o BT - 2T T T
Lo Y ¥ 3V T Y
(4.16)
Yo < N .
Bdae 5 2V G AT , (4.17)
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In that U‘fr Y. T ‘}43_)} is equivalent to a meson field (b;
the above could be used to provide GOLDBERGERvTREIMA,N41
like relations,

It is a straightforward matter to develop the rest of the
field theory by constructing the energy-momenium tensor, the
total angular momentum operator, ete, Indeed we shall
return to the Lagrangian (4,1)-(4.10) to discuss the question
of bound states and the U(6) ® U(8) structure of ihe composite
fields, However, as an immediate and imporiant example
we cite the U{8, 6) generators which can be constructed from
the quark Lagrangian. Following GEL.E.»MANN:Z’ 11~ their

expressions are ;-

T () = S Ty, THg o dix (4. 18)

t

It is easy to verify from (4. 9) that the time-dependent expressions

j; obey the commutation rules of the non-compact U(6, 6)
group.
(b) Free Lagrangians for the 143 and 364 Multiplets

Ag applied to multispinors with more than two indices the
B.W, equations form a largely redundant set. This makes the
problem of construcing free L.agrangians quite difficult;
therefore we prefer to follow the conventional wave formulation
and set down Lagrangians for the Lorentz fields that appear

in the multispinor decomposition, Lagrangians which give rise

to equations of moticon that have exactly the game content as the

B.W. equations, The only point of ambiguity of this approach is

42 . .
the non-uniqueness of the contact terms  which appear in the
nropagators,

We briefly recall the reduction of the 143 and 364 muliiplets
4

relaiive to 5U(3) & “iié and the consequences of the B, W equaiionsg

{sce gsections 2.¢c and 2.1},

T




— 8 S O ; | . B
(‘12 A = (l ‘)'r [¢‘J + T‘,’ ‘bSJ + ‘-"Y-rYs ].FJ‘J i ’\E}Ad‘r} v ‘io-’*v ¢t“‘] :
. (4.19)
\k{'asc} = Cer N Tegy) IS {aqayy ¥
+ {eﬁu Nfd(}')ylb * g MC}Y}&,*‘ T Ee Nf\fﬂﬁ":\}
(4. 20)
with
VE“‘(‘“ = Cqs VY + QFSC)&(BV‘( + 'Uv“l'ﬂ's-c)“p \!H
NUFH = Ca.‘; N y *© (v C)otg. Ny -+ (.""7".‘»33‘(1-)&9 NH
D i
Lpyy = (% Q«p Dy + 3l ¢) 9 > pr
(4. 21)
and
i : /
N 2 A SR S
N - s N ¥ "- n(r-r{r Nf"
“{r])r = '{r_D‘w + Dy = O (4. 22)

apart from overall normalisation factors that have been set
right in (3.21 ) and (3.26),

Upon application of B, W, equations
4
one finds
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‘;;'9“
_E‘,,‘,. .
—g
L o
i
-5
%
1
S

“.?* ber = Pr Cbs:

T Y SR

(4. 23)

By a straightforward generalization of the KEMMER
43
formalism it is a simple matter to set down the Lagrangian of
the 143-fold involving the multispinor as a whole:
s

. 8 c T -5 18 T8
EQUIDRNE T CED MK SR SO0 ) Mk DENPI S A

Thig ig because the equations
B¢ v gy =C

which complement the equations

p—

lw\é

?

5

L

S .
1@"‘ w@*

to form the complete B, W, set, are redundant, However, when
we proceed to the higher multispinors such as the 364 fold it

ig only possible to write an &“ff of the type by intro ducing
auxiliary 572 and 220 fields which greatly complicates the
problem44; we will adopt the conventional and eagier approach

of constructing i’; as functionals of the wave fields (‘bil )
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N Nw, Dp, D

variables. An additional advantage of this method is that where-

to dispense with redundant field

as the usual gauge generation of electromagnetic interactions by
changing ¥ o y -2 ﬁ( makes the B, W set inconsisient there ig
apparently no contyadiction when this replacement is carried out

4
for the L.agrangians below, The free Llagrangians are the following :

&f; (\\;3) = é}* {(a)\ @>-\> d’g - dj).g ("b;\ d)s) ¥ ¢LA (BK ¢3 - aA ‘PK)]

BT A
'%f‘l@A§B

(4,25}
£, (0) = N EN - N BN - NN, T RN D

“L‘,, brYy» (;X*W)XV-Dy +
4 (_av f:Dr-'b\"-Dr - al”%r‘ bg‘Dv) /M

- Ji‘-.D!,.v (BF"DV "'bq Dr) - -‘i (br'bv' D""br)bt‘“

- ™ ,‘}?\ABQ i—/{'ﬂﬁc}

0 (4. 26)
kS T T by o
@A RS ¢ - ¢5 - ¢’y~1’ + df: + L ¢f.v
{4, 27)
—IABCY - - -
I Yiagr = VV ¢ NY‘NY“ + NN
- lj': D}*" -‘Drv - .D‘,‘Dr,
(4. 28)
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where a trace over unitary spin indices ig implied. The above
clearly show how the derivative terms upset the U(6, 6) symmetry.

At this point we derive the free particle propagators by the

functional differentiation method of GLASHOW45, where source

Lur 4 A B ; ABC
terms of the type iy 33@ A+ oy ?{ASL}

introduced, Leaving out the unitary spin factors of the type &

are

these Green's functions read

(¢, ),

n

CCPS', ¢S’)+ = _-T‘__\—
b-r
((Ppr, 4‘:;)5_ = '_;PL_
wo(pt- pt)
(‘¢P5'| cb‘”")-'u- = .._P.t-[)—t-—-— - 3.1‘:"
P\; (’,:—_r;) P_I-
(‘b‘.\. 4’\/)+: r%rv + P!‘Pv /}*1-
Pl'l‘*‘
Cda, 90), = *;_(_Exgyv = P Gov)
popr- )
(‘(f&’u, ¢|Av ); = \1&"“ gi\r ¥ l”‘"l’" gkv "'th*sﬂ'_ h}v %K}* +
S

* ;'p (%kr\‘jzv - ‘jw 9;\,,)

(4. 29)

-51-




e
p’ - WM
(Nr\; E)¥ = —-t?r‘
¥ - m
(Nr' Nv)+ = \orr\‘ o %J::_
V'\UP"W\) "
(D, D), = Lk
Pt
('Dh'__' D\’).‘, A LP}’-v?\V - P;\ vrv)
m {7 -

(Par, Dpv) = hb Ve bl Tay = bl V- b Y

m* (p'\.__mx)

AN (PO ~ 4y Oy )
(4. 30)

where

Vol = OF o) [0 + 5%« 5 (rh-Tohe) + el
bl

- ?;);m‘ \?\_m\-) [:'Yr?v - Yv hﬁ + (»P," W\) Yh}"’_j
(4. 31)

Note the uniform appearance of contact terms involving %t’*"'

and 3"‘1" % L ete. in the propagators. These exira terms are
characteristic of all linearised field theories, For gauge theories
it is easy to understand their significance but for spin 1/2 and 3/2

particles their appearance (for the first time in the present theory)
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presents a new {eature. It is worthwhile to mention that these

terms are unique for the 143 field and that in this case the propa-

gator is convenienily summarized by

D i
F-we Wrp)y , 882
2t (B~ pY) (432

On the other hand for the 364 field, although the contact term is

4
rather arbitrary the numerator of the pole contribution is well

defined by unitarity and

= {oeF) - E L
(Fonag, T770), < D Gremlpemy Um0
B

'PLrvM

+ contact termy . (4. 33)

(c) Interaction Lagrangians

As stated previously we adopt U(6, 6) invariant interaction terms
and will 1imit our considerations to the 3-point couplings of the 143
and 364 multiplets, though the methodsgeneralize trivially to other
multiplets and interactions. By hypothesis then, with gand h
dimensionless coupling constants,

‘ — C . - ={ ac)
2,00 = Ehp @?:(N)%U‘)@:M *3Y M) 200 Viaen )

(4. 34)

Note that the three meson term is unique, as a consequence of charge

46
conjugation invariance

* b (4. 35)
whereby (b) -8 ¢'5_ ) CP!" - - d)r the normal charge
parity situation viz .

o v © ¢ (4, 36)

T - T vund -
- S
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Thus Ty [ @ @ §] may be replaced by '3_ Tr [‘15 {. E.f: ) §}]

It should be emphasized that U(6, 6) is automatically parity~

conserving as Yb is part of the U(6, 6) transformation, while

charge conjugation invariance is external to the theory and must be

invoked separately to limit the possible interactions and associated

matrix elements. A further discussion of charge conjugation is

given in section 6 to clarify some recent controversy on this matterlz.
Expanding out the multispinors @: , {i—;{h sy 10 (4,34} we

obtain for g (@ § <§) effectively the Casimir operator {2, 49) with

T,; replaced by  § fz . Also,

o

g"i(ib $) = A 'DTS; U'j): (‘b; TR)'D;\,mt'
+ %'Jsvi: (T (k%) 7)-,(,.,.,,51; (4. 37)
3 LN - L ) (Yabe ) €upe N
¢ 33T % (7)) d) e N
ke BT e T
(4. 38)
§RENG) - G (NS )
ARy (R by (w3) Ncmp) v erf
where
(RON) = Tr (W7°N) ¢°

qu’N)v < o (N LT, N])f#; (2= \,.-g)
(n ¢N)F v (N [Tb‘/ Nj) 4". (<= g)

(4.39)

]

and
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*"‘dr’rsfv Ys + A %Yo Gys J

v

(4. 40)
L)y g -
JE&NG ¢dNC°1"ﬂP > N (g 30 v £ Y b ) N
* J'{& nl’" ( 'Yl“¢ - ‘Pv IVYr”"I ¢‘.-*?\ Yrvvh\) N
+ £¢VS' 'YV‘ds* 'Y!, * Y»!"“\{s ¢§

TN ( R li{i'““v”f) N
* k’d')VS' YT ¥y iy '{r d)g

+

+

¢ 5 8 [ (v vpr )6+ 0, (40 ) |
+ ¢g(9"ﬁ-137\’ + Y"—)

* i%\(wﬂh% Fv T *4“370«32\4')

N (Pau; ({Y}Ys‘ hvt "Yv 15 ﬂnr ’."-h]"g 3?“")

(4, 41)

Note carefully the combination 3D + 2F that appears throughout,
The complete Lagrangian of f.\f{ 12 ) is the sum of (4. 25),
(4. 26) and (4. 34), and typical equation of motions are

v , v vk l W : ' 1 g
R N R LR T RET IRy

!

+ q_/'\;/ terms (4.42)
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(4. 43)

Thus, with interactions switched on, the trivial component 42 :
is no longer zero (similarly for the V-field of the 364) and the
static equation (4. 42) provides a definition of it in terms of other
fields., Wishing to treat the d:k as spurions47 we can look for
an unsymmetrical solution, &% # o to obtain a natural mech-
anism for SU(3) breaking. Thus a crude unsymmetricv solution of

(4.42)is &% 2 (p /L3 b e 47 = o

(&) Meson Currents

We ghall now present the currents of the 143 multiplet as

arising from 143-143 and 364-364 states in the lowest perturbation

approximation., This is the goal we have been striving for

j; = <P' (3be) | '};(o)\ p (388>« 4,.(.«3)\ .ai(n) ) \,(m)>

LALLIS P - QP
S %'\fm ) ”’)('XR‘F)C @mm{}(l’) ¥

( D P T }Q
fhp 7). { Beey) , B35 .0

In stating the resulis we use the abbreviations (4. 39) and

(3¢), = T (B 17, 4))
(5 ¢); = Tl )
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(4. 45)

with P' 'Pi denoting incoming and outgoing particle momenta, Also
coupling constant factors g and h are to be understood as multi-

plying the 364 and 143 field contributions,
¢ - 'T)l (-—N : = v 3 P
é - A;;L [N )asnr + 30,7 Dn] +;r;¢ CLKDKT Ot».Da
o, = ¢ P - - N
+ %‘Eﬁ'_‘\ (4);( ¢)-).D * ;\ (4)). dj)\- ¢g¢;)b
" b
(4. 46)
I NI = N
4.-‘ [ (N Is ).5+1>+1 + 3 Dy Ve T DA]

v 5?" %D YT 4D + LD TN+ hic
m m.

o
th
\

+ i%)‘(}—)h(b ’&d"}\); - i"‘},_ eKM.v ‘?kch (-&-)P‘i)\f)ib

(4.47)

L P - - o
’alw‘i = I [i{N\ers—N)-U—D*tF + aiDJ\Yt-YS‘T 'ph]

L ~ ¢ . —_— L\
+ g;n,.cb&DK’Zr"zﬁ'T QA Dh - "‘Im D T N .}-t._r_ q/)\“DhT N ¥ hoC

ry e : B!
-_ j_)_; ! ¢‘5 v = ‘#'}P ;!
i !

+ q—% q,), '\{\&hh @5 + "i‘:ﬁ a‘;‘}x )(, - '%_' GP.VLA —p (4) ¢‘1‘ 5(4.48)
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(4, 49)
[ '?1 —_ ‘ -t
ot i [[N{TP“’M)—S-rD-f";F P30 O T D,

+ 2 4, D, Opv ‘LA Lo (P, "'-pvclr)(ﬂN)
4wn
@r\\,&?‘ P\’K:I-)-A TiN + L.

SR ARICT S A VAR A ORIk
b L&, gy -1 4 )« O3, - 18) 6,

¥ tiér\na\'?w- (¢’A (bs‘ - &5 ¢)’\ )‘D (4. 50)

From (4, 23) we know that the free fields satisfy b Q),; Y 'h,_ (ijk;.

i
P d‘v = 4 rv 4’),1, .Consequently we have as our total effective pseudo-

scalar and vector currents (on the mass sghell)

V] e

Teme = 4s * ’:‘trﬁr:' [ p

f

qrn& ? %;— & ‘-%évr /}"
(4. 51)

In detail, with coupling constants included,
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(4. 52)
2, —
+ "a(\‘f -;';-“)(N T M)D'_“F .

— Grnvﬂ\xx Qvtan ‘Pg" 55’ ‘Pn)p © (4.53)

It is in extrapolating (4.52) and (4. 53) off the mass shell -~
we have purposely not set Q‘: r‘ for this reason - that possible
differences with other authors have arisen , This matter will be
discussed in section 6 with reference to e, m.form factors.
Some remarks about the implication of (4. 52) and (4. 53) and
the question of universality. We observe firstly the characteristic
{factor (Hl-::“) for baryons and 3/2 for mesons. Secondly the D + 2/3F
combination (well-known in SU(6) } for the pseudoscalar interaction;
regarding the vector coupling we note the F' coupling of the charge
form factor (‘.?l’) and the {D + 2/3F) coupling of the magnetic form
factor | %’";:} . The universality hypothesis as it is commonly under=-
=tood peauires equality of all charge couplings in the limit gso
g =h; as far as the mass shell constants (4= p") are

concarned it would then follow that
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The free particle Lagrangians (4.25), (4. 26), the nropagators
(4. 29), (4,30), and the U(6, 6) invariant interaction Lagrangians
(2.49), (4.37) - {4,41) provide the starting point of a}l perturbation
caiculations of the S-matrix {actually there may alsc exisi basic
effective 4~-point interactions of the baryons and m=sons {or all we
know), The lowest order currents (4.46)-{4, 53) are extremely

basic in this connectlon as a knowledge of them represents a

T

radical step in the computations, whether using perturbation theory

or the in-put amplitude of an S-matrix calculation.

(e) Quark-Antiquark scatiering in a Model Theory

The Lagrangians for the phenomenological 143 and 364 fields
with their assoclated symmetries were invoked to provide the
simplest physical description for the interactions of most of the
particles and resonances so far observed., We shall now attempt
to provide dynamical reasons which suggest this choice of multi-
plet structure and U(6, 6} invariance by considering the simplest

possible model theory of quarks:

£ = r},q;am)f% + e y)" /mr oy

We neglect unitary indices for simplicity and have introduced a
U(2, 2) invariant i-.;k as the starting point of the discussion,

We approximate the potential V in the Bethe~Salpeter equation

for gquark-antiquark scattering,

o & ‘
M?Y (P a) = Voy Pods) -

P NeY' e
SE T )My, Gt s
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by the lowest order perturbation value

Ve %}(6‘; 5% - 85,5, )

3y 4
I I
§ (4.57)
By rearranging the iterated series arising from (4, 57) it is
easily shown that
w$ — ¥ o 3
- - R%DR
M by ! Py N p Y
(4. 58)
here
= 3 - Pak e bk
e o U5 i e ak SL IS R T
(4. 59)

L AU EERI I RR RN

(4. 60)
. P -
L A R MO N X
+ L G A Pl=24n).
(2'.7)‘8 " o d {5‘1 9 'Ht)S;'( *-*k)
ST(Z+)sT (2 vw)
(4.61)

Thus the problem is reduced to solving the equation for T, which,
we notice, is independent (in this approximation) of q and q*' and

is therefore purely algebraic:
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K P‘o(f = f’i.,go\k > a \ > A
l’]_'ﬁ) m [(g 1"'()1-“'\‘ ,'\_;;)_ —k)z_ i
(4. 61
Rearrangement of (4, 61) allows us to write
JW
&? of E & '
T = b+ m §% o K [ P 2 P )
6" pY LA e EP*( (*S"‘If« WLF
T
7492 b1
t P + K (Yl’ (Yf".)ﬁ 1

(4. 62)
where oo ’
i x J()(‘) ....‘_;
KO(A) - 9‘;‘)} g" 4 {(‘s \ x)' ’ K.(f‘) —-\(u(ﬂ)
) g 2 (4] 507

| x — 3
! * Ef) ) e y
K (d) = - (‘;}E-)')— S\( Aha x’); (‘—__i) a-;—()('-\)
(4.863)

4 = P /4 m" and we have introduced an’additional cut-off function

# ’x) in the spectral representations (4, 63) to ensure that all integrals
‘converge. Thus f’(i) =¢  but ‘; (s} =~ a2 o S —» o0
sufficiently rapidly. The common terminology for the kernels in (4. 82)

is that Ku is U(6, 6) invariant, K, is the first derivative {one kineton41

1
or first-type spurion48) kernel, K2 the double derivative kernel, K!'

the gpin-splitting kernel (second-type spurion49).
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To solve (4.62) we pass to the 'hermitian' basis:

_at Ln' * a'
by = ‘ (!P\) TS ) K RS , I {3\&, 2 -1-4 (YR)!SQXS );, k'{(&'
for which (4. 62) reads
i -1 —
" (G Few - KML') 'Rty T 9 Rs (4. 64)
1 - . -t -
m Tag = (G - K ) RS (4. §5)

-t ’
Expressing G =K in block diagonal form /

e [ K- ok | v ' f\. N
( ) = G Cae A o '. O ‘\\ O . 0O ‘
- N - . o
,(G Ka)a? N | |
O Heklggs "%;13’“) : ﬁl{ﬂkr?v'ﬂu?r)’ O oV
» - +191r r’ I ‘
WK (G - Ko )(c,}lrg)w 31\: 3"‘|") :
ey {W“g“ i)
=~ Do +h P9 T
0 | | v*(? 9;:'&1‘,3 -0
- . "'“(g"rﬁhv“'ﬁwﬁhr) I
| (6K ey
0 o ' 0 a3, &; 0
S o gk |
S T P |—G“+KQJ
O O l O ’ - K P imk;.qﬂ P
b ' m
> v T A P
(4. 66)
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Thus, remarkably, the matrix is block diagonal in SQ(3, 2) space
and we have only to invert two block matrices (Aﬁ AP ( vvoovT \
PR PP LTV T'T/
. et -k
which contain (0 1 ) and (1 ,0 , 1 ) projections. We presoent

the inversge of the first matrix as the second follows {he zare

pattern:
A P ‘
\ -t ; \
A /"’Lﬂlr L RR P, - “Ag, [‘\*B)?%;r P
p‘l— . - Rvhs ) '
- . - . )
- S L |
P K - \y—P’“ - "‘-C,%,. . -D/
with
- C P
vl’-“‘, P"L T e e (4.67)
PrC*-BD Pet- 8D P-9D
The possible poles of TRS oceur as golutions to the equations
or (ss) G~ Ko~ 4K, - 4X' =0
or (vv) G- - Ky -4k, +2K'= o
17 (A8) G~ Ko —ak, -2k = ©
1% () G™' = Ko - 4% -tk =0
- - pIPRY
o~ (v, ) (G- Ko taka -2t )( @1k, *+ak, 4 ) = aaxc
A~ (\!v,-r"r) (G- Kgrok, +J.K‘)(G“L Ky M\(L-‘E'K') =4y K“(‘_"‘

4.68)
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We shall solve these equations in perturbative fashion, taking into
account the various contribuiions to the kernel:
(1) If derivative and spin splitting kernels were absent,
Kl = K2 =K' =0 we should have a pure U (6, 6) invariant

situation with all parity ()} mesons arisirg as a common

50 -1 .
pole”  at G = N (4)
(2) If spin splitting only is neglected viz K' = 0 the 0 1
poles coincide at (G\” -Ky~ o l(,_)z =~ 441, while

+, + :
the 0 1 poles coincide at (G"._ K, -4](}) = o . e Ko'k‘z

Aplit the mesgons of opposite parities,

(3} Finally, if K' is included the 0 1 mesons gpiit as

+ +
do the four 0 and 1 mesons,

We are looking for the dynamical circumstance which should
guarantee that the dominant poles are 0 1 mesons and there-
fore lead to a U(2) ® U(2) multiplet structure i.e. where situation
(1) is absent but (2) arises and {3) represents a pert}ﬁrbation of it,
To secure this, first let us assume that the quark-mass m is very
high compared to the masses pb of the 0_, 1” composites., Also
assume that flx) is strongly peaked near this high threshold

vanighing rapidly for higher x, i.e. take

]

L € Wheee € = B4
3 T (4, 69)
BT fx-)t s e?

f*(x)

The precise shape of PW) igs unimpor tant for the qualitative
results below, As stated before the desired case (2) amounts to
setting K' at zero. i,e., retaining terms to order {¢ . This gives

all ) parity mesons poles at

+

A, = 1% & (tn) (4. 70)
7o

where 1} ig the parameter

Y] = G-_(’-T'é -\ (4, 71)
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and the amplitude equals

—

--—“ 2 N e ,
T (4) = grg(”‘]\“”**) + 5(21‘:7}} T g (4, 72)

i

in the vicinity of the resonance, All {~} mesong hind at

and

T (s)

»

"Y' G™ (s- gd) (4. 74)

We wish to ensure that only the {~) mesons dominate the scattering

amplitude at low enerq s . This is assured provided we

impose one further condition on the coupling constant i.e.
let © (r) = (G:rl;:u"e --l) < |\ forin that case &, /4. |,

In this situation the (+) mesons occur as broad resonances at high

energies (greater than 2 quark masses) while the 0 1 bound

mesons with their equal residues show the characteristic U(2) ®

U(2) multiplet structure together with the U(2, 2) invariant coupling

to the quarks., The condition imposed above - N« \ ~ means

G a Iou"é' consistently with the picture that ''the stronger the
coupling G, the lower the mass of the bound state p ".

Let us now include the terms of order ¢ M to take account
of the spin splitting kernel K', We find that the 0 pole is shifted
down by %G (G-H’)while the 1  pole is shifted up by z’. ¢ (cy '])
We wish o stress the correct qualitative nature of this result,
egpecially the fact that the magnitude of the shift is comparable
to the unperturbed mass even though the kernel has recewved a
small perturbation,

(1) The pure U(6, 6) situation where K, = Kz = K' are

1

set at zero and all meson poles coincide at §; = €& + n0n + )
9

is unrealistic and incompatible with our assumptions .
At low energy therefore we gee that the 0 1 particles of

the 15 dimensional U(2, 2) multiplet, coupled invariantly to the

-6~




quarks (to a good approximation whereby K' ig negiected; will
dominate quark-antiquark scattering, To carry out a zimilar
dynamical calculation for baryons one would need to solve a three~
body problem which is certainly beyond cur scope at the present
time, It would be surprising nevertheless if we did not recover the
Idf(4) character of ihe strong interactions in the spirit of the approx-
imations carried out earlier. At the same time these considerations
clearly generalize to ﬁ(l 2) once we include unitary indices and use
the Lagrangian of section (a) as the starting point of the calculations,
Moreover if the complete kernel to the Bethe-Salpeter equation ig
used so that the relative momenium dependence of the scattering
amplitude cannot be neglected, we conjecture the presence of

U{6) ® U(6) multiplets and kinetic superrnuli:iplets?’3 thereoi, exhibit-
ing a U(6) ® U{6) ® U(3) structure.

Field theoretically, for the purposes of explicitly including the
bound states into any computation, we introduce composite (''quasi-
particle") fields (fP for the physical particles and, as suggested by
earlier considerations, construct local Lagrangians for these

U(6) @ U(6) multiplets with interactions that are U(6, 6) invariant,

L= 2 W)« 2,00) + Rh 4 d) v Lok ) e

The final abstraction of the situation would be if the quark mass is
so extremely high that the quark field «}/ disappears to all intents
and purposes, so far as low-energy effects are concerned, Now,
SCHWINGER14, using local field theory concepts has shown that

at least for the case of 143 mesonsg, the requirement that the mesons
exhibit a U(6) ® U(6) structure implies that L., (§ ¢) has

to be invariant for iig relativistic completion U(6,6). From the
dynamical viewpoint sketched above we would arrive at the same
result from a congideration of the self-energy graphs corresponding
to 0°1 mesons together with a strong coupling condition which,
analogously to the quark case treated above, pushes the pcssible

+
01 * poles to the very high energy region,
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5. ’5(12) CALCULATIONS AND EXPERIMENTS

Computations of S-mairix eiements based on the materiul in
the last sections may now be carried out on two different lines,
In the first and traditional approach one follows the canons of
perturbation theory and proceeds from bhasic ?J’(l 2) Lagrangians,
evaluating higher order corrections to the lowest order pheno-
menological point vertices, There ig no question but that this
method produces a unitary (though not a U(5, 6) symmetric} S-
mairix up to any given order in the coupling consfant, The
application of a perturbation approach for a strong coupling theory
is however gquestionable, The gecond ig the S-mafrix approach
which specifically relies on the N/D-like methods for calculating
scattering amplitudes, and makes convenient "input’ apnrovimations
to the left-hand cut, for instance that the rnain contribution to the
potential comes from an exchange supermnmnltiplet, perhaps together
with a four-point contact interaction. Unitarity is then forced on
the S-matrix as a basic physical requirement,

The "input' approximation in these calculations may possess
a higher symmetry but one would naturally inquire what vestige
of it finally remains at the end of the calculation, It is obvious
that, in general, the overall S-matrix symmetry must reduce to
SU(3) R T&,4 by the intrinsic breaking from kinetic energy terms
both in the asymptotic and intermediate states. Nevertheless

certain situations could well arise where an approximate higher

symmetry persists, and this is most clearly seen by the following
simple argument:

The completeness relation for free particle states reads

LY
I = Zind<ml =2 f]"[‘ ap, Ap) S -m?) 6.1
» 'S 17}
where A(P;) is a spin-function and I is the identity operator for

the Poincaré group ® U(3), the assumed internal symmetry, KEven

with all masses M. in a supermultiplei taken degenerate, I cannot
L
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be the identity operator for any higher symm etrySU group such asg
U(6, 6} on account of the presence of momentum terms in /\(h)
Indeed we recall from section 3 that the maximal symmeiry one
may expect for (i) one-particle states is U(6) ® U(6),
(ii} two-particle states is U(G)W, (iii) three-particle states is
U(3) & U(3), when these momenta are fixed, In Eq, {5.1),
except for one-particle states, the momenta are not fixed but
integrated over so that the maximal symmetry of this unitarity
relations is even further circumscribed,

Now write the unitarity condition on the T~-matrix in the

symbolic form

Im T = I (5. 2)

Clearly the symmetry of the discontinuity of T“1 is resiricted to
-'
the maximal permigsible symmeiry for Im T The reflexion
of this on ReT™  is visible when we write the symbolic dig-
persion relation
|
- - InT '(x)
TGs) = BB + I

% =95

dx

(5. 3)

To take an example, even if B(s)}, the pole term, may show
U(6)W symmetry17 the maximal symmetry of o T-' will be
limited through {5. 3).

A large number of calculations have been performed where
the assumption has been made that T is U(G)w or more restrict-
ively, U(6, 6) invariant, like the fundamental interaction Lagrangians
postulated, This is equivalent to the (unwarranted) assumption that
T is dominated by B and therefore possesses the symmetry of its
contact and pole contributions, The expectation that these cal-
culations would agree with experiment (in the physical region of
scattering) have been largely disappointed (at least for U(6, 6) )
as we shall see later and hardly surprisingly in view of the blatant
contradiction with unitarity. At the very least these (zerceth order)

expressions should have been supplemented with the proper unitarity

~50~



correction like {5, 3),

As stated in the introduction (see back, p.3 ) it 8o happens that
the zeroeth order U(B, 6)-invariant expressions for the three-~
point function and the form obtained from U(Ei)W predict similar
results which agree with experiment, indicating that apart from
mass renormalization of external particles there ig an (unexplained)
unitarity suppression for the vertex function, We therefore helieve

that heuristically one can obtain a decent expression for a four-

point (or higher) function T by taking for B the one supermultiplet ~

exchange diagrams using U(6, 6) invariant residues. Such caiculations

have not yet been carried cut, We feel thege are urgently needed,

At all events, with regard to the structure of the S-mairix,
it proves convenient to decompose our full (U(3) EI& } invariant
matrix elements into three parts

= i
M=M_+M +M (5. 4)

Except for intringic breaking by B. W, equations on the external

lines, MO hag the full homogeneous U(6, 6) symmetry, Thus it
possesses no derivatives and has been called the "'regular'”
(—,ufnpli‘cude51° IVI1 containg derivative terms (otherwise known as
kineton termsl 4, first type spurion48 terms or irregular couplingssz)
where the external momenta make their appearance as factors

A

terms are as important as the M_terms from the point of view

= h‘ (3",, ): 8: ; as we shall see in section 6, these M,

of the inhomogeneous U(6, 6) grouplg° Finally M' supplements
IVIO and M1 to give the totality of 1‘&4 ® U(3) amplitudes, by what
we may term ''unitarity corrections'. Such M' amplitudes could
involve "gpurions of the second kind”48 Mg (rn): (Tg): .
These are also the terms which split masses of particles within

a super-multiplet, Most calculations that we shall review below
have assumed dominance of Mo terms, Certain resulis of these
computations {such as total cross section predictions) survive

the inclusion of M, terms such ag the special case of forward

1
scattering or scattering at threshold - in this circumstance the
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(U(G)w) amplitudes essentially reduce to 1J{6, 6} form because of

the fact that there are al ruost iwo momenta available to provide f
terms
(a) Two-point Functions

There is good evidencc that the better established particles
and resonances can be grouped into U(6) ® U(6) multiplets. The
(56,1)" GITRSEY-RADICATI identificationlfor baryons is generally
accepted, Also the (6,6)“ for mesonsl 3, seems well supported
by the occurrence of an SU(G) singlet, the x° (950 MeV) meson,
in addition to the 35 mesousl of SU(6). The classgification of
other resonances to higher representations is much more fluid;
thus positive parity mesons, which account for the bulk of new
)", (21,21), (21,15), (15,21)",
while baryon resonances could fall in (70, 1)+, (20, 1)+, (126, 6) ,
(210, 21)"

+ +
(15,15) for mesons which accomodates a nonet of 2 particles

resonances, could belong to (15,15

etc, In the sequel we shall use the economical choice55

55 - -
among other members , and {(126,6) = 700 & 56 for baryons
3" - 31,32

which contains 5 and—;l octets . We shall therefore be
concentrating on the U(6, 6) multiplets 143, 4212, 364", 5720,
Mass splitting of the multiplet membe rs {other than SU(3)
breaking) will arise via the unitarity corrections M', In the
rest frame we can expect to reproduce little more than the SU(6)
results of BEG and SINGH in connection with mass formulae® .

The only slight extension is the presence of the SU(6) scalar

mass operator
i & -k k Tk )
Z 3'" :rrs - :rrs rs = J

that separates the X° from the SU(8) 35 multiplet57. Already
without such an SU(6) scalar, m(X") = 780 MeV is high, and
with a mixing angle of about 0.2 with the 9 (for a good fit of
the G. M. O. formula for the 0 mesons), m(X%) is pushed up
to 800 MeV, J(l) accounts for the remaining 150 MeV mass
shift, It would be interesting to see whether the parameters

involved in the various SU(6) representations for the mass
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operator are the same for the higher representations {15, 1_5")
ete,

Similar considerations apply to the electromagnetic mass
splitting within any multiplet. In fact for the 143 and 364

. . . 8
no new relation can be derived that is not already known"* on

the basis of SU(6).

(b) , Three=Point Functions

The verified successes of U(S, 6} rest here4. In the following
we neglect mass differences between supermultiplet merabers
(i. e. neglect the T8 operator SU(3) that is chiefly responsible
for mass splitting) and focus our attention on the strong and
electromagnetic interactions. Welet B = D@ NCVJ) »
M = P(07) @ V), and &M represent the 3647, 1437 and 4212"
multiplets,

(1) Vertex MBB

With all particles on the mass shell,

M, = g F %y B 03 (B §g(h); bt 5, =0

= {n8cC} D €
Mi - g’ P ("N @ irecy (h) (P‘-P‘)E ¢D(Pt)/m >
and the meson currents can be immediately read off from (4. 53}

with cf' = If if we notice that M1 affects the vector singlet

current alone., Summarizing the results for the octet contributions,

) ch
9onn Jvan - ﬁvmo ﬂpuo * Yo ¢ ﬁPobfj\Cf;n
3(‘*%04:%;‘(‘ m) 1+ "") bedF (147 ): ("'") "”‘) (1- %
(5. 5)

We need not elaborate on the (3D + 2F) pseudoscalar coupling which
has received ample experimental and theoretical confirmation,

.. .1
or on the same combination for the magnetic interaction ~. We

have the additional important prediction that
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tag

z 2m
= ={t+ <=}p = ‘ 5,4
ﬁu*uﬁ 5 ( ,u,j ARNT "f; Shf vl A

Uging {r} % 700 and <M> 2 1300 we obiain the N¥ decay width

to be FN,,M % 110 MeV, a considerable improvement over the
SU(6) Value of about 80 MeV obtained with an effective kineton inter=-
actlon anm 'l'F‘ ;‘ngf ?}" that has the effect of eliminating the
unity from equatlon (5.6). However the ratio I, y3oqr / Ty An
remains small, but this is simply the failure of SU(3). Finally
there is thelﬁrediction obtained on the basig of SU(S)W by HARARI
and LIPKIN = that the only allowed amplitude for DNV ig of M1
type in accordance with the STODOLSKY~SAKURAI peripheral

60
model ~ with vector meson exchange,

{ii) Vertex MMM

Charge conjugation invariance provides the unigue couplings
Mo = & hu({E 00 T, 2 () & A

° 6 M [ §A (P‘) B CP*) + §A q’*) §B(P')] éc C'Ps)
M W[ E20 B (b BEGY + a5 perms |

(5. 7)

0

on ihe mass shell, and M1 just affects the vector singlet currents

of {4.52) and (4. 53)., Observe the F-type coupling of VVV, VPP

and the D-type coupling of VVP as prescribed by charge conjugation,
Also note the large magnetic coupling (corresponding to a moment
of 3) and quadrupole constant 4, These interactions are expecied

to sericusly modify many peripheral calculations with P exchange
that have been recently carried out. There are ctherwise few
verifiable predictions, One is the correct absence of the g)-bP"'

mode because 3 pp® = D with the LIPKIN identifications
of the physical ¢ and @ :

w= L(¢+at) , 9= (@64

Another is the ratio qum' = % first stated by SAKITA and
dpwe P
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and WALI5. With ,1 % 700 MeV this compares favourably with

the ratio § e /9‘0".,, 2-4 /l* obtained by GELL-MANN,

SHARP and WAGNER — for ) decay. Finally we may determine
[

the extent to which the universality hypothesis holdsog, Thusg

from the Pdecay width, gp(m (_(i:i-_ ¥z o giving ng{Q % 25' @fﬁfﬁ“t}*‘b »
~1.9 if we extrapolate the perturbation result {(4.53}. On the
. ch
other hand Fonn = 3u 3',““ /g Cf&fmﬂ-) % 2.0,
4% well satisfied.
Gonn = g

(iii) Vertices vBB, yMM

g0 the universality condition

We assume electromagnetic interactions to proceed through
JD CP intermediate states; in a Lagrangian model this covresponds
to introducing the coupling 24 A}‘ 4’[,‘ in the U-spin soalax
projection ((P + J‘-; l.f ) . To lowest order ;;1 e this gives fhe
following results for the SACHS form factors

L - and F-1ope
(1-};‘,) G =[(0 £ R Fg) /449, (5.9

- 2 ) G =[(1+ ) P @) /ieg) and (ede)-tpe

(5. 9)

where we have introduced an ad hoc form factor Fq) into our
strong interaction U(6, 6) invariant vertex, On account of pole
dominance at Qn's F," one is ju.stii’iedl0 in replacing the
factors within [ 1 in (5.8) and (5. 9) by their residue at a°

giving
(i- }m.)dgz‘%') - (“‘5-”) f"z/(l‘t"ﬁ,") aad F-fype o

(-4 )GM(@‘) - (i 7-"‘) 1-»1'/(;; ) awd (D+3F)-fype

an®
(5.11)

Adopting this pole~dominance approximation, we have
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P L ~ rA
GM:QM“.C@E:’# <4 -

i f%}si
# vk

v

We thus obtain the BARNES! result’ | that ,u? = 2/ p  and

satisly the threshold condi’cion65 62(4;“‘) = 2m GM (4u3) =0.
Also <?> % (—2;‘-‘- . in our earlier paper I the pole-
dominance approximation leading to (5. 10} and (5.11) was not
taken and the results were stated in the form (5. 8) and {5. 9).

This apparently is not favoured by the ex;:)eriments15 for the
higher values of -q2. Note that kineton terms of the now U(G)W

invariant vertex modify Egs. (5.8} and (5.9) to 49

Ge (q) o (H' ;’:‘,‘) G4 - G(g*) and F-type

2
v ral V) 2 *) and (D+3TF) type
G @) X (1+%) 6,000 - 2 G) 3

Thus }" /j«.mb = - 3/?. survives, analogously to SU(8)
with all manner of kineton couplings .
Ag far as yND interactions are concerned it has been shown
by HARARI and LIPKIN11 that N* photoproduction through a
pure M1 transition follows directly from the assumption that
a real photon transforms as a 35 fold of SU(B)W, PAPAS'I‘AI\/IA’I‘IOU6

congidering the same process has obtained theoretical values

7

G=4,44, C. = 0,41 - these parameters appear in GOURDIN

and SALIN?szisobar modelBO where they are estimated as

C1 = 5,6, (32 = (, 37 from the experiments., Little that can be
said about yDD interactions is subject to verification, The
same Lagrangian model as applied to the mesons predicts4

a magnetic moment of 3 and a quadrupole moment of -4 for

the P meson,
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(iv) Vertex M MM

X + +
Congiderable data on the decay modes of 2 and gome 1
mesons is now available. A provisional assignment of these
ST o 95 .
resonances to the 4212 multiplei can be made ~, and the

following U(8) couplings consi:yc'ucted69
[AD)

Mo = Ap éﬁ‘-lﬂ Chy) é:;CF‘:-.) §?3 (430,
M; -= v{{ § i:g (h) Q’a."’?n ): [§:(P‘) 5:“*) - @:Ch]@:@%
8 E0 G0 G e B 0BG

5.13)

In the limit of strict U(6,6), viz. retaining Mo only, the reactions

35,70

+ = - + - -
200 and 2-+0 1 are forbidden whereasg in fact tliny

constitute the decay modes,
The kineton amplitudes M1 will allow these processes to go
and good agreement with the experiments is thereby obtainedag.

+
Thus the theoretical ratios obtained for the 2 octet modes,
rpr: Fakg rAqr Vgt Metiapd ° rz“‘Kn

¥ o6l 2 M2t A

compare quite favourably with the observed values,

7T:1:2:12 :? 7

The f, is mixed with another isosinglet and the resulting modes
depend on the mixing angle, Similar calculations have been

performed agsuming these same mesons fall into a kinetic

supermultiplet54 of the 143 fold, The conclusions are identical

to the above,
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{v) Because the parity of many baryon resonances
remains ambiguous, it is difficult to malke multiplet agsignments
for them with any degree of certainty., Hence few calculations

39
for the decay properties have as yet been undertakeng”’ 715

(c) Four-point Functions

The following amplitudes have been studied on the basis of
strict U(6,6) : MB MB, BB BB, and MMMM. The irregular
amplitudes have been neglecied as their large number (running
into the hundred) make calculations exceedingly difficult, At

51, 52
a

forward elastic scatiering this neglect does not matter nd,

ag it happens, the total cross-section comparisons are effected in
this limii by use of the opiical theorem., However, we musgt

again emphasize that the discussion given at the beginning of this

section casts serious doubt on the validity of the results obtained

from Mo alone, if unitarity corrections are neglecied. A further

cautionary word which would apply even to an amplitude which

satisfies unitarity, has to do with the breakdown of the symmeiry

at the SU{3) level i‘cself72 because of mass differences both for

external and intermediate resonances as well as the effect of the
. 3 . . .
Okubo spurion TJ . This compels us to move to higher energies

for meaningful comparisons,

(1) MBMB Scattering

There are only four independent U(6, 6) invariant amplitudes
if one restricts ones self (in spite of admonitions above) to Mo

types of terms:-
M, = 6 T T ) To6k) E, (k)
+ 3 TG By (p Epl-k?) EE(K)
+ 8 FN0) Tayp) BoCk) Tk
+€ FU) Tape (B Bp () BS(R)

(5.14)
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as can be seen from the reduction of the product 143 ® 364 in

the direct channel, c.f, equation (3,54), Crossing symmetry

tells us that

h(s,t,w) = cf(ut,8), Disbu)= Blut,s) (5.15)
€ (s,6,w) = E(ub,3)

where

L 1 2
se (pekd™ &= (-0, ws -
Hence one obtains large numbers of relations among the processes

PN —» PN, VN, PD, VD etec.

Even for the first set there are 7x2 =14 SU(3) B Td,
amplitudes expressed in terms of only four; so where previously
we were hardly able to obtain experimentally feasible comparisons,
we now expect to find many new relationships73, The following

are the significant conclusions

(1) In addition to the well-known SU(3) relation
do (Kb k°2°) = do (K"~ I'®*)
there exists do (w"P_., K*L*) = d& (K“'p - z"n"’)

{2) From the forward scattering limit one deduces
74
the JOHNSON-TREIMAN  relations (true even with irregular
couplings M1) :

Jz.[c'(lc’p) -G'CK'p)) = O"(K%)-— o (ke l’) = O'(K*P) ~6(xp) (5.16)

which by charge symmetry gives

s (k) _6(kn) = L [eep) - o ()

in excellent agreement with experiment at moderate to high
energies75. The ltP data give less encouraging comparisons with

Kp data,
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(3) Considering reactions to which only one amplitude
coniributes, say 6, zero polarization ig predicted for the out-
going baryon73, e.g. K'p - = k*. This is badly contradicted
by the experiments since the outgoing = hag polarization of

about 0, 8. On the other hand when M, amplitudes are caonsidered

1
the polarization predictions no longer obtain,

(4) The U(6, 6) predictions for the annihilation channel

are described later together with annihilation into three and four

mesorns,

(i) BBBB Scattering

Once again MO containg four independent amplitudes,

Mo = A TG0 By T 00 T )
~ok B ¥ (b) Piaecs () R (b) % qugey (i)
+3 T ¥ (h) Bgaeyy P @m;}(w P scery (o)
-3 T 1aec} (1’5) ‘I’znao} (B gznm(m F scees G
(5.17)

Alaw) = 5w | Blku) = Bsws)

where

Sz (P,-C-P,,)t , W = (Pt"hﬁ)z ) t= ‘P“’i)t

by the generalized Pauli "i principle. The following conclusions

76
ensue from 1\/10 :

(1) Scattering lengths in the triplet and singlet states

bp,hs are related as follows:

np "y Ay _ A
6 = &% , G = a,Ti' ,
+ -
vag = il .97 6o = AL 4%

T T

(5.18)
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. ny ey .
Experimentally the very flirst conclusion bg = G._;, is

so badly violated that other comparisons are rendered meaning-
less, Thus, experimentally,
& = _254 4 and a™ = 543 . (5.19)
8 ¢ T
This "catastrophic' result was inherent in the originsl Wigner
theory and cannot be blamed on SU(3) symmetry breaking rior on the

neglect of M, irregular amplitude, Most likely the discrepancy

1
comes about because of the great sensitivity of thesc threshold

statements to the positions of the real {and virtual) deuteron

poles, .

(2) Apart from SU(3) results such as o (225} = o (2} )
U(6, 6) has the following extra consequences for ictal crose
sections,

S(Z4%) — 36 (zp) = 46(np) - & S(Ap)

0 (T ~ 36 (TY + 46(27}) = 3 enp) —a6(AD

{5.20)

At low energies the first relation is badly violated; however

in this region OUn}) shows large variations and Coulomb

interference effects may be quife strong,

(3) The U(6, 6) invariance hypothesis provides a

single constraint on the 5 independent I-f4 amplitudes for

every SU(3) channel, that predicts among other things, that the

correlation parameter78 C?‘L = O. This conclusion remains

even with Ml terms relaxing the symmetry to U(3) 8 U(3),

whereas the PP scattering experimentis at 400 MeV show Cﬂ % 0-4
(4) In the annihilation channel U(6, 6) seems to

work better in that i correctly predicts the dominance of the

elasgtic channel reaction pD - pF over all other inelastic

reactions pP~BE, near threshold 1i,e, it automatically
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provides a reasonable description of absorptive effects. Making

simple approximations near threshold one obiainsg
E(rR) : o (AL ¢ S (T°A) : S(I*T") 2 10:10:3: 4

o(T*Dv) t o(eT): o(2T) = 4 : as: (5.22)

while the experimental 3 GeV/c lab momentum annihilations
give
c(pp) = 21 mb (M) = o + 113 mb
GC(AR) = W7 218 pb G (TR) = st % 8 ub
S(T*I¥)= 36 L 1L pub  E(TT) = 10 + 4 pb
6(z5)= 2 4 1 ub
(5. 23)

Excepting the over-estimate of 6'0\7\) there is fair qualitative

agreement,

(iii) MMMM Scattering

This four point function has not received much attention so
far because of its obvious unphysicality., GRIFFITHS and
WELLING70 have used irilinear and quadrilinear Mo couplings
to study xo_" nrmw , K*-- KwWir , W —» 3K etc.
These authors use the discrepancy between [ = §-4MeV
obtained by SAKITA and WALI5 for W - 3W and the experimental
value [ = 9,4 MeV, as a measure of the quadrilinear coupling
Tr(E@ S8 &) . Using this information together with an
estimate of the WK coupling constant A  they are able to com-
pute the strength of the second quadrilinear coupling 1?(§§)Tr(§§) .
Finally they arrive at the theoretical estimates
Fxewnrr) z 1MV, T (K¥akrr) = 65 KeV,
The first agrees with the value obtained by comparison with the

¢, m.decay X%+ WY and the second is consistent with r(l(*-’ K'l?ﬂ')
< 100 KeV,
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(iv) pp -» Mesons, af rest

(1) Anniunilation into 2 mesons,

.. . 79
Under U(6, 6) this is forbidden . Apart from the mode

PP —» pr whiép accounts for about 4 % of all meson annihilations,

there is good qualitative agreement of this predictjon with

experiment, Introducing M, kineton couplings to q?:count for the

1
small cross sections one recovers the HARARI-LIPKIN result

(neglecting KW mass differences)

c(utn) : 6 LktkT) @ FCRB) = 1141y

derived from SU(B)W. If these irregular amplitudes are computed
on the basis of a baryon exchange model,the Kif mass differences,
in kinematic factors improve the ratio to

cwti)  o(erk) P O(ke®e) = & ¢ 0 Va

Experimentally,

o(nata~) : & (k') - slR) = 3 1 o9

(2) Annihilation into 3 mesons.

Calculations have not been carried out which take derivative
couplings into account and all the conclusions reported below
refer to the U(6, 6) invariant MO amplitudes on1y79’ 81. The
major results concern the suppression of strange particle
pairs KK, and the absence of production of the physical ¢
Also one has M (p'F-a Trrcp) = M (p]; -» lm'u;)ztogether with many
other well-defined quantitative predictions  for the allowed

channels on account of the uniqueness of Mo coupling:

— §ABCY

Mo = B R F () Bk BRIE ) (5.2

All these predictions are in qualitative agreement with the
experiments if one admits an initial state interaction that

enhances the>S. relative to the 1S, state.

1
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{3) Annihilation into 4 mesons

Here 12 Mo couplings survive at rest, but for the case 83
of strange particle production only one of these is siznificant .
Typical predictions then are that | ﬂ;’ —- K°K°m¥m~
is forbidden at rest, and that doubly charged K modes are
preferred over singly charged and neutral K modes. These
are hard to confirm,

If one neglects the momentum dependence of the form

factors in MO the symmetric coupling of the 4 mesons just

remains., In the 351 state one finds

c(pF > p3n) 2§

134

s(pp— 0 3)

to be compared with the experimental ratio of 8,

6. THE INHOMOGENEOUS GROUP

(A) The reduction of U(6, 6) multiplets under the
maximal compact subgroup U(6) ® U{6) which was found neces-
sary in Section 3 in order to make physical associations, may
be viewed in a different light, In the same way that finite
dimensional representations of the Lorentz group are associated
with unitary representations of the Poincaré group we can make
the non-unitary repfesentations of U(6, 6) correspond to unitary
representations of another group IU(6, 6). The new group is to
be obtained by adjoining to U(6, 6) a group of translations whose
generators, P:, constitute a multiplet of U(6, 6). This will
provide an elegant, though for physical applications highly
frustrating and tantalizing view point,

As will be seen from the following treatment, if the group
of translations is chosen so that the little group (for the

physiecally relevant representations) coincides with the maximal
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compact subgroup U(6) ® U(6), then ihe muliispinor Qﬂa‘ﬂu;;)
belongs to a direct sum of irreducible unitary re;';rospn"z:a?inns
of IU(G, 6) in the same sense as it belongs ito a direct sum of

irreducible representations of U(6) ® Ti(6). The momenia P:

are subject to the constraints

3
P: P: = ml 6: aﬂd (Yo)a p: 2 0.

Thus it is useful to investigate some of the main features of
the representations of IU(6, 6). But since these are all present
in the'simpler group IU(2, 2) we shall confine our attention

to that in the following

(B) INHOMOGENEQUS SU(2, 2)

Since the finite dimensional representations of the homogeneous
group are not unitary and therefore are unsuitable in themselves to
characterize physical states, we can introduce some translations
as is done in passing from the Lorentz group to the Poincaré group.
There is an arbitrariness in defining the set of translation operators.
For example the isomorphism of SU{2,9 with rotations in a 6-dimensional
pseudo~euclidean space could lead one to introduce naturally six
i{ranslations. We wish however to use a structure like the Dirac
equation to generate ithe representations of the inhomogeneous group
and since the )’R’s form a 15=-fold it seems natural to generalize to
15 translations, [)R , such that ¥® PR’\P transforms like .

By inhomogeneous SU(2,9 we shall mean therefore the semi-direct product
of SU29 with Tl5’ the group of translations in 15 dimensions.
For the generators we take J’: and P: which satisfy the

commutation rules
[t 7] =0,
b $
[at, %)= 8% - &P,
[, 0] - ot 7

L1}

(6.1)
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and the reality conditions

(% TTH)L = 37
- o
(1’& P‘f’fn)z = ?g S (5.2)

Among the sixteen J: there ars of course only fifteen indepen-—

dent ones and the same is true of P: ,
J’“:o P.’O., {6.3)

Scme of the unitary representations of this group can be
obtained by the usual methods - if one begins by requiring that
the values taken by ?: in an irreducible representation shall

consist of the set of points obtainable by homogeneous operations

of the group from the fixed point

Pl

'Pi = m (’fe): (6.4)

where m is a positive number. That is we require that every
physical state can be brought to rest. The group of transformations

which leave‘% invariant constitutesthe so~called little group.

For an infinitesimal transformation of SU@2 we have

s Bt = ie* [V, m%]l (6.5)

« 3}

and the matrices which commute with '% may be taken in the form

b+ % 4. =% . . 6
_-2-:’ O::J ’ -‘-{0-6-;-1 ) »{0 o %) =h2,3 (6.6)
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indicating that the little group is SU(2) & sU{2) 8 U(1)., The

remaining eight matrices

Ko %Sy, NE, ks - (6.7)
A [} + . »

carry P out into an 8-dimensional "mass-shell". This masg=-shell

can otherwise be specified as the set of points satisfying the

equations

PPy o= w6, and  tr(%P) > o . (6.8)

This becomes rather more clear in the notation appropriate to 0(4.3.
In the basis provided by the Dirac matrices (YIJ'): , LT = 0,1,2,3,5,6

where

ty - T 'yr T - o % ’
- -% 0 (6.9)

we can write
P
Ir:r (713')1

(AR A

)
”
it

’

Po=

(XN Lt

(6.10)

thereby defining the hermitian gensrators TtJ' , (EJ' + Using the

anticommutors

L7 Yl = 2(gr*‘ﬂﬂhﬂnﬂﬂ)*énm_m\l}:«m (6.11)

we find that the mass—shell equation (6.8) is equivalent to

1 (6.12)
i’PII?IJ = Mmoo,

1
<O

€ rrkLMN Fer PMN - ) (6 .13)
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Qr

Bl -Pufs +10L0, - T =n (6.2
Exvp B hp = 0 (6.1
elpwp @q‘ va = 0 (5.16)
Spip By Po = 0 (6.17;
©up (P"’P Feo + BsPus +Ps_v};_‘) =0 (6.18)

It is easy to verify that the last four of ihese (6.15),..,(5 .18)

are satisfied by taking
i? :
Pvp Py < 'pc g + T, Eoc = 0 (6.19)

which consist of six independent conditions. Thus (6.14) and

(6.19) together reduce the 15 ii; to 8 independent onas. I+

can also bpe verified that i)ob Z M on the sheet of this 8-surface

. . o~
which contains P.

The states with momentum P must group themselves into multi-
plets D(fc,f«,f‘) of the little group SU{2) R SU{2) ® U(1l) where
ﬁ,e = 0,1/2, lyeooand [ =0, %4, 49,.. denote the eigenvalues
of the Casimir operators. These operators are most easily con-
structed with the help of a new generalized pAULI-IoBANSKE (107

operator Wﬂ defined by

wh o= L (P’ 3’: + J:Pf) , (6.20)

ol

which is translationally invariant for the repressentations of

interest

twh, Pi]=0 whe (P} = 4 65
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. . . T R . .
For other varieties of representation where (¥ )‘ i8 noi prop-

ortional to 5: the operators W: would not commute with the
translations ~ this circumstance of course does not arise for the

Poincaré group* where (Pl): is automatically proportional te éf .

Since UV: is evidently a tensor under homogensous transformations

the following must be invariants of the full group

* Pootnote

It may be of interest to note that in the subspaces where all

Fiy vanish except PI“ the surviving components of Wrr constitute
1
a representation of the CALOGERC algebra

[ W’u ’ Wv] = 1 €PV)P PZ WP
[ W} P va‘]‘ = AE ( gﬁg GVKPU' P“ "92\! eputf)d' Pls + e}wﬂ%)Wpf
[ Wn ? W}w] = :2 ("u)vp Wp = éxl}.p Wv +Eryx‘owa"€,uv)p WK)‘PQ
where W, = Wps and Puo= T
A, = Leber
A = 4 we o
Az = jW: W; ,
¥ sv
A, = LwiwgPy
{6 .22
To find their valuee it is sufficient to take the states
A
PLo= Pu o= mn) (6.23)
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for which

i

wt LINCAE HE (1.);’)

2% J}K ‘{ ﬁ;‘; ]EFC}:

(6.24)

Only those J;'K survive here which correspond to opesrations of the
little group because

{%,, 1k} = 2% Y2k, %

tx & little group |

o otherwise -
(6.25)
Hence on the ? states we can write
7T 147, 1%, P
Whoe (%) sk ¢ _£°g.L + %, y (6 .26)
% & - = -
where K, L and  are the generators of SU(2) ® sU(2) ¥ u(1)
ki, K5) = deou Ke
[Li) 47 = 1 S
(. L;) = (ki,F) = [L,T) =0 .
6 .27)
In terms of the little group generators then
A, = m [ )
31 1 1 3
A, = LW (Lt 2
= Ly (K'-L")
Ay v = (6 .28)
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and for an irreducible representation 3){7m h,f,l‘)

of the
inhomogeneous group the Casimir operators are given by

Ao = Jm'i ’

A, = am ,

A = fi‘l_z (h(fus) + £y + 21"1),

3
A, = r-:- ( kiks?) -ff(lﬂ)),
(6 .29)

where M >0 , K{ =0,1,,.. and [ = 0, %V, i,

Finally, the complete basis for one of these representations
i4 obtained by operating on the rest states

la;klzlr;k31{7>l -hfhsfk,-e‘f,f(

8
with an 8-parameter family of unitary boosts u,[LP] where (LP),,

. . o~ P .
is an SU(2,2 matrix that takes Py = m(‘]’.)‘ into Pf on the mass~—
shell:

lP;h,l,f’;h,lQ = u[LP]\ﬁ;hafor)"vt‘> (6.30)

It is then a simple matter to show, in general terms, the effect

on these states of a finite transformation, 4{}[8] where S
belongs to SU{.9. Fow
-1
P = LP P LP (6.31)
and suppose
/ -l
PP = S$PO (6.32 )
Let R(P,S) be defined by
S LP = LP/ R C?,S) . (5.33)
It then follows that
A -1
RPR =7 (6.34)



so that R belongs to the litile group. vparating in (ae Teprssent-

WisLl e >
Uiled WIRTIP D

ation we have

ufsite..>

i

]

but
WRILP el k6> = 5 (BT k4 Y<K GID TRt
LN .

so that
. ’ ' 1) il
ULSTIP; RT3kt = Z [Pk, 615 1) DECID @ik, 62 (6 .35)
ky 4y
N4y .
whers O denotes one of the unitary finite-~dimensional rep-
resentations of the little group. This completes the general

discussion of the representations of the inhomogeneous group. In

the next part we shall examine the multi-spinor representations.

(C) Multispinor Representations

It is convenient for the iniroduction of multispinor representations
to construct local free fields in terms of which the transformation
laws of inhomogeneous U(2, 2) as well as time reversal and anti-
particle conjugation are most clearly formulated. The crossing prop-
erties also are made unambiguous by this approach,

We begin with the quark fields of which there are two basic
types which may be written )(x) and 'i];(:) . Both of these

transform under inhomogeneous U(2, 2) according to the same law,
Y0 ~ (=) = SE a0

w— '—ﬁ -
O = 4 @) = Shg,0
(6. 36)
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4

t R S S .
where S 3,05 =2 Xo and Xowe oo . ihe fifteen

coordinates are here arranged as a 4x4 traceless matrix
satisfying the realiiy condition %« da =X . It should
perhaps be emphasized that the two fields, q;' and $“, are
not adjeints of one another and that there is no bilinear in-
variant to be constructed from them, They are to be dig-

tinguished by their equations of motion, namely

(iF-mlif®) =0,

and
. b
m =
GP+m), Py ) = 0. o7
where (& )Q = ’0/’61‘; . The corresponding adjoint fields
q’;',“ and "  are now defined in the usual way
— + o
5. (BT,
L ~ ®
q’ = UP/)) (1;)13
(6.38)
Both of these must transform according to the same law
- B
TG0 - Tx) = @lCx) (s ')F ,
/ — -ty*
Gz = @) = @) (s™)p . (6. 39)
They are distinguished by their equations of motion
“ &
ey (A +m )p =0,
p P> "
(6. 40)
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These four independent fields, \'.Ea, ,’{éﬂla, ”;;“ , ’q)“ rep-
resent the various quarks out of which all the representations
are to be constructed. They are, of course, no more than a
part of the mathematical machinery and it is not necessary
for us to regard the higher multiplets as bound systems of
quarks, For practical work it is necessary to use the Fourier
components of the fields, We define these for the free quarks

by taking the plane wave expansions

r ~iPe 2 4 2
¢ 0 = decP) u.‘f,a?)o.c(mt + u:c-?) by x]

o = j a2 i 7 ap e TR bcfﬁ,)a?x}

=3

(6. 41)

- & %
and the usual corresponding expressions for % and 1}0 .

These momentum space integrals extend over the positive sheet

of the 8-dimensional mass-shell

@ =t sl

1r(P7,) > o (6. 8)

on which dZC?) ig the invariant measure, The annihilation
operators are G (P}, 0.2(?) (¢=1,2) for quarks and bCCP), b?@’)
for antiquarks. The positive and negative energy spinors
satisfy the appropriate Dirac equation,

04 -‘N.)i: U.FCP) =0

Fer’ Jf,c—?) =0
(f*m): a-p(P) =0
W@ -w)l Uy (-P) =0

(6. 42)

=03




A
. . . o . 4
The reason for associating &_ with & in Y, and 42

with bc in :@« becomes clear when their transformation
properties are exhibited, This can be done rather easily by
applying the methods of Weinberg.

First let us choose a set of positive and negative energy
spinors. Using (LP): for the boost and U.[ij for the

corresponding Hilbert space operator we may take

1]

WS, (P = <ol 4(0) 1P, 8D

<ol 4 (o) 'u'[Lp] \3. a>

H

<ol (LY (D18,

Wb uy ()

A
where |P, a> denotes a rest-state., In the notation of
~
§5(h, P=mY¥, and sofor u:(.P) we may take the first two

columns of Y, (in the Pauli representation). Thus we have

U.z(.?) = (Lp)t, , azn2, (6. 43)

Similarly, we may define

Wol-P) = el Ylo>

il

(Lg')? -u.; -%)

~1 \A+L
(L'P)u ) Q= 1,2,
(6. 44)

The remaining spinors foliow in the same way,
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-2 a+z

u‘ (?) (Lf)a R 7o PY
A -ty A

U, P = (g, "

(6. 45)

Having chosen this basis and given the transformation law for

the fields, namely

ULS] date) WTS) = SE 4w

WLS) Lot U'(S]) = St Pata)

(6. 486)

where U[S] is a unitary operator representing S in the Hilbert

space, we can deduce the behaviour of the annihilation and

creation operators,

For example,

ULs] (Ll aPOU'IS] = SE (L A

o uls) a (POU L) = (15 SLP): 0 (P

-
Denoting by Rg the matrix (LP' S LP): we find in turn

U .U =
w Ffey ut -
U aP) W =
uw ETe)u’ -
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It is simple to verify that in ihe Pauli representation the mairix

Rﬁ assumes the form

(:D( 10,-3 ) o
Do,

\ ° 2 (6. 48)

where rDUZ,Z ) l') denotes a representation of the little group
SU(2) ® SU(2) ® U(l). Noticing that D(g,¢, T)¥ s
equivalent to D(§,4,-C)  we are able finally to assign

the particles to representations of the little group,

ﬂ: ~ D(, )
bd. ~ :D("'lzalz_)
G~ Do, %,-1)

bt o~ Dliien-z)

(6.49)

Notice that @& b® is a little group scalar whereas a. b
is not. This is the reason for our choice of a rather elaborate
notation,
Arbitrary representations of inhomogeneous SU(2, 2) can
be constructed from products of the quarks, To get :D(h, f, F')

we may use, for example the tensors

A A
c."'ct ¢"¢u
A ol
&8, b --bs (6. 50)

Symmetrizing separately in the sets @&,.. ﬂ,,bl..b‘, , G- S
and d,.. d, and then extracting traces between upper and
lower indices of the hatted and unhatted varieties respectively,

yields an irreducible set of components with

-96-




R = lz(“'t') R { = ::,_(‘3*?&3 ; i‘"fﬁﬁ’«’u~5*—ﬁ)e (6, 51)

Generalization of 5U(2, 2) to U(2, 2) would give significance to
the remaining quantum number (r+s-t-u), _

The multispinor corresponding to (R, {,7) is obtained
finally by multiplying the little group tensor (6£-50 by the

appropriate positive and negative energy spinors, namely
u:(P) for lower unhatted indices,
1;,:{-?) for upper unhatted indices,

ﬁ: (?) for lower hatted indices

-0
w3 (-P)  for upper hatted indices

(6.52)

For example the rank-4 muliispinor containing one quark of

each type is given by

a A
— d -
4,:5? = uo) u,f,’ ) ¢i,c w (P u}(—?), (6. 53)

4
Stated otherwise, ¢“‘f must be a solution of the following

B, W, equations,

—m)a ¢, = 0

cmm)"‘ r ® = o
¢’,P(P') W‘m)rt =0
4":{?(?) W‘{"}ﬂv);l = 0 (6. 54)
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The notation for multispinors introduced here isg a little
inadequate in that it fails to distinguish whether a given lower
index (say) corresponds to the quark (bd or io $~ . How-
ever, since in the applications so far use has been found only
for representations involving one kind of quark ¢, and its
adjoint @“, we shall not elaborate, For representations of

interest then,

A
oo by - {4
Gy (P = g @US (P by P UG R g o
or
—1"‘-) q’a‘* ) = o, ... (on lower indices),

(@ -Hu) ¢“ ;‘ .(P) o, ... {cn upper indices),

(6. 56)

The number of lower indices and their symmetry types determine
the k-spins, similarly the upper indices determine the l-gpins,
and finally, the total number of indices fixes the [ value.

We proceed now to examine some particular transformations.
Our method is to define them initially for the quark fields :
the generalization to higher representations then being largely

automatic.

Included among the transformations of the inhomogeneous

U(2, 2) there is the usual parity operation
4, ) = (%N "PPLT.JCTo),

(%) —> (T P (L2 %), (6. 57)
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Since this does not go beyond the operations which have already
been usged in classifying the irreducible representations we

do not expect it to give anything essentially new. In this respect
our group differs from the Poincaré group., The behaviour of
the creation and annihilation operators under this operation is

easy to deduce since, for suitably chosen boosts one has

£

wen, % (6. 58)

K’LP = L
and therefore
&P~ & (BP%) | o> - b (LP%) (659

while

0@ > -6 (WPh) | pp) - bUxP7)
(6.60)

That is, the k-spinors Qi , bc are even while the 1l-spinors
a‘a ,bz are odd., For an irreducible representation (insofar
as it is permissible to look on it as an S~wave quark system)
we obtain (-~ )2.2 for the intrinsic parity,

More interesting would be the operation
1&,(13 —» (3523 4kb(352;3;)

a0 — - (W (7,2 %) 6. 61)

which does not belong to inhomogeneous U(2, 2). Under this
parity operation tpd ¢, isa pseudoscalar while 'T-"ﬂ',
is a scalar., For an arbitrary representation the parity is
given simply by the number of antiquarks involved.

Another interesting transformation which does not belong
to the group is that of antiparticle conjugation. Let £

be a Hilbert space operator defined by
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Chw e = ¢ o
el = -t — -~ ) (6.62)
gl =g

i

o
with similar relations for 'q/‘ and ‘-? . CQP denotes the

usual transposing malirix defined by e ‘r}‘ ¢ = - 2;_7 and x°
is defined by C™xC = - (x)7 . It is necessary to

include the inhomogeneous part x+%’ in this transformation in
order to preserve the form of the Dirac equation. In the limnit
where all &'s vanish except the usual A, = (l/4}-b'r(2‘;x)
we have x%= X and our operaior € simulates the usual
charge conjugation,

The precise behavicur of the momentum space operalors
depends, of course, on the choice of positive and negative
energy spinors used in the plane wave expansions, IHowever,
since these gpinors constitute a complete set of solutions we

can always write

CaBED = UuseP n®,  C, G8(-P) = ud(P) 4R

where  Lzb(P) = £y () denotes a unitary 2x2 matrix,
The form of this matrix is unimportant and it is usual to
choose the spinor basis such that it becomes the lowering

matrix €,p, In general we have

2 e, 09 € €pa b (P)

{/ ba(?) e_l = ~&b abcp‘) ¢ (6.63)

. . a .
with gimilar expressions in av; , b~ . The higher rep-
resentations transform in corresponding fashion., TFor

example, the quark-antiquark

¢ Yowe' = w (C")M’ Cun? cb". (x9 (6. 64)

-100-

v M g T E R N SETTINEEE W AR e LTI U G el e e i PNV SNPPITR 1




where W==%1] is an undetermined parity. In momentum

gspace this reads
b ‘ Y
€ ()L = ~we,, 6y ¢ CP) . (6. 65)

One of the most useful features of the multispinor form-
alism is the simple method it supplies for analyzing matrix
elements, We skeich this briefly,

Each particle in the initial and final states is represented
by an appropriate multispinor, ¢: (£P) of the type discussed
above, The matrix element is then expressed as a suitably
contracted product of these with the so-called M-function

Mf:'m (.p‘ . ) which must then have the invariance property
[ .

S MR G e = M RS) e

where P: =S \" 3-'° This assures that the matrix element
Oy ve P'- . .
TT (e tP) M (R)

has the correct transformation behaviour under the inhomogeneous
U(2,2). An M-function satisfying such an invariance require~
ment can be expanded in a sef of scalar amplitudes which

depend only on invariant combinations of the P's with co-
efficients made up from products of Sf and the various

?f . For example the matrix element of a 15-current J f (o)

between quark states is given by
- b,
<Pl TP = TP Mfr, (7,0 uy(p) (6.67)

6
where M[;a must have the general form
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M ®0F) = (85, -2 aley )F,
% H

+H(PE - 288 8 )5

+ ... etz (6.68)

where the F.i are functions of tr(PP’) ,th(PP')'),---- etc. Account
must be taken of the trace condition (T: = 0 and the usual
simplifications resulting from use of the Dirac equations,

Further symmetries are included by imposing more conditions
on the M-functions. Space reflection invariance is of course
automatic for processes involving only one type of quark and so
we shall consider the less trivial case of antiparticle conjugation
invariance, The procedure may be exemplified through application
to the mairix element of J:(°) between quark states, ILet us

write - without regard for the finer points of 15-dimensional field

theory -

MEep) = faxay & “=4P ol T T Fop) 1>

Using the antiparticle conjugation operator ‘e defined by

g€ 2 Cu Fx? amd € qRL" = ()P ahy(x?

where XV # ~C™'x*C and supposing that the current Jc

satisfies a relation of the type
’ s
g Fwet = w (@ Tho G,

where W =4} then, if the vacuum is invariant under C we

find

ATl 0 FOTD> = @ (W SET ) Ty FaDLG,

Hence, for the M-function e/-invariance implies the condition

68 an’

vﬁ PP = (MY M"P’ (5, -P) Cp Cpoy (6. 69)
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which may in turn be translated into conditions on the invariant
amplitudes Fi' {These conditions simplify a good deal when
the multicomponent momenta are cut back to 4-vectors,)

Since this formal apparatus is to be applied ultimately in a
4-dimensional world it will have to undergo an amputation, The
passage from 15 dimensions to 4 is not at this time clear. The
most direct approach, however, is simply to restrict the Hilbert
space of physical states to those with momentum vectors lying
entirely within the 4-dimensional subspace. This Hilbert space
of course lacks the full SU(2, 2) invariance, It can accommodate
only Lorentz transformations (and other, unrelated, operations
such as antiparticle conjugation),

The reduction of matrix elements into SU(2, 2) invariant
components may have no relevance, except perhaps in some
approximation, when the symmetry group is truncated, Certainly
the number of invariant amplitudes permitted by Poincaré
invariance is not generally the same as that permitted by in-
homogeneous SU(2, 2). In the absence of any deep understanding
of the dynamics this question of relevance can be dealt with, at

this stage, only by reference to experiment.

7. THE OUTLOOK

We list here some problems which we believe deserve

further investigation:

{1} We have made a first attempt to discover the possible
origin of the ﬁ(l 2) symmetry scheme within a simple
quark Lagrangian model. The approximation that we
used needs improving and the calculation should be
repeated with the phenomenological super-multiplet
ff(l 2) Lagrangians of section 4 to find conditions on
coupling strength for the supermultiplets to persist.
The possible dynamical appearance d kinetic super-

multiplet533 as bound state composites is another
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(difficult) problem worth investigating, The whole subject
is bound up with the fundamental experimental questions;

Do triplets exist?

(2) One wishes to know why ﬁ(l 2) zeroeth order predictions
are good for the vertex function, i.e, what are the
dynamical reasons for the suppression of possible

unitarity connections?

(3) For the four-point function, no S-matrix calculations
have as yet been performed with one particle exchange
diagrams and U(6)W vertices as the (N/D) input.

From the unexplained success of U(6)W predictions one
may perhaps reasonably hope that a good fit may then

be found for the scattering amplitude.

(4) It has commonly been assumed that SU(3} is a better
gymmetry than for example Wigner's SU{4). DYSON86
has argued to the contrary by consideration of production

cross~sections for N*, ‘/*) E* ond 2 which go down

by-factors of 10 for each unit of strangeness, even
allowing for different masses and by congidering the
superiority of the SU(4) mass formulae for vector

mesons:-

ak* = 3(werd) +p for SU(3) V. p+P=2K* for sUM) .

In the relativistic theory the question would be rephrased
in respect of superiority the reduction 5(1 2)-*?5(8) xfI;(4)
vs. U(12) » U(4) x SU(3). Experimentally the breaking
of supermultiplets according to j values is of the same
order of magnitude as the SU(3) breaking at least for

the baryons. We believe this is another point worth

deeper study.
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(5)

A proper treatment of the bound state problem,

starting perhaps from a quark Lagrangian; should
throw some light on the possible existence of infinite
numbers of levels corresponding to infinite dimensional
representationsg4 of U(6, 6) or higher groups, of which
the known supermultiplets may be but one component.
The situation here may be analogous to the consideration

8
of the Bethe-Salpeter equation for the hydrogen atom
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