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THE U(12) SYMMETRY

1. INTRODUCTION

The search for a relativistic version of the spin-unitary spin
1 2

symmetry SU(6) led in early 1965 to a consideration of SL(6,C)

and U(6,6)3 (= tJ(12)4 = M(12)5 = Urf (12)6) as two possible approxi-

mate symmetries for a phenomenological description of known

particles and their strong interactions. Even though one had recog-

nised right at the outset that symmetries of the SU(6) class must

be dynamical in origin, and that this origin is extremely obscure

at present, a certain amount of unpopularity has arisen over the

relativistic generalisations SL( 6,C) and U{6,6) on account of the

fact that they cannot per se be expected to represent the symmetry

of the S-matrix. At best they apply to a local interaction Lagrangian

and in a restricted sense to many-particle free states. Without

attempting to discover the origin of the postulated symmetry,

we gave in reference 41 a description of the symmetry in the con-

text of BARGMANN-WIGNER (B.W) equations7 applied to finite-

dimensional representations of U(6, 6); in paper II this context was

extended to include U(6, 8) invariant phenomenological interaction

Lagrangian densities { oC t̂) between the corresponding fields. Right

from the beginning it was recognized that notwithstanding the invariance
of ^C^the resulting S-matrix could not be U(6, 6) invariant because

8
the B.W equations are not U(6S 6) covariant „

Accepting this heuristic description of the possible symmetry,
the crucial question which arises is whether one can systematically

identify within the theory expressions for some S-matrix elements

which display approximate residual symmetries higher than just

SU(3). If such residual symmetries survive - and we know empiri-

cally that they do from the very existence of the SU(6) supermultiplet

structure itself and from the rather remarkable correlation of

experimental data achieved by considering the lowest baryon-meson.

vertex - the further question may be asked: "What reasons make

the approximations so good?" This is then back to the dynamical
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problem wilh its int imate link with the dynamical origin of the

symmetry in tho f i rs t place. No systematic study of these problems

has yet been made; the problem of res idual symmet r i e s has how-

over been considerably clarified . In this (frankly biased) review

v,o res ta te the U(6,6) theory incorporating some of this recent work;

'.VG show that the theory has a logical bas i s , that even though it

uses a non-compact group it employs perfectly unitary r ep re sen t -
ed

ations., and that it does not violate unitarity nor a n a p a - t i d e con-
12

jugallon m the formulation of Ref_ 4.

•"'ho lofcica.l s t ruc ture of the theory to be developed is the following:

(15 We may take it a s an empir ica l fact, that the known par t ic les

a 1-rest correspond to the representa t ions of a compact non-covariant

;]((>} S U(6) group s t ruc ture „ This s t ruc ture is wider than SU(6),

incorporates more par t ic les in the multiplets (Ref. 4. il addendum),

and forms the cruc ia l point of depar ture of 11(6, 6) versus SL(6, C)

theory. If one is proceeding postulationaliy we ma}- assume that

the existence of U(6) x U(6) s t ruc ture i s an abstract ion which follows

from the observation that a free SU(3) invariant quark Lagrangian

happens to posses s ext ra invar iances (see sections 3 and 4) which

for quarks at r e s t devolve to a U(6) !3 U(6) symmet ry .

(2) The B.W equations applied to the f ini te-dimensional non-unitary

representa t ions of a U(6, 6) group reproduce precise ly the re la t iv is t ic

s t ruc ture of such U(6) 0 U(6) multipletSj, no more and no less a The

B,W. equations can thus be looked upon as the re la t iv is t ic boosts

generating for a single par t ic le s tate what we may call the l i t t le

tfroup s t ruc ture [ U(6) 53 U{6) ] The introduction of momenta
P

through the use of the equations (just a s in thecase of t ransi t ion

from finite-dimensional representa t ions of the homogeneous Lorentz

group to ihe unitary representa t ions of the inhomogeneous group)

allows for Ibe introduction of a unitary norm for these mult iplets .

Thin nor:-v: ir, not mere ly the norm for representa t ions of l e t JS SU(3);

it -joi-i ov•ponds; to ;be group s t ruc ture [ U(6) ® U{6) ] which for the

rent: system reduces to U(6) 38 U{6). This was the content of section

4 of Paper I and is recapitulated in Section 3 of this paper .
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(3) One can write free Lagrangians which yield field equations with

the same content of the B.W equations as was done in Reference II.

A local interaction Lagrangian among the multiplets of a higher

symmetry scheme must naturally possess at least the symmetry

of the free Lagrangian, and the interaction was therefore assumed
14

to possess the U(6,6) symmetry. SCHWINGER ha;, shown that

for the meson-meson interaction at least, the demand for relativistic

invariance imposes this minimal symmetry. We show in Section

4e that a U(6, 6) invariant quark-quark Lagrangian can lead in a strong

interaction limit to U(6) & U(6) bound state multiplets. The internal

consistency argument then gives us a heuristic reason for postulating

U(G, 6) invariant phenomenological interaction Lagrangians also for

the bound state composite fields.

(4) The lowest order calculation for the baryon-meson vertex

function gives results for the ratio of proton electric and magnetic

form factors and the proton magnetic moment which are in good agree-

ment with experiment „ These results are an essential consequence

of the starting assumption that the free-particle multiplet

structure is the B.W boosted U(6) 13 U(6) rather than U(6) . Unlike

SL(6, C), U(6, 6) does provide a definite value for the proton mag-

netic moment which agrees fairly with experiment. It would be

true to say that the explanation of the hitherto mysterious equality

of electric and magnetic form factors is the most striking prediction

of U(12) theory.

(5) To check whether these conclusions survive for higher order

calculations of the vertex function, one must investigate the possible

residual symmetries of the general many-particle S-matrix

elements. For an n-particle system this symmetry can at

best be the intersection of every [ U{6) 53 U(6) ] . . It is found

that for the vertex function and all collinear processes this symmetry
17

is the so-called U(6) symmetry . It happens that U(6), and
w w

U(6, 6) effectively coincide on the mass shell of the vertex function;

however the reasons for the empirical survival of U(6) (or 11(6^6))

for the vertex function after unitarity corrections are taken into

account is obscure.
- 3 -



fu) We wish to make the Important point that the equality of elec-

tric and magnetic form factors is a direct consequence of the U(2, 2)

extension of the Lorentz group, and therefore irrespective of

whether SU(3) was ever invented or not, the extension of the homo-

geneous Lorentz group symmetry SL(2, C) to U(2, 2) was long over-

due. The 11(2, 2) group with translations admits of two spins -k and

•i ] - k hi being the Poincare' spin and k - li presenting

a new quantum number which in the past would have been designated

riinternal", just like the quantum numbers of SU(3); the for,,, factor

equality is related to the conservation of k - ( Its appearance how-

ever is so analogous to Poincar£ spin that the Situation S66IT1S tfl ^11

for translations associated not only with Lorentz rotations but also with

the full U(2, 2). A study then of[U(6) EJ U(6) ] , and all group theo-

retical questions connected with it, is facilitated by embedding

U(12) theory in a larger framework, the so-called inhomogeneous
~ 18

U(12) theory which is treated in Section 6. The physical structure

outlined previously forms a substructure of this wider theory which

may provide us with a new method for studying the validity of the approx-

imation procedures. The inhomogenous U(4) or U(12) theories are

so elegant that it is maddening one has not been able to make more

use of them for physical purposes.

(7) Section 5 summarises the experimental data against which has

been checked the prediction of U(12) theory.

2. THE MATHEMATICAL STRUCTURE OF U(6, 6)

The material presented below is covered, in great detail. The

impatient reader who is not inclined to read through this section

is respectfully urged to look up equations (2.1) - (2.4), (2.10) -

(2.12), (2.21) - (2.24), (2.41) - (2.47) and (2.50) - (2.52), to

acquaint himself with the notation. A knowledge of sections (b)

and (e) will alr-io prove rather useful.
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(a) The U(2, 2) Algebra

We may define a non-compact U(2, 2) algebra in te rms of

sixteen 4 x 4 Dirac matrices,

with i V r l *

The T(̂  so defined obey the multiplication rules

(2.3)

We take YO hermitian (_ Xe •=. Xo ) and V anti-hermitian ( * * "* J

so that the set of y-matrices obeys the defining property

r. *
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of tiie D(2, 2) algi/'.-r,-, for, in the Pauli

Then of the total of sixteen, there are

•^s> - ? — *

8 hermi t ian m a t r i c e s : 1 <T j , ^ is 'Ĵ  * L 1" d'V
-? . ~± . . y y .. . ,. ~£ ""?

8 an t i -he rmi t i an m a t r i c e s : Vj- ^ * s" ^ - - ' - * • "- "s 4^ j ^ '> ' f ^ - **

"""* /' "\ —̂* • \

w h e r e <T ^i6Z •> 'S\. , Q77 J <TC ^ K.^2- . ^ v , ^ ^ ) '

A symbolic way to remember the set of matrices is to note that

in Pauli representation

V /[ ! 0 I \ o , <r

so that all hermitian matrices are block diagonal and all anti-

hermitian matrices are block off-diagonal.

Tho U(2, 2) algebra will be realized by a set of matrices J

which satisfy commutation rules analogous to those of the yft ,

in detail these being

L

[ V . ^ l *-i
(2.6)

The normalisaLion of the structure constants has been adjusted so

that J ~ -;: 7^ constitutes the fundamental representation.

One can exhibit the structure of the algebra in an equivalent

basis which is useful for many purposes. This basis is defined

by the alternative set of generators



^ . i CiT j ^ J *,£ = V , s , f (2.7)

.summarising the commutation rules to

L ^ , J y J * <SK ^ - ^ J x (2.8)

and the defining property of U(2, 2) as the hermiticity condition

where X, is given by (2. £). In the form (2. 7), (2. 8) the rules

are immediately generalizable to U(n, n) with ^ , ( '\ ki, 1 . .. •/ .,,-1

There exists one last form of expressing the generators of

U(2, 2) which comes from the isomorphism to 0(4,, 2), the real

orthogonal group in six dimensions with metric

(2.10)

This isomorphism is peculiar to U(4) only and does not generalize

to higher rank "unitary groups". It is best seen if we write the

7-matrices (bar unity) in the form T M N with the identification

The table (2.3) is then conveniently summarized by

The analogue of (2. 7) is

- 7 -



r * (2.13)
« W

whence

j
(2.14)

characteristic of angular momentum operators in 6 dimensions. The

associated real parameter rotations are of the types:

06, 12, 13, 23, 15, 25, 35

01, 02, 03, 05, 16, 26, 36, 56

planes : Euclidean

planes : Hyperbolic

The Euclidean rotations are related to the hermitian J , the
R

hyperbolic rotations to the anti-hermitian J .
.ti

Irreducible representations of SU(2, 2) are classified by the eigen-

values of the 3 Casimir operators ( ^ ^ so

In the alternative notations

explicitly, while JJJJKLJMN a n d J M K J
M L J

N K V
are linear combinations of C and C .

(b) U(2, 2) Subgroups

We exploit the isomorphism to O(4, 2) for a systematic clas-

sification of all possible subgroups, by considering rotations in the

various subspaces of the 6-dimensional space.

- 8 -



Subgroup

0(4,

0(4,

0(3 ,

0(4,

0 ( 3 ,

0(2 ,

0 ( 3 ,

0(2 ,

2)

1)

2)

0 )

1}

2)

o)

1)

M,

M,

M,

M,

M,

M,

M,

M,

M,

M,

K,

N =

=

—

If =

=

IT =

If =

N -

N =

Tensor

0 , 1

0 , 1

1,2

0 , 1

0 , 1
* « •

1,2

0 , 1

6 , 1

0 , 1

0,1
• * •

1,2

1,2

0 , 1

0 , 3

0,5

,2

,2

, 3

, 2

, 2

,3

, 2

,2

,2

, 2

,3

,5

, 2

,5
,6

, 3 ,

, 3 ,

,5 ,
, 3 ,

,5 ,

,5

,3

,3

,5

5,6

5
6

6

6 .

M

M

M

M

M

M

M

M

M

M

M

M

K

M

= 6

= 0

= 5
- 3

= 0

* 5

= 0

= 3

= 3

= 0

= 0

= 6

= 6
as 1 ,

Vector

; N .

; TS =

; N -

; IT =

* * »

, 6 ; N

, 6 ; N

, 5 ; N

,65 N

• *

, 5 , 6 ;

, 3 , 6 ;

, 3 , 5 ;

, 1 , 2 ;

2 , 3 ;
* •

0 ,

1 ,

0,

0 ,

=

=

=

* •

If

H

N

N

jr -

1

2

1

1

1

0

6

0

0

=

=

, 2

,3

, 2

,2

,2

, 1

, 1

, 1

, 1

1

1

0

0

0 ,

,3

,5

,3

,5

,3

, 2

, 2

, 2

, 2

, 2

, 2

, 1

,3

5,

,5
,6

,6

,6

,5

,3

,3

,5

,6

, 3

,5

, 2

,5
6

Seal

Mfir =

M,If =

K = 3

P * •

M,N =

M,N =«

M,K =

M,U =

M,1C =

• • *

a r

0 ,

5,
0,

3,

,N

0 ,

0 ,

6,

6,
-1

*

6

6

5
6

=

5
3

3

1

- )

i

5

,6

,6

,5
, 2

3

TABLE I.
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Our entries in the table refer to J,,,,. and we have listed the tensor,

vector and scalar transformation characters relative to each O(i, j)

subgroup. Significant subalgebras of CJ(2, 2) are the following :

Compact (1) 0(4) or U(2) SS U(2) composed of i.he generators

^ i ^ ^t "(» T ^ ° combinations

J. / -n- v ) ' / i S" ) <r refer to the U (2)

This is the maximal compact subalgebra and further

U(2) subalgebras are

(2) The ordinary spin group : 4 t <r
17

(3) The W-spin group : A <T. S*. or , S <T

Non-compact (1) SO(4,1) composed of generators

; M,N= 0,1,2,3,5

The 5-vector is fM = ( \» , Tj- ~) and the

multiplication table of the Dirac algebra reads

\I '^ *~ r * ' w try -I p \

The two Casimir operators are

-r- _ . , _ (2, 17)

For this algebra there exists an antisymmetric tensor Ji such that

y - a"1^ & (2.

introducing the notation ,

- 10-



we find that in their indices

^<Xfr JA^M 2> J f t / i ) ( & J , ^ l3 gM -̂  a re antisymmetric

are symmetric

(2.19)

Note that the maximal compact subgroup of 0(4,1) is U(2) & U(2),

(2) SO(3, 2) composed of the generators

Now ' M - t c ^ V * i " > - * V y and the multiplication table is

3 (2.20)

w i t h ^ o . ^ e - ^ [ N o t e t h e i

which is valid also for SO(4,1).] The Casimir operators are

ûs- J ^ r + T^ s* and ^ V ^ i ^^ V*"
20

and analogously to SO(4,1) we define C^^ * _fvr

forwhich ( C - ' J ^ C ^ ^ C ^

Thus as before,

- 1 1 -



while (.rMN -'effi i ^ MN J are symmetric

(2.21)

Unliko the previous case the maximal compact subgroup is now

U(2) 5

(3) Cases (1) and (2) corresponded to the maximal non-

compact subalgebras. These intersect to form the familiar homo-

geneous Lorentz group <* ^ or 0(3,1) or SL,(2, C) with generators ^ ^

(4) SO(2, 2) with generators of the type

17
(5) SO(2,1), the 2+1 Lorentz groups, such as the3~spin

subgroup with generators ^ ^ <T
y

(c) Multispinor Representations of U(2, 2)

21

In the fundamental (quark) representation of U(2, 2) an

infinitesimal transformation of the 4-component spinor ^ i. * - ',2 ?3-, VJ

is given by

The important point is the reality of the parameters £&• With

(2.23)

this definition of the U(2, 2) group has the property of leaving

^ A ©̂v. invariant since

^\X - - I £ fl 4" CC ] ̂  by virtue of (2. 4).

-12-



All finite-dimensional (and therefore non-unitary) represent-

ations can be obtained by constructing raultispinors which trans-

form as direct products of quarks, viz.

where

S * (

> " •

"* J - (:

(2.24)

(2 .25 )

The irreducible representations of SU(2, 2) will correspond to trace-

less tensors of well-defined symmetry characters and for con-

venience we list typical low-dimensional representations, introducing

brackets [ ] and \_ y to denote antisymmetry and symmetry in the

enclosed indices.

Dimensionality ^ Tableau

6.

10

12.

20'

D

B
CO

( t O

20

TABLE II

-13-



The Casimir operators C , C , C are connected to the associated
1 Z 3

Young tableaux. Letting I \ IM, V ) label the number of boxes in

the first second and third rows so that the dimensionality of the

representation is

we have typically

et

These multispinors may be reduced with respect to any particular

subgroup of 11(2, 2) and we shall choose to do so under the largest

subgroup, the non-compact £ {* (4) or 0(3,2) (and O(4,l)) groups.

For these subgroups in addition to 41 V we also have C

(and & T ^

i .e . C^ rt (and

) invariant under an infinitesimal transformation

„ ) act like metric tensors. We now examine

in detail the decomposition of SU(2, 2) multispinors relative to

SO(3, 2). By substituting M = M, 5 for the 5-component indices

we discover the reduction relative to the homogeneous Lorentz

group immediately. (Also the decomposition of the multispinors

relative to SO(4, I) follows by replacing C with B everywhere below. )

(1) Multispinors of rank 2

(2.26)

o r 15 -T> 10

or

-14-



(2) Multispinors of rank 3

The completely symmetric tensor decomposes as

k C ^ C U ^ M W
 (2-28)

with the symmetry constraints

or

a n d «7w,« ^ K ^ H ( V * o reducing

to the set of 20 conditions

In the mixed symmetry case.

the irreducibility condition

lot t l r y - i i / i , »"=> (2.31)
•4J

gives 4 subsidiary equations

T - a * T M (2.32)

Finally for the case of complete antisymmetry

|PfK (2.33)

again, but ( .C~V K L j Tr^ • -t » « gives 16 constraints

^ ^ - - ^ M ^ (2, 34)

-15-



Observe that the subsidiary conditions on the S. ^ (4) tensors

always give the correct number of independent quantities to

comply with tho SU(2, 2) irreducibility.

(3) Multispinors of rank 4

With completely symmetric upper and lower indices.

the t racelessness property $ -tu/li ' * giving

or

2.36)

These comprise 16 equations leaving 84 independent fields

as required.

The mixed symmetry situation corresponds to

(2.37)

Tracelessness gives C7\L 6 . + <TK, 2fM 9 , , , ^ =-6 o r

These are 15 conditions giving us the 45 independent quantities.

Finally for the case of complete antisymmetry

(2.39)

-16-



The 16 relations

follow from <$ r -.

of independent fields to 20.

(d) The U(6, 6) algebra

and reduce the number

The basic apparatus for 11(2, 2) having been set up in the

previous subsections, the passage to U(6, 6) becomes straight-

forward. Analogously to (2.7) and (2.8) the generators

J ^ (A, B, = 1, . . 12) of the 11(6, 6) algebra will obey the standard

commutation rules,

r T c

(2.41)

with

(2.42)

One may pass to a "hermitian" basis by making use of the Tp

defined earlier together with the unitary spin matrices T' L *• = °, <>< 8 J

which define the fundamental U(3) representation. Our convention

for the latter is as follows:

22

and T

y'% t ;--', ...<P) with A * defined by GELL-MANN

« / T~6 • T h u s

I

Or

where o t

Mann and -<

It follows that

k w i k ) — r ^ , T . I / o

J

^ <-, ̂  , k - 'j •.. S) have been given by Gell-

(2.44)

- 1 7 -



23 *•
In the alternative OKUBO basis the nine U(3) generators ' ' r

(r, s = 1, 2, 3) obey

and in the fundamental (3x3) representation possess the matrix

elements lT>» J r - ^ r = *» from, which the connection with

the T*" is readily established.

We now construct the generators

v ^ Ja t ^
* ' (2. 46)

The transformed commutation rules read

C T ; ,

and

i <

U r , ^

(2.47)

- 1 8 -



e n , T
t u * ^<|k T ^

Li",.

These commutators are conveniently remembered in the

0(4, 2) notation of (2.12) if we use C ^ ; i ^ ) in place of

the CT^ Then,

-i f
V

^ W N (2.48)

The eleven Casimir operators of SU{6, 6) are easily built up in

the form

C . - T l C Cx • T ' . ^ T * . . . . C . . . 3 J . . .

However, their appearance is considerably complicated when

expressed in terms of the J R, for instance,

T i. r d T i

4- d'*

(2.49)

-19-



(e) Important Subalgebras of U(6, 6)

The systematic classification cannot be carried out as

readily as for U(2, 2) because there no longer exists an iso-
1 9

morphism with a rotation group . We will therefore concentrate

only on those subalgebras which have conceivable physical

application.

13
Compact (1) Non-chiral U(6) ES U(6) composed of the
generators

This is the maximal compact subgroup and contains the further

important subalgebras

and its own subgroups such as

T

(2)

(3)

(4)

(5)

where

u<6>w

U(G)1

U(3) S

Uj(4)

£ ^ (.T

17 > y i

: T ^ fi

i U(2) :

S Uy (2)

T ;

We recognize 0-j ^ / as Wigner's original supermultiplet
24

group and Uy (2) as the strange quark spin introduced by

LIPKIN20.

Non-compact (1) The simplest relativistic extension of
2

the U(6) group, SL(6,C) with generators

By performing a unitary trick the non-unitary representations
2

can be obtained as those of a chiral U(6) JS U(6) having

generators .- ( 1 ± *• ^ ] T ., — t i zt C Sfj- J <r '

(2) The subgroup U{4) H U(3) • X^ , T ^

and its own subgroup SL(2, C) JS U(3) in terms of which we

carry out all our reductions later on.

(3) Algebras of the type

• 20 -



This is significant to the extent that SU(3) may be badly broken
2fi

and one is generalising WIGNER'S U-r (4) group

(4) Sp(12) subgroups consisting of 78 generators. It

is worthwhile to s t ress that the subgroup Sp(4) iS U(3) is not

contained in Sp(12).

(f) Multispinor Representations of U(6, 6)

Under a homogeneous U(6, 6) transformation the quark spinor

undergoes the change T a —? S f t t a with

The adjoint {antiquark) spinor is defined by

- ' ^ (2.51)

-1 X fl -i'

transforms under S and leaves ' r ft invariant because

the parameters £. ̂  are real. Finite-dimensional non-unitary rep-

resentations of U(6, 6) may be built up from products of quarks and

antiquarks. These multispinors transform according to the general

rule.

where S is given by (2. 50). Relevant representations with their

dimensionalities enclosed in brackets are

i

(2. 53)

-21 -



Of especial importance are the reduction! of the products

12 B 12 = 1 e 143

12 3S 12 H 12 = 220 ® 364 ® 572 & 572

143 jg 143 = 1 9 143 0 143 © 4212 ® 5005 © 5005 & 5940

364 85 3^4 = 1 0 143 © 5940 0 126412

143 H 364 = 364 © 572 © 16016 © 35100

(2. 54)

For convenience we collect below the decomposition of

U(6,6) multiplets with respect to the subgroups SU(2, 2) S SU(3)

and U{6) & U(6) since these are the only ones to hold physical inter-

est. Because the further reduction under SO(3, 2), SL(2, C),

subgroups of SU(2, 2) has effectively been carried out already in

section (c) we are only left to include the reduction of SU(6)

multiplets relative to its own subgroups SU(3) C3 SU(2) and

SHj- (4) & SUy(2), which we do further on,

(1) 811(2,2) JS SU(3) Decomposition of some SU(6, 6)

multiplets

( ^vj © C i j )

J
(2.55)

-22-



(2) SU(6) & SU(6) Decomposition of some SVjG, G)

multiplets

©

(2.56)
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(3) SU(3) '$> SU(2) Decomposition of some SU(6)

multiple! s

0 C«f, 0 ©

, 0'

(2 .57)

(4) 5UT(4) iS SUy (2) Decomposition of some SU(6)
J

rrrultiplets

The third entry in the brackets below refers to the hypercharge

C i . * , - l J
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1 ' J (2.58)

This completes all that we need to know about the homogeneous

U(6, 6) group and its subgroups for the forthcoming development.

3. FREE PARTICLE FORMALISM

(a) Bargmann-Wigner Equations as Relativistic Boosts

Since the homogeneous group U(6, 6) is non-compact its finite-

dimensional representations are not unitary and so cannot be associated

directly with physical particles. These representations in fact are

realized in complex vector spaces with indefinite metric. It is

possible, however, to project out the definite sectors in a simple

way and with these there is no obstacle to making a physical

interpretation.

Let us begin with a multispinor <$ . belonging to

some irreducible representation of U(6, 6). For the invariant

scalar product we must take

where the asterisk denotes complex conjugation and

(3.2)
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In the Pauli representation of the Dirac matrices we have

The form (3.1) is evidently not positive definite. A definite

subspace can be projected out simply by restricting the set

d> to those on which Xa takes one value, for

example

A ' E . , . . , • • & • . , .

(3.3)

for lower indices and

. ^ . . . ' • • • ( 3 . 4 )

&< B '

for upper indices. The special virtue in this choice of signs

will be argued shortly.

The set of multispinors satisfying (3. 3) and (3. 4) is not

invariant under the full group. Rather, we have reduced the

U(6, 6) representation under the subgroup consisting of those

matrices S>fi for which

s Y4 s - ' »r.

(3.5)

i. e. for which .

This is the maximal compact subgroup, U(6) KS U(6). The

indefinite space of the original representation breaks up in

this fashion into a collection of subspaces, invariant under

U{6) 18 U(6), each of which is definite. The prescriptions (3. 3)

and (3. 4) single out a particular one of these.
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It is easy to verify that under U(6) & U(6) the basic spinors ' l\

and T reduce in the following way

, ' +

where the appended sign indicates the value taken by %> in the

respective subspaces. If we apply antiparticle conjugation.

(3.7)

1

and notice the property C~ ^ C - - V then it follows that under

this operation

C

The relative signs chosen in (3. 3) and (3. 4), it now appears,

assure the invariance of these equations under antiparticle

conjugation. The spinors "Wand "Y in particular become

associated with (6,1) and (1,6), or quark and antiquark, respect-

ively. The other set (1, 6) and (6,1) are excluded by (3.3),

(3, 4). Prom the products of (6,1) and (1, 6) alone we shall not be

able to construct all the representations of U(6) £5 U(6).

Equations (3.3) and (3.4) are thus seen to constitute a restrictive

assumption. Insofar as the accommodating of known particles
29

is concerned, it has not proved unduly restrictive

If the multispinors discussed above are taken to represent

the possible states of particles at rest then it is possible to set
30

them in motion by applying the appropriate relativistic boost

Denote by (,L . ) a- family of Lorentz matrices for which
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where ^ denotes the rest^'mass, b1"--^ , We can then define

the state with momentum fcr by

In analogy with the reduction mentioned above of a U(6, 6)

representation with respect to U(6) 15 U(6) we can do the same

with respect to (U{6) & U(6)) defined as the subgroup for which

(3.8)

30

It is just the little group . There is, of course, one subspace

which, in the limit <£> ~* c goes into the space picked out by

equations (3.3) and (3.4). This subspace consists of the set

°f $A , CWsatisfying the relations,
ft * A ? > . -

• t H . . . VJ ''•' ( 3 . 9 )

for lower indices, and

for upper indices. The prescriptions (3. 9) and (3. 10) will be
7

referred to as the BARGMANN-WIGNER equations .

Defining a linearly independent set of positive and negative

energy solutions of the Dirac equation by

we can rewrite (3. 7) in the form
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C A , . , / W ^ ^ r J X i W - ^ , , , ^ ; t - N ... 0.12)

,&, ,
which exhibits the multispinor M ^ ' - l O explicitly as a solution

of the B.W. equations. Evidently a transformation of U(6) S

U(6) on ° induces on Cb {>) a transformation

of the little group U{6) 13 U(6) ) ? .

In summary, the scheme for associating physical states

with an irreducible finite-dimensional representation of the

non-compact group U(6, 6) lies in breaking up the indefinite space

into a set of subspaces each of which is definite and, moreover,

invariant under the compact group (U(6) IS U(6) )p . To character-

ize the physical states one keeps only those vectors whose com-

ponents vanish outside the subspace specified by the B.W,

equations (3.9), (3.10). Alternatively, one could reduce to

subspaces invariant under the U(6) & U{6) specified by (3. 5)

and require that the components of a physical state in each of

these be related through equation (3.12).

(b) Many-particle states

The group of transformations applicable on a 1-particle state

with momentum p^ consists of all those transformations in

U(6f 6) which commute with J^, namely (U(6) Sf U(6)K* The same

would be true of many-particle states provided there was no

relative momentum.

For a 2-particle state with distinct momenta p 1 , p there
JL 2i

are two independent boosts operating and the only U(6, 6)

transformations which leave the momenta unaffected are those

which commute with p\, and ji . Choosing the co-ordinate system

such that p1 ,p lie in the 0-3 plane we require all those matrices

of U(6, 6) which commute with yQ and y . These are generated by
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where CT;S- = I- V, Vs } .,. etc. This group may be labelled

(U(6) )f>, }>j, . It is otherwise known as U('6) PU(12),

the "hybrid1 1 U(6)!t, or the "lesser" group1 8 .

Similarly, for the 3-particle state with momenta p 1 , p , p
X t.' o

confined to the 023 space the transformation group is confined

to those matrices which commute with y , y and y , namely

which group may be labelled (U(3) & U(3)) .

Finally, states with four or more independent momenta

can be subjected only to those transformations which commute

with 3"yu namely those generated by "T" or simply U(3).

Thus we have a hierarchy of "little groups"

U(6) B U(6) -> U(6) -» U{3) BJ U(3) ->U(3)

which can be applied, for example, in S-matrix or form-factor
4

calculations . Mass spectra which involve one 4-momentum

should be classified under U(6) 58 U(6). Coupling constants,

involving 2 momenta, should be classified under U(6) and scatter-

ing amplitudes, involving 3 momenta .under U(3) EJ U(3).

These considerations of course ignore the unitarity contributions

of the many-particle intermediate states which can have at

most U(3) symmetry.

(c) Physical Multiplets

The association of U(6) 18 U(6) multiplets with U(6, 6) rep-

resentations is given explicitly and in general by formula (3.12).

For practical calculations however there is an alternative

formulation which.is more useful. Since it involves a manipulation

of the Dirac indices only we shall for the moment suppress the

SU(3) indices.

It is a simple matter to verify the equivalence between the fol-

lowing two ways of writing the second-rank multispinor £v

which satisfies the B.W. equations,
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namely.

and

V V y s J« (3.15)

In fact the connection is given by

(3.16)
\ uri

and, conversely

(3.17)

Notice in particular that f>„ r , ^ c so that the vector

characterizes the spin-parity 1 part of the multiplet and
31

characterizes the 0 part
The multispinor ^ A satisfying the equations

which can be reduced into a symmetrical piece Y •>. and an

anti-symmetrical piece Tr- « -i may be dealt with in a similar

fashion giving
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(3.20)

where b» rju = & and where ^ ^ ^ is the matrix introduced

in Section 2. One can verify that r'-jVand x* ( j=,J correspond
+ + '

to the O and 1 parts respectively.
Let us apply these results to several of the smaller re.p-

4
resentations .

(1) Meson 143"or (6,6)-

The traceless U(6, 6) tensor Q when subjected to the

B.W. relations simplifies as follows

where Q5 and v correspond to the 1 and 0 parts of the

multiplet respectively. From each can be separated an SU(3)

singlet and octet part,

(3.22)

(2) Meson 4212 or (15,15)+

The representation 421 2 consists of t raceless tensors with

a pair of lower indices anti-symmetrisized and a pair of upper

indices also anti -symmetrized. After applying the B.W.

equations it can be written in the form.

-32-



•h, v ^ . „ , . , . - / ^ y y

(3.23)

The SU(3)-irreducible parts can be separated out in the usual

way by extracting traces etc; the content is as follows:

4,

The Lorentz scalar, $ss corresponds to a 0 particle, the

axial vectors P^y and i | r to 1 particles and the tensor

TMV to 0 , 1 , and 2 particles which can be separated

without difficulty,
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r

where <f ( vj an<^ i r >?] denote the symmetrical and anti-

symmetrical parts of <K.v respectively.
4- +

The meson 5940 or (21, 21) characterized by the U(6, 6)

tensor <h can be handled in a similar fashion.
(3) Baryon 364+ or (56,1)+

The fully symmetrical tensor r̂ -A ^ ^ ynay be written

'Wo -£ if!

where X) u satisfies (in addition to the Dirac equation) ~"

(4) Baryon 572 or (70,1)

The tensor of mixed symmetry type X r . . -. * satisfying

32
may bo written as
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J j?-£r.,.n Cf

where

» o (3-30,

+ +
(5) Baryon 220 or (20,1)

The fully anti-symmetrical tensor Hf fl. A 1 m a y b e

written

J
where

A,; V
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(d) Kinetic Supermultiplets

33

A scheme has been proposed wherein higher multiplets

are regarded as angular momentum enhanced recurrences of

lower ones. The so-called "kinetic supermultiplet" is des-

cribed in terms of a reducible tensor which is obtained as

a product of a basic U(6, 6) irreducible tensor and kinetic

tensor components of the regular representation. The meson

143-fold leads, for example, to the fourth-rank tensor

where

The new tensor contains states which are obtainable from those

in the 143 "by compounding one unit of orbital angular momentum

with them, namely singlet and octet of spins 0 , 1 , 1 , and 2 .

(e) Mass Splitting

To conclude this section we give a brief discussion of

the modifications that are necessary when the masses are not

degenerate. The general procedure is to subdivide further the

U(6) Ei U(6) invariant spaces until the stage is reached where, in

the subspaces so defined, the masses are completely degenerate.

This reduction can be carried out in the rest-frame to begin with

the corresponding reduction for states with momentum $> f 0

being deduced from it by applying appropriate relativistic boosts.

The new feature is that the boosts, being mass dependent, will
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differ from one subspace to the next. The resulting multisplnor

will satisfy B.W-like equations.

Given the reduction to mass-degenerate subspaces in the

rest-frame,

( s - 3 2 )

where each of the multispinors on the right-hand side satisfies

the equations (3. 3) and (3.4), we can make the boost to states

with momentum k through an obvious generalization of (3.12),

namely

where

(3.34)
with

>.'•- ^ ^ . " \ (3.35)

Applying j> to (3. 33) we get, for example

< A ( ft % • • •

In order to find the equations satisfied by r ^ j 3 / it is necessary

to eliminate the 4>^^'fVVv0 ^ r o m ^ e right-hand side, that

is, to find some (p-independent) projections ^^Cfvx-i) such that

S, . . . _
* X" *"*'" ' " (3.36)
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for lower indices, and

for upper indices. These equations represent the generalization

to the case of non-degenerate masses of the B, W equations (3, 9)

and (3.10). The problem lies in constructing, for a given

situation, the projections b (fa.̂

The projection E appropriate to a given case can be pro-

duced by the application of some simple rules which we now

derive. Since the projections depend only on the masses they

must be Lorentz invariant and, in the rest frame, they must

leave invariant the equations (3.3) and (3.4). Replacing the 12-

valued indices A, B, . . . by the Dirac-SU(3) pairs <-Vrt £,& etc,

we see that the SU(3) structure of the projections is un-

restricted but that the Dirac structure must be built up from

the invariants c^(C(fi and (G J . Explicitly, for the

iJirac multispinor

triplet parts,

we can project out just the singlet and

(3 39)
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which are easily verified by reference to (3,15),

Now in reducing out a particular component from the U{6)

XJ(6) multispinor

(where i, j , . . . = 1, 2 denote SU(2) indices) one performs a

succession of trace and symmetrization or anti-symmetrization

operations which we need not go into. To reduce out the

analogous component of the corresponding 11(6, 6) multispinor,

0 - Y

one performs exactly the same operations except that in the

case of the SU(2) trace

(3.40)

one does instead

Thus the problem of constructing the projections needed for

the generalized B. W equations (3. 37), (3. 38) is reduced to an

analogous but manageable problem of reducing a U(6) £5 U(6)

multispinor under the SU(2) spin-group.

By way of example consider the mass splitting that comes

about when the U(6) S U(6) symmetry is reduced to U{6). For

example

-39-



(6, a) = l_ + 3uj for mesons,

and (56,1) = 56 for baryons.

Hence this symmetry allows the mass of the meson singlet

(X ) to be split from

projection is simply

(X ) to be split from the others and nothing more. The

The B. W equations are thus

tc * (r^j o
and

34
Further mass-splittings can be effected in the same way
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4. SUPERMULTIPLET FIELD THEORY AND THE POSSIBLE

DYNAMICAL ORIGIN OF THE U(12)

So far we have considered free particle states and

incorporated phenomenologically into them a U(6) JS UfC)

symmetry, in the res t frame. To see whether this higher

symmetry can persist after all manner of relativistic inter-

actions one is faced with solving a dynamical problem. There

are essentially just two types of dynamical procedures known

for attempting a solution of this: one is to begin with some sort

of fundamental Lagrangian theory with some built-in symmetry.

The bound states, with their associated composite fields, will

of course exhibit this symmetry but may, for peculiar dynamical

reasons exhibit a symmetry which is still higher. The alternative

procedure is the exploration of a bootstrap dynamics, which has in

fact a similar raison d etre in that one s tar ts with a consistency

postulate coupled with a primitive symmetry and shows that

dynamical accidents (like dominance of single-particle exchanges)

lead consistently to an effective higher symmetry for the particle

multiplets. The current algebra approach is similar in character.

We shall adopt the first approach in sections (a) and (e),

by seeking a basis for a U(6) S U(6) multiplet structure of

the known particles within the dynamics of a quark Lagrangian,

assuming these ar ise as quark-antiquark composites. Thus

we start with the assumption of 3 Dirac quarks \^ - ^ ' ^ ,

( b', W , X' fio^ | and write the conventional free Lagrangian

assuming only substitution invariance S~ f ^ ( ** ^ ** -v̂ 3 .

This implies mass degeneracy which then is the only postulate
36

needed at this stage. It has been recognized by YAMAGUCHI

and others that the resulting permutation-invariant Lagrangian

happens also to possess the continuous Lie-group symmetry of

SU{3), We show in section (a) that the symmetry is in fact

much higher : it is the symmetry (U(6) & U{6) ) „ We next

write down the only possible Lorentz invariant interactions for
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the three fields -^ (x.) consistent with U(6) B5 11(6), and find

that it must be full U(6, 6) invariant. As emphasized by Schwinger

this is where the strength of the local field concept comes in.

In sections (b)-(d) we discuss the problem of writing

phenomenological free and interaction Lagrangiansfor the
4

physical muitiplets s postponing to section (e) the problem.

of showing how under suitable assumptions they can arise as

quark composites from the Lagrangian model of section (a),

viz. how the composite multiplets at rest again possess the

U{6) 58 IJ(6) structure and the effective quark-composite

interaction is U{6, 6) invariant to a good approximation. Clearly

the free field equations of the physical multiplets must respect

this U(6) & U(6) structure while for the interaction terms we

once again postulate a U(6, 6) symmetry, both for internal

consistency and by analogy with the quark problem.

By U(12) we mean then the theory possessing for its free

particle multiplets the U(6)<§JU{6) structure relativistically

boosted through B."W£ equations,together with a U(6, 6) invariant

t^ 00.
The dynamical calculations of quark binding in (e) are

naturally approximate because of intrinsic difficulties in ob-

taining the complete solution to a Bethe-Salpeter type of

equation. The work is nonetheless quite suggestive with

regard to the possible origin of U(12)o

(a) Quark Lagrangians

The free Lagrangian density of 3 Dirac quarks " ^ = ^ar

(r = 1,2, 3), which exhibits substitution invariance ^t <rv <\[/ *•» ^j

is evidently

and the only transformations, not involving derivatives, that L ,

is invariant under are U(3) S! I J , , However there exist

transformations which change i - by a divergence term

(leaving the field equations intact), These are obtained by
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on o o

writing the PAULI-LUBANSKI and CALOGERO spin

operators with the unitary spin matr ices, and form the

[ U(6) <g)U(6) ] group. To understand this we note that

[ U{6) KS U(6) ] , has the generators T*". jff T* / m and

(4.3)

which in the res t frame (p = 0) reduce to T * "Yo T <•

and uu-_o T i - Q f u r . r T * * - rrv T *

T

characteristic of U(6) H U(6). For a general p the commutation

rules of [ U(6) BS U(6) ] . a re
P

•*• ^ f
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An infini tes" Tr, . • !' •'i(i>) gj U(6) ] . t r a n s f o r m a t i o n c a u s e s

and will of coiir -e -orniTiute with the Dirac operator {, j / - **) ,

Hence in tno^i- tu^i space Sjt, tf } - S T Jp L|) (_ !f -v*-.") '̂Cp)j = C

The correspor, Mit; changes in co-ordinate space have the

form

T

(4.7)

and since thesi retyesent divergence terms the physical

content is unal. ̂ re<'.. Observe that written in the U(6, 6) form,

( 4 > 8 )

with

equation (4. 6) c;m he recognized as Barnes1 infinitesimal
17

, 6) transfoi mation

The natur j of the U(6) Ef U(6) 'invariance group' can be

appreciated by • riling the equal time commutator,

(4.9)
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We notice that not only is (4. 9) invariant under U{3) !S l A
14

but also under the wider group U(6) SJ U(6). Indeed if we

regard the physical particle fields as quark composites

constructed effectively as highly localised products of ^ and

then a U(6) $ U(6) multiplet classification is called for.

Coming to interaction Lagrangians, we know that there

exist 10 independent 4-Fermi couplings that are SU( 3) 8S l£^

invariant. Now the basic expectation of a supermultiplet

theory is that many of these (large) coupling constants are

in fact equal. Indeed if we postulate that the interaction is

at least U(6) S U(6) invariant, then the extra requirement of

Lorentz invariance leads us to a scalar coupling under U(6j 6)
40

as the smallest possible group of invariance . i. e. we

are led to

™ ' f T» ' ' (4.10)

Had we instead demanded SU(6) invariance only in the static
2

limit, or SL(6, C) invariance as the relativistic generalization .

we should ha ve the two Lagrangians

(4.11)

By the Fierz rearrangement theorem, the larger group U{6, 6)

implies I ^ - £, *" «t^ a n d % ' 3. = %•>. a n d s o on-

Without further discussion we will take (4.1) and (4.10)

to define our model Lagrangian theory,. The interaction and

mass term are 17(6, o) invariant while the kin,-tic term 4 t-v ̂ /

is not. This is a general feature of the U0 2) 1 .agrrai.gian

models for the physical multiplets that wo assume later. The

equal time commutation relation of the unrenormalised Heisenberg
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fields is given by (4. 9) and the propagator in the interaction

picture.

shows explicitly how the U(6, 6) invariance is destroyed by the
"kineton" terra Y in the numerator.

From (4.1) and (4.10) we obtain the equation of motion

-vvO* -vl^U) = X ^ U) ^ C ( x ) - 4 C ^ ) . (4.13)

Various other equations of motion are easily derived if we

remember that under an infinitesimal U(6, 6) transformation

there can only be a change in the kinetic part of the free

Lagrangian

Stt -- - ea
J 4 I* , ^ T ' 1 4 • - e X ^ a (4.14)

where

We therefore have typical divergence equations,

(4.16)

(4.17)
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In that [_fy y t f * "i*} is equivalent to a meson field <$> J

the above could be used to provide GOLDBERGER-TREIMAN41

like relations.

It is a straightforward matter to develop the rest of the

field theory by constructing the energy-momentum tensor, the

total angular momentum operator, etc. Indeed we shall

return to the Lagrangian (4. l)-(4.10) to discuss the question

of bound states and the U(6) SS U(6) structure of the composite

fields. However, as an immediate and important example

we cite the U(6, 6) generators which can be constructed from
9 11

the quark Lagrangian. Following GELL-MANN ' -their

expressions are : -

(4.18)

It is easy to verify from (4. 9) that the time-dependent expressions

T^ obey the commutation rules of the non-compact U(6, 6)

group.

(b) Free Lagrangians for the 143 and 364 Multiplets

As applied to multispinors with more than two indices the

B.W. equations form a largely redundant set. This makes the

problem of construcing free Lagrangians quite difficult;

therefore we prefer to follow the conventional wave formulation

and set down Lagrangians for the Lorentz fields that appear

in the multispinor decomposition, Lagrangians which give rise

to equations of motion that have exactly the same content as the

B. W. equations. The only point of ambiguity of this approach is
42

the non-uniqueness of the contact terms ' which appear in the

propagators.

We briefly recall the reduction of the 143 and 364 multiplets
4

relative to SU(3) Q Xf and the consequence of the B.W, equations

(see sections 2. c and 2,f),
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(4.19)

(4.20)

with

(4.21)

and

"v -- rff v " /

apart from overall normalisation factors that have been set

right in (3-31 ) and ('i.zfc). Upon application of B. W. equations

one finds ,
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Ki' - V £ O

o

V

(4.23)

By a straightforward generalization of the KEMMER
43

formalism it is a simple matter to set down the Lagrangian of

the 143-fold involving the multispinor as a whole:

mc

- f t - " - " ^ ^ ( 4 . 2 4 )

This is because the equations

which complement the equations

to form the complete B . ^ set, are redundant. However, when

we proceed to the higher multispinors such as the 364 fold it

is only possible to write an oC, of the type by introducing

auxiliary 572 and 220 fields which greatly complicates the
44

problem ; we will adopt the conventional and easier approach

of constructing i as functionals of the wave fields <p 0

-49-



N Kip "b^, T) , to dispense with redundant field

variables. An additional advantage of this method is that where-

as the usual gauge generation of electromagnetic interactions by

changing y ^ y _^ tf makes the B. W, set inconsistent there is

apparently no contradiction when this replacement is carried out
4

for the Lagrangians below. The free Lagraagians are the following :

(4. 25)

(4. 26)

V V

(4.28)
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where a trace over unitary spin indices is implied. The above

clearly show how the derivative terms upset the U{6, 6) symmetry.

At this point we derive the free particle propagators by the
45

functional differentiation method of GLASHOW , where source
terms of the type i.^ \ \ \ \ + i » J A 6 t $

introduced. Leaving out the unitary spin factors of the type 6

these Green's functions read

6

, 40 + -

-Jh.

***)+ >

(4. 29)
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( N

{4. 30)

where

3T* (4.31)

Note the uniform appearance of contact terms involving <^v

and lK ^ x v etc. in the propagators. These extra terms are

characteristic of all linearised field theories. For gauge theories

it is easy to understand their significance but for spin 1/2 and 3/2

particles their appearance (for the first time in the present theory)
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presents a new feature. It is worthwhile to mention that these

terms are unique for the 143 field and that in this case the propa

gator is conveniently summarized by

A * - C

V

On the other hand for the 364 field, although the contact term is
4

rather arbitrary the numerator of the pole contribution is well

defined by unitarity and

+ contact terms v (4. 33)

(c) Interaction Lagrangians

As stated previously we adopt U(6, 6) invariant interaction terms

and will limit our considerations to the 3-point couplings of the 143

and 364 multiplets, though the methods generalize trivially to other

multiplets and interactions. By hypothesis then, with g and h

dimensionless coupling constants,

(4. 34)

Note that the three meson term is unique, as a consequence of charge
46

conjugation invariance

whereby ^ ^

parity situation viz .

I T 0 - * K"

the

- v
normal

(4.35)

charge

(4. 36)
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Thus TV [ <$> $ $" ] ma-y b e replaced by i ^ ^ i I » §} J

It should be emphasized that 11(6, 6) is automatically parity-

conserving as Y * s Part °f the U(6, 6) transformation, while

charge conjugation invariance is external to the theory and must be

invoked separately to limit the possible interactions and associated

matrix elements. A further discussion of charge conjugation is
12

given in section 6 to clarify some recent controversy on this matter

Expanding out the multispinors q> 'ty.tkt.f'l ^n (4.34) we

obtain for T̂ ( £ £ $ ) effectively the Casimir operator (2» 49) with

T ft replaced by $ i • Also,

(4. 37)

(4. 38)

(4.39)

and
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5

s <Fvs- J

^ YrY-
r 7V +• ''h

(4. 40)

Kiu

(4.41)

Note carefully the combination 3D + 2F that appears throughout.

The complete Lagrangian of V(12.) is the sum of (4. 25),

(4. 26) and (4. 34), and typical equation of motions are

;i" U k •'}} - ^ - i' n)

terms (4. 42)
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) V .-. L, [. f

(4. 43)

Thus, with interactions switched on, the trivial component

is no longer zero (similarly for the V-field of the 364) and the

static equation (4. 42) provides a definition of it in terms of other
47

fields. Wishing to treat the <p as spurions we can look for

an unsymmetrical solution, <J>* ^ o to obtain a natural mech-

anism for SU(3) breaking. Thus a crude unsymmetric solution of

(4.42) is $* ^ t f / l j j *& <&" 4 ' = o -

(d) Meson Currents

We shall now present the currents of the 143 multiplet as

arising from 143-143 and 364-364 states in the lowest perturbation

approximation. This is the goal we have been striving for

tu

In stating the results we use the abbreviations (4. 39) and
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: Ni <

J> , ^ / >̂ * T> (f) , N

(4. 45}

with j>( p denoting incoming and outgoing particle momenta. Also

coupling constant factors g and h are to be understood as multi-

plying the 364 and 143 field contributions.

s-F

(4.46)

(4.47)

i t V T > . v , T ^D A r%
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" 5

(4.49)

V

tY

(4. 50)

From (4. 23) we know that the free fields satisfy u (^ r i V̂  <|j '

V- 4 - l" I1/ ̂ v> Consequently we have as our total effective pseudo-

scalar and vector currents (on the mass shell)

J 5 Ht ' I f f +

(4. 51)

In detail, with coupling constants included,
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-r k - C
Mrv. 1,

i

(4. 52)

Kir

-C

S

S ^ i i ^ ^ UO (4.53)

It is in extrapolating (4. 52) and (4. 53) off the mass shell -

we have purposely not set fi1^ jy for this reason - that possible

differences with other authors have arisen . This matter will be

discussed in section 6 with reference to e. m.form factors.

Some remarks about the implication of (4. 52) and (4. 53) and

the question of universality. We observe firstly the characteristic

factor t^ l j [ r) for baryons and 3/2 for mesons. Secondly the D + 2/3F

combination (well-known in SU(6) ) for the pseudoscalar interaction;

regai'ding the vector coupling we note the F coupling of the charge

form factor {yJj an<^ the (D + 2/3F) coupling of the magnetic form

factor [T^] „ The universality hypothesis as it is commonly under-

stood requires equality of all charge couplings in the limit q-»o

-•• •"'• g- " h* a s jPar a s ^n e ntass shell constants C ^v- y") are

concerned it would then follow that
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The free particle Lagrangians (4. 25), {4. 26), the propagators

(4, 29), (4, 30), and the U(6, 6) invariant interaction Lagrangians

(2.49), (4.37) - (4,41) provide the starting point of a;i perturbation

calculations of the S-matrix (actually there may also exist basic

effective 4-point interactions of the baryons and mesons for all we

know). The lowest order currents (4.46)-(4. 53) are extremely

basic in this connection as a knowledge of them represents a

radical step in the computations, whether using perturbation theory

or the in-put amplitude of an S-matrix calculation,

(e) Quark-Antiquark scattering in a Model Theory

The Lagrangians for the phenomenological 143 and 3f>4 fields

with their associated symmetries were invoked to provide the

simplest physical description for the interactions of most of the

particles and resonances so far observed. We shall now attempt

to provide dynamical reasons which suggest this choice of multi -

plet structure and U(6, 6) invariance by considering the simplest

possible model theory of quarks:

(4. 55)

We neglect unitary indices for simplicity and have introduced a

U(2f 2) invariant 5L ̂  as the starting point of the discussion.

We approximate the potential V in the Bethe-Salpeter equation

for quark-antiquark scattering,
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by the lowest order perturbation value

(4.57)

By rearranging the iterated series arising from (4. 57) it is

easily shown that

(4. 58)

where

(4. 59)

(4. 60)

Ciir)f J m"

(4.61)

Thus the problem is reduced to solving the equation for T, which,

we notice, is independent (in this approximation) of q and q1 and

is therefore purely algebraic:
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T

(4.61)

Rearrangement of (4, 61) allows us to write

Vr

(4. 62)

where
0<»

x — S

- J

(4.63)

A - ' /4** and we have introduced an'additional cut-off function

f<*} in the spectral representations (4. 63) to ensure that all integrals

converge. Thus j> (<) = 0 but o {">) -*> Q &- S - » oo

sufficiently rapidly. The common terminology for the kernels in (4. 62)
41

is that fcy is U(6, 6) invariantj, K is the first derivative (one kineton
48

or first-type spurion ) kernel, K the double derivative kernel, K'
49

the spin-splitting kernel (second-type spurion ).
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To solve (4. 62) we pass to the 'hermitian' basis:

for which (4. 62) reads

(4. 64)

(4.65)

Expressing G *" K in block diagonal form

-i
G -

0

0

0

0

s

o o \ o \ o

*K.

0

v

o ' o

0
T

¥«

A

0 o
|

r*v

V

T

(4. 66)
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Thus, remarkably, the matrix is block diagonal in S0(3, 2) space

' !and we have only to inver t two block m a t r i c e s /Aft $V \ / ^ ' u v

which contain (0 1 ) and (1 , 0 , 1 ) projec t ions . We present

the inve r se of the f i r s t ma t r ix as the second follows the same

pat tern:

/

V I Y

with

- h'
I ^ r e _

(4.07)

The possible poles of T occur as solutions to the equations

~\Q - ) C O - ^ '

( v v )

^

= o

0 ftfl)

(4, 68)
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We shall solve these equations in perturbative fashion, taking into

account the various contributions to the kernel:

(1) If derivative and spin splitting kernels were absent,

K = K = K1 = 0 we should have a pure U (6, 6) invariant

situation with all parity [i-) mesons arising as a common
50

pole at G ~' - Ko

(2) If spin splitting only is neglected viz, K1 = 0 the 0 1

poles coincide at ^<V' -Ku~ •o^j.) * 4 & L,/1* while

the 0 1 poles coincide at \Q\~S - \C0~4K^) = O . *« ^

/Split the mesons of opposite parities.

(3) Finally, if K" is included the 0 1 mesons split as

do the four 0 and 1 mesons.

We are looking for the dynamical circumstance which should

guarantee that the dominant poles are 0 1 mesons and there-

fore lead to a U(2) ® U(2) multiplet structure i. e. where situation

(1) is absent but (2) arises and (3) represents a perturbation of it.

To secure this,, first let us assume that the quark-mass tvv is very

high compared to the masses v̂ of the 0 , 1 composites. Also

assume that P U) is strongly peaked near this high threshold

vanishing rapidly for higher x, i. e. take

The precise shape of P^) is unimportant for the qualitative

results below. As stated before the desired case (2) amounts to

setting K* at zero. i. e. retaining terms to order J^ „ This gives

all {¥) parity mesons poles at

A+ ~- I + 1 ( » + n ) (4 .70)

where -n is the parameter

" * ( 4 - n )
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and the amplitude equals

") rv~Ko (4.72)

in the vicinity of the resonance. All (.-) mesons bind at

< t (4. 73)

and

( y - S_
{ 4 . 7 4 )

We wish to ensure that only the {*•) mesons dominate the scattering

amplitude at low ei\<r^i<« , This is assured provided we

impose one further condition on the coupling constant i. e.

let 0 C r\ - [ rtTj- '~l / ^ ^ » £°r ^n that case £^ /-<J_ JS>

In this situation the (+) mesons occur as broad resonances at high

energies (greater than 2 quark masses) while the 0 1 bound

mesons with their equal residues show the characteristic U(2) Ki

U(2) multiple! structure together with the U(2, 2) invariant coupling

to the quarks. The condition imposed above - A 4t \ - means

Q"(«e P ̂ e consistently with the picture that "the stronger the

coupling G, the lower the mass of the bound state u "«,

Let us now include the terms of order Q % to take account

of the spin splitting kernel Kr. We find that the 0 pole is shifted

down by •£ € (.£ + "0 while the 1 pole is shifted up by ± £ [Q. + n)

We wish to stress the correct qualitative nature of this result,

especially the fact that the magnitude of the shift is comparable

to the unperturbed mass even though the kernel has received a

small perturbation.

(1) The pure U{6, 6) situation where K. = K = K1 are

set at zero and all meson poles coincide at So ^ £ •*- tHr\ t ) )" '
49

is unrealistic and incompatible with our assumptions

At low energy therefore we see that the 0 1 particles of

the 15 dimensional U(2, 2) multiple!, coupled invariantly to the
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quarks (to a good approximation whereby Jv is neglected) will

dominate quark-antiquark scattering. To carry out ?, similar

dynamical calculation for baryons one would need to solve a three-

body problem which is certainly beyond our scope at the present

time. It would be surprising nevertheless if we did not recover the

U(4) character of the strong interactions in the spirit of the approx-

imations carried out earlier. At the same time these considerations

clearly generalize to U(12) once we include unitary indices and use

the Lagrangian of section (a) as the starting point of the calculations.

Moreover if the complete kernel to the Bethe-Salpeter equation is

used so that the relative momentum dependence of the scattering

amplitude cannot be neglected, we conjecture the presence of
33

U{6) EJ U(6) multiplets and kinetic supermultiplets thereof exhibit-

ing a U(6) BS U{6) W U(3) structure.

Field theoretically, for the purposes of explicitly including the

bound states into any computation, we introduce composite ("quasi-

particle") fields q> for the physical particles and, as suggested by

earlier considerations, construct local Lagrangians for these

U(6) S U(6) multiplets with interactions that are 11(6, 6) invariant.

A - i f HO * i f

The final abstraction of the situation would be if the quark mass is

so extremely high that the quark field ^ disappears to all intents

and purposes, so far as low-energy effects are concerned. Now,
14

SCHWINGER , using local field theory concepts has shown that

at least for the case of 143 mesons, tiie requirement that the mesons

exhibit a U(6) & U(6) structure implies that £ ^ ( fy, $) has

to be invariant for its relativistic completion U(6,6). From the

dynamical viewpoint sketched above we would arrive at the same

result from a consideration of the self-energy graphs corresponding

to 0 1 mesons together with a strong coupling condition which,

analogously to the quark case treated above, pushes the possible

0 1 poles to the very high energy region.
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5. LJ(12) CALCULATIONS AND EXPERIMENTS

Computations of S-macrix elements based on the material in

the last sections may now be carried out. on two different lines.

In the first and traditional approach one follows the canons of

perturbation theory and proceeds from basic U(12) Lagrangians,

evaluating higher order corrections to the lowest order pheno-

menological point vertices. There is no question but that this

method produces a unitary (though not a 11(6,6) symmetric) S-

matrix up to any given order in the coupling constant. The

application of a perturbation approach for a strong coupling theory

is however questionable. The second is the S-matrix approach

which specifically relies on the N/D-like methods for calculating

scattering amplitudes, and makes convenient "input'1 approximations

to the left-hand cut, for instance that the mam contribution to the

potential comes from an exchange superm^ltiplet, perhaps together

with a four-point contact interaction. Unitarity is then forced on

the S-matrix as a basic physical requirement.

The "input" approximation in these calculations may possess

a higher symmetry but one would naturally inquire what vestige

of it finally remains at the end of the calculation. It is obvious

that, in general, the overall S-matrix symmetry must reduce to

SU(3) & T^.4 by the intrinsic breaking from kinetic energy terms

both in the asymptotic and intermediate states. Nevertheless

certain situations could well arise where an approximate higher

symmetry persists, and this is most clearly seen by the following

simple argument:

The completeness relation for free particle states reads

f . ACfc) $(f;-in?) (5.D

where A(j^) is a spin-function and I is the identity operator for

the Poincare* group & U(3), the assumed internal symmetry. Even

with all masses Wl. in a supermultiplet taken degenerate, I cannot
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be the identity operator for any higher symmetry group such as

U(6, 6) on account of the presence of momentum terms in A(fr^)

Indeed we recall from section 3 that the maximal symmetry one

may expect for (i) one-particle states is U(6) 0 U(6),

(ii) two-particle states is U(6) , (iii) three-particie states is

U(3) S3 U{3), when these momenta are fixed. In Eq. (5.1),

except for one-particle states, the momenta are not fixed but

integrated over so that the maximal symmetry of this unitarity

relations is even further circumscribed.

Now write the unitarity condition on the T-matrix in the

symbolic form

ItKl T " 1 - I (5.2)

Clearly the symmetry of the discontinuity of T is restricted to

the maximal permissible symmetry for X»tX The reflexion

of this on RcT is visible when we write the symbolic dis-

persion relation

f
J

x - S (5-3)

To take an example, even if B(s), the pole term, may show

U(6) symmetry the maximal symmetry of Rt T" will be

limited through (5. 3).

A large number of calculations have been performed where

the assumption has been made that T is U(6) or more restrict-
w

ively;U(6, 6) invariant, like the fundamental interaction Lagrangians

postulated. This is equivalent to the (unwarranted) assumption that

T is dominated by B and therefore possesses the symmetry of its

contact and pole contributions. The expectation that these cal-

culations would agree with experiment (in the physical region of

scattering) have been largely disappointed (at least for U(6, 6))

as we shall see later and hardly surprisingly in view of the blatant

contradiction with unitarity. At the very least these (zeroeth order)

expressions should have been supplemented with the proper unitarity
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correction like (5. 3),

As stated in the introduction (see back, p. 3 ) it so happens that

the zeroeth order U(6, 6)-invariant expressions for the three-

point function and the form obtained from U(6) predict similar

results which agree with experiment, indicating that apart from

mass renormalization of external particles there is an (unexplained)

unitarity suppression for the vertex function. We therefore believe

that heuristically one can obtain a decent expression for a four-

point (or higher) function T by taking for B the one supermultiplet -

exchange diagrams using U(6, 6) invariant residues. Such calculations

have not yet been carried out. We feel these are urgently needed.

At all events, with regard to the structure of the S-matrix,

it proves convenient to decompose our full (U(3) 8 1 ^ ) invariant

matrix elements into three parts

M = M + 3VL + M1 (5. 4)
o l

Except for intrinsic breaking by B. W, equations on the external

lines, M has the full homogeneous U(6,6) symmetry. Thus it

possesses no derivatives and has been called the "regular"

amplitude . M1 contains derivative terms (otherwise known as
14 48 52

kineton te rms , first type spurion t e rms or irregular couplings )

where the external momenta make their appearance as factors

*p ^ fe^ (lC ) ' 8* '9 as we shall see in section 6, these M

terms are as important as the M terms from the point of view
° 18

of the inhomogeneous U(6, 6) group „ Finally M1 supplements
M and M to give the totality of l i ^ S3 U(3) amplitudes, by what

we may term "unitarity corrections". Such M1 amplitudes could

involve "spurions of the second kind" M^ ^ R ) * C *it/g »

These are also the te rms which split masses of particles within

a super-multiplet. Most calculations that we shall review below

have assumed dominance of M te rms . Certain results of these
o

computations (such as total cross section predictions) survive

the inclusion of M terms such as the special case of forward

scattering or scattering at threshold - in this circumstance the
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(U(6) ) amplitudes essentially reduce to U(6, 6) form because of
w

the fact that there arc at :most two momenta available* to provide W
53

terms
(a) Two-point Functions

There is good evidence that the better established particles

and resonances can be grouped into U(6) SS U(6) multiplets. The

(56,1)+ GURSEY-RADICATI identification for baryons is generally
13

accepted. Also the (6,6) for mesons , seems well supported

by the occurrence of an SU(6) singlet, the X (950 MeV) meson,

in addition to the 35 mesons of SU(6). The classification of

other resonances to higher representations is much more fluid;

thus positive parity mesons, which account for the bulk of new

resonances, could belong to (15,15) , (21,21) , (21,15) , (15,21) ,

while baryon resonances could fall in (70,1) , (20,1) , (126, 6)",
+ 54

(210, 21) etc. In the sequel we shall use the economical choices
+ +

(15,15) for mesons which accomodates a nonet of 2 particles
among other members , and (126,6) = 700 €& 56 for baryons

3~ 5~ 3 1 3 2
which contains — and — octets * . We shall the re fore be

+ +
concentra t ing on the U(6,6) mul t ip le ts 143, 4212 , 364 , 5720".

Mass split t ing of the mult iplet m e m b e r s (other than SU(3)

breaking) will a r i s e via the uni tar i ty co r r ec t i ons M1. In the
r e s t f r ame we can expect to reproduce l i t t le m o r e than the SU(6)

56
r e s u l t s of BEG and SINGH in connection with m a s s formulae

The only slight extension i s the p re sence of the SU(6) s c a l a r

mass operator

that separates the X° from the SU(6) 35 multiplet . Already

without such an SU(6) scalar, m(X°) » 780 MeV is high, and

with a mixing angle of about 0. 2 with the 11 (for a good fit of

the G. M. O. formula for the 0~ mesons), m(X°) is pushed up

to 800 MeV. J accounts for the remaining 150 MeV mass

shift. It would be interesting to see whether the parameters

involved in the various SU(6) representations for the mass
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operator are the same for the higher representations (15, 15)

etc.

Similar considerations apply to the electromagnetic mass

splitting within any multiplet. In fact for the 143 and 364
58no new relation can be derived that is not already known on

the basis of SU(6).

(b) , Three-Point Functions

4
The verified successes of U(6, 6} res t here . In the following

we neglect mass differences between supermultiplet members

(i. e. neglect the T operator SU(3) that is chiefly responsible

for mass splitting) and focus our attention on the strong and

electromagnetic interactions. We let 3 = t> (*/&.} © NCVay f

M a P(<>-) $ V0"),and flit represent the 364 , 143~ and 4212^

multiplets,

(i) Vertex MBB

With all particles on the mass shell,

M, - i ' 9 wec} c-K) •$ wq (f.) C K-f,)

and the meson currents can be immediately read off from (4. 53)

with Qz s it1 if we notice that 1VL affects the vector singlet

current alone. Summarizing the results for the octet contributions.

(5.5)

We need not elaborate on the (3P + 2F) pseudoscalar coupling which

has received ample experimental and theoretical confirmation,

or on the same combination for the magnetic interaction . We

have the additional important prediction that
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Using < .̂> 2* 700 and <f*> #,1300 we obtain the N*1 decay width

to be U^jj-. «• HO IVfeV, a considerable improvement over the

SU(6) value of about 80 MeV obtained with an effective kineton inter

action ^2i 'ipilppij' <L <̂  that has the effect of eliminating the

unity from equation (5. 6)o However the ratio "y^xif /

remains small, but this is simply the failure of SU{3). Finally

there is the prediction obtained on the basis of SU{6) by HARARI
11 w

and LIPKIN that the only allowed amplitude for DNV is of Ml
type in accordance with the STODOLSKY-SAKURAI peripheral

fiO
model with vector meson exchange.

(ii) Vertex MMM

Charge conjugation invariance provides the unique couplings

(5.7)

on the mass shell, and M just affects the vector singlet currents

of (4. 52) and (4. 53). Observe the F-type coupling of VVV, VPP

and the D-type coupling of VVP as prescribed by charge conjugation.

Also note the large magnetic coupling (corresponding to a moment

of 3) and quadrupole constant 4. These interactions are expected

to seriously modify many peripheral calculations with 0 exchange

that have been recently carried out. There are otherwise few

verifiable predictions. One is the correct absence of the ty ~~* P^

mode because 5 cppic 3 0 with the LIPKIN identifications

of the physical (p and ti> %

Bl

Another is the ratio <fp<*"r - i first stated by SAKITA and
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and WALI . With U, C6 700 MeV this compares favourably with

the ratio J ^ * / ^ * * * 2-4//* obtained hy GELL-MANN,

SI-IARP and WAGNER for CO decay. Finally we may determine
59

the extent to which the universality hypothesis holds . Thus

from the Qdecay width, Q .,__ fG*sJ**)~ %>t giving Qntusity %> —

{5l. 9 if we extrapolate the perturbation result (4. 53). On the

otner nanct ^CNN " 3 u ^iruu / ^ CM+^l*^/ " * > C ? J

so the universality condition £ 3 ^ = 4 ( r ( r ' is well satisfied.
3/>NN ~ 3i*

(iii) Vertices yBB, 7MM

We assume electromagnetic interactions to proceed through

0 t cp intermediate states; in a Lagrangian model this corresponds

to introducing the coupling "££ Au. *ft* in the U-spin scalar-

projection ( ̂  + 4 (p* ) . To lowest order in « this givos i;he

following results for the SACHS form factors

(5.8)

(5.9)

where we have introduced an ad hoc form factor pĵ *,) into our

strong interaction U(6, 6) invariant vertex. On account of pole

dominance at <£*"* it1 one is justified in replacing the

factors within [ ] in (5. 8) and (5. 9) by their residue at j ^

giving

Adopting this pole-dominance approximation, we have

(5.11)

64
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(5.12),

We thus obtain the BARNES' result ' that u. -a l w / / « . and

satisfy the threshold condition $-(4la*) * 2W, £(« (4»s,)

Also <C - / > fib —— • in our earl ier paper I the pole-• Xrn
dominance approximation leading to (5.10} and (5.11) was not

taken and the results were stated in the form (5.8) and {5. 9),

This apparently is not favoured by the experiments for the
2

higher values of -q . Note that kineton te rms of the now U{6)
49 W

invariant vertex modify Eqs. (5. 8) and (5. 9) to

and F"type

oc

Thus }*• / h — ™ v2. survives, analogously to SU(6)

with all manner of kineton couplings

As far as yND interactions are concerned it has been shown
11 *

by HARARI and LIPKIN that N photoproduction through a
pure Ml transition follows directly from the assumption that

67
a real photon transforms as a 35 fold of SU(6) . PAPASTAMATIOU

considering the same process has obtained theoretical values

G = 4. 44, C = 0. 41 - these parameters appear in GOURDIN

and iSALIN's isobar model where they are estimated as

0 = 5 . 6 , C - 0. 37 from the experiments. Little that can be
JL A

said about yDD interactions is subject to verification. The
4

same Lagrangian model as applied to the mesons predicts

a magnetic moment of 3 and a quadrupole moment of -4 for

the 0 meson.
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(iv) Vertex

4 - •+•

Considerable data on the decay modes of 2 and gome 1
mesons is now available. A provisional assignment of these

b<
69

I couplings constructed
w to

resonances to the 4212 multiplei can be made , and the-

following U(6) couplings constructed

(5.13)

In the limit-of strict U(6,6), viz. retaining M only, the reactions
+ ~ - + - - 55 7 0 °

2 - ^ 0 0 and 2-*0 1 are forbidden ' * whereas in fact tlicry

constitute the decay modes.

The kineton amplitudes M1 will allow these processes to go
69

and good agreement with the experiments is thereby obtained
Thus the theoretical ratios obtained for the 2 octet modes,

^ Q> : I : Z : II '. 2 : V&

compare quite favourably with the observed values,

7 : 1 : 2 : 12 : ? : ?

The f0 is mixed with another isosinglet and the resulting modes

depend on the mixing angle. Similar calculations have been

performed assuming these same mesons fall into a kinetic

supermultipl

to the above.

54
supermultiplet of the 143 fold. The conclusions are identical
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(v) Because the parity of many baryon resonances

remains ambiguous, it is difficult to make multiplet assignments

for them with any degree of certainty. Hence few calculations

for the decay properties have as yet been undertaken "*

(c) Four-point Functions

The following amplitudes have been studied on the basis of

strict U(6,6) : MB MB, BB BB, and MMMM. The irregular

amplitudes have been neglected as their large number (running

into the hundred) make calculations exceedingly difficult. At
51 52forward elastic scattering this neglect does not matter * and,

as it happens, the total cross-section comparisons are effected in

this limit by use of the optical theorem. However, we must

again emphasize that the discussion given at the beginning of this

section casts serious doubt on the validity of the results obtained

from M alone, if unitarity corrections are neglected. A further
o "

cautionary word which would apply even to an amplitude which
satisfies unitarity, has to do with the breakdown of the symmetry

72at the SU{3) level itself because of mass differences both for
external and intermediate resonances as well as the effect of the

Okubo spurion T j . This compels us to move to higher energies

for meaningful comparisons.

(i) MBMB Scattering

There are only four independent U(6, 6) invariant amplitudes

if one restricts ones self (in spite of admonitions above) to M

types of terms:-

M. •
$]c-k') $ f

(5.14)
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as can be seen from the reduction of the product 143 8T 364 in

the direct channel, c £ , equation (3. 54). Crossing symmetry-

tells us that

, t , a ) (5.16)

where

Hence one obtains large numbers of relations among the processes

PN - * FN, VN, PD, VD etc.

Even for the first set there are 7 x 2 = 14 SU(3) ES I«£^

amplitudes expressed in terms of only four; so where previously

we were hardly able to obtain experimentally feasible comparisons,
73we now expect to find many new relationships . The following

are the significant conclusions

(1) In addition to the well-known SU(3) relation

there exists dcr (^-p -+*+Z~) •*• 6* CK"

(2) From the forward scattering limit one deduces
74

the JOHNSON-TREIMAN relations (true even with irregular

couplings M1) :

which by charge symmetry gives

in excellent agreement with experiment at moderate to high
75energies . The Ttbdata give less encouraging comparisons with

Kp data.
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(3) Considering reactions to which only one amplitude

contributes, say Ct zero polarization is predicted for the out-
73 _

going baryon . e .g. JC"|> - * £.~JC+. This is badly contradicted

by the experiments since the outgoing £. has polarization of

about 0. 8. On the other hand when ]VL amplitudes are considered

the polarization predictions no longer obtain.

(4) The U(6, 6) predictions for the annihilation channel

are described later together with annihilation into three and four

mesons.

(ii) BBBB Scattering

Once again M contains four independent amplitudes,

M, = e l

35 5- a
^ "— • • — - • "W -I- 0 -w - - ^ -v ^ ^ «

(5.17)

where

by the generalized Pauli ' principle. The following conclusions
76 „

ensue from M :
o

(1) Scattering lengths in the triplet and singlet states

*•£ a r e r e - " - a ' t e ^ a s

(5.18)
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Experimentally the very first conclusion 0* ~ - 0.1, is

so badly violated that other comparisons are rendered meaning-

less. Thus, experimentally.

* -2*-4 i md Q^ = S.4 § - (5.19)

This "catastrophic" result was inherent in the original Wigner

theory and cannot be blamed on SU{3) symmetry breaking nor on the

neglect of IVL irregular amplitude. Most likely the discrepancy

comes about because of the great sensitivity of these threshold

statements to the positions of the rea l (and virtual) deuteron

poles.

(2) Apart from SU(3) results such as <y (=.°S>) =

U(6,6) has the following extra consequences for total cross

sections,

(5. 20}

At low energies the first relation is badly violated; however

in this region CJXn̂ > shows large variations and Coulomb

interference effects may be quite strong.

(3) The U(6, 6) invariance hypothesis provides a

single constraint on the 5 independent l£q amplitudes for

every SU(3) channel, that predicts among other things, that the
78 IT.

correlation parameter C M - O. This conclusion remains

even with M te rms relaxing the symmetry to U(3) & U(3),

whereas the fah scattering experiments at 400 MeV show Cp^ •& 0-4

(4) In the annihilation channel U(6,6) seems to

work better in that it correctly predicts the dominance of the

elastic channel reaction pp" _*. pp* over all other inelastic

reactions p^ -•B'B , near threshold i . e . it automatically
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provides a reasonable description of absorptive effects. Making

simple approximations near threshold one obtains

s 4 : aS : I (5.22)

while the experimental 3 GeV/c lab momentum, annihilations

give

() b CCniy) » O + M

10 ± 4

(5.23)

Excepting the over-estimate of 6*CAA) there is fair qualitative

agreement,

(iii) MM MM Scattering

This four point function has not received much attention so

far because of its obvious unphysicality. GRIFFITHS and
70

WELLING have used trilinear and quadrilinear M couplings

to study X*-» t)*n' , < ^- Kirtc , a> -> 3ir etc.

These authors use the discrepancy between P =r ^

obtained by SAKITA and WALI for OJ -* 1 tc and the experimental

value P — 9. 4 MeV, as a measure of the quadrilinear coupling

TV ( ^ S S $ ) . Using this information together with an

estimate of the THT coupling constant A they are able to com-

pute the strength of the second quadrilinear coupling

Finally they arrive at the theoretical estimates

The first agrees with the value obtained by comparison with the

rudecay

< 100

y

c. irudecay X -> TWT and the second is consistent with ViK "•
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(iv) pp -> Mesons, at res t

(1) Annihilation into 2 mesons.

Under U(6, 6) this is forbidden ". Apart from the mode

pp _* p * whihh accounts for about 4 % of all meson annihilations,

there is good qualitative agreement of this prediction with

experiment. Introducing M kineton couplings to afccount for the
80

small cross sections one recovers the HARARI-LIPK1N result

(neglecting Kir mass differences)

derived from SU(6) . If these i r regular amplitudes are computed

on the basis of a baryon exchange model^the tfjr mass differences,

in kinematic factors improve the ratio to

Experimentally,

(2) Annihilation into 3 mesons.

Calculations have not been carried out which take derivative

couplings into account and all the conclusions reported below
79 81

refer to the U(6, 6) invariant M Q amplitudes only ' . The

major results concern the suppression of strange particle

pairs KK, and the absence of production of the physical <P

Also one has M ( K5 -» T*rn>) - M CfW -• irirto) together with many
* O 1

other well-defined quantitative predictions for the allowed

channels on account of the uniqueness of M coupling:

All these predictions are in qualitative agreement with the

experiments if one admits an initial state interaction that

enhances the 3 5 1 relative to the *$0 state.
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_[3) Annihilation into 4 mesons

Here 12 M couplings survive at rest , but for the case
0 83

of strange particle production only, one of these is significant «

Typical predictions then are that fb -•. K*tC* If "*" TC~

is forbidden at rest , and that doubly charged K modes a re

preferred over singly charged and neutral K modes. These

are hard to confirm.

If one neglects the momentum dependence of the form

factors in M the symmetric coupling of the 4 mesons just

remains. In the 5 j state one finds

to be compared with the experimental ratio of 8.

6. THE INHOMOGENEOUS GROUP

(A) The reduction of U(6, 6) multiplets under the

maximal compact subgroup U(6) Bf U(6) which was found neces-

sary in Section 3 in order to make physical associations, may

be viewed in a different light. In the same way that finite

dimensional representations of the Lorentz group are associated

with unitary representations of the Poincare" group we can make

the non-unitary representations of U(6, 6) correspond to unitary

representations of another group IU(6, 6). The new group is to

be obtained by adjoining to U(6, 6) a group of translations whose

generators P. , constitute a multiplet of U(6, 6). This will

provide an elegant, though for physical applications highly

frustrating and tantalizing view point.

As will be seen from the following treatment, if the group

of translations is chosen so that the little group (for the

physically relevant representations) coincides with the maximal
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compact subgroup U(6) & U(6), then the muliispincr £ '* ' ip)

belongs to a direct sum of irreducible unitary representations

of IU(6, 6) in the same sense as it belongs to a direct sum of
si

irreducible representations of U(6) £5 11(6). The momenta

are subject to the constraints

ft

Thus it is useful to investigate some of the main features of

the representations of IU(6, 6). But since these are all present

in the1 simpler group IU(2, 2) we shall confine our attention

to that in the following

(B) INH0M0GE1TE0US SU(2, 2)

Since the f in i te dimensional representations of the homogeneous

group are not unitary and. therefore are unsuitable in themselves to

characterize physical s t a tes , we can introduce some translat ions

as is done in passing from the Lorentz group to the Poincare group.

There is an arbi t rar iness in defining the set of translat ion operators,

For example the isomorphism of SU(2,̂  with rotations in a 6-dimensional

pseudo-euclidean space could lead one to introduce naturally six

t rans la t ions . We wish however to use a structure like the Dirac

equation to generate the representations of the inhomogeneous group

and since the ^ * s form a 15-fold i t seems natural to generalize to

15 t rans la t ions , Jl , such that y* ̂ "*\> transforms like

By inhomogeneous SU(24 we shall mean therefore the semi-direct product

of SU(2,̂  with T , the group of t ranslat ions in 15 dimensions.

Por the generators we take 3* and I* which satisfy the

commutation rules

11. *
(6.1)
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and the reality conditions

-- s

Among the sixteen J"£ there are of course only fifteen indepen-

dent ones and the same is true of Pj,

Some of the unitary representations of this group can "be

obtained by the usual methods • if one "begins by requiring that

the values taken by P£ in an irreducible representation shall

consist of the set of points obtainable by homogeneous operations

of the group from the fixed point

"?l = !*(/.)! (6.4)

•where m is a positive number., That is we require that every

physical state can be brought to rest. The group of transformations

which leave P invariant constitutes the so-called little group.

For an infinitesimal transformation of Stl(2,$ we have

and the matrices which commute with K̂  may be taken in the form
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indicating that the little group is SU(2) S SU{2) B U(l). The

remaining eight matrices

carry P out into an 8-dimensional "mass-shell". This mass-shell

can otherwise be specified as the set of points satisfying the

equations

(e.8)

This becomes rather more clear in the notation appropriate to 0(4.^.

In the basis provided by the Dirac matrices ( X T ^ I J a 0,1,2,3,5»6

where

- T K - * 0 / ( 6 . 9 )

we can write

- < T (Y

> ?
2 X J " " I J ' / a ' ' (6.10)

thereby defining the hermitian generators X ; T y . Using the

an ticommutors

we find t h a t the mass-shel l equation (6 .8 ) ia equivalent t o
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or

?j^?vp - 0 (6.15)

^ P = 6 (0.16)

7^ 'Vt - 0 (6,17;

P +P F ) = 0 (6 a 8)

It is easy to verify that the last four of these (6.15) _,. . ,(6 .18)

are satisfied by taking

which consist of six independent conditions. Thus (6.14) and

(6.19) together reduce the 15 *zj to 8 independent ones. It

can also be verified, that R, ^ m, on the sheet of this 8-surface

which contains P.

The states with momentum P must group themselves into multi-

plets D(fe,t,f) of the little group SU(2) E SU(2) B U(l) where

4,£ - 0,l/2, 1,... and T * 0, ±V4.,i|,.. denote the eigenvalues

of the Gasimir operators. These operators are most easily con-

structed with the help of a new generalized PAULI-LUBANSKI^

operator W^ defined by

which is translationally invariant for the representations of

interest

=• o wfim (6.21)

-87-



For other varieties of representation where {?*)+ is not prop-

ortional to ht the operators W^ would not commute with the

translations - this circumstance of oourse does not arise for the

Poincare group* where ( P1)^ is automatically proportional to 6^

Since W,, is evidently a tensor under homogeneous transformations

the following must be invariants of the full group

* Footnote

It may be of interest to note that in the subspaces where all

PI3- vanish except 1 t̂ the surviving components of Wjy constitute

a representation of the CALOQERO algebra'

- ^

(6.22)

To find their values it is sufficient to take the states
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for which

- !*
A (6.24)

Only those J survive here which correspond to operations of the

little group because

£K ' rK* little group

otherwise

(6.25)

Hence on the P states we can write

(6.26)

where K,, I. and f are the generators of SU(2) IS SIJ(2) H U(l)

[Lit L̂

= 0

In terms of the little group generators then

(6 .21)

A, • i*s(€-£) ,
(6.28)

-89-



and for an irreducible representation D (**,&,/, f ) of the

inhomogeneous group the Casimir operators are given by

A, = W ,

Al = «£ (k(k+O+

(6.29)

where 1H >O ; W = 0, •£ ,l,... A^ T = 0, ±>/2,±l,—

Finally, the complete "basis for one of these representations

obtained by operating on the rest states

with an 8-parameter family of unitary boosts ULl LpJ where tLp/^

is an SU(2,2) matrix that takes p£ ^ |>v (,ft)d into f^ on the mass-

shell :

It is then a simple matter to show, in general terms, the effeot

on these states of a finite transformation, U t S"] where S

belongs to S\3{2,^ . Now

P L'P = Lp P Lp (6.31)

and suppose

P' = S P 5"' . (6 .32 )

Let R(P,S) be defined by

S Lp = Lf RC?,S). (6.33)

It then follows that

K P K sr 9 (6-34)
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so that R belongs to the little group. Operatic in iae represent-
ation we have

U [ S 3 | P . - > = U [ S L , ] IP ..->

but

so that

where T) denotes one of the unitary finite-dimensional rep-

resentations of the l i t t l e group. This completes the general

discussion of the representations of the inhoraogeneous group. In

the next part we shall examine the multi-spinor representations.

(C) Multispinor Representations

It is convenient for the introduction of multispinor representations

to construct local free fields in terms of which the transformation

laws of inhomogeneous U{2, 2) as well as time reversal and anti-

particle conjugation are most clearly formulated. The crossing prop-

erties also are made unambiguous by this approach.

We begin with the quark fields of which there are two basic

types which may be written rpjW and ty (x) . Both of these

transform under inhomogeneous U(2, 2) according to the same law.

4s,« - 4. fc
(6.36)
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where S \S * 50 and X *> S& $~\ The fifteen

coordinates are here arranged as a 4x4 traceless matrix

satisfying the reality condition X K ^ » = X . It should

perhaps be emphasized that the two fields, <d» and 4* are

not adjoints of one another and that there is no bilinear in-

variant to be constructed from them. They are to be dis-

tinguished by their equations of motion, namely

and

.o. ( 6 3 7 )

where ( J )i - 'bl'bX^ . The corresponding adjoint fields

Zu" and ip** are now defined in the usual way

(6.38)

Both of these must transform according to the same law

^ % - (6.39)

They are distinguished by their equations of motion

(6.40)
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— a —
These four independent fields, <!>* , 'V , ty* , "ty r e P "

resent the various quarks out of which all the representations

are to be constructed. They are, of course, no mqire than a

part of the mathematical machinery and it is not necessary

for us to regard the higher multiplets as bound systems of

quarks. For practical work it is necessary to use the Fourier

components of the fields. We define these for the free quarks

by taking the plane wave expansions

(6.41)

and the usual corresponding expressions for tj/ and ^ .

These momentum space integrals extend over the positive sheet

of the 8-dimensional mass-shell

> o (6.8)

on which u X ^ is the invariant measure. The annihilation

operators are Q.c&)t &£C?) (C-^i) for quarks and tft?), tf

for antiquarks. The positive and negative energy spinors

satisfy the appropriate Dirac equation.

:-p; = o

(6.42)
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The reason for associating &c with &* in y^ and &

with b in 4^ becomes clear when their transformation

properties are exhibited. This can be done rather easily by

applying the methods of Weinberg.

First let us choose a set of positive and negative energy

spinors. Using Cl-p")* for the boost and tlLLpJ for the

corresponding Hilbert space operator we may take

£

where IP &.} denotes a rest-state. In the notation of

f> sivtY* and so for it I?) we may take the first two

columns of t9 (in the Pauli representation). Thus we have

< c ? ; « ' C L P ; * A - I > 2 > (6.43)

Similarly, we may define

(6. 44)

The remaining spinors follow in the same way,
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= up*. ,
(6.45)

Having chosen this basis and given the transformation law for

the fields, namely

UIS]

(6.46)

where U[ S] is a unitary operator representing S in the Hilbert

space, we can deduce the behaviour of the annihilation and

creation operators. For example,

or ulsi o^tr)vCis) * a? sLPtac

Denoting by K« the matrix CLp' S L«7 we find in turn

u
(6.47)
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It is simple to verify that in the Pauli representation the matrix

K,-. assumes the form

(6.48)

where P(*>*iO denotes a representation of the little group

SU(2) S SU(2) Bf U(l). Noticing that 3>Cb#*,r)* is

equivalent to iXfc>^ -C") we are able finally to assign

the particles to representations of the little group,

(6.49)

A

Notice that ftc t> is a little group scalar whereas Qc D

is not. This is the reason for our choice of a rather elaborate

notation.

Arbitrary representations of inhomogeneous SU(2, 2) can

be constructed from products of the quarks. To get 3 ) ^ i ^ ""/

we may use, for example the tensors

r < * s (6. 50)

Symmetrizing separately in the sets <A(.. ̂  b|"«?^ ; C, •• Ĉ

and Ct( . . &£ and then extracting traces between upper and

lower indices of the hatted and unhatted varieties respectively,

yields an irreducible set of components with
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(6.51)

Generalization of SU(2, 2) to U(2, 2) would give significance to

the remaining quantum number (r+s-t-u).

The multispinor corresponding to DCfe, S f) is obtained

finally by multiplying the little group tensor (t'-O by the

appropriate positive and negative energy spinors, namely

K.-CP) for lower unhatted indices.

C—P) for upper unhatted indices,

— b
U A L?) for lower hatted indices

r

(-?) for upper hatted indices

(6.52)

For example the rank-4 multispinor containing one quark of

each type is given by

(6.53)

Stated otherwisej, (î , must be a solution of the following
r

B. W. equations,

! '

( 6 . 5 4 )
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The notation for multispinors introduced here is a little

inadequate in that it fails to distinguish whether a given lower

index (say) corresponds to the quark <[> or to 4^ . How-

ever, since in the applications so far use has been found only

for representations involving one kind of quark <J>rf and its

adjoint <p , WQ shall not elaborate. For representations of

interest then,

(6.55,

o r

° •» • • • (on lower indices),

' * * ( o n u p p e r0 ,

(6 .56)

The number of lower indices and their symmetry types determine

the k-spins, similarly the upper indices determine the 1-spins,

and finally, the total number of indices fixes the r value.

We proceed now to examine some particular transformations.

Our method is to define them initially for the quark fields :

the generalization to higher representations then being largely

automatic.

Included among the transformations of the inhomogeneous

U(2, 2) there is the usual parity operation

(6.57)
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Since this does not go beyond the operations which have already

been used in classifying the irreducible representations we

do not expect it to give anything essentially new. In this respect

our group differs from the Poincare' group. The behaviour of

the creation and annihilation operators under this operation is

easy to deduce since, for suitably chosen boosts one has

•f

and therefore

Lp = l _ w ^ (6. 58)

b'UP/.) (6.59)

while

(6.60)

That is, the k-spinors (Xc t b are even while the 1-spinors

£* \f are odd. For an irreducible representation (insofar

as it is permissible to look on it as an S-wave quark system)

we obtain (,-) for the intrinsic parity.

More interesting would be the operation

which does not belong to inhomogeneous U(2, 2). Under this

parity operation ih tl> is a pseudoscalar while Vr r̂rf

is a scalar. For an arbitrary representation the parity is

given simply by the number of antiquarks involved.

Another interesting transformation which does not belong

to the group is that of antiparticle conjugation. Let •€>

be a Hilbert space operator defined by
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H

< G - 6 2 1

with similar relations for 1|^ and ^ . ( ^ denotes the

usual transposing matrix defined by C-"1 ^ C = - 2£. and X

is defined by C"**. C - - Cx*^T . It is necessary to

include the inhomogeneous part v^*"X. in this transformation in

order to preserve the form of the Dirac equation. In the limit

where all at1 s vanish except the usual Xu s (1/4) -feW Tu x)

we have Xc st X and our operator C simulates the usual

charge conjugation.

The precise behaviour of the momentum space operators

depends, of course, on the choice of positive and negative

energy spinors used in the plane wave expansions. However,

since these spinors constitute a complete set of solutions we

can always write

where jC£k(?) * £fa CP9 denotes a unitary 2x2 matrix.

The form of this matrix is unimportant and it is usual to

choose the spinor basis such that it becomes the lowering

matrix €4j>. In general we have

-C b*c» €"* - - u

with similar expressions in ft.^ , t» . The higher rep

resentations transform in corresponding fashion. For

example, the quark-antiquark

e
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where tO= dt I is an undetermined parity. In momentum

space this reads

One of the most useful features of the multispinor form-

alism is the simple method it supplies for analyzing matrix

elements. We sketch this briefly.

Each particle in the initial and final states is represented

by an appropriate multispinor, <Pfc..Ct*9 °f t n e tyPe discussed

above. The matrix element is then expressed as a suitably

contracted product of these with the so-called M-function

M LP... ) which must then have the invariance property

s? - M£:: CP, - > cs-jj - - <; ; . (?;•• •) (s

where P& s: S? ( 3~, This assures that the matrix element

has the correct transformation behaviour under the inhomogeneous

U(2, 2). An M-function satisfying such an invariance require-

ment can be expanded in a set of scalar amplitudes which

depend only on invariant combinations of the P1 s with co-

efficients made up from products of oj| and the various

T£ „ For example the matrix element of a 15-current

between quark states is given by

where ML, must have the general formL,
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(6-68)

where the F* are functions of t r tpp ' ) ltKiff^)y— etc. Account

must be taken of the trace condition U^ » 0 and the usual

simplifications resulting from use of the Dirac equations.

Further symmetries are included by imposing more conditions

on the M-functions. Space reflection invariance is of course

automatic for processes involving only one type of quark and so

we shall consider the less trivial case of antiparticle conjugation

invariance. The procedure may be exemplified through application

to the matrix element of S^i9) between quark states. Let us

write - without regard for the finer points of 15-dimensional field

theory -

Using the antiparticle conjugation operator "£ defined by

where OC m — C XCC and supposing that the current u*

satisfies a relation of the type

where (0 i i l f then, if the vacuum is invariant under £> we

find

Hence, for the M-function C»-invariance implies the condition

(6.69,
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which may in turn be translated into conditions on the invariant

amplitudes F.. (These conditions simplify a good deal when

the multicomponent momenta are cut back to 4-vectors.)

Since this formal apparatus is to be applied ultimately in a

4-dimensional world it will have to undergo an amputation. The

passage from 15 dimensions to 4 is not at this time clear. The

most direct approach, however, is simply to restrict the Hilbert

space of physical states to those with momentum vectors lying

entirely within the 4-dimensional subspace. This Hilbert space

of course lacks the full 311(2, 2) invariance. It can accommodate

only Lorentz transformations (and other, unrelated, operations

such as antiparticle conjugation).

The reduction of matrix elements into SU(2, 2) invariant

components may have no relevance, except perhaps in some

approximation, when the symmetry group is truncated. Certainly

the number of invariant amplitudes permitted by Poincare*

invariance is not generally the same as that permitted by in-

homogeneous SU(2, 2). In the absence of any deep understanding

of the dynamics this question of relevance can be dealt with, at

this stage, only by reference to experiment.

7. THE OUTLOOK

We list here some problems which we believe deserve

further investigation:

(1) We have made a first attempt to discover the possible

origin of the U(12) symmetry scheme within a simple

quark Lagrangian model. The approximation that we

used needs improving and the calculation should be

repeated with the phenomenological super-multiplet

U(12) Lagrangians of section 4 to find conditions on

coupling strength for the supermultiplets to persist.

The possible dynamical appearance of kinetic super-
33

multiplets as bound state composites is another

-103-



(difficult) problem worth investigating. The whole subject

is bound up with the fundamental experimental questions;

Do triplets exist?

(2) One wishes to know why U(12) reroeth order predictions

are good for the vertex function, i. e. what are the

dynamical reasons for the suppression of possible

unitarity connections?

(3) For the four-point function, no S-matrix calculations

have as yet been performed with one particle exchange

diagrams and U(6) vertices as the (N/U) input.

From the unexplained success of U(6) predictions one

may perhaps reasonably hope that a good fit may then

be found for the scattering amplitude.

(4) It has commonly been assumed that SU(3) is a better

symmetry than for example Wigner's SU(4). DYSON

has argued to the contrary by consideration of production

cross-sections for NT 9 Y t S QtldXX which go down

by factors of 10 for each unit of strangeness, even

allowing for different masses and by considering the

superiority of the SU(4) mass formulae for vector

mesons:-

for SU(3) tK. p-tf-ZiT for SU(4)

In the relativistic theory the question would be rephrased

in respect of superiority the reduction U(12)-» U(8)xU(4)

VS. U{12) -» U(4) x SU(3). Experimentally the breaking

of supermultiplets according to j values is of the same

order of magnitude as the SU(3) breaking at least for

the baryons. We believe this is another point worth

deeper study.
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(5) A proper treatment of the bound state problem,

starting perhaps from a quark Lagrangian; should

throw some light on the possible existence of infinite

numbers of levels corresponding to infinite dimensional
84

representations of U(6, 6) or higher groups, of which

the known supermultiplets may be but one component.

The situation here may be analogous to the consideration

of the Bethe-Salpeter equation for the hydrogen atom
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