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fhe renormalizable theory of veactor uesons has Tor some

ttenlion of various authors™ who have shown

time aitraciad the a

. - 5

that the use of conventional Peynmon rules lao05 %o an unrenoerangle
izable theoxry. In an attempt to osiasin alcovariannt) renormaliz—

able theory, Lee and Yang  introduced the E-@Jﬁdtiﬂg formalicm
and obtained a renormalizod iheory of voctor mercvo with arvitrary
anomalous magnetic momont ov the assumption that alfer summine all
I Itar summing
T

contributions to wthe Forviin diacranm, the limd 1%—7 C exists and

can therefore be twgcr. a7 1.

- CRR =)

Usi.r a completely differens approach from the usual

0

procedure, sSalam and Delbourg02 have recently proposed a theory
(of the electrodynamics of vector mesons with arbitrary magnetic
moment ), which is based rath.r on Dvaon's form of the eguations

for the renormalized propagator nri the vertex function. In this

i
N
A D 1 P o :
m P of the full vertex function

theory, the inhomogensoug tar
r is considereu w8 Lue Pirst oporoximatior e f1 s ‘the process
termed the gauge approximation. T4 is then stown that with con-

ventional subtractions, vector electrodynamics is completely re—

normalizable.

Irn their trentmont of this theory, 5D conjeciured that
the equations of vector eicerrodynamics ;rive rise to two distinet
solutions depending on the boundary conditions 1uposed on the prop-

two distinct solutions are called the "vector"”

©

agators. Thes
and Mscalar' alternatives br the authors. 4 solution was found
for the vector™ alternaiive, valid for the arbitrarv gauge, waich
is non-periurbasiive in methodology tut still possesses the samec
limits as the free propagntor,. HGowever the authors did not con-
sider the scalar alternative i.e. the case when lhe veccter prop-
agators and vertex function behave as they do for scalar electro-
Gvr umics . A problem tnerefore arises : Does this other alter-
na.ive exist phvsically? to wit, are there any special values

of tine constants of the theory for which a different solution could
be obtained? Irn particular Lee and Yangl have suggested that the
meson propagator Z:yhybehaves not like the free propagatorl&,kJ but
1like the scalar propagator Zﬁ& . It is the purpose of this paper
to show, usiné two-particle unitarity and the gszauge approximatioq

that the scalar alternative might nold for specizl vazlueg of the
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constants of the theorv.

Section {2 deals briefly with these two distinct

selutions and the boundary coaditicns tc be imposed. In Szction (3}

wo consider the meson self-energy equations and obtain the conditions

necessary for this other behavior to hold. Section (4, deals at some

length with the photon andéd the vertox Tuictior couations, obtaining

the conditions to be satisfied bv the form-factor equaticns in the

gauge approximation,

TI. THE STABILITY CRITHRTOW

: &
Defining the meson propagator as

A'/:M,(p) = (P)" m") Ziw;)&,u_: mt ZJ(P‘) Q,/,d (p)

where

G’tu) A x
Ziw)= |- (o)) e

- G, .
- Z ()= | = w) 2=dx = p? o tic

. . \ N
the Dyson equations for &q. (2.1) are

Z(?‘) = Z(——-—--—-PL’M" “‘%T;-%ﬁ&ﬁ

b VP
P — M i P»_,wg

)= Eed T (et Ka)
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where the kernel X, iz defined as
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e TMuanmction renoraniizatlion constant E and the bare mass
pa ‘ N .
: sy whe Tel

TR > relations

are given o

g

?ﬂi-z _ Lm~ ;Zl(Pv
T pr—7=°
; x C’:u)&l—f@(}) ax (2.8]
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2.8} that the second terms
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It folliows from the definitions (2.7

—

nd (2.5) must approach zero

o

/
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orn the pignt-hana side of sSguaition (2.4

in Tnin limit.

wow a sufficient condition for

<

A { ~ _J___
r-' A r:'_\;; ? /D k'.z Y ' (2.9)
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- AT S . R . . . .
e (2.7, 1s the stabilliity criferion of any approximation procedure for

computing anv Green's function btased on Dvson formalism-and from it there

arise two possible behaviors of the propagator and the vertex function
=1 A 4
z>> and l respeciively :

\ i 2. .. . . . . ,
(A) BEither ZMO is finite (apart from logarithmic factors) so

that we have the boundary condition

{y . - X . \
;2? lPljcﬁ J{a \1‘“‘23 0 automatically)
- } P
or ,
. ; : 2
(B) Z%O and ZZ(PL)’” P In this case W\% nust be

intrinsically quadratically infinite.

W Y 5 - - .
For case (4, we have the corresponding propagators behaving s

o~
i p {(2.11a)

A=l U=e
{2.11b)

Coses (&) and (B) are respectively the "vector" and "scalar" alternative
soivtions Tor vector eslectrodsmamics as conjectured by SD. The former

g investigated in detail by the authors and we now consider the latter
1

o
t
et

ing sections.

TIT.Uny MESON SELF-ENERGY ZQUATIONS

The meson self-enerpy equations obtained by 5D mav be reduced
'”ML{BA(R +m) — 5(9- —mt ) 3 b P}‘Z(P))
Lo a2 p>- ) {(P" ) 4 [ 2m p}ﬂbz' (O)Z )
-kl( pr- m‘)l( P)""""L) o 'Z*(p“’)/n(?})
T2 "‘)[me IM(P’)) j (2.
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T pr) &(PL-' "“ﬂ@(?}"’"})
:}-_I_,L Z, (7 o

x| Banr (v ) | Z,()) =30 32 [F
kpam)(lp -H“)Qa-i (P)'J F »)
"‘5/;( Y ) (P *“‘) (’JP”)}]

I\

)
a

F00) = — (e (2,60 g - )

Ele) = 22Z,00) — M(»?)

. . c o o . 2
and the prime denotes differsntiation with respect to i?

2 - - - 1
For large P 5 Equations (3.1) and (3.2 reduce to the forus

T ?—m‘)[' + o] T Z)(?) + Tm MY
N — o p? [(Bc '5))2 (pl)l @.LZ%(P')/WPj(B.3>
T2 R E () Z, P)+2]M(P’*)I:)

ie. fm Z"’I(pz) —_ LL(P‘) + tan@—l?’) RD-Z: () (3.4 .

Ui = 2 [Ba-raizlehe)’)

| -+ o(plcl'm Z,’[P“’) + T m M[p’)j




and

Lo Qg = <2 LR 19> £ 2]

]'+D( P"[ Im ZI[P})'"?TM M[p"’ﬂw ‘(3'6)
fezuning Jor simplicity ihad P’") is small compared to M(P)
& that P RLZ P)NIQLM(_P)
21untions (J ), and |3 mone writs A%

or MP’E(BM 5)r 2| Z,"(P'*)M(P‘)lj

|+ o<p Tem M(p?) (2.7
ton £(p) » j_lf&N\(Pi . (3.8)
|+ o p* T m M(p*)
o T Z) %)= V(7) +tanmd(s) ReZ (¢)  (3.9)
i) = — (o) (3.10)

|+ 29 { LT Z, () =T M(P*)}-

o(p {2RZ,10) ~ Re M(#)}

‘{ZCLV\&?)"" + &P {D.imZ,(P")"J-mm P‘)} (3.11)

Consider now Zquation (3.4). This is the inhomogeneous Riemann-Iilbort
zguation which has been fully investigated by "us;cheli%‘qvili5 Applving
fuskhelishvili's I'&.,Q'LJL.S, Zguation (3.4) has the solutlon with the zsub-

rachion Z (l)~—,

.. (j i 1’ m> Uil)dk - (Pa o
| P) L K (5= p2) (2= m) X B8

[3.13;

_ om0 dx
X “P{ T ) o) p)

-~

—r) -




and C is a constant.

Touw for r—1 to babave as F’ h4 fjmus% behave as
Mf?*)’& } 80 that the iLorn OCP)'IliP) comlnatob ovar l in the

dencainators of dguations s (3.7) and (3.8). Hence & uation (3.4) would

aamit of solutions behaving Iile ;Z}[pf)cd ’ if and only if the phase
change
r > |
! (x) =
¢ \
— . m
s - - o 14 \ - — . N . . . .
Sirdilarly Dauocion (3.9, monldd adnmit of solutlions behaving at inf®inityr
2 7
23 Zg_(?l- ~ if ard only 10
_‘C(" 1 o0 Tr
; (l) mg, SRR
\Jaei2)

In this case in order to satisfv all the conditions of tue Ricpann-iilbert
‘2quation we should introduce a subtraction constant Z(O):Z{d} the com—
putation of which is given by 3SD. Alsce it is to be noted that eouaition
(3.9} is homogeneous for the Fermi-Stuckelberg gauge and then Z_}_ (P")

vanishes identically.

Zquations (3.14) and {3.15) are the nccessary and sufficient
corCitions to be sat:"Lsfied. bv the constants of the theory (suoh as of
and she observed magnsiic nmoment K. These conditions are clearly
gruge—independent .-

TV s 2R0TON SELF-ElSRGY AND FORM-FACTOR ZGUATIONS

The photon propaga‘toz"p mav be expressed as

/o
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where

=

Cl/,-/;
!

Y s
Lt ) - l y
4 x + € (4.2;
- PR
A { ;
L lr, 00 5
et S B ax (4.3}
A g x>
AT i ro—particle unitarity approx—

/';7,, (b.#) s (2)0L, )

k)
— -
— o

. anlﬁu}/éd P

E 3(27) _
‘“
<A, P’P)(g (v~ "‘)Cg (b (4.4)

WO‘

peek(-g Eere &)

' (9Lt//~ f “’.9(‘ ‘t//-) m&-})’

{949?) —_

(4.5

t =p-¢ Jt?) @(”’)b(?’«"“’) E& @hne m&‘)'ro as dofined in 5D,
From Iquation \A.i the If~eneargy eguation reduces tovfhs
G, = f‘,l - ‘*m)g/i@(t )

"! u — L-'ril'ﬂ"r)lg »\] - tF [t __lmh-)ﬁl'g (r\—) nr 9
(AL (L e >)Q,Lf*r{)w») + e et )]
‘VTU ’Ll‘mL) M) ub")-r;:_ [£*— ) }&U jj (4.6)

azfinite is clearly exhibited if we
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tjis czslily ghown L7 we define a Tunction

\7/ [¢*) '=\Ejf(«"' t Y—j({]’) (4.9) -

. 2
3 v prime denotes differentiation with rearerct to ?t Then in
= static llmit, woe have She intsresiting relatica’,
f YA c)
P \\ - L
Wiis\ = {c) 1 X; . N
‘ () tC: / (4.10)
".D_ms. + (/ow\' vhers is the quadrunole
moment in units of Q./' N
m
STy R atal it ida ard bapd on auires iad { 1+ 2tive ly R
Jow the sfabiiity criterion rogulres ~ or alternatively «-3 t

if the photon

L

. - , . >
LAAST Do AT 1east as conmverpent as blt Tor Jarge

- - N . Y
to behave Like D"" Vt"- Tence from Zguation (4.8

}n (¢ Y}~ e T -X[U)""‘ (apart ;‘rom logarithmic factors,,

ot is comsistert with Sio Taat that for [ ~ P vhe form-factors
<

u)'-/ G ‘ﬂ'uf)f" b GJt YY)~ 1< @Az, whers a, b
‘t1 ? ? ?
3 o are constants (sinecc Tor lar "n-tg' ? and 'y_, will dominate in
1

. . hY q
on {(4.7) then reveals that

. .. W . . s ] S
Latioen (4.8 in exanination of Sgual

ﬁuitﬂfd I onlyv 1if a = b + c.

exact itwo=particie unitarity equation fTor
simplicity we shall deal with the photon

uaphrsical is more complicated, involving a
0Ts, ond requiring a proper treauvment of the

Lo progerve gauge invariance.




hals on B a pr) suen that the nesong are
s ian, LAanoe e 2l with *the gauge invariant quanbtity

N
Ea/q)(?l p')':: aﬁ;,(?) lafb'-(?.‘)f) do"/(P‘) ,‘ (£.11)

I
vhere lap e is 2s defined in Zquation (4.5),

The ilhree form-factors ?Lr‘) \j’n U”)and @,(t‘j are linearly related to

the threc possible contractions

Fw) = (40 Foppe (412e)
L) = (bt By tity (4.225)
FW) = Bepvty (4.120]

4 _L._C_/

zand from these we oobtuin \Eﬁ; ) YY][t and éQ[{ 1n terms of lflf) F—LtJ
and 1Y)

Kow one of the contridutions to the vertex function is the

one-photon—exchange diagram. This in the two-particle unitarity approu-

Ak d {(p-k) ) 8 {(p k)

o Py (£77) -(g; /'P(P)
FJ(P——kp t)ol (p k) - (4.13)

dox

z&‘p‘(P k) lbf,g(?,r k)D Cg)l-' (P K P')

From Bguation (4.13), the form factor equations are¢ obtained as

> (- )—t"* ] -2 2y T >
,11? T 1) 1) 8 (l ) T,;:;rm{_Ll Fe)+T, £e)). e
! —.m i e Ae — "t}— ?:. by 1-" | 2]
?l’—l m(}() 8m ¢ (l fm*) '%Im{{‘&) M‘-GFM t‘)f;&)} (4.145)

irmff&)+¥ﬁ)}8lf —= )L

=L Tmf I F ()t (3~ t A
" { ! ) }(4140/'




where Im "t[’f’."} (Lf-f, ﬂi 3) ure given in the ippendix and
I.l , '_T:q are to be found in 8-

Egs. (4. lél) torather with Ig. (4. R) fgive us ;c.ur equations

involving four unlknowme E({) )’Ylu}) )L[.{") 7 (‘t’) They

are, however, very compl®  ihed oo suich connot

easily be obtained. erefore make use of the snproximetion
M= A (LQ EH g (Q)) nd a first wpproxiwstion of

mre?) = kE @), Qi = Q&)= at;(fﬁ -)ERE G @)
where we set (j(¢c)= O , G (c) = | snd G(oo)_F? -

constant prom**im Iowo tue fine :ﬂ,*ucur"e bo*rtur 27,‘0.(_;_3' i’
Thus for lerze ¥, Q% (¢*) = }# (- l)lﬂ £ (‘c,,).

In this approcimation, Eq. 4. L4d) reduces to the

bomogeneous Riemann-~Hilbert form, viz.,

T E(7) ~ ton I &) ReE () ) (4.15)

where

Lan¥e)~ Lo [ T2 E©)rIghw)]- wase

LIC

Similar equations are obtzined forImmé’)and T [’E(t")"'x("lﬂ
Thus E(_{") behaves for lurge ‘l‘, g[ﬁ”) ~ | if

[¥w],. =0 (4.16)

It follows from B+, (4.15) that for larse £2, +awm §G
must behave like unity. & tedious but straigntiforward celculation,
using the I's in SD and in the Appendix, gives two cubic
equations in K and r@ . A oconsistency requirement enables us
to impose & constraint on ﬂ , which 1s, howvever, tooc complex an
equation (of the 12th order!) to be solved. MTaking a special

value of =} (which simplifies the calculations considerahly)




leads to &n inconsistency, implying that the Bernstein and
. 10

Lee suggestion ) that the vector mesons huve no anomalous

magnetic moment is not reproduced at high energy in this

approximation.

CONCLUSION

From the stability criterion, which serves as the boundary
condition to be satisfied by the three Green's functions ZS.,[1
and,JD , 1t has been conjectured that two alternative solutions
{one of which has zlready been discussed byisj)) to vector
electrodynamics, exist which exhibit distinct behaviours at
high energy. The power of this criterion in specifying
acceptable high energy behaviour of the propagators enables
us to obtain conditions for the various sﬁectral functions.
Exploiting these, we have been able to show, using two-particle
unitarity and the gauge approximation technique, that for some
particular values of the constants of the theory, which owing
10 the complexity of the equations concerned we were unable
to obtain, solution to vector electrodynamics might exist which

behaves at high energy as in scalar electrodynamics.
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can be found in 5D except that 124 should rTead

T, = kd(p)die)d(oi) d(p—r) K

9

24
are as follows with Ii(p, p',k) = Ii(p',p,k)
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T = Tr d(p) dip-k)
Y
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2

15—



oo -y, s \l I
i S N (\/ A
[ LT
e i

34

p

r

“~
W

]
?:,

N

AV]

i - N d
A ,:;"L{“,) r%\“/‘ﬂ.)f/
40 .
A S
i/\ {;‘kal) ':"\ (P'r ;*m-/\] K
Fi
- P P |
i ot At”\ Lt i"()’ LR k‘“ :B('f f’J
T4 ’
T — 1A \d( i i< 3 P
‘L)) = i f,‘) 7 /
72
s

i
el ; }' . .‘ !/'\/q‘!r’—“‘(
L= praiE) AP TR P/ K
45
. t
YA —
- - (“_hl)}‘i w_...,\} L(f/j;j
A L
10
¢ N : P “.~|"i -
e v

T= rd (pok) d(pi- k) GUP) K

i

T pateo i) Aok ALK

\i

— 2 wd(p-k) A{p) dlpi-k) Kk

T = ,L(gi(‘p~k)c((9)dﬁp’~ !<)P
N ‘ ':‘xré‘»"“l"._;\i/(
:-i,u.;:‘; é;};;f\;i-;?*'é’ﬁ/; u\-(?}a(t) f)
o ! IR
T, = D”gif"P—-k)c({P)dCP’KDP

(/oo k)l K
T .= ;«agp—kjdm—k)b(&’)

| : A\ (o K
T . =7 cil{@"‘“‘)dﬂpi”"/' ale)



L.4= kKd(p)d (p=k)d(p=x)cip) P

T, = K d(p-K)dip)dtp=ic)d(2') P

Lipg T p'd (p-x) d(prd (=K (PP



[
~

9]

~

O
S

3;

.
«

~

ey

B I

T. D. Lee and C. ¥. Yang : Phys. Rev. 128, 885 {1962)
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(hereafter referred to as SD).
e are using the same notation as JD.
itudinal projection operators are

The transverse and ion

]

o

efined respectiv

O
| .
o
J
13
8]

Fre L -

L — F L. R
Cpve) = / T.FP:’ ) @w"‘?ﬂ’y/P*

Y. Muskhelishvili, Singular Integral Zguations

(P. Woordhoff Ltd., Groningen Holland, 1953) p.11l

Zquations (3.12) and {3.13, contain the usual infra-rod
divergence which we shall ignore since 1t does not affect
t

he high-energy limits of ;Z_’(Pt)
]

The conditior (3.15) implies the existence of possible bound

states and CID poles. Por a discussion of this see J. I.

Charap, to be published, @nd R. Omnes, Yuovo Cimento, 8, 316 (1558)

G. Peldman and P. T. Il hews, Phjs. Rev. 130, 1633, (1363;.

Gare N is the mass of a "time-like" photon.

The constant a;:zi spacifies a particular covariant gauge.
> :

Note here that a misprint in SD has been corrected. Also

Sguation 11.55 of SD should read : In the static limit,

we obtain
Q(O) =1 (q + R —l) ( g is the guadrupole
aImt moment in units of e/'m*)

J. Bernstein and T. D. Lee : Puys. Rev. Letters 11, 512 (1963)




