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U(12) AND BROKEN SU{6) SYMMETRY

§ 1. Starting with a spin 4 quark model the most general algebraic
structure is the U(12) ring of matrices ‘XF'Til. We wish to point out
that this U(12) structure can be used to give a direot covariant
formulation of the SU(6) symmetry of GURSEY, RADICATI and SAKITAZ,
provided that for the physiocally realised multiplets one writeas not
only the composite fleld operators but alsc their conjugate momentum
operators as "independent" components within the same multiplet. —The-
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motivation of our remark is as follows: a number of authors” have

recently suggested that the SU(6) symmetry of ref., 2 may be looked
upon as a non-covariant approximation to a symmetry W(6) = UL(6) x
UR(é) which itself is a straightforward generalisation of the

UL(Q) b 4 UR(2) symmetry associated with the homogeneous Lorentz grouﬁ4.

Starting with this, & number of examples of interaction Lagrangians

invariant for W(6) have been written down.

Now there are serious difficulties in elaboration of these
ideas. First, the right and left split of the basic quark implies
that m, = o and therefore W(6) must be badly broken. Seoond, physicﬁl
particles correspond to representations of the inhomogeneous Lorentz
group, and since kinetic energy terms are not invariant for UL(6) x
UR(6) (in contrast to the Lorentsz UL(2) x UR(Z) case) it has so far
been possible to develop theories of physical states at zero momenta

only. A third difficulty is related to the second; 8o long as there
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is no analogue of the inhomogeneous Lorentz group struoture, it is
impossible to assign physical'particlea unambiguously to the multiplets
of W(6); thus baryon ootet and decimet can belong equally to (56,1) +
(1,56) or to (6,21} + (21,6).

For the 4=component Dirac equation, which includes the mass
' term, the passage to the {phomogeneous group is made in the well~known
fashion by extending the sub=-algebras UL(2) x UR(2) (with six
generatora ") to the full Dirac algebra U(4), This takes place
essentially beoause U(4) contains in addition to the U, the four

(translation~-like) matrices 'Y"L with commutation rules

Lyf, o] i (gryd - 9yY) )




allowing one to write equations invariant for the inhomogeneous

group;
(7fH'PP - "‘)"V = 0 , hyP'J“Ay = O
where b s %75 [+*, v¥pr") , (2)

Note in paasing that -I-TP Tswr = % TP‘)“ ; so that the
first equation may be written in the form

(¥ e P wh) + gm]d =0 , (3)

What we wish to emphasise is that there is a close ﬁnalogy
between the group completion UL(2) x UR(Q) < U(4) and UL(G) x UR(6) .
€> U(12). The generators for UL(G) x UR(G) are the T2 matrices

o T: , T , XST‘ . In addition to these U(12) contains

another set of 72 matrioea}

FA;__‘ Y*‘Ti, [AS _ ;Yrrs-rl ; A = (F,;):__;__-.-_wso‘..}
with the typical commutation rules (similar to (1))s= 7
[7"T‘/ o-'""T"] i Lol"-"(ngva g”ﬂ‘)T" . Fli\lekpvf.“",rs
CydysT, T = of ¥ by

Defining a 72~component vector (PA,WA) 6 once again one may write an

"(inhomogeneous )W(6)" invariant equation )

[PA(PM + WS WA) + M] Y = 0 4)
Note that 5 [P*P* = w'*] = 0 and aleo B LM = neturr] = 0

where tr- P“o, wlFa wh°, It is worth stresaing too that the Lagrang=-
1

ian mass term ramains invariant as well

It is perfectly possible now to write a oovariant UL(6) x UR(6)
S-matrix formalism, using the U(12) algebra in complete enalogy with
a Lorentz covariant formalism for spin § partioles which utilises the
U(4) algebra, The ohief problem is the passage to the phyéical limit
of such S-matrix elements, the physiocal limit being defined8 as PA-Q
Pr, all other components of P and W vanishing. This last step will
naturally break the UL(G) x UR(G) symmetry in a well=defined and
determinate manner leaving & formaliam whioh is fully Lorents co=




variant, The symmetry breaking is well defined in the sense that we

know preocisely the transformation properties of the brbkeq veotor

( ?h) °).

f 2. Consider now the problem of higher representations. Starting
from & single Dirac field jd‘and a {4=component spinor one generates

sucoessively higher multiplets and their algebras by taking outer

produots

¥

= X 10X o xYP xix .. X\
() ' T

The first conorete example of this is the 4x4 representation of

DUFFIN and KEMMERIO with the associated algebra (‘(”X‘ + | X‘(r)
This gives rise in the well-~known manner to partioles of spin one

(10 components) and spin zero (5 components) within one multiplet.

The crucial point is not that this is obviously the "natural" form-
alism for extension to U(6) ideas in that it combines zero spin and
spin one; it 1s morse )fﬂr by imposing the requirement that the field
quantity satisfies a linear equation, Kemmer could show that the spin
one field is composed of the potentiallAJ“ ag well as the field
tansor11’12 F »Y . Likewlse the spin gzero part consists of‘# as well

a8 its conjugate momentum 3 ¢) Altogether the spin deoompoaition
Adeballl
is 16 = 10@ 5 & 1. (The *17d0es not oorrespond‘to—any*dynamioal“‘“*

situation and is called the trivial representation of the algebra.)
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The next algebra is generated by the matrioces
of = yFxr o+ x gl

the reducible representations desoribing partiocles of apiﬁa 4 and % »
In a future paper this deocomposition will be exhibited in detaily
like for the case of the @-algebra, botﬁt?ield operators as well as
their conjugate momenta ooour together in the description of a

physical system,

The extenasion of the above to inolude unitary spin (passage from
U(4) to U(12)) presents no essential complications though the formalism
gets tedious mg is well known from past experience of caloulations v
involving for example @-formalism for mesons, But the compénaatione
are two~fold; first the ambiguities of U (6) x UR(6) assignments for
the same physioal multiplet are avoidodlk; the formalism incorporates

them all in a Brepifio manner, Second, using the methods of &1 a




broken but covariant SU(6) formalism can readily be construoted. In
practice since one is hardly ever going to work out the dynamiocs of
purticles of spins ) 3/2; we hope one can set up the necessary formal

maohinery once and for all, This will be treated slsewhere.

Our thanks are due to Dr. M. A. Rashid for numerous helpful

suggestions,
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