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by
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It is shown that a relativistic basis for invariance under
'SU(6) exists only if the group structure is extended to UT(6) @ U (6)
for any interaction terms, The notion of inhomogeneous extension
U;(G) ® U;(G) is introduced., This extension leaves the kinetic energy
terms invariant, though it still does not provide a fully satisfactory

theory.




THE RELATIVISTIC STRUCTURE OF SU(6)

1. Introduction

We wish to examine in this note the relativistic basis
of recent generalisations of Wigner's supermultiplet theory
to elementary particle physics. We start with the assumption
that so far as the relativistic and internal-gsymmetry structures
are concerned it is sufficient to start with an elementary
multiplet of Dirac spinors =-- elementary in the sense that it
corresponds to the fundamental representation of the intermal
symmetry concerned. More specifically for the internal symmetry
group U(3), this fundamental representation corresponds to é
Dirac set of three Bakata-like)quarks. Our assumption then
amounts to saying that so far as group theory is concerned all
particles can be considered as composed from Dirac quarké.

There are three questions to be studied:

(A) The structure of the "“algebras" formed from the Dlrac

matrices and the internal symmetry generators. -T

(B} TFor which ones of these "algebras" are the kinetic energy .

and the mass terms in a free Dirac Hamiltonian invariant?

(C) The types of interaction Hamiltonians (if any) invariant

for each "algebra®.
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2. The Structure of the Combined Algebras

A
X3 s

Given a set of hermitian Dirac matrices 'Y'/ and internal

symmetry generators 3 lb, note that

AT, 7] = LA T[T T] + 4 AT T

For the fundamental (4V =~ fold) representation of any unitary
group U{M, )}, the NXN matrices .T‘ span the entire hermitian basis
and therefore both ['Ti,'T’] and {T‘,Ti} are expressidble
as the linear sums of the T[* 's themselves. So is trivially the
case also with the full set of the 16 Dirac matrices. Specialising
to U(3) ( 4-¢. for the nine matrices T+ , £L20,0,...,8 ), it

is clear from the above that the 144 matrices 'fA'T‘: (A=I,...,l6,'
4:0,1',_,,1) in general provide the set of generators for a U(12)

structure,.

It is easy to see from the results for the anticommutators
3
of the Dirac ¥ 8 given in the Appendix that the general U(12)
group contains two U(6) sub~groups each generated by the 36

matrices,

UHO) : L) T (i) o T
WO : - L0, L0-ive) s T’ (1)
The crucial remark is that since (| 4+4 % )o’Fv is a

set of antisymmetric self=-dual matrices, there are only three

independent_ones among these; and likewise for ( 1-4¥)05,

Clearly a U{6)-invariant parity-conserving theory must necessarily
possess UTe W symmetry. U (6) and U™ (6) clearly are straight
generalisations of SU+(2) and SU (2) == the two.sub=groups into

which the (Buclidean) group of rotations in 4-dimensions splits.

The relevant matrices are unimodular
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for a Lorentz metri%ﬁgne must therefore first resort to the
"unitary trick"™ of Wgyl, i.®s, go to a Buclidean metric,
generalise U+(2) ,U (2) to UY(6) and U7(6) and then pass back
to the Lorentz metric 4. Adopting an obvious nomenclature we

shall call'U*(G) the homogeneous symmetry group in contrast to the

inhomogeneous groups we consider in the next section.

"Algebras" of the second kind based on the inhomogeneous
rather than the homogenous Lorentz group are gene?ated if we combine
general relativistic "spin operators™ with the 'r"s. The "apin
operators™ are products of the Dirac Matrices with momentum; one
example is the set of the Pauli-Lubanski operator (which in the

rest=frame of a particle give ite intrinsic spin),

Wy = 3— wpk Svp P, (e Wz 0 ). (2)
Since;

[Wp:WV] = iepvpu ”Pwk. ,

fw,wy} = 2 Chaby = Pg)- | (3)

: i N
A new U(6) algebm4is generated by the 36 gquantities T, WPT .
Since W (like Ouy ) commute with ':fb_ , it is also possible to
set up the groups LL(G) with the generators
wr

Welb) 1 SG=)TY | Lasidg)w, T

Now the W's are only one example of the genseral clasgs of

)

"gspin-operatore™., Another oﬁérator has been described by Calogero

this is the tensor

W‘“P = — A €uvap T f’v

Way = LGt Wy = = T (Tebp-Thhe)
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For a free Dirac particle, Calogero shows that the Yeven™
components of the WP and W'Fv (in the Foldy~Woutbuysen sense)

represent reaspectively
We = Ea ymey W, = R.gf'
%G“‘;Wb‘: mﬁ;'-l' EO": ’ Weo ™ P g't
Here _O_"l and §_'t are the longitudinal (along ?. ) and trensverse
components of spin & . TIn the rest-frame therefore W;‘ and Wyy

pogsess the ssme physical significance. In a future paper we

hope to come back to the complete algebra of these spin operators,

3. Invariance of the Lagrangians

(A) The Free Lagrangian

The Pauli~Lubanski operator DJ", and Calogero operator W;,
posaess the remarkable property that the Dirac operator D = 7-} -—#V

commutes with these. Thus :
by = ¢ (Th-mN

is invariant for U, (6) (with generztors T ; W‘FT‘.). Likewise

defining Y o = §O0HiGN, Hu torms G0 and Falode
are invariant for Ua‘r (6) (generators T*, Wy,t T4 ) respectively.
Thie is of course not true of the mass term M(¢K¢L+ q:‘l..q/i?-) .

’ 4
Consider now the algebras U't (6) generated by the T~ 's

and the Dirac matrices. The fransformations

Lyt T o) T
Vo= (14 50T+ 0T A

. - - (4)
W= (1 STl e p'T )4

vl




even when taken in conjunction with the Lorentz transformation

/
te = bt by |
7

do not leave the free Dirac Lagrangian invariant '. 1In fact

SWJWL) = “ﬁ\' ' Ti(f!*"v 'VV}’PNJL-

where the summation is to be carried over 4= { to 8. .The
conclusion therefore is that so far as the free Lagrangian is
boncerned, fhe group Uur(6) is the onl;ng;ich_leaves the
Lagrangian invariant; [Fi;(é) leaves the kinetic energy

term unchanged but not the mass term, while for the covariant
g£roups Ilf(é) (defined with Dirac matrices q;# etc., ratber
than the spin matrix Uﬁh) the free Lagrargian possesses no specially

desirable transformation character.

(B) The Interaction Lagrangian _
It is at thia stage that our difficulties start. It has

gso far appeared impossible to construct an interaction Lagrangien
involving a product of a finite number of field operators which is
invariant for Ug{6) or U:;(6). It would seem therefore that

if U (6) is a relatively exact symmetry of nature, only an S-matrix

type of theory oan be constructed for it.

On the other hand for the group structures iz (6), even
though the free Lagrangian is not invariant, one can write invariant

interaction terms. TFor example,8 in the Buclidian sense




(with Y = q‘)* )y the interaction part of the parity conserving

Lagrangian
Flp-miy HIRTYS ANIE (mprg-;-'\p)(%%"ﬂ/) (5)

is invariant for UY (6) ® U™ (6) tranasformations, There is a
total of T2 currents of which only the SU(3) ninefold (F?;‘T“t}/

is conserved. The divergences of these currents are listed in

the Appendix.

4., Invariance of SU‘*(B.) @SU*(}) under SU(6)

The considerations of section 3 leave us with a dilemma.

What is the U(6) group of Glrsey, Radicati and Sakita, if it
is not '(_Iw(é)? If we are willing to give up covariance of the
group-structure (though of course not of .the basic Lagrangian)
a mof,-covariant sub-group of the structure U+(6) 0. U—(6)_ is
provided by the 36 generators.

b

T4 , 0'4‘&']_“i (4,".—"0;[,-'-:3 ; a,b': lizﬁs)
This structure coincides with the little~grour Uy{6) for the rest frm pzo, -
Thus the set of transformations,

= (14T +§€lb°‘aﬁ’)“/ (6)

b (space~rotation)

bo'=to b; : }’A.‘l' E:Ia b
leaves the interaciion (\-l: 'J;J" \I»’x¢ TFT“P) . (Wpﬁrtlf)( ‘7’7,;7;1-“[’)

ag well so the mass term as well as invariant, changing the -
o

kinetic energy term by
& = ﬁé;,b C’PYabbT‘uP, {i=1,.,8)

The differential conservation law does not hold for the 24 currents

-'Y-Vpo'&bT;\P A=1,.,8  ab=1,2,3,



Note quite generally that 8& = LD € aFJP '

Now the Lagrangia;,n(S) postulated above is precisely the
type of Lagrangian previously written down in a different connection -
in connection with what has been called the [SLLB)]L@ [SU(%)]R'
theory 9_. It is perhaps instructive to write the equations of the
gauge version of this theory in detail as well as the transformations
involved. We shall use the Lorentz metric and not adopt the trick

of passing to the Buclidean space.
Start with the Lagranglan @ N
§ = (42 20z i e ) - 20z - LR ]
+ TPLf(P“lZfT"NL + QXL TN, —m Ty

where Z andz are 18 gauge vector fields which can be

expressed as sums and differences of vector and axial vector fields,

ZI = V+A ’ Zl = V afﬁp"'
Now if we specialise to the Weyl representatlon Lthe LL(G) & U(é)

$ransformation written in eq. (4) we have ~
¢ = ( FRENA +m*.o'T")L[1_
\H{-,-(l+4p'l"+t “'T)% (8)
or  y'z [+ A (€witsn)T P (% )T |y

with O[< éfiq ) p:E-—iq ' Then it is easy to check that

the Tukawa=-like interaction terms in (7) are invariant providing
zf’o' = Z“ x f‘i arJ Zk . 6. zk) }
- 74 i (2] ) - i zr | ¥
Z:_;z Z‘ +f'1k(p’2 -phz) } o)
_Z_i; - 21 +j:&ﬂl. Pzz ‘-\e yan ) nikﬁ)'gg _



However the free Lagrangian changes by
8lo = 2 HUXY PTG 12T pT N +
. VoA [ ' - (11)
+im (4-p") (g TTY -Y.OT Yo )t
+ meson terms

Clearly the mass term q;‘}’ is invariant only if the rf,
containing part of the transformation vanishes ('l]= o or &’:f& ).
Also as stated before, the kinetic . energy term is at least
invariant esdy for the part of the tramsformation (8) corresponding
to pure rotations, vi‘b.

> (1+ieiT viglo )y , b b+ €xp

Note also that Z,Z, is invarient in the Euclidesn sense,liie,§(Zy+Z*)=0.
We have omitted writing the meson equivalents of the fermion

kinematic—energy in eq.(ll) for the sake of brevity.

5. Conclusions

To summarise the situation in respect of. combining the Lorentz
with the internal symmetry groups, we succeed in writing down a
complete field=theoretic formalism provided we extend the algebra
of the homogeneous, and not the inhomogeneous Lorentz group. The
operators ( % f'fs )Opv correspond to the two independent

(angular momentum) operators which generate the homogeneous Lorentz

group.
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The group structures Uf(6) dU (6) :;re A direct generalisation
from SU*(2) to U*(6) of spinors of each kind. However we note that
these generalisa_fions do not leave the kinetic energy terms invariant.
The physically significant group with 36 generators is then the
generalisgation of the hpmogeneous Lorentz group, this generalisation
consisting of 36 generators of space Vrotations € and the unitary
transformations T"._Q'T; . For the rest frame of a single particle,
this. group coincides with Ugyz(6), the "little group" of Girsey,
Radicati and Sakita.

The authors are deeply indebted to Prof, P. T. Matthews and
Dr. J. Charap for stimulating discussions. They have developed the
U*(G) @ U (6) formalism independently. After completion of this work
tlhie a.u;:hovs have also seen a preprint by M. A. B. Beg and A. Pais on

the subject and a reference therein to a preprint by Lee, Cornwall,

Freund and Bardakei.
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APPENDIZX

We liat here the commutators and antivommutators. that arise in
_the algebra of U(12), TFor the U(3) spin part we have

[TA 7= i flkTh | {7 T} = gHkT,
H

The ¥ and d are the same as those of Gell-Mann (Phys. Rev,

125, 1067 (1962))and A= ;—_ establishes the correspondence with his
notation, '

For the Dirac algebra we use the 16 matrices
CYA - L ' 7" ) o-w = %tr’(,frv-] ) 0;‘5 - iz}‘(fb‘ y %

for which -\FYA'{/ is real. Then listing the results,

"

[ 6p] 0

1,0} = 260

(%] = 2( g7, - Q)vTP)

B9} = -2 Eapp s .

[W).G'pv-] 1‘: (ﬁxv Tap + g-a;aolv = Guip %y = 3» OZP)
1% pw} =2 (‘jn.u $av - ﬁ')pggv) - 26w Ts

{6, pv-]’ -2 vap'fp

(5, 0',1.'3 = 8l (31,4 Oys - 3);16,-&5)

(%.,0m) = 0 |

1%, St = Epprpr

y
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. - -
We also include here the currents which generate U (6) @ U (6).
Thus under (4) we bave

8L=

'B; [ 'a (BA"PL) "P t fa(a‘,%) S‘Pﬂ] maeson contributions

B[R (e e

e (4 ‘(‘P"W’“P ) ]
= % Ox JL,IAH --Prv TJM - “"'BAJ;-? “/’BJRR
whers

J-LFVJ = \PLYAO;VT \PL » JL; =‘ ‘EY)T, ‘PL + e

and gimilarly for J:l‘ Since the only change in the Lagrangian is

that of the free part ,

) ;
aa Jia = 3A‘TR) = 0 I 0,';---13

2, J';,’.v,; - 2 (40 -% )T } "
9 Qf“" y = ZKPR(T'D" 'r’a)T \PR-F.

and 0y Jguy = Oy =0 i m=o,
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