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Abstract 

 
Thermal nucleation of kink-antikink pairs in a nonlinear Klein-Gordon (NKG) model with a 

Remoissenet-Peyrard (RP) substrate potential in the presence of impurities and coupled to an 

applied field is analyzed in the limits of moderate temperature and strong damping. Using the 

Kolmogorov method, the average velocity of particles of the lattice is calculated and its dependence 

on the intensity of impurities is discussed in connection with the deformability parameter or the 

shape of the RP substrate potential. Numerical values are carried out by making use of parameters 

of the hydrogen atom adsorbed in the tungsten and ruthenium substrates. We show that, for large 

values of the applied field, the presence of impurities in the system makes the nucleation process of 

kink-antikink pairs more favorable in the high-temperature regime while they contribute to make it 

less favorable in the low-temperature regime.  
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I.  Introduction 

 
Nucleation is generally defined as a phenomenon where a new phase appears locally in 

space. It is one of the most drastic phenomena in the various fields of physics, chemistry, biology, 

and also in engineering [1]. More precisely, the nucleation in condensed matter physics is most 

interesting in the sense that it can be controlled by parameters such as pressure, temperature, 

electric and magnetic fields and so on. One usually distinguishes homogeneous and heterogeneous 

nucleation. In the first case, embryos of a stable phase emerge from a matrix of a metastable parent 

phase due to spontaneous thermodynamic fluctuations. Droplets larger than a critical size will grow 

while smaller ones decay back to the metastable phase [2-4]. In the second case, random forces 

catalyze the transition by making growth energetically favorable [1]. 

The study of the nucleation connected to the formation of solitary structures in spatially one-

dimensional (1D) and multistable systems is well developed theoretically [4-20], experimentally 

and numerically [21-25]. These studies offer the fundamental understanding of nucleation in 

homogeneous medium. More specifically, theoretical analysis of nucleation was introduced four 

decades ago by Seeger and Schiller [10] to describe the kinetic process of dislocation and few years 

later by Langer [4] to investigate the problem of reversing the direction of magnetization in a 

ferromagnetic system. The same ideas, but where the approach is closely related to the concepts 

already developed in the dislocation literature, were also developed by Büttiker and Landauer [16] 

to present a detailed calculation of the nucleation rate of thermal kink-antikink pairs in the over-

damped sine-Gordon (SG) chain and by Yemélé and Kofané [5] to present the calculation of the 

nucleation rate of kink-antikink pairs in a driven and over-damped deformable chain. This theory 

was later improved by Marchesoni et al. [20] when analyzing the thermal nucleation of kink-

antikink pairs in an elastic string.  

The above studies deal with nucleation in homogeneous systems. However, most of the 

realistic physical systems possess impurities which may influence the nucleation process and 

disturb the newly formed kink-antikink pairs. Inhomogeneity may mean spatial modulation, 

quasiperiodicity, or disorder of several kinds. For example, local inhomogeneities (micro shunts 

and micro resistors) may be installed into the long Josephson junction during fabrication (see Ref. 

[26]). Neutron scattering experiments by Boucher et al. [27] on quasi-1D magnetic compounds 

(magnetic chains) which have revealed that the crossover from ballistic to diffusive behavior of 

soliton is driven by the impurity concentration, evidences the fact that these materials contain 
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impurities. In compounds whose electrical properties are due to the existence of charge density 

waves (CDW), that is, interacting electron-gas, impurities may also be present and represent the 

sites or atoms where electrical properties are different from those of the host atom; for example, Br 

disorder in K2Pt(CN)4Br0.3nH2O(KCP). In adatomic systems, impurities are also present due to the 

geometrical imperfections of the adsorbed surfaces which in general are at the origin of the spatial 

deformation of the nucleus, to name only a few. 

The nucleation in condensed matter physics may be considered in the framework of the 

Frenkel-Kontorova (FK) model [28], which describes the behavior of an harmonic chain of atoms 

in the periodic substrate potential, known as the nonlinear Klein –Gordon (NKG) model with SG 

potential. This model can be generalized by considering another form of potential and by taking 

into account inhomogeneities in order to go beyond the mathematical problem and to obtain results 

that may be useful for real materials that undergo structural changes such as shape distortion, 

variations of crystalline structures or conformational changes in some regions of their physical 

parameters. By the way, the study of the effect of local inhomogeneity or single impurity on the 

nucleation in the case of CDW shows that the CDW can be pinned by an impurity if the external 

applied field is less than a threshold field [29]. Similarly, it has been demonstrated that the current 

carried by CDW may rise as a result of the increase in the rate of generation of solitons on 

fluctuations in random field of defects [30]. In quasi-1D magnetic compounds, it has also been 

shown that, stochastic motion of SG solitons in a random potential can be used to model their 

statistical properties. This random potential is generated by the presence of impurities and explains 

the observed crossover from the ballistic to the diffusive behavior of spin correlations [31]. 

Although these results are quite interesting, they are limited to the rigid substrate potential. Thus at 

this stage of research one may wonder what is the influence of the shape of the substrate potential 

on the nucleation process in these inhomogeneous systems. The answer to this question is the main 

objective of the present work. In this paper we focus our attention on the Remoissenet-Peyrard (RP) 

substrate potential whose shape can be varied continuously as a function of a deformability 

parameter and which has the sG shape as a particular case [32-33]. In addition, it can be 

successfully used to model the substrate potential along the surface of adsorbed layers in adatomic 

systems (see, e.g, Ref.[34] and references therein). 

The organization of the paper is as follows: In Sec. 2, we present the generalized NKG 

model under consideration in the presence of impurities. In Sec. 3, we reformulate the basic results 

on the nucleation rate of kink-antikink pairs in the homogeneous system [5] by taking into account 

the non-Gaussian correction in the spirit of Marchesoni et al. [20]. In Sec. 4, we focus our attention 

on the influence of impurities on the nucleation rate of kink-antikink pairs. The mean time for a 
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transition of an arbitrary point on the chain to a neighboring valley of the Peierls distribution is 

calculated by means of the Kolmogorov method in order to obtain the mean velocity or average 

velocity of particles from one site to an adjacent one, due to the passing of kinks triggered by 

stochastic forces. In Sec. 5, experimental values of the lattice parameters for H/W and H/Ru 

adsystems are used as a numerical application to quantify the correction factor of the mean velocity 

of particles, due to the presence of impurities in the system. Finally, Sec. 6 is devoted to concluding 

remarks.   

 
2.  Model description 

 
We consider a generalized NKG model describing the dynamics of a chain of particles in a 

periodic nonsinusoidal substrate potential in the presence of external forces and impurities. The 

dynamical behavior of the system is governed by the nonlinear Langevin equation (NLE) 

( ) ( )0

( ),
, impRP

tt xx t

dV udV u r
Mu ku V u F x t

du du
γ ζ− + = − + + − ,                                                 (1) 

where u is the longitudinal dimensionless displacement of the particles from their equilibrium 

position along the x axis. The subscripts x and t denote the derivative with respect to space and 

time, respectively. 0V  is the amplitude of the substrate potential. The constant force F is related to 

the applied field f  through the relation 2F f π= . To model the “on-site” potential ( ),RPV u r , we 

shall use the nonsinusoidal substrate potential introduced by Remoissenet and Peyrard [32,33] 

urr
urruVRP cos21

cos1)1(),( 2
2

++
−

−= ,                                                                                       (2) 

where r is the shape parameter, 1r < . As this parameter varies, the amplitude of the potential 

remains constant with degenerate minima 2 nπ  and maxima (2 1)n π+  while its shape changes. 

When 0r > , it has flat bottoms separated by thin barriers while for  0r < , it has the shape of sharp 

wells separated by flat wide barriers (see Fig. 1). At 0r = , the RP potential reduces to the well-

known SG potential. This parameter depends on the physical characteristics of each system. For 

example, in quasi-1D compounds whose electrical properties are due to the existence of CDW, the 

substrate potential which corresponds to the interaction of CDW with the host atom may be 

calculated up to higher order of the perturbation theory.  Up to the first order of this perturbation 

theory, we obtain the SG potential which is a good approximation only in the weak-and strong 

coupling cases. Thus, at higher order, in addition to the first harmonic which describes the sG 

potential, one also obtains the second, third and higher harmonics [35]. The compact form of this 

interaction between CDW and host atoms may then be approximated by the RP-type function where 
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the parameter describing the shape of the substrate potential depends on the amplitude of the CDW 

gap, the Fermi velocity and the quasi-particle energy. Similarly, for the adatomic systems, the 

parameter r of the substrate potential  is related to the frequency 0ω  of oscillation of an isolated 

adatom at the bottom of the adsorption site, the adatom mass am  and the period sa  of the substrate 

potential [36]; more precisely, )1/()1( κκ +−=r , with 2/1
00 )/2)(2/( Vma as πωκ = .  Note that the 

above parameters for the adatomic systems are related to the characteristic parameters of the system 

described by the NLE (1). 

The coupling of the scalar field ( , )u x t  to the heat bath at absolute temperature T is 

described by a viscous term tuγ−  and a zero-mean Gaussian noise source ( , )x tζ . At Boltzmann 

equilibrium, the damping constant 0Mγ γ= , where 0γ  corresponds to the rate of the energy 

exchange with the substrate, and the noise intensity are related through the fluctuation-dissipation 

relationship 

( , ) ( , ) 2 ( ) ( )Bx t x t k T x x t tζ ζ γδ δ′ ′ ′ ′< >= − − .                                                                           (3) 

Finally, the last term of the NLE (1), ( )impV u , is the potential energy density of impurities and its 

analytical expression depends on the nature of these impurities since various types of impurities 

may exist such as the local variations of masses of particles, of elastic constants and of substrate 

potential barriers, respectively. It has been shown that in the presence of impurities, the nonlinear 

waves may be trapped, reflected or transmitted with more or less distortion of their structure 

according to the intensity of the impurities [37,38]. We assume here that impurities are randomly 

distributed in the system and then cause the deformation of any spatially localized structure as a 

main effect. A simple realization of the proposed model is obtained by considering the following 

analytical expression  

( ) ( )imp f
uV u V x
x
∂

=
∂

,                                                                                                               (4) 

where ( )fV x  is a random function of the spatial coordinate. Thus, the quantity ( ) /impdV u du in the 

NLE (1) is then equal to ( ) /fdV x dx . In addition, we restrict our analysis to the case where 

impurities are weak and where their mean separation is less than the characteristic length of the 

system (or the size of kink solitons), ( )1/ 2
0 0/k Vξ = , which enables us to describe  the statistical 

properties of this random field by  

( ) ( ) ( )f f VV x V x x xχδ′ ′< > = − ,                                                                                               (5) 
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with zero-mean ( ( ) 0f VV x< > = ), where χ describes the intensity of impurities and ... V< >  denotes 

the average over the different realizations of the random potential ( )fV x . Note also that the 

expression (4) can be successfully used to describe forward scattering of CDW in the quasi-1D 

compounds whose electrical properties are due to the existence of CDW [30]. In the next sections, 

we shall have occasion to use the Hamiltonian derived from the NLE (1) which is given by 

2 2
0 ( , ) ( )

2 2t x RP imp
dx M kH u u V V u r Fu V u
a
⎧ ⎫= + + − +⎨ ⎬
⎩ ⎭∫ ,                                                            (6) 

where a is the lattice constant. In this expression, since u is the dimensionless displacement of 

particles, the parameters M , k  and 0V  have the dimension of (mass)x(length), (energy)x(length), 

and  1(energy)(length)− , respectively.   

Before ending this section, we would like to mention that the NLE (1) with the Hamiltonian 

(6) is well known as the generalized NKG model. This NKG model has been successfully used in 

investigations of a number of physical phenomena such as CDW, adsorbed layers of atoms, domain 

walls in ferromagnetic and antiferromagnetic systems, crowdions in metals, and hydrogen-bonded 

systems (see, e.g., the review paper in [39] and references therein for applications of the NKG 

model). The use of the RP potential as a substrate potential is justified by the fact that it can be 

invoked to describe a large amount of physical systems. As a result, an appropriate choice of the 

shape parameter enables us to employ a suitable form of the shape of the potential close to the 

system under consideration such as epitaxial or incommensurate structure [36] in crystals and other 

various systems. 

3. Nucleation of kink-antikink  pairs in the homogeneous system 

 
The dynamics of the pure system obtained from the NLE (1) by setting its right hand side 

equal to zero is dominated by elementary excitations: phonons and solitons (kink and antikink). 

While phonons are extended modes of the system, solitons are localized modes and may be viewed 

as effective particles characterized by a mass and an energy. In a number of situations, kink 

dynamics may be described by equations of its collective coordinates, namely the kink center of 

mass. If one assumes periodic boundary conditions on the chain of length L,  ( , ) ( , )u x t u x L t= + , 

kinks are only present as a result of thermal activation. These thermal kinks are created in pairs 

involving a kink and an antikink. On the other hand, if the system is not subjected to periodic 

boundary conditions or in other words, if the ends of the string are free, the so-called “geometric” 

solitons of the same sign appear in the system. Characteristic parameters of kink solitons in the pure 
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system governed by the NLE (1) are well known [5]. For example, the pseudo-kink width d , the 

static kink (antikink) energy ( )sE , and the rest mass ( )sM  are given by  

 ( ) ( )1 2
0 0/ ,  d dξ α ξ α= = ,    

1
1

r
r

α
−

=
+

,                                                    (7.a)                    

 ( ) 1/ 2 ( ) ( ) ( )
0 08( ) (r),  (8 / ) ( )s sE kV G M G rζ= =l l l l ,                                             (7.b) 

with 1, 2=l , and  

 ∗
−

∗= ααα 1)( tanh/)(rG l ,  (2) 1
* *( ) tan ( / )G r α α α−= ,  2

* 1α α= − ,                                 (7.c) 

where the superscripts ( 1=l ) and ( 2=l ) stand for 0 1r≤ <  and 1 0r− < ≤ , respectively, and 0ξ  

designates the characteristic length of the system. For 0r = , the above equations reduce to those of 

the usual sG kink soliton.  

 In the presence of the applied field, the total on-site potential energy given by  

 0( , ) ( , )RPV u F V V u r Fu= − ,                      (8) 

is the sum of the substrate potential energy 0 ( , )RPV V u r  and the energy due to the applied field Fu− . 

The minima ( )snu  and the maxima ( )inu  of the above on-site potential energy (8) which are known 

as Peierls valleys and Peierls hills, respectively, are different from those of the substrate potential 

energy and may disappear if the applied field F is greater than the threshold value mF  [5] 

 
( )

2 2 2

0 2

2 2 (3 1) 3(1 )

5 3
mF V

α α α

α

⎡ ⎤− + ∆ ∆ − −⎣ ⎦=
− + ∆

,                                                             (9) 

 with 4 29 14 9α α∆ = − + . This means that kink solutions of the NLE (1) can only exist if mF F<< . 

Note that these Peierls valleys and Peierls hills obey ( , ) / 0dV u F du = . More specifically, the NLE 

(1) describing the configuration of the nucleus in a pure system may also be viewed as the equation 

of motion of a classical “particle” with mass “k”, time “x” in a potential ( , )V u F− , where ( , )V u F  

is  given by Eq.(8). The critical nucleus of amplitude mu∆  will be a configuration which deviated 

only in a localized region from the uniform state snu  followed by the motion to the right until the 

turning-point sn mu u+∆  is reached. Then, the particle again returns asymptotically to the local 

maxima at snu . The corresponding stationary solution of the NLE (1) is the saddle-point 

configuration or the critical nucleus which departs from the stationary uniform state snu  at x = ±∞ . 

Its amplitude mu∆  strongly depends on the applied field. Furthermore, mu∆  decreases 

monotonically with respect to F : 2mu π∆ =  for 0F =  and 0mu∆ =  for mF F= . The transition 

between two adjacent Peierls valleys due to thermal fluctuations called critical nucleus are the 
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newly formed kink-antikink pairs, whose size depends on the applied field F . This transition is 

possible only if the fluctuations produce, within the system, a minimum of energy N BE k T∆ >>  

necessary to create a critical nucleus ( , )Nu x X , where X  designates the position of the newly 

formed kink  which in the continuum limit is linearly time dependent, that is, 0( ) vX t X t= + , 0X  

being the critical initial position of the kink center of mass and v the kink velocity. For mF F<< , 

the nucleus ( , )Nu x X  can be well approximated by the linear superposition of a kink and an 

antikink centered at X± , respectively, that is, 

 ( , ) ( ,0) ( ,0)Nu x X u x X u x X+ −= + + − ,                                                                               (10) 

where the solutions ( , )u x t±  satisfies the NLE (1) without the right hand side.   

 In the overdamped limit 1/ 2
0( )Vγ >> , where the inertial term ( )ttMu is neglected, the 

substitution of Eq.(10) into the NLE (1) in the absence of the impurity leads to the following 

equation for the nucleus  

 
( )

( )N
R

dVdR t
dt dR

η= − +
l

,                                                                                                          (11) 

with the reduced coordinate 2R X= , where the potential of the critical nucleus is given by 

 
( )

( ) ( )
/( )

( ) ( )

42( ) R ds
N

s s

EFV R R e
M M

υπ
γ γ

−= − −
l

l l
l

l l
,                                                                        (12) 

with  

 
( )

1
1 * *

* 2 1
*

exp( 2 tanh )
tanh
α αυ α

α α

−

−

−
= ,  

1
(2) * *

* 1
*

exp[2( / ) tan ( / )]
tan ( / )
α α α αυ αα

α α

−

−= .                               (13)                    

The noise ( )R tη , associated with Eq.(11) for the nucleus,  verifies the following fluctuation-

dissipation relationship 

 2 ( )( ) ( ) 2 ( )R R Rt t D t tη η γ δ′ ′< > = −l ,  ( )
( )

2 B
R

s

k TD
Mγ

=l

l
.                                         (14)                     

 Following the procedure outlined in Ref.[20] useful for the calculation of the nucleation rate 

of kink-antikink pairs, it is necessary to determine the size of  the critical nucleus ( )
NR l  and the 

negative eigenvalue ( )
0
Nλ l  of the non-uniform state. Thus, the nucleus size is set by the condition 

that ( )( ) 0
N

N R
V R′ =l , leading to 

 
( ) ( )

( ) ( )
( )

2ln s
N

ER d
Fd
υ

π
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

l l
l l

l
,                                                                                                 (15)                

and  the negative eigenvalue of the non-uniform state, which is the eigenvalue of the RP scattering 
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potential in the presence of the applied field defined as   2 2 2 2[ ( , ) / ] /[ ( , ) / ]
N snu ud V u F d u d V u F du , is 

given by 

 ( )2 ( )
( )

0 2 ( ) ( )

2

N

NN

sR

d V R F
dR M d

πλ
γ

= = −
l

l

l l
.                                                                                  (16) 

In the limit where the shape parameter 0r → , Eq.(13) reduces to 1 and then, Eq. (16) reduces to 

that obtained for the sG systems.  

 With the results above stated, in the Gaussian approximation, the improved formula of the 

number of kink-antikink pairs per unit time and length is then given by 

 ( ))()()()(
0 exp)(~ llll

NEFKJ ∆−Ω= β ,                                                                                       (17) 

with 1/ Bk Tβ = , and the prefactor 

 ( )
1/ 2 1/ 2 1/ 2( )3/ 2 1/ 2 ( )1

0( )
( )

12

N p
N

N
n n B

E Q
k k T

λγ
π λ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞∆Γ Γ⎛ ⎞ ⎛ ⎞ ⎜ ⎟Ω = ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∏

l l
l

l
f

,                                         (18) 

where ( )N
nλ

l  are the eigenvalues of the non-uniform state, 2 2
0( / )[ ( , ) / ]

snuV d V u F duγΓ =  and Q the  

product of the eigenvalues of the localized eigenmodes of the critical nucleus. In addition, p is the 

number of localized modes and strongly depends on the shape parameter r . In fact, when 0r ≥ , the 

system possesses two bound states (p=2), with ( ) 0N
nλ =l  and ( )

0
Nλ l , given by Eq.(16). More over, 

internal modes appear when r decreases from 0 to –1. For example, 5p =  for 0.5r = −  and 21p =  

for 0.9r = − .  

 The non-Gaussian correction ( ) ( )K Fl to the nucleation rate formula of kink-antikink pairs 

obtained through the Gaussian approximation are given by [20] 

 ( )
( ) ( )

0( ) 2
( ) ( )

0

( )exp exp
2

N
N

R R

V RK F R dR dR
D D
λ∞ ∞

−∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ ∫
l l

l

l l
.                                                     (19) 

In the absence of these correction terms, that is ( ) ( ) 1K F →l , Eq. (17) reduces to that obtained by 

Yemélé and Kofané [5]. The presence of these factors gives rise to the better estimation of the 

nucleation rate of kink-antikink pairs in the system. The quantity ( )
NE∆ l  interfering in Eq. (17) 

designates the energy of the critical nucleus whose accurate value at a given field mF F≤  is 

evaluated numerically through the relation                    
2

( ) ( )l N
N

du xE dx k
dx

∞

−∞

⎡ ⎤∆ = ⎢ ⎥⎣ ⎦∫ ,                                                  (20)  
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where ( )Nu x  satisfies the NLE (1) without the right hand side. However, for some particular cases, 

the explicit analytical expression of ( )
NE∆ l  may be obtained:  

 For small F values ( mF F<< ), the amplitude of the critical nucleus is large and very close 

to 2π : (1) 1/ 2
02 (4 / )mu F Vπ α π∆ = −    and       (2) 1/ 2

02 (1/ )(4 / )mu F Vπ α π∆ = − . This nucleus is called 

large amplitude nucleus (LAN) with energy  

 
( ) ( )( ) ( )

( ) ( )
( ) ( ) ( )

22 1 ln s
N s

s s

Ed F d FE E
E E Fd

υπ π
π

⎡ ⎤
∆ ≈ − −⎢ ⎥

⎣ ⎦

l ll l
l l

l l l
,                                                                (21) 

where ( )
sE l  designates the static kink energy defined in Eq. (7). 

 For large F values ( mF F≈ ), the amplitude of the critical nucleus is close to zero. This 

critical nucleus solution of the NLE (1) is called the small amplitude nucleus (SAN) whose 

analytical expression is given by 

( ) ( )2sec 2Nu x b h x ξ= ,                                                                                                  (22) 

with amplitude 
2

2

1 2 cos 4 / cos13 tan
1 1 5 cos

sn sn
sn

sn

u urb u
r u

ε ε
ε

⎡ ⎤⎛ ⎞ − ++
= ⎜ ⎟ ⎢ ⎥− −⎝ ⎠ ⎣ ⎦

                                                             (23.a) 

and size  

 ( )
( )

2 32
2 2

0 2 2

1 2 cos1
1 cos 2 1 sin

sn

sn sn

ur
r u u

ε
ξ ξ

ε

⎡ ⎤+⎛ ⎞+ ⎢ ⎥= ⎜ ⎟− + +⎢ ⎥⎝ ⎠ ⎣ ⎦
,                                 (23.b)   

where 2/(1 )r rε = + .  The energy of this SAN is also given by            

   

22

2

2

02

2
2/1

0
2/1

0
)(

1
1)/)(cos21(4tan/1

1
1)/())(5/24(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=∆
r
rVFuu

r
rVFbkVE snsnN εεl       (24)                     

In the presence of random fields, this critical nucleus may always exist in the system even at 0T →  

and resulting from the combined effects of the energy fluctuations and the applied field F . At high 

temperatures, thermal nucleus will play the main role.  In what follows, we focus our attention on 

the thermally activated kink-antikink pairs. The above results constitute the starting point of the 

treatment of the inhomogeneous system. In order to relate the results of the nucleation rate of kink-

antikink pairs to an easily accessible physical parameter we will evaluate, in the next section, the 

mean velocity of a particle in the chain which from a macroscopic viewpoint accounts for this 

microscopic phenomenon of the nucleation of kink-antikink pairs. Note that this question has been 

of interest in the theory of dislocation for more than four decades [6,8]. One should keep in mind 

that at low temperatures and in the absence of fluctuations, the particles undergo small amplitude 
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oscillations around their equilibrium position. In a macroscopic viewpoint, the system is at 

equilibrium. A remarkable displacement of particles comes from its transition from one site to an 

adjacent one due to the expansion of the newly formed kink-antikink pairs triggered by stochastic 

forces. The mean velocity of this displacement is thus determined by the number of kink-antikink 

pairs created per unit time and length. In other physical systems, such as compounds whose 

electrical properties at low temperatures are due to the existence of CDW, the above mean velocity 

can be interpreted as the electric current passing through the physical systems [30,40]. 

 

4.  Inhomogeneous systems 

 
4.1 Preliminaries 

 
For real physical systems (inhomogeneous systems), the dynamics of the lattice may be 

described in terms of quasiparticles which, however, now interact with one another or with 

impurities. The interaction of nonlinear excitations with impurities plays an important role in 

transport properties and nucleation process of 1D systems. The kinks (antikinks) and breathers may 

be trapped or reflected by local inhomogeneities as in the case of a discrete lattice where the kink  

can be trapped in the Peierls-Nabarro energy (increment of the energy of the static kink due to the 

discrete character of the lattice) [41]. When the intensity χ of the random fields is weak 
1/ 2

0( )Vχ << , the impurity has little effect on the parameters of the critical nucleus (size, shape and 

amplitude). However, the total energy *
NE∆  necessary to create this nucleus is affected, that is 

* ( )N NE E U x∆ = ∆ + , where ( )U x  is the increment on the energy of a nucleus due to the random 

fields. From the Hamiltonian (6), we can define this increment on the energy as 

( ) ( ) ( )f N
dxU x V x x x
a
′

′ ′= Φ −∫ ,                                                                                             (25)   

where )'( xxN −Φ  depends on the shape of the nucleus, with xxxuxx NN ∂−∂=−Φ /)'()'( . From 

the statistical properties of the random function )(xVf  given by Eq.(5), it is easy to show that this 

increment of energy verifies the correlator  

2( ) ( ) ( ) ( )N N
dxU x U y x x y x
a

χ
′

′ ′< >= Φ − Φ −∫ .                                                                      (26) 

Accordingly, the nucleation rate of kink-antikink pairs is given in the factored form as  

[ ]0 exp ( )J J U xβ= −% % ,          (27)                   

where 0J%  is, in the first order approximation in χ , the nucleation rate of kink-antikink pairs in the 
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homogeneous system defined by Eq.(17). Thus, we are concerned here only with the Arrhenius 

factor since χ is small.  

As mentioned in the preceding section, we focus our attention on the mean velocity of 

particles /u t< ∂ ∂ > . In fact, a kink passing the point x  of the chain to the right reduces the 

displacement field u  by π2  and the antikink passing x  to the right advances u  by π2 . In the 

presence of an applied field, the kink current is kk vnj −=  and the antikink current kk nvj = , where 

v  is the kink velocity and,  kn  and kn  are the kink density and the antikink density, respectively. 

Therefore, the mean velocity of particles can then be written as 

04)(2/ vnjjtu kk ππ =><−><−>=∂∂< , where >>=<=< kk nnn0  is the average kink(antikink) 

density in a chain. The steady state density 02n  is maintained by the balance of the annihilation 

(recombination) and nucleation of kink-antikink pairs. From the probability that the kink encounters 

an antikink in the interval of time dt , one shows that the rate of recombination of 0n   kinks and 0n   

antikinks  per unit length and time is 2
02vn  and the balance for the steady state density becomes 

02~ 2
00 =− vnJ , where 0

~J  is the nucleation rate of kink-antikink pairs in the homogeneous systems. 

We can then write the expression of the mean velocity of particle as a function of 0
~J  as  

><>=∂∂< ttu /2/ π ,                                                                                                       (28) 

where in the homogeneous system we have 2/1
0 )~2( −>=< Jvt .  This result takes into account the 

fact that in the limit of heavy damping, the kink-antikink collision is destructive. The mean time 

t< >  may be viewed as the time for the transition of an arbitrary point on the chain to the 

neighboring minimum of the potential (8). In the inhomogeneous system which is under 

consideration, the above mean time can be generalized by means of the Kolmogorov method as  

0 0
exp ( )( ( ))

x
t dt J z t z dzι

∞ ⎡ ⎤< >=< − − >⎢ ⎥⎣ ⎦∫ ∫
%
% % % % ,                    (29)  

where ( )J z% %  is the nucleation rate of kink-antikink pairs whose center of mass lies at the point z%  and 

( )zι %  is the travel time of kinks initially located at the point z% to reach the point of observation x% . 

The exponential in the integrand (29) is the probability that the point 0x =%  will be in the original 

minimum of the potential (8) at time t [42]. This expression of the mean time should take a simple 

particular form according to whether the intensities of the applied field F and of the impurities are 

weak or not. As we shall see below, expression (29) reduces to that obtained in the homogeneous 

system when the intensity of the impurity potential takes the value zero. This limiting case 

constitutes a proof that Eq.(29) takes into account the annihilation of kink-antikink pairs due to the 

strong dissipation of the system. 



 

 

 

13

4.2      Mean velocity of the chain in the threshold field ( )mF F≈  

 
  In the range mF F≈ , the critical nucleus corresponds to a SAN defined in Eq.(22). Since the 

random fields are weak 1/ 2
0( )Vχ < , impurities have little effect on the motion of  kinks and their 

velocity v  may be considered to be the same as in pure systems. Accordingly, from Eqs.(27) and 

(29), the mean time t< >  is then given by  

( )( )0
0 0

exp
v

x
U zt dx J dz ze βξ ∞

−⎡ ⎤
< >= < − >⎢ ⎥

⎣ ⎦
∫ ∫ ,                                                                          (30) 

with ( )2
0 0vJ Jξ= % , where we have transformed the integration with respect to time t  to 

integration with the dimensionless spaced variables x  and z  through the relation / vt xξ= , where 

x=x/ξ%  and  z=z/ξ% . After integration, we obtain 

[ ]0

2
v exp ( )

t
J U z

ξ π
β

< >=
< − >

.                                                                                         (31) 

Substituting Eq.(31) into Eq.(28), yields 
1/ 2 1/ 2

0/ (2 v )u t J Wπ< ∂ ∂ >= % ,                                                                                                 (32) 

with 

exp( ( ))W U zβ=< − > .                                                                                                         (33)                    

Since in the homogeneous system the mean velocity is 1/ 2
0/ (2 v )u t Jπ< ∂ ∂ >= % , it follows from 

Eq.(32) that the factor 1/ 2W  designates the correction of this result when spatial inhomogeneities 

are taken into account. In order to evaluate W, we assume that the random field distribution is of 

Gaussian type function since the impurity assisted nucleation mechanism is local by definition [43]. 

This assumption is justified by the fact that the random field can take positive and negative values 

near zero and its intensity is weak. Thus, the probability distribution of this random field tends to 1 

when ( )U x is zero and decreases to zero in the case of high values of ( )U x . Accordingly, having in 

mind that ( ) NU x E> −∆  ( that is * 0NE∆ > ), the mean W is then defined as 

( )exp( )
NE

W P U U dUβ
∞

−∆

= −∫ ,                                                                                              (34) 

where  

21( ) exp( / 2 )
2

P U U τ
πτ

= −                                                                                                 (35) 

is the probability distribution with 
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2 2 215
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U a bτ χ −=< >= ,                                                                                                         (36) 

where b  is the amplitude of the critical nucleus given by Eq.(23.a). Substituting Eq.(35) into 

Eq.(34) and integrating yields 

( )21 exp 2 1
2 2

NEW βτβ τ
τ

⎡ ⎤− ∆⎛ ⎞
= −Ψ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
,                                                                             (37) 

where Ψ  is the probability integral. The correction (37) is valid for all absolute temperature 

satisfying the constraint 1NEβ∆ >> . For certain regimes of temperature, the probability integral can 

be approximated by analytical expressions. 

 
4.2.1 The low temperature regime 

 
When the temperature satisfies the constraint NEβτ >> ∆ , the probability integral is then given by 

( ) ( )
( )2 2 11

1
2

0
1 (1/ )exp 1

2 2 2

in
iN N N

i

E E Eiβτ βτ βτπ
τ τ τ

− +−

=

⎧ ⎫− ∆ −∆ −∆⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪Ψ = − − − Γ +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

∑  ,                  (38) 

where Γ  designates the gamma function. Limiting this series to first order leads to the following 

expression for the correction factor:  

( ) ( )2exp
exp 2

2
N

N

E
W E

β
τ

β πτ
∆

= −∆ .                                                                                       (39) 

In figure 2(a), we show that in this range of temperatures the correction factor 1/ 2W  increases when 

the shape of the substrate potential deviates from the sinusoidal one ( 0r ≠ ). Furthermore, it appears 

that this factor is a decreasing function of the applied field. 

 
4.2.2 The high temperature regime 

 
In the high temperature regime, where the temperature satisfies the constraint NEβτ << ∆ , Eq.(37) 

can be reduced, in a first order approximation, to  
2exp( / 2)W β τ= .                                                                                                                 (40) 

The analysis of this result shows that, 1/ 2W  is an increasing function of F  if 0r ≤  as well as for 

0r > , as indicated in Fig. 2(b). Note also that from the above expression, it is possible to recover 

the result obtained previously in the homogeneous system. In fact, in the limit 0τ → , e.g. 0χ → , 

the correction factor W  tends to 1, in accordance with the physical expectation since, in this limit, 

the system is homogeneous. Finally, the correction factor strongly depends on the shape of the 
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substrate potential via the energy ( )
N∆Ε l  and/or τ  at low temperatures as well as at high 

temperatures. 

 
4.3 Mean  velocity of the chain in subthreshold fields ( )mF F<<  

 
In the low applied field ( )mF F<< , two physical situations can be obtained: the case where 

the applied field is greater than the intensity of impurities 1/ 2( )F χ>> and the opposite situation 

where it is small compared to  the intensity of impurities 1/ 2( )Fχ >> . For general the case 

mF F<< , the kink suffers the effects of thermal and stochastic fluctuations; when the temperature is 

lower than the specific temperature ( )
0 0( / )B NT T T k Eτ<< = ∆ l , the kink motion has an activated 

character whereas kink activated by impurities plays the major role for the high temperature 

( 0T T>> ). 

 
4.3.1 Case of 1/ 2

mF Fχ < <  

 
To evaluate the mean time t< > , here we have to take into account the distance between kink and 

impurities along the line. It is then convenient to rewrite Eq.(29) in the form 
( )

( ) { }00 0
exp ( ) exp ( ) ( )

l
x

Nl

dt dx J dz x z dy z y y
v

ψ
∞ ∞

−∞

⎡ ⎤< >= − − − Φ − >⎢ ⎥⎣ ⎦∫ ∫ ∫  ,                            (41) 

where ( )x xd= l%  is the dimensionless variable, ( )d l  the kink width defined in the preceding section, 

and ( ) ( )fy V yψ β=  is the dimensionless random field whose properties are determined by the 

correlator ( ) ( ) ( )2y y y yψ ψ β χδ′ ′< >= −  following from Eq.(5). The calculation of the mean time 

t< >  after expanding the integrand of Eq.(41) into a series, yields 
( )

( ) [ ]1/ 2
02 /  

l

l

dt J W
v

π< >= , with 
1

exp ( ) ( )
m

W z y y dyα α α α
α

ψ
∞

−∞
=

⎧ ⎫
=< − Φ − >⎨ ⎬

⎩ ⎭
∑∫ .                     (42) 

As seen above, this quantity W  describes the correction factor to the mean velocity of the chain due 

to the presence of impurities in the system. Its calculation depends on the temperature regime.  

 
4.3.1.1 The high temperature regime 

  
To calculate the mean W , we must remember that the statistical properties of the random field 

)(xVf  are assumed to be delta-correlated (see Eq.5). Thus, the distribution function ))(( xVP f  

which satisfies to this assumption is equivalent to a Gaussian probability density 
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⎥
⎦

⎤
⎢
⎣

⎡
−= ∫ dxxVxVP ff )(

2
1exp))(( 2

χ
,        (43) 

where χ  is the intensity of the impurity. Accordingly, in the high temperature regime, the 

correction factor W may be written as : 

0

exp( )

exp( )

D A
W

D A

ψ

ψ

−
=

−
∫
∫

,                                                                                                          (44) 

with 

∫ ∑
=

−Φ+=
m

i
iiiNi yyzdydyyA

1

2
2 )()()(

2
1

ψψ
χβ

,                                                               (45a) 

and 

2
0 2

1 ( )
2

A y dyψ
β χ

= ∫ ,                                                                                                       (45b) 

where A  may be viewed as  the “action”. We can evaluate this correction factor by minimizing the 

action A  to obtain the extremal trajectory. The action corresponding to this particular path is equal 

to 
2

2
1

1 ( )
2

m

c N i
i

A dz z z
β χ =

⎡ ⎤
= − Φ −⎢ ⎥⎣ ⎦

∑∫  .                                                                                    (46) 

Next, we evaluated the series of these integrals. As pointed out in Ref.[30], to evaluate this series of 

integrals with respect to mzzzz ,...,,, 321 , we can readily verify that the principal contribution  come 

from the points lying close to the surfaces i jz z= , that is for 0( ) (0)i jG z z G G− = ≡ where G is 

related to the random field correlator as 

( )
2

( ) ( )( ) ( ) 4 N Nu x z u y zdzU x U y d
a x y

χ
∞

−∞

⎛ ⎞∂ − ∂ −⎛ ⎞< > = ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∫l                                                 (47.a) 

                         ( )4 ( )d G x yχ= −l ,                                                                                    (47.b) 

where Nu  is the shape of the critical nucleus in a pure system. Using Eqs.(43)-(47), it follows that 

( ) ( )2 ( )
0expW Gβ χ=l l ,                                                                                                          (48) 

where the quantity ( )
0G l  is given by 

( )
( ) ( ) ( ) ( )

0 ( ) ( ) ( )

24 1 lnd F d F EG
E E Fd

π π υ
π

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦

l l l l
l

l l l
.                                                                         (49) 

The variation of W  as a function of the applied field F  is plotted in Fig. 2(c). It appears that, in 

this range of temperatures, the correction factor is less sensitive to the variation of the applied field 

in the whole range of variation of the shape parameter r . 
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4.3.1.2 The low temperature regime 

 
In the range of low temperatures, it is necessary to take into account the fact that the random field 

can be cut off. For this reason, we introduce in the expression of the mean W , the Heaviside 

function defined as 

( )
0

1 lim
2

iqxex dq
i q iε

θ
π ε→

=
−∫  .                                                                                                  (50) 

For this purpose, the correction factor (42) is then given by 

)exp(])()([

)exp(])()([

0AdyyZyED

AdyyZyED
W

NN

NN

−−Φ+∆

−−Φ+∆
=
∫ ∫
∫ ∫

ψβψθ

ψβψθ
                                                           (51) 

Using the same procedure as before, we obtain, after some lengthy algebra 

        ( )

0 0 0

( ) ( )2
0 0 00

0 0 0

3 2
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
2

3 2
( ) ( ) ( )

( ) ( ) ( )

2 exp
3 42 2 2

2 exp
3 42 2 2

N N N

l l
N

N N N

l l l l l l

l l l
E G

l l l

l l l

E G E G E G

G G G
W e

E E E

G G G

β β χ

βχ βχ βχπ
χ χ χ

π
χ χ χ

∆ +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∆ − ∆ − ∆ −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞ ⎛ ⎞∆ ∆ ∆⎢ ⎥⎜ ⎟ ⎜ ⎟+ +⎢ ⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎥
⎥

,   (52) 

where 
0

( )G l is given by Eq.(49). This result is only qualitative since the perturbation approach is no 

longer valid. In fact, one can easily show that in the low temperature regime the main contribution 

to the mean velocity of particles in the chain is due to random field fluctuations which are of the 

order of NE∆ . Thus, impurities can produce an appreciable change in the equilibrium shape and 

size of the nucleus and then the perturbation theory is no longer valid for a solution of the NLE (1). 

 
4.3.2 Case of 1/ 2

mF Fχ< <  

 
When the field F is small compared to the intensity of impurities 1/ 2χ ,  the kink has to 

overcome the impurity potential. In accordance with the activation type formula, the mobility or  

the speed of the kink turns out to be ≈ )2/exp( 2χβ− . Taking into account this retardation of kink by 

impurities in the expression of the mean time t< > , we obtain 

{ }22 / 2
00 0

exp( / 2) exp exp ( ) ( )
x

Nt dx J e dz y y z dyβ χβ χ ψ
∞ −⎡ ′ ′ ′< >= − < − − Φ −⎢⎣∫ ∫ ∫            

                { } { }exp ( ) ( ) exp ( ) ( )
x

s sz
dy y x y dy y y z dyψ ψ⎤′ ′ ′ ′ ′ ′Φ − × Φ − >⎥⎦∫ ∫ ∫ .                       (53) 
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By expanding the exponential in series and performing the Gaussian integration over D for high 

temperatures, we obtain   

2
2 2

, 10

( ) 2 ( ) ( )
2 / 2 2

0
0

exp( / 2) exp ( / 2)

n

i j i j i j
i j

x G z z C z z B z z
Bt dxe J e x e

β χ
β χ β χβ χ =

⎡ ⎤− − − + −⎣ ⎦
− −

⎡ ∑
⎢< >= − −
⎢
⎣

∫   

                                                                                     
[ ]2

, 1
2 ( ) ( )

n

i i
i j

B z x C z x

e
β χ

=

− − − ⎤∑
⎥×
⎥
⎦

,                    (54)                    

where  

( ) ( ) ( ),    ( ) ( ) ( )i j s i s j i j N i s jB z z dz z z z z C z z dz z z z z− = Φ − Φ − − = Φ − Φ −∫ ∫ .                   (55) 

 Integration of Eq.(54) can easily be performed if i jz z= , leading to the following expression  of 

the mean time 
( ) ( )22
0 0( ) / 21/ 2 / 2 1/ 2

0( / 2) G Bt e e Jβ χβ χπ − −− −< >=
l l

 ,                                                                           (56) 

and then the mean velocity of the chain  
1/ 21/ 2 ( )

0/ (2 )u t uJ Wπ∂ ∂ = l%                                                                                                  (57) 

with the correction factor 
( ) 2 2 ( ) ( )

0 0exp( / 2)exp ( )lW G Bβ χ β χ⎡ ⎤= −⎣ ⎦
l l ,                                                                        (58) 

where ( )( ) ( ) ( )
0 exp /NB R d=l l l . Figure 2(d) shows that the correction factor W  is an increasing 

function of the applied field F  for 0r ≤  and is less sensitive for 0r > .       

 
5.         Application to the diffusion of hydrogen atoms on metallic surfaces 

 
 The question of surface diffusion of atoms and molecules adsorbed on metallic surfaces is a 

long-standing problem which has recently attracted a renewal of interest with the introduction of 

new ideas from the physics of nonlinear phenomena. The experimental investigations of this 

problem are based on two essential classes of methods [44]: The profile evolution methods such as 

electron beam scanning and the equilibrium methods such as the field ion microscopy. Theoretical 

works are outlined by experimental studies which evidence [36,45,46] an important role of 

collective motion of adsorbed atoms (adatoms). According to these experimental studies, the 

diffusion of adatoms can be described by the nonlinear dynamics of the well known FK model 

which is essentially a single model allowing an accurate description of such a consistent motion of 

particles. In some cases, adatoms may be treated as quasi-1D systems where a chain of interacting 

particles is placed in a “channel”. The atomic chain is subjected to a one, two or three-dimensional 
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substrate potential, which is periodic in one direction and unbounded in transverse directions, so 

that atoms are confined transversally. However, when the concentration CΘ  of adatom is weak, i.e. 

closed to 1 ( 1)CΘ ≈  one can ignore atomic displacements in transverse directions and allow atoms 

to move only along the direction of the chain, and the model reduces to a well-known FK model. 

The concentration of adatoms is characterized here by the dimensionless parameter /C p qΘ = , the 

so-called coverage in surface physics, where p  is the number of atoms and q  is the number of 

minima of the substrate potential. In addition, previous studies (see, e.g., Refs. [34, 36] and 

references therein) have proved that the system of adsorbed atoms is subjected to a nonsinusoidal 

substrate potential and that the RP potential (see Eq.(2)) provides an accurate description of such a 

substrate potential. According to these studies, the Hamiltonian model described by Eq.(6) may be 

successfully used to study the migration of atoms adsorbed on metallic surfaces. For the case of the 

H/W and H/Ru adsystems, an estimate parameter is 0.3r ≈ −  [5]. Thus, we apply the results of the 

above analytical study to estimate the mean velocity of a hydrogen atom on a Ru and W substrates 

induced by the applied field F . Note that geometrical imperfections of the adsorbed surfaces are 

considered here as impurities since they are at the origin of the spatial deformation of the newly 

created nucleus and consequently may be approximated by the impurity potential given by Eq.(4). 

The model parameters used in our numerical calculations are [5]: 
o

12
0 .1062.3 −− Α×≈ eVV ,  

o

Α×= − eVk 11057.3 . The lattice constant 3a ≈ Α
o

 is taken to be the distance between the wells 

along a furrow on the W(112) surface since 1CΘ ≈ . In addition, the shape parameter of the 

substrate potential is taken to be 0.3r = − . The calculation of the correction factor from these 

numerical values of the characteristic parameters of the adsystem shows the following: 

Firstly, for high temperatures [see Fig. 3(a)] the correction factor increases with the applied 

field F  and tends rapidly to 1 when F  becomes higher. This result is in accordance with the 

physical expectation since the increase of the intensity of the applied field results to the increase of 

the kinetic energy of the newly formed kink-antikink pairs. Consequently, impurities have little 

effect on the nucleation rate of kink-antikink pairs ( 1)W → . Note that the perturbation theory is not 

valid in the case of low temperatures associated to the weak applied field. 

Secondly, for the value of the applied field F  close to the threshold field mF , the correction 

factor W   increases or decreases according to whether the temperature is high [see Fig. 3(b)] or low 

[see Fig. 3(c)]. In fact, in the high temperature regime, the correction factor increases with the 

applied field. Thus, in this temperature regime, the disorder in the systems makes the nucleation of 
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kink-antikink pairs more favorable. However, in the low temperatures, disorder contributes to make 

it less favorable. 

Finally, it should be noted that the correction factor, which contains all the information 

concerning the effect of impurities, is less than 1 [Figs. 3(a) and 3(b)] indicating the fact that the 

presence of impurities in the system makes the processing of nucleation of kink-antikink pairs less 

favorable. However, for large values of the applied field, the correction factor is greater than  1  

[Fig. 3(c)]  indicating the fact that the impurities catalyze the transition from the critical nucleus or 

saddle point configuration to the newly formed kink-antikink pairs by making the growth 

energetically favorable. 

It is important to mention that our model is valid when the concentration of adatoms CΘ  is 

close to 1. When CΘ  is greater than 1, the amplitude 0V  of the substrate potential is a function of 

adatom concentration CΘ  and the compression forces, in the adatomic chain, overcome the forces 

“holding” the adatoms in a given channel and adatoms will start “creeping out” of the channel so 

that their motion will become more complex and can be described only in terms of a two- or three-

dimensional model.  

 

6.        Conclusion  

 
In this paper, we have investigated the influence of impurities on the nucleation of kink-

antikink pairs in the nonlinear Klein-Gordon model, with the Remoissenet-Peyrard substrate 

potential, driven by an external constant field. We have focused our attention on the mean velocity 

of particles of this one-dimensional system which is a physical parameter closely related to the 

number of kinks and antikinks created in the system per unit time and length. Moreover, in other 

systems like compounds where the electrical properties are directly related to the existence of 

charge density waves, this mean velocity designates the electrical current carried by the CDW. 

First, we have improved by taking into account the non-Gaussian correction in our 

calculation, the analytical expression of the nucleation rate of kink-antikink pairs in the 

homogeneous system previously calculated by Yemélé and Kofané [5]. This calculation is one step 

towards the study of the effects of impurities. Next, by means of the Kolmogorov method 

associated with the perturbation analysis, we have shown that the dynamics of the system may be 

different according to whether the intensity of the applied field is weak or not compared to the 

intensity of the impurity potential and the magnitude of the temperature. More precisely, we have 

shown that, in the range of weak values of the applied field, the quantitative effects of impurities 

increase with the applied field and temperature. Moreover, the presence of impurities in the system 
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makes the nucleation process of kink-antikink pairs less favorable. Furthermore and contrary to the 

preceding case, for large values of the applied field, impurities catalyze the transition from the 

saddle point configuration of the system to the newly formed kink-antikink pairs by making the 

growth of the nucleus energetically favorable. 

Finally, we mention that our numerical applications are carried out by making use of the 

parameters of H/W and H/Ru adsystems where available data exist. However, the model may be 

applied to a number of various systems of condensed matter physics for which the substrate 

potential is used to describe its physical phenomena namely, dislocation kinetic in crystals, 

electrical current carried by the CDW in the compounds whose electrical properties are due to the 

existence of this CDW, or the electrical current in the long Josephson junctions, to name only a few. 

The perturbation analysis used here allows one to write down an analytical expression of the 

nucleation rate of kink-antikink pairs in the inhomogeneous 1D system, from which the quantitative 

effects of impurities on this quantity can be obtained. This calculation is one step towards a 

complete study of the model. The method is valid only in the case of weak impurity fields, that is, 

in the case where impurities have little effect on the critical nucleus parameters and on its stability. 

Another restriction of this study concerns the correlation length of the random field of impurities 

which has been taken equal to zero although the case of a spatially correlated field may be of 

interest for applications to much of condensed matter systems. These two limitations of our study 

are now under consideration.  
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Figure Captions 

FIG. 1: Substrate potential ),( ruVRP  as a function of / 2u π  for a few values of the deformability      

parameter :  (1) r=-0.3, (2) r=0.0 (sG case), (3) r=0.3, and (4) r=0.9.     

FIG. 2: Correction factor to the mean velocity of particles W , induced by the presence of 

impurities in the system, as a function of the applied field F :  

 (a) The case of large values of the applied field ( mF F≈ ) and in the regime of low 
temperatures (T=280 K). The intensity of the impurity potential is taken to be 

2 21.11 10 ( / )eVχ −= × Α
o

. 
 (b) The case of large values of the applied field ( mF F≈ )  and in the high temperature 

regime (T=500 K),  for  3 21.11 10 ( / )eVχ −= × Α
o

.  
(c) The case of weak applied field satisfying the constraint 1/ 2

mF Fχ < <<  and in high 

temperature regime ( for example T=400 K),  6 26.94 10 ( / )eVχ −= × Α
o

. 
(d) The case of very weak applied field ( 1/ 2F χ<  ) and in the high temperature regime. 

Here T=400 K and 8 26.94 10 ( / )eVχ −= × Α
o

  .  
Note that the choice of numerical values of the intensity of the impurity potential, in either 

case,  is dictated by the condition βτ Ν<< ∆Ε  or NEβτ >> ∆  .  

FIG. 3: Correction factor to the mean velocity of particles W ,  induced by the presence of 

impurities in the system of  H/W, as a function of the applied field F  and for three values 

of  temperature: 

 (a) The case of weak applied field  in the high temperature regime, 8 26.94 10 ( / )eVχ −= × Α
o

. 

 (b) The case of large applied field in the high temperature regime for 

2 21.11 10 ( / )eVχ −= × Α
o

.  

(c) The case of large applied field in the low temperature regime with 

2 21.11 10 ( / )eVχ −= × Α
o

. 

Note that the choice of the intensity of the impurity potential in the low and high 

temperature regime is dictated by the constraints verified by the quantity βτ  in these 

temperature regimes. NEβτ >> ∆  for the low temperature regime or NEβτ << ∆  for the high 

temperature regime. 
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Fig. 2(a) 

 

 
Fig. 2(b) 
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Fig. 2(c) 

 

 

 
Fig. 2(d) 
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Fig. 3(a) 

 

 

 
Fig. 3(b) 
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Fig. 3(c) 

 


