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Abstract

This paper deals with an exact solution for the magnetohydrodynamic (MHD) flow of a gener-

alized Oldroyd-B fluid in a circular pipe. For the description of such a fluid, the fractional calculus

approach has been used throughout the analysis. Based on modified Darcy’s law for generalized

Oldroyd-B fluid, the velocity field is calculated analytically. Several known solutions can be recov-

ered as the limiting cases of our solution.
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1 Introduction

The analyses of the flow properties of non-Newtonian fluids are very important in the fields of fluid

dynamics because of their technological application. Mechanics of non-Newtonian fluids present

challenges to engineers, physicists and mathematicians. Due to the complex stress-strain relation-

ships of non-Newtonian fluids, not many investigators have studied the flow behavior of the fluids

in various flow fields. In addition, the effects of magnetic field on the non-Newtonian fluid also

have great importance in engineering applications; for instance, MHD generators, plasma studies,

geothermal energy excitations and in the field of aerodynamics for boundary layer control, etc.

Moreover MHD flows in porous media have received wide coverage on the development of noval

energy generation systems and interest in astrophysical and geophysical fluid dynamics. Due to the

non-linearity of the Navier-Stokes equations and the inapplicability of the superposition principle

for nonlinear partial differential equations, exact solutions are difficult to obtain and are few in

number under certain conditions. For non-Newtonian fluids, such solutions are further narrowed

down. Recently, Fetecau [1] and Yin and Zhu [2] have provided analytical solutions for the flow of

a non-Newtonian fluid in pipe like domain.

More recently, the fractional calculus has encountered much success in the description of vis-

coelasticity. Specifically, rheological constitutive equations with fractional derivatives play a vital

role in the description of the properties of polymer solutions and melts. The constitutive equations

for generalized non-Newtonian fluids are modified from the well known fluid models by replacing

the time derivative of an integer order by the so-called Riemann-Liouville fractional calculus op-

erators. In other words, the governing equations are derived by replacing the ordinary derivatives

of first, second and higher order by fractional derivatives of any noninteger order [3 − 10]. Such

viscoelastic models are considered more appropriate to describe the behaviors of Xanthan gum and

Sesbania gel [11].

The purpose of this paper is to discuss the MHD flow of a generalized Oldroyd-B fluid in a

circular pipe. The flow is induced because of an oscillating pressure gradient. By constructing a

modified expression for Darcy’s law in a generalized Oldroyd-B fluid, we find the analytical solution

of the problem using Fourier transform technique for the fractional calculus.

2 Mathematical model

The constitutive equations for a generalized Oldroyd-B fluid are

T = −pI + S, (1 + λαDα
t )S = µ

(

1 + θβDβ
t

)

A1, (1)

where T is the Cauchy stress tensor, p is the pressure, I is the identity tensor, S is the extra stress

tensor, µ, λ, θ are the material constants and respectively known as the viscosity coefficient, the

relaxation and retardation times. A1 is the first Rivlin-Ericksen tensor, α and β are fractional

calculus parameters such that 0 ≤ α ≤ β ≤ 1. For α > β the relaxation fraction is increasing,

which is generally not responsible [12] and has requires that α ≤ β. Dβ
t is the Riemann-Liouville
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fractional derivative operator and may be defined as

Dβ
t [f (t)] =

1

Γ (1 − β)

d

dt

t
∫

0

f (t)

(t − z)β dz
, (0 < β < 1) (2)

where Γ (·) is the Gamma function. So Dβ
t denotes the material time derivative of fractional order.

While α = β = 1, (1) may be simplified as simple Oldroyd-B fluid, while λ = 0 the constitutive

relationship describes the generalized second grade fluid. It should be noted that this model also

includes the classical Newtonian fluid as a special case for λ = θ = 0, and is the fractional Maxwell

fluid when θ = 0.

The incompressible fluid undergoes only isochoric motion and hence

∇ ·V = 0. (3)

In the above equation V is the velocity vector. We shall assume the velocity field and the stress of

the form

V = u (r, t) êz , S = S (r, t) êz, (4)

where êz and u are the unit vector and velocity in the z− direction, respectively. Substituting (4)

into (1) and considering the initial condition

S (r, 0) = 0, (5)

we obtain after employing a procedure of reference [13] that Srz = Sθθ = Sθz = Szz = 0 and

Szz + λα

(

∂αSzz

∂tα
− 2Srz

∂u

∂r

)

= −2µθβ

(

∂u

∂r

)2

, (6)

Srz + λα ∂αSrz

∂tα
= µ

(

1 + θβ ∂β

∂tβ

)

∂u

∂r
. (7)

Since the flow is unsteady, the interaction terms depend upon the drag and virtual mass effect.

The relationship between the pressure drop and velocity for the generalized Oldroyd-B fluid in

porous media is
(

1 + λα ∂α

∂tα

)

∇p = −
µφ

k

(

1 + θβ ∂β

∂tβ

)

V, (8)

where k (> 0) and φ (0 < φ < 1) are the (constant) permeability and porosity, respectively.

Note that (8) ignores the boundary effects on the flow and cannot be directly used to analyze

the flow problem in a porous medium. Thus, the modified Darcy’s law based on a local volume

averaging technique will be considered in a porous medium. Considerating the balance of forces

acting on a volume element of fluid, the local volume average balance of linear momentum is given

by

ρ
dV

dt
= −∇p + divS + R + J× B, (9)

in which ρ is the fluid density, R is the Darcy resistance for the generalized Oldroyd-B fluid in

porous medium, J is the current density, B is the total magnetic field so that B = B0 + b, b is

the induced magnetic field.
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Due to the volume averaging process, some information is lost, thus requiring supplementary

empirical relation for the Darcy resistance [14] is known as a measure of the resistance to the flow

in the bulk of the porous medium, and R is a measure of the flow resistance offered by the solid

matrix. Thus R can be inferred from (8) to satisfy the following equation

(

1 + λα ∂α

∂tα

)

R = −
µφ

k

(

1 + θβ ∂β

∂tβ

)

V. (10)

Now neglecting the displacement currents, the Maxwell equations and the generalized Ohm’s

law are

∇ · B = 0, ∇× B = µmJ, ∇× E = 0, (11)

J = σ (E + V × B) , (12)

where µm is the magnetic permeability, E is the electric field and σ is the electric conductivity.

Considering that

• the quantities ρ, µm and σ are all constants throughout the flow field

• the magnetic field B is perpendicular to the velocity field V and the induced magnetic field is

negligible compared with the imposed magnetic field so that the magnetic Reynolds number

is small [15]

• the electric field is assumed to be zero

the electromagnetic body force involved in (9) becomes

J× B = −σB2
0V, (13)

and thus (9) along with (10) and (13) yields

ρ

(

1 + λα ∂α

∂tα

)

dV

dt
= −

(

1 + λα ∂α

∂tα

)

∇p +

(

1 + λα ∂α

∂tα

)

divS

−
µφ

k

(

1 + θβ ∂β

∂tβ

)

V − σB2
0

(

1 + λα ∂α

∂tα

)

V. (14)

By substituting (4) and (7) into (14), the momentum equation for an incompressible electrically

conducting fluid in a porous medium reduces to

(

1 + λα ∂α

∂tα

)

∂u

∂t
= −

1

ρ

(

1 + λα ∂α

∂tα

)

∂p

∂z
+ ν

(

1 + θβ ∂β

∂tβ

)[

∂2u

∂r2
+

1

r

∂u

∂r

]

−
νφ

k

(

1 + θβ ∂β

∂tβ

)

u −
σB2

0

ρ

(

1 + λα ∂α

∂tα

)

u, (15)

in which ν = µ/ρ is the kinematic viscosity.
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3 Exact solution

Consider the motion of an incompressible electrically conducting non-Newtonian fluid in the pres-

ence of a magnetic field acting along the radius of a circular pipe. We consider the flow as axially

symmetric and fully developed in a porous medium. The motion starts due to a pressure gradient.

We select a cylindrical polar coordinate system with z−axis in the direction of motion. Under the

above mentioned assumption, the unsteady flow of the generalized Oldroyd-B fluid can be described

by (15) with the no-slip boundary condition given as

u (a, t) = 0, (16)

where a is the radius of the cylinder.

Let the pressure gradient oscillate with frequency ω0 and amplitude P0, i.e.

∂p

∂z
= P0e

iω0t. (17)

Let us introduce the dimensionless variable

u∗ =
u

u0

, r∗ =
r

a
, t∗ =

νt

a2
, ω∗

0 =
ω0a

2

ν
, (18)

where u0 is the reference velocity.

Using (17) and (18), the dimensionless governing equation and boundary condition are obtained

as follows (for brevity the dimensionless mark “∗” are omitted)

(

1 + λα
1

∂α

∂tα

)

∂u

∂t
= −P0

(

1 + λα
1

∂α

∂tα

)

eiω0t + ν

(

1 + λβ
2

∂β

∂tβ

)[

∂2u

∂r2
+

1

r

∂u

∂r

]

−
1

K

(

1 + λβ
2

∂β

∂tβ

)

u − M2

(

1 + λα
1

∂α

∂tα

)

u, (19)

u (1, t) = 0, (20)

where

λ1 =
νλ

a2
, λ2 =

νθ

a2
, P ∗

0 =
P0a

2

µu0

, M2 =
σB2

0

(µ/a2)
,

1

K
=

φ

(k/a2)
. (21)

In order to solve (19) and (20), we define the temporal Fourier transform pair as

U (r, ω) =

∞
∫

−∞

u (r, t) e−iωtdt, (22)

u (r, t) =
1

2π

∞
∫

−∞

U (r, ω) eiωtdω, (23)

and the Fourier transform for the fractional derivative is given by [7]

∞
∫

−∞

Dβ
t [u (r, t)] e−iωtdt = (iω)β U (r, ω) , (24)
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where

(iω)β = |ω|β eiβπ/2signω = |ω|β
(

cos
βπ

2
+ isignω sin

βπ

2

)

,

and sign is the signum function.

Transforming (19) and (20) , we get

d2U

dr2
+

1

r

dU

dr
+ ξ2U = P0

[

1 + λα
1 (iω0)

α

1 + λβ
2 (iω)β

]

δ (ω − ω0) , (25)

U (1, ω) = 0, (26)

where

ξ2 = −

{

1

K
+

(

M2 + iω
)

[

1 + λα
1 (iω)α

1 + λβ
2 (iω)β

]}

,

= −







1

K
+

(

M2 + iω
)





1 + λα
1 |ω|α

(

cos απ
2

+ isignω sin απ
2

)

1 + λβ
2 |ω|

β
(

cos βπ
2

+ isignω sin βπ
2

)











,

and δ (·) is the dirac delta function.

Solving (25) subject to (26), we get the velocity field in the frequency domain

U (r, ω) = −
P0 (1 + λα

1 (iω0)
α) δ (ω − ω0)

1
K

(

1 + λβ
2 (iω)β

)

+ (M2 + iω) (1 + λα
1 (iω)α)

{

1 −
J0 (ξr)

J0 (ξ)

}

, (27)

where J0 (·) is the zeroth-order Bessel function.

Applying the inverse Fourier transform to (27) and using the property of delta function, we can

get the solution of the velocity in the time domain

u (r, t) =
P0

ξ2
0

1 + λα
1 (iω)α

1 + λβ
2 (iω)β

{

1 −
J0 (ξ0r)

J0 (ξ0)

}

eiω0t, (28)

where

ξ0 = ξ|ω=ω0
.

We also introduce enhancement Au defined as the amplitude to dimensionless velocity on the

axis of the tube in (28) . It can be obtained as follows

Au =

∣

∣

∣

∣

∣

P0

ξ2
0

1 + λα
1 (iω)α

1 + λβ
2 (iω)β

(

1 −
1

J0 (ξ0)

)

∣

∣

∣

∣

∣

. (29)

4 Results and discussion

The differential equation (15) subject to (16) is solved analytically to obtain velocity field. An

analysis is made for two kinds of fluids: an Oldroyd-B fluid (when α = β = 1) and the generalized

Oldroyd-B fluid (when 0 < α < β < 1). Of interest are the effects of the magnetic parameter M

and the permeability of porous medium K.

6



(a) Oldroyd-B fluid (α = β = 1) (b) Generalized Oldroyd-B fluid (α =0.1, β =0.5)

Figure 1: Profiles of velocity u (r, t) for various values of magnetic parameter M when λ1 = 10, λ2 =
1, ω0 = 1.5, P0 = −1, t = 1 and K = 1 are fixed.

(a) Oldroyd-B fluid (α = β = 1) (b) Generalized Oldroyd-B fluid (α =0.1, β =0.5)

Figure 2: Profiles of velocity u (r, t) for various values of permeability parameter K when λ1 =
10, λ2 = 1, ω0 = 1.5, P0 = −1, t = 1 and M = 1 are fixed.

To see the effects of magnetic parameter M on the velocity profile, we have plotted u against

r in figure 1. Panel a shows the effect of M for an Oldroyd-B fluid and panel b for generalized

Oldroyd-B fluid. From these figures, it is noted that an increase in magnetic parameter M reduces

the velocity profile monotonically due to the effect of the magnetic force against the direction of

the flow. It is also observed that the velocity profiles for an Oldroyd-B fluid are much larger than

those for the generalized Oldroyd-B fluid.

The influence of the permeability of the porous medium K on the flow is illustrated in figure

2. As expected from the governing equation (15) the increase in the permeability of the porous

medium K yields an effect opposite to that of the magnetic parameter M.
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5 Concluding remarks

A generalized MHD Oldroyd-B fluid model based on modified Darcy’s law is first developed here

using the fractional calculus approach. Using the Fourier transform of fractional calculus, the

expression for velocity field is constructed. The developed fluid model is appropriate to describe

the behaviors of Xanthan gum and Sesbania gel. The presented analysis is more general and the

results of several unattempted problems (e.g., generalized Maxwell and second grade fluids) can be

recovered as special cases.
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