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Abstract

Vertical movement of zirconia-yttria stabilized 2 mm balls is measured by a laser facility at the surface

of a vibrated 3D granular matter under gravity. Realizations z(t) are measured from the top of the

container by tuning the fluidized gap with a 1D measurement window in the direction of the gravity.

The statistics obeys a Fermi-like configurational approach which is tested by the relation between the

dispersions in amplitude and velocity. We introduce a generalized equipartition law to characterize the

ensemble of particles which cannot be described in terms of a Brownian motion. The relation between

global granular temperature and the external excitation frequency is established.
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I. INTRODUCTION

A vibrated granular medium (GM) exhibits a wealth of intriguing physical properties [1–5]. Since

energy is constantly being added to the system a nonequilibrium steady state (s.s.) is reached [6]. In [7]

we have studied the spectrum properties of vibrated GM under gravity, and shown that in the weakly

excited regime the dynamics of the fluidized particles cannot be described as simple Brownian particles,

this fact leads us to the conclusion that in order to describe the cooperative dissipative dynamics of the

GM particles, it must be done in terms of generalized Langevin particles [8,9].

Recently Hayakawa and Hong [10] introduced the approach of thermodynamics of a weakly excited

granular matter, in particular vibrated GM by mapping the nonequilibrium system with a “Fermion

like” theory. Our experimental conditions allow us to consider a N particles system of n-rows in a

cylindrical container as a 1D degenerate Fermi system. Two experiments based on a laser were set up

to investigate the occupation dynamics at the fluidized gap of the n-rows GM. The first one considers a

realization z(t) of one particle from the top of the container by tuning the fluidized gap with a 1D window

in the gravity direction, see Fig.1(a). It is clear that these realizations mainly correspond to macroscopic

Fermi-like particles (mFp) from near the “Fermi level”. The second one concerns the measurement after

a long integration time of the mass profile which corresponds to the Fermi-like profile, see Fig.1(b).

By focusing on the configurational properties of an excluded volume theory, the s.s. mass profile can be

understood in terms of a configurational maximum principle assumption. Excluded volume interactions

of the GM do not allow two grains to occupy the same state (gravitational energy), thus the number

of configurations is W =
∏

i [Ω!/Ni!(Ω −Ni)!]. Following Landau, to study a non-equilibrium system,

the maximization of S = lnW yields that the profile is φ(ε) = [1 +Q exp(βε)]
−1

Ω/mgD where m,D

are the mass and diameter of our balls; β is a Lagrange multiplier parameter, Q−1 = exp(βµ) the

fugacity, and ε = mgDs with s = 0, 1, 2, 3 · · · . Introducing the normalization:
∫

∞

0
φ(ε) dε = N, we get

exp(NβmgD/Ω) = 1 + exp(βµ). Therefore the zero-point “chemical potential” is µ0 = mgDN/Ω, where

N/Ω is the number of balls in an elementary column of diameter D. From these considerations it is

trivial to see that without vibration the centre of mass (c.m.) is characterized by zc.m. = µ0/2mg ≡ h/2.

For vibrated GM the Lagrange parameter β is a non-trivial function of the velocity fluctuations. Before

going ahead, let us remark that φ(ε)/N gives the probability that the energy ε will be occupied in an

ideal GM layer at the nonequilibrium s.s. characterized by the global temperature β−1.

From φ(ε) it is possible to calculate the c.m. expansion as a function of β, the mean energy per particle,

its square dispersion σ2

ε , etc. Many questions concerning the GM layer system are still open, in fact the

stochastic motion of the fluidized particles is not entirely known [11]. For example it is important to test

that the spectrum of the realization Sz(f) does not behave as Brownian particles (1/f 2), but it has a

more complex behavior, 1/f ν , related to a cooperative dynamics [7,9]. Thus an exhaustive analysis of

the realizations z(t) of these macroscopic Fermi-like particles should be made. We have measured z(t)

and we calculate the Lagrange parameter β to show its complex relation to the kinetic energy.
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Amplitude dispersion vs. the velocity dispersion.

A sinusoidal vibration is driven by a vibration plate on the GM bed (with intensity Γ = Aω2/g, where A

is the amplitude, g is the acceleration of gravity, and ω = 2πfe the frequency of the plate). The vibration

apparatus is set up by an electromagnetic shaker (TIRAVIB 5212) which allows [12] for feedback through

a piezoelectric accelerometer the control of fe and Γ in the range of 10-7000Hz, and 2− 40g respectively.

The control loop is completed by an Oscillator Lab-works SC121 and a TIRA 19/z amplifier of 1kw. The

n-rows GM bed set up were ZrO2 − Y2O3 balls with D = 1.99mm and m = 2.8 ± 0.1mgr, into a glass

container of 30 mm of diameter with steel bottom, see Fig.1(a). The experiments were carried out in a

chamber at 1atm of air with 5.8 ± 0.2gr/m3 of water vapor. The absolute humidity was controlled by

using a peltier condenser and a control loop through a thermo-hygrometer. The humidity is of major

relevance in order to control the particle-particle and particle-wall contact forces [12,13,7]. Under such

humidity controlled conditions, no surface convection or convection rolls were observed in the GM, nor

rotational movement of the bed with respect to the container, which is typical for a content of water

vapor > 10gr/m3.

The z(t) of one particle was followed in a window of 12mm with a laser device by using a triangu-

lation method, see Fig.1(a). A laser emitter with a spot of 70µm and a linear image sensor (CCD-like

array) enables a high speed measurement with 100µsec sampling. The linear image sensing method mea-

sures the peak position values for the light spots and suppresses the perturbation of secondary peaks,

which makes possible a resolution of 1µm. The shaker and the laser displacement sensor were placed on

vibration-isolated tables to isolate them from the external vibrations, and the displacement sensor from

the experiment vibrations. The z(t) is a measure of the variations of the distance (difference) between

the particle and the sensor around the surface of the GM bed (fluidized gap). The measured z(t) without

excitation reveals a white noise < 10µm. Then our set-up effective resolution is no higher than 10µm.

We have shown [7] that depending on the external excitation the z(t) can show from quasi non-erratic

parabolas, for the movement under gravity, to realizations of larger rugosity.

The registers of z(t) were taken with a 9354 C Le Croy Oscilloscope of 500MHz. The velocity V (t) =

dz/ dt of the mFp was calculated numerically for ∆t = 100µsec from z(t) registers. The dispersions

σz =

√

〈z(t)2〉 − 〈z(t)〉2 and σ2

V =
〈

V (t)2
〉

− 〈V (t)〉2 were obtained from a window of 2 second for each

pair of registers {z(t), V (t)}. In Fig.2(a) we report σz against σ2

V for fixed Γ = 10, 20 and several fe from

60-180Hz for GM beds of h = 21mm and 12mm.

For weakly excited GM the displacement of the fluidized particles, in the gap, can be studied from the

profile φ(ε). In fact a nonequilibrium s.s. density P (ε = mgz), characterizing the motion of the fluidized

mFp, is sustained by the input of energy from the plate colliding periodically with the GM bed; i.e., a

current of particles near µ0—which is proportional to a gradient of φ(ε)—will be balanced by the random

input of mass coming from the periodic movement of the plate. It is clear that P (ε) will be a narrow

density around µ0, so we characterize the movement of the mFp at the Fermi-like sea by

P (ε) ∝ −dφ(ε)

dε
, where ε = mgz = mgDs. (1)
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At the nonequilibrium s.s. the dispersion σz can be calculated from P (ε = mgz), but a rather simple and

analytical expression for a characteristic length scale z∗ can be obtained by solving ε∗ from the following

consideration

qP (µ0) = P (µ0 + ε∗); 0 < q < 1, (2)

where q is a “cumulant” parameter. If P (ε) were Gaussian the value q = 1/
√
e would give the exact

dispersion ε∗ = +σε. We have tested that our conclusions are not changed for values q ∼ 1/
√
e. Using

φ(ε) in the expression for P (ε) we get for the characteristic scale ε∗

exp

(

βε∗

2

)

=
(2A− 1) +

√

(2A− 1)2 − 4Aq (A− 1)

2A√
q

, (3)

where A = eβµ0 , then by putting q ∼ 1/
√
e in (3) it gives the amplitude dispersion z∗ = ε∗/mg as a

function of β. Now the task is to determine β as a function of the kinetic energy of the mFp in the

fluidized gap.

If collisions were elastic, in a 1D ideal gas the equipartition theorem says that total kinetic energy per

particle is related to the Lagrange parameter by mσ2

V /2 = β−1/2. Our conjecture for a weakly excited

GM is to generalize the equipartition law to

1

2
m∗σ2

V =
1

2

∆N

N
β−1, (4)

where m∗ = δ m accounts for inelastic factors, and ∆N/N is a relative factor that counts the thermo-

dynamically “active” mFp in the fluidized gap. In fact, a granular gas since its non-Gaussian velocity

distribution reveals an inelastic gas heated in a non-uniform way, with the expected high energy tail

e−constantV 3/2

.

The factor ∆N/N can be calculated from

∆N =

∫

∞

µ0

φ(ε) dε = N

(

1

βµ0

ln
[

2eβµ0 − 1
]

− 1

)

. (5)

So the implicit equation to solve β is

1

β

(

1

βµ0

ln
[

2eβµ0 − 1
]

− 1

)

= δmσ2

V . (6)

Note that in the high temperature limit βµ0 � 1 and for the elastic case δ = 1 we recover the equipartition

theorem. This situation is just what we have found experimentally for one steel ball in a narrow glass

cylinder [7]. In that experiment, when we compared the relation σz vs. σ2

V , we reduced the dissipation

during the vibration and assured that there is no rotation of the ball during its movement z(t), then from

energetic considerations: mgσz = 1

2
mσ2

V , predicting a line with slope 1/2g. The opposite situation is in

the limit βµ0 � 1, in this case we arrive at the Low Temperature (LT) scaling.

β−1 ' | σV |
√

δmµ0/ ln 2. (7)

Due to the fact that dissipation and degrees of freedom are functions of the external parameters, we

expect that the analysis of the complex behavior of vibrated GM will be enlightened from the study
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of σz = σz

(

σ2

V

)

. Thus an important point would be to test experimentally our theoretical predictions.

Noting that z∗ = σz = ε∗/mg it is simple to see that at LT (3) gives

β ' 2
ln(1 +

√
1 − q) − ln

√
q

mgσz
, (8)

then using (7) we arrive to

σz ' (ln(1 +
√

1 − q) − ln
√
q)

√

4hδ

g ln 2
| σV | . (9)

Thus we got an explicit LT formula σz = σz

(

σ2

V

)

as a function of the dissipative parameter δ, which in

fact is a function of the external parameters Γ and fe.

In Fig.2(a) we report the measurement of σz against σ2

V for two experimental studies of a GM bed

with h = 21 and h = 12 mm at Γ = 10 and Γ = 20 respectively, for several fe from 60-180Hz. In that

figure we also show the fit with our theoretical prediction (resolved per least squares) showing a very

good agreement for δ ∼ 0.009 and δ ∼ 0.064 (Γ = 10 and Γ = 20 respectively). In Fig.2(b) we show the

corresponding β against σz, where the {β} data set were calculated from the {σV } experimental data

set for the two experimental studies, using (7). By considering the mass of the ZrO2 − Y2O3 ball and

q ∼ 1/
√
e, we represent in Fig.2(b) the log-log plot of the equation (8), showing an excellent agreement

between the experimental data and our theory. The two experimental data sets are on the same curve

due to the fact that we use for the two experiments the same ZrO2 − Y2O3 balls.

Note that if all stochastic realizations could be understood in terms of a Brownian oscillating movement

around µ0, the P (z) would correspond to exp
(

−z2Cβ
)

, with C a constant and β−1 proportional to the

temperature. Then we would have obtained σz ∝ β−1/2 which is not the case reported experimentally in

Fig.2(b). Here we point out that in order to describe the spectrum of the fluidized particles we should

use a non-Markovian description [7]. Unfortunately we still do not have a time-dependent statistical

description for the mFp.

Global temperature against the external excitation.

Eq. (7) is the LT approximation of our generalized equipartition theorem for a GM experiment out of

equilibrium. Now we would like to find a relation between the Lagrange parameter β and the external

parameters characterizing the input of energy. The maximum kinetic energy, per particle, transferred

by the oscillating plate must be proportional to the effective mass m∗ and the dimensionless velocity

Aω/
√
gd, on the other hand the maximum potential energy related to the fluidized gap is proportional

to the variation of the c.m. at the global temperature β−1. Thus we get the relation

δ

2

(

Aω√
gd

)2

=
mg∆zc.m.

µ0

. (10)

Where ∆zc.m. = U/N − µ0/2, with U =
∫

∞

0
εφ(ε) dε. At LT we get ∆zc.m. ' (π/β)

2

/

6µ0, then

β−1 ' mh
√

3gδ/d

π
Aω, h ≡ µ0/mg (11)

Using the relation Aω = Γg/ 2πfe we can transform (11) in terms of the variables that we have fixed in

our experiment. From these considerations it is trivial to see that for a given intensity Γ and increasing
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frequency fe → ∞ the “temperature”→ 0, (i.e., σ2

z → 0 and zc.m. → h/2). In Fig.3(a) we present the

behavior of the global temperature as a function of the excitation frequency, showing an agreement with

our theoretical prediction. In Fig.3(a) a least squares fitting is also shown giving a slope of 0.6µJ−1s,

while (11) gives 1.1µJ−1s. The dispersion in Fig.3(a) is mainly introduced by the numerical calculation

of dz/dt.

The nonequilibrium s.s. Fermi-like profile.

We have remarked that the profile φ(ε)/N gives the probability that the energy ε will be occupied

in an ideal GM layer at the nonequilibrium s.s. characterized by the global temperature β−1. Note that

φ(ε = mgz)/N decreases monotonically with z from 1 to 0. In fact we can write φ(ε) as a cumulative

probability φ(ε)/N = 1 −
∫ ε

0
ψ(ε′) dε′, and interpret the density ψ(ε) as associated to the fluidized gap.

We write the s.s. mass profile as

φ(z)/N =
(exp(βmgh) − 1)

(exp(βmgz) + exp(βmgh) − 1)
. (12)

To measure the profile (12) we have implemented a second experiment on a GM bed (h = 21mm) with

a laser light barrier of 10mm wide, Fig.1(b). The voltage signal from the position sensitive detector

runs from 0 to 10V, which means a vertical window from 10mm to 0mm. We take measurements every

3s during 3h, where the normalized frequency count integrated from such a register is equal to the

occupation number φ/N for z ≥ µ0/mg and to 1 − φ/N for z < µ0/mg. At a fixed fe and for Γ = 10

two registers were obtained for fe = 100Hz and fe = 125Hz, which were integrated and normalized to

get the corresponding profile φ(z)/N . In Fig.3(b) we show the profile and our theoretical prediction

(12). From this data we obtain the values β = 42 ± 20µJ−1 for fe = 100Hz, and β = 105 ± 10µJ−1 for

fe = 125Hz, that we compare with the results of the first experiment Fig.3(a). Not only the agreement

is excellent, but also this procedure allows a self-consistent test.

II. DISCUSSION

In Fig.2(a) we show the amplitude dispersion σz against the velocity squared dispersion σ2

V of the

realizations z(t). For weak amplitude the slope σ2

V

/

σz shows a linear behavior and the departure from

a linear behavior is a clear evidence of the complex behavior of the GM bed. This indicates that for this

regime it is necessary to introduce a description in terms of our theory.

The corresponding global temperature (kBβ)−1 for a fluidized gap to occur happens to be at T =

0.78 ± 0.05 × 1015K, which means fe = 130Hz for Γ = 10, see the transition in Fig.3(a). Feitosa et

al. measure for a dilute granular gas a range of temperatures of the order of T ∼ 500PK (Peta Kelvin,

see Fig.5 of Ref. [5]). This range is higher than our measurements, however it is in agreement with

them since our corresponds to a weakly fluidized GM. From [7] we know that the movement of the mFp

when the fluidized gap appears can be approximated by a Brownian motion, but this description changes

to a more complex stochastic behavior by decreasing fe (for fixed Γ) when the temperature reaches

T ∼ 2PK. This global temperature should be understood, indeed, as equivalent to an order parameter
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of the stochastic process in the energy configuration. We remark that around the fluidization transition

where the stochastic dynamics start to apply dz/ dt occurs with larger rugosity. Then a proper description

in terms of differentiable realizations z(t) is well defined in the weakly excited region (T > 0.8PK) where

the dynamics start to be non-Markovian. For lower temperatures (T . 0.8PK) despite of the larger

rugosity of realizations z(t), the calculation of σ2

V from a time-window of 2 second makes it reliable.

This numerical calculation only introduces, for such range, a larger dispersion of the data in the curve of

Fig.2(b), but again in good agreement with the equation (8).
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[9] A.A. Budini, M.O. Cáceres, J. Phys. A 37, 5959, (2004); Phys. Rev. E 70, 046104, (2004).

[10] H. Hayakawa et al., Phys. Rev. Lett. 78, 2764 (1997).
[11] J.A.C. Gallas et al, Physica A 189, 437 (1992).
[12] J. Fiscina et al. Gran. Matt., 6, 207, (2004).
[13] J.B. Knight et al. Phys. Rev. E 51, 3957 (1995).

7



FIG. 1. Distance measurement (amplitude realizations z(t)) corresponding to 13 layer GM (h = 21mm) with
1.99mm ZrO2 −Y2O3 balls in a glass container of 30mm diameter. Set up for (a) the single particle measurement
and (b) the laser light barrier experiment.
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FIG. 2. (a) σz vs. σ2

V , and the corresponding fittings by using ε∗ vs. σ2

V solved from (6), or from (8) in the LT

approximation. The excitation frequency was from 60 − 180Hz. (b) Lagrange parameter β vs. σz.
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FIG. 3. Comparison of the two experiments for a GM bed of h = 21mm under an acceleration Γ = 10.
(a) the Lagrange parameter β(fe) by measuring the realizations z(t) from the top of the container. (b) profile
φ(z)/ N integrated from the laser light barrier during 3h corresponding to β = 42 ± 20µJ−1 for fe = 100Hz, and
β = 105 ± 10µJ−1 for fe = 125Hz.
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