STOCHASTIC PROCESSES WITH VALUES IN RIEMANNIAN
ADMISSIBLE COMPLEX: ISOTROPIC PROCESS,
WIENER MEASURE AND BROWNIAN MOTION

Taoufik Bouziane
The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Abstract

The purpose of this work was to construct a Brownian motion with values in simplicial com-
plexes with piecewise differential structure. After a martingale theory attempt, we constructed
a family of continuous Markov processes with values in an admissible complex; we named every
process of this family, isotropic transport process. We showed that the family of the isotropic
processes contains a subsequence, which converged weakly to a measure; we named it the Wiener
measure. Then, we constructed, thanks to the finite dimensional distributions of the Wiener
measure, a new continuous Markov process with values in an admissible complex: the Brownian
motion. We finished with a geometric analysis of this Brownian motion, to determinate, under
hypothesis on the complex, the recurrent or transient behavior of such process.

MIRAMARE - TRIESTE
April 2004

1tbouziane@ictp.trieste.it
On one hand, it has been proved [19], [22] and [27] that, on a wide class of riemannian manifolds, the Brownian motion can be approximated in law by Markov process, which generalizes the isotropic scattering transport process on euclidean space [31]. On the other hand, the Brownian motion was introduced as a tool to achieve important results in riemannian geometry and potential theory, which is not surprising, since Brownian motion is intimately connected with harmonic functions [15], Laplacian, and other fundamental objects in mathematics. For instance, a complete riemannian manifold is hyperbolic exactly when the Brownian motion is transient.

The purpose of this work is to consider the problem of defining the concept of random walk in the admissible riemannian complexes, in particular to construct a Brownian motion in singular spaces in spite of the absence of second order differential calculus.

The first section, starts out with a recall, on riemannian admissible complexes [3] [7] and finishes with a brief survey on the theory of general Markov processes [14].

In the second section, we begin with a description of a simplexwise differential theory on simplicial complexes which leads to a natural question on the generalization of Gromov-Nash theorem. The section closes with an attempt on the stochastic theory in simplicial complexes, in particular it ends with an approach of a martingale theory on the admissible complexes.

The third section is devoted firstly, to the construction of a Markov process with values in admissible complex that we name the isotropic transport process and secondly to show that this latter process is a strong Markov one.

Finally, in the fourth section, we construct a family of isotropic process and we show that this family contains a subsequence which converges weakly to a measure, we name it the Wiener measure. Then, we construct, thanks to the finite dimensional distributions of the Wiener measure, a new continuous Markov process with values in an admissible complex: the Brownian motion. We finish this section by studying the transience/recurrence properties of the Brownian motion. In particular, we show that, in the 2-dimensional case if the complex is of non positive curvature and the number of branching faces is always greater or equal to three then the Brownian motion is transient although (surprising) the Euclidean Brownian motion in dimension 2 is recurrent.

To our knowledge, there is an interesting study (I think it’s the unique) of M. Brin and Y. Kifer [8] on the Brownian motion in singular spaces. In this study they consider the case of 2-dimensional simplicial complexes whose simplices are flat Euclidean where they describe the Brownian motion in such complex as the planer Brownian inside faces and, after hitting an edge, goes into each adjacent face “with equal probability”. Thus actually, our work is the first one where it is shown the existence of Brownian motion, and not only in the case of 2-dimensional complexes with flat simplices but, in the general case of the admissible riemannian complexes.

We notice that, the steps used for the construction of the admissible complex-valued Brownian motion, can be extended to the the general case of Hadamard spaces if we assume a given uniform probability (sub-probability) measure on the link of each point of the space.

1. Preliminaries.

1.1. General theory [1] [2] [11] [17] [18].

Let X be a metric space with metric d. A curve $c : I \rightarrow X$ is called a geodesic if there is $v \geq 0$, called the speed, such that every $t \in I$ has neighborhood $U \subset I$ with $d(c(t_1), c(t_2)) = v|t_1 - t_2|$ for all $t_1, t_2 \in U$. If the above equality holds for all $t_1, t_2 \in I$, then c is called minimal geodesic.

The space X is called a geodesic space if every two points in X are connected by minimal geodesic. We assume from now on that X is complete geodesic space.

A triangle Δ in X is a triple $(\sigma_1, \sigma_2, \sigma_3)$ of geodesic segments whose end points match in the usual way. Denote by H_k the simply connected complete surface of constant Gauss curvature k. A comparison triangle Δ for a triangle $\Delta \subset X$ is a triangle in H_k with the same lengths of
sides as Δ. A comparison triangle in H_k exists and is unique up to congruence if the lengths of sides of Δ satisfy the triangle inequality and, in the case $k > 0$, if the perimeter of Δ is $< \frac{2\pi}{\sqrt{k}}$. Let $\bar{\Delta} = (\bar{\sigma}_1, \bar{\sigma}_2, \bar{\sigma}_3)$ be a comparison triangle for $\Delta = (\sigma_1, \sigma_2, \sigma_3)$, then for every point $x \in \sigma_i$, $i = 1, 2, 3$, we denote by \bar{x} the unique point on $\bar{\sigma}_i$ which lies at the same distances to the ends as x.

Let d denote the distance functions in both X and H_k. A triangle Δ in X is CAT$_k$ triangle if the sides satisfy the triangle inequality, the perimeter of Δ is $< \frac{2\pi}{\sqrt{k}}$ for $k > 0$, and if $d(x, y) \leq d(\bar{x}, \bar{y})$, for every two points $x, y \in X$.

We say that X has curvature at most k and write $k_X \leq k$ if every point $x \in X$ has a neighborhood U such that any triangle in X with vertices in U and minimizing sides is CAT$_k$. Note that we do not define k_X. If X is riemannian manifold, then $k_X \leq k$ iff k is an upper bound for the sectional curvature of X.

A geodesic space X is called geodesically complete iff every geodesic can be stretched in the two directions.

We say that a geodesic space X is without conjugate points if every two points in X are connected by unique geodesic.

1.2. Riemannian admissible complexes [26] [30].

Let K be a locally finite simplicial complex, endowed with a piecewise smooth riemannian metric g; i.e. g is a family of smooth riemannian metrics g_Δ on simplices Δ of K such that the restriction $g_\Delta|_{\Delta'} = g_{\Delta'}$ for any simplices Δ' and Δ with $\Delta' \subset \Delta$.

Let K be a finite dimensional simplicial complex which is connected locally finite. A map f from $[a, b]$ to K is called a broken geodesic if there is a subdivision $a = t_0 < t_1 < \ldots < t_{p+1} = b$ such that $f([t_i, t_{i+1}])$ is contained in some cell and the restriction of f to $[t_i, t_{i+1}]$ is a geodesic inside that cell. Then define the length of the broken geodesic map f to be:

$$L(f) = \sum_{i=0}^{i=p} d(f(t_i), f(t_{i+1})).$$

The length inside a cell is measured with respect to the metric of the cells.

Then define $\bar{d}(x, y)$, for every two points x, y in K, to be the lower bound of the lengths of broken geodesics from x to y. \bar{d} is a pseudo-distance.

1.2.1 Proposition (corollary of [6]).

Let K be a connected locally finite simplicial complex, endowed with a piecewise smooth riemannian metric. Then the space (K, \bar{d}) is a complete geodesic space which is locally compact.

We assume from now on that K is a connected locally finite simplicial complex, endowed with a piecewise smooth riemannian metric g.

1.2.2 Definitions.

An l-simplex in K is called a boundary simplex if it is adjacent to exactly one $l + 1$ simplex. The complex K is called boundaryless if there are no boundary simplices in K.

We say that the complex K is admissible, if for every connected open subset U of K, the open set $U \setminus \{U \cap \{ (k - 2) - \text{skeleton} \} \}$ is connected (k is the dimension of K).

Let $x \in K$ be a vertex of K so that x is in the l-simplex Δ_l. We view Δ_l as an affine simplex in \mathbb{R}^l, that is $\Delta_l = \bigcap_{i=0}^{i=l} H_i$, where H_0, H_1, \ldots, H_l are closed half spaces in general position, and we suppose that x is in the topological interior of H_0. The riemannian metric g_{Δ_l} is the restriction to Δ_l of a smooth riemannian metric defined in an open neighborhood V of Δ_l in \mathbb{R}^l. The intersection $T_x \Delta_l = \bigcap_{i=1}^{i=l} H_i \subset T_x V$ is a cone with apex $0 \in T_x V$, and $g_{\Delta_l}(x)$ turns it
into an euclidean cone. Let \(\Delta_m \subset \Delta_l \) (\(m < l \)) be another simplex adjacent to \(x \). Then, the face of \(T_x \Delta_l \) corresponding to \(\Delta_m \) is isomorphic to \(T_x \Delta_m \) and we view \(T_x \Delta_m \) as a subset of \(T_x \Delta_l \).

Set \(T_x K = \bigcup_{\Delta_x \supset x} T_x \Delta_x \), we call it the tangent cone of \(K \) at \(x \). Let \(S_x \Delta_t \) denote the subset of all unit vectors in \(T_x \Delta_t \) and set \(S_x = S_x K = \bigcup_{\Delta_x \supset x} S_x \Delta_x \). The set \(S_x \) is called the link of \(x \) in \(K \). If \(\Delta_t \) is a simplex adjacent to \(x \), then \(g_{\Delta_t}(x) \) defines a riemannian metric on the \((l-1)\)-simplex \(S_x \Delta_t \). The family \(g_x \) of riemannian metrics \(g_{\Delta_t}(x) \) turns \(S_x \Delta_t \) into a simplicial complex with a piecewise smooth riemannian metric such that the simplices are spherical.

1.2.3 Definition.

We call an admissible boundaryless connected locally finite simplicial complex, endowed with a piecewise smooth riemannian metric, an admissible riemannian complex.

Now, the following theorem [4] gives us a characterization of the notion of the curvature bound in the case of two dimensional simplicial complexes.

1.2.4 Theorem.

Let \(g \) be a piecewise smooth riemannian metric on a locally finite two dimensional simplicial complex \(K \) and let \(d \) be the associated distance function.

Then \(k_K \leq k \) iff the following three conditions hold:

1. the Gauss curvature of the open faces is bounded from above by \(k \);
2. for every edge \(e \) of \(K \), every two faces \(f_1, f_2 \) adjacent to \(e \) and every interior point \(x \in e \) the sum of the geodesic curvatures \(k_1(x), k_2(x) \) of \(e \) with respect to \(f_1, f_2 \) is nonpositive;
3. for every vertex \(x \) of \(K \), every simple loop in \(S_x K \) has length at least \(2\pi \) (i.e. \(S_x K \) is \(CAT_1 \) space).

1.2.5 Liouville measure for the geodesic flow.

From now on we assume that \(K \) is an admissible \(n \)-dimensional riemannian complex. We denote by \(K^{(i)} \) the \(i \)-skeleton of \(K \) and \(K' \) the set of points \(x \in K \) such that \(x \) is contained in the interior of an \((n-1)\)-simplex.

Let \(x \in K' \). Then \(x \) is contained in the interior of an \((n-1)\)-simplex \(\Delta' \). For any \(n \)-simplex \(\Delta \) whose boundary \(\partial \Delta \) contains \(x \), let \(S'_x \Delta \) denote the open hemisphere of unit tangent vectors at \(x \) pointing inside \(\Delta \). Let \(\Delta_1, \ldots, \Delta_m \), \(m \geq 2 \), be the \(n \)-simplices containing \(\Delta' \). We set \(S'_x = \bigcup_{i=1}^m S'_x \Delta_i \), \(S' = \bigcup_{x \in K'} S'_x \) and \(S' = \bigcup_{x \in \partial \Delta \cap K'} S'_x \Delta \).

For \(v \in S'_x \Delta \) denote by \(\theta(v) \) the angle between \(v \) and the interior normal \(\nu(\Delta) \) of \(\Delta' \) with respect to \(\Delta \) at \(x \). Let \(dx \) be the volume element on \(K' \) and let \(\lambda_x \) be the Lebesgue measure on \(S'_x \). We define the Liouville measure on \(S' \) by \(d\mu'(x,v) = \cos \theta(v) d\lambda_x(v) \otimes dx \). Note that \(d\mu'(x,v) \otimes dt \) is the ordinary Liouville measure invariant under the geodesic flow on each \(n \)-simplex \(\Delta \) of \(K \).

Therefore, for \(\mu \)-a.e. \(v \in S' \Delta \), the geodesic \(\gamma_v \) in \(\Delta \) determined by \(\gamma_v(0) = v \) meets \(\partial \Delta \cap K^{(n-1)} \backslash K^{(n-2)} \) after a finite time \(t_v > 0 \) so that \(I(v) = -\gamma_v(t_v) \in S' \Delta \). Note that \(\gamma_v(t_v) \in K' \) since \(K \) is boundaryless. \(\mu \) is invariant under the involution \(I \).

Let \(I(v) = u + \cos \theta(I(v)) \nu(\gamma_v(t_v)) \), where \(u \) is tangent to \(K' \) and set \(F(v) = \bigcup_{\tau} \{ -u + \cos \theta(I(v)) \nu(\gamma_v(t_v)) \} \), where the union is taken over all \(n \)-simplices containing \(\gamma_v(t_v) \) except \(\Delta \).

Thus there is a subset \(S_1 \subset S' \) of full \(\mu \)-measure such that \(F(v) \) is defined for any \(v \in S_1 \). We set recursively \(S_{i+1} = \{ (x,v) \in S_i \backslash F(v) \subset S_i \} \) and define \(S_\infty = \bigcap_{i=0}^\infty S_i \), \(V = S_\infty \cap I(S_\infty) \). By construction, \(V \) has full \(\mu \)-measure.

We define the geodesic flow on the space \(SK \) (or \(TK \)) in the following way:

For \((x,v) \in V \), put \(g^t(x,v) = (X(x,v)(t), X_v(x,v)(t)) \) and \(g^0(x,v) = (x,v) \),

where \(g^t \) is the ordinary geodesic flow in the interior of every \(n \)-simplex and in the case where \(t \), for \(t_0 \in \mathbb{R}^+ X(x,v)(t_0) \in K' \), we set \(\dot{X}(x,v)(t_0) = \dot{X}(x,v)(t_0+) \) (therefore, \(X(x,v)(t_0) \in F(\dot{X}(x,v)(t_0-)) \).
1.3. General Markov process.

1.3.1 Basic concepts.

From now on, we assume that K is an admissible n-dimensional riemannian complex, with the metric g and corresponding distance function d. When K is not compact, let $K_D = K \cup \{D\}$ be the one-point compactification of K. Then, we can define a metric δ on K_D such that the topology on K generated by δ is the same as the topology generated by d. In case K is already compact, we simply adjoint D as an isolated point and define the metric δ on K_D by letting $d = \delta$ on $K \times K$ and $\delta(p, D) = 1$ for $p \in K$. Therefore, the restriction of δ to $K \times K$ is uniformly continuous with respect to d.

Denote by $C(K)$ the space of bounded continuous real-valued functions on K, $C_0(K)$ the subspace of $C(K)$ such that the functions have a null limit at infinity and $C_c(K)$ the space of functions in $C(K)$ with compact support. Clearly, these tree spaces are the same if K is compact. $C(K)$ endowed with supnorm is a (real) Banach space and $C_0(K), C_c(K)$ are Banach subspaces of $C(K)$. The space $C_r(K)$ is dense in the space $C_0(K)$.

Finally, whenever the term measurable is used it will refer to the basic σ-algebra of Borrel sets in K (or K_D).

1.3.2 Markov process.

The usual setup for the theory of temporarily homogeneous Markov process defined on measurable space $(\Omega \times [0, \infty], \mathcal{M} \times \mathcal{B})$ (\mathcal{B} is the Borrel σ-algebra in $[0, \infty]$) with values in topological measurable space (E, \mathcal{B}) is to consider the following objects:

1. We adjoin a point D to the space E. We write $E_D = E \cup \{D\}$ and \mathcal{B}_D the σ-algebra in E_D generated by \mathcal{B}.
2. For each $x \in E_D$, a probability measure P_x on (Ω, \mathcal{M}).
3. An increasing family (a filtration)$\{(\mathcal{M}_t)_{t \geq 0}\}$ of sub-σ-algebras of \mathcal{M} and distinguished point ω_0 of Ω.
4. For each $t \in [0, \infty]$ a measurable map $Y_t : (\Omega, \mathcal{M}) \to (E_D, \mathcal{B}_D)$ such that if $Y_t(\omega) = D$ then $Y_s(\omega) = D$ for all $s \geq t$, $Y_\infty(\omega) = D$ for all ω and $Y_0(\omega_D) = D$.
5. For each $t \in [0, \infty]$ a translation operator $\theta_t : \Omega \to \Omega$ such that $\theta_\infty \omega = \omega D$ for all ω.

We call the collection $Y = (\Omega, \mathcal{M}, \mathcal{M}_t, Y_t, \theta_t, P_x)$ a (temporally homogeneous) Markov process with state space (E, \mathcal{B}) if and only if the following axioms hold:

1. For each $t \geq 0$ and fixed $\Gamma \in \mathcal{B}$, the function $x \mapsto P(t, x, \Gamma) = P_x\{Y_t \in \Gamma\}$ is \mathcal{B} measurable.
2. For all $x \in E$, $P(0, x, E \setminus \{x\}) = 0$ and $P_D\{X_0 = D\} = 1$.
3. For all $t, h \geq 0$, $Y_t \circ \theta_h = Y_{t+h}$ (homogeneity).
4. For all $s, t \in \mathbb{R}^+$, $x \in E_D$ and $\Gamma \in \mathcal{B}_D$, $P_x\{X_{t+s} \in \Gamma|\mathcal{M}_t\} = P(s, X_t, \Gamma)$ (Markov property).

The point D may be always thought of as a ”cemetery” when we regard $t \mapsto Y_t(\omega)$ as the trajectory of particle moving randomly in the space E. With this interpretation in mind, we name the random variable $\xi(\omega) = \inf\{t; X_t(\omega) = D\}$ the lifetime.

2. RIEMANNIAN ADMISSIBLE COMPLEX-VALUED SEMIMARTINGALE AND MARTINGALE

The aim of this section is to give a geometrical approach to a Martingale theory because, on singular spaces we are faced with the absence of differentiability.

2.1 Piecewise differential structure on simplicial complexes.

In this paragraph, all complexes are of finite dimension, locally finite and with all simplices embedded in some affine spaces \mathbb{R}^k. Let K_1 and K_2 be such complexes with dimensions n_1 and n_2 respectively.
2.1.1 Definitions.

(1) We say that a continuous function \(f : K_1 \to \mathbb{R} \) is of class \(C^k \) (simplexwise) iff the restriction of \(f \) to any simplex \(\Delta \) is of class \(C^k \) i.e. there is a real function \(f_\Delta \) of class \(C^k \) defined on some open neighborhood \(U \) of \(\Delta \) in some \(\mathbb{R}^n \) so that the restriction \(f_\Delta|\Delta = f \).

(2) A continuous map \(\Phi : K_1 \to K_2 \) is called of class \(C^k \) iff for every function \(g : K_2 \to \mathbb{R} \) of class \(C^k \), the function \(g \circ \Phi : K_1 \to \mathbb{R} \) is \(C^k \).

(3) A continuous function \(h : TK_1 \to \mathbb{R} \) (\(TK_1 \) the topological space of the tangent cones) is called of class \(C^k \) iff on every space of tangent cones of simplices, the restriction of the function \(h \) coincides with a \(C^k \) function defined on the tangent bundle of an open set (neighborhoods of the simplices) in some \(\mathbb{R}^n \).

2.1.2 Example. Consider the function defined by the generalized geodesic flow on the space of tangent cones of an admissible riemannian complex \(K \):

\[
g_t : V \subset \Sigma K \to V
\]

\[
(x, v) \mapsto g_t(x, v),
\]

this map is of class \(C^\infty \) in the sense of the above definition, because the restriction of geodesic flow to every simplex \(\Delta \) of \(K \), can easily be extended to an open neighborhood of \(\Delta \) in some \(\mathbb{R}^n \).

2.1.3 Open problem.

The last definitions lead us to the natural question: Is the theorem of Gromov-Nash [25] still true in the case of simplicial complexes endowed with (simplexwise) differential structure? In other words, given a locally finite simplicial complex \(K \) of dimension \(n \) endowed with (simplexwise) differential structure, can we find (maybe under supplement hypothesis) an isometric embedding of the complex \(K \) into an euclidean space?

In general, if we don’t put more conditions on the complex, the answer to the last question is no. In fact a non-differentiable triangulable riemannian Lipschitz manifold is an admissible riemannian admissible complex and, De Cecco and Palmieri [10] had shown that certain of these complexes are not isometrically embeddable in any euclidean space (and therefore not in any smooth riemannian manifold).

2.2 Stochastic process, semimartingale and martingale.

Let \((K, g)\) be an admissible riemannian complex of dimension \(n \), \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})\) be some filtered probability space, and let \(X : \Omega \times [0, \infty[\to (K, d) \) be an adapted \(K \)-valued process.

The following proposition is based on Schwartz’s idea of defining semimartingale in random open sets.

2.2.1 Proposition.

Suppose that \(X \) is continuous. Then, there exist an increasing sequence of adapted stopping times \((T_i)_{i \geq 0}\), with \(T_0 = 0 \) and \(\sup_{i \geq 0} T_i = \infty \) so that:

1. On each of the stochastic intervals \([T_i, T_{i+1}]) \cap \{T_{i+1} > T_i\} \), \(X \) takes its values in one of the \(n \)-simplices of \(K \).

2. For all \(i \geq 1 \), the process \(X_{T_i} \) takes its values in one of the \((n-1)\)-simplices of \(K \).

Proof.

The process \(X \) is supposed continuous, so there exists a \(n \)-simplex \(\Delta \subset K \) such that the following stopping times:

\[
\begin{align*}
T_0 &= \inf \{t \geq 0 : X_t \in \Delta \} \quad \text{ (the first entrance time in } \Delta) \\
T_1 &= \inf \{t \geq 0 : X_t \in \Delta^c \} \quad \text{ (the first exit time of } \Delta)
\end{align*}
\]

are adapted to \((\mathcal{F}_t)_{t \geq 0}\) and \(\mathbb{P}\{T_1 \geq T_0\} > 0\).

Let \(E\) denote the set of all adapted stopping times \(S\) such that there are finitely many adapted stopping times \(0 = T_0 \leq T_1 \cdots \leq T_p = S\), with the property as on every stochastic interval \([T_i, T_{i+1}] \cap \{T_{i+1} > T_i\}\), \(X\) takes its values in one of the \(n\)-simplicies of \(K\). We remark that the set \(E\) is non-avoid (because of \((*)\)).

Suppose that \(R = \text{SupE}\) is not a.e. infinite; then, there would exist a \(n\)-simplex \(\Delta\) with \(\mathbb{P}\{R < \infty\} \cap \{X_R \in \Delta\} > 0\), hence also an adapted stopping time \(S \in E\) such that \(\mathbb{P}\{R < \infty\} \text{ and, for all } S \leq t \leq R, X_t \in \Delta\} > 0\).

Let \(\tau\) be the following adapted stopping time:

\[
\tau = \begin{cases}
S, \text{ if } S = \infty \text{ or } X_S \not\in \Delta \\
\inf\{t > S : X_t \not\in \Delta\}, \text{ if } X_S \in \Delta \text{ (the first exit time of } \Delta \text{ after the time } S).
\end{cases}
\]

\(\tau\) would belong to \(E\) and by definition, \(\tau\) has a non-zero probability of exceeding \(R\), which would be absurd.

So \(E\) contains a sequence \((S_m)\) tending to infinity. To complete the proof, it suffices to interpolate this sequence by inserting between the terms \(S_m\) and \(S_{m+1}\) the adapted stopping times \(T_0 v S_m \cdots T_p v S_m\), where \(T_0, \ldots, T_p\) are given by fact that \(S_{m+1} \in E\).

To prove the second proposition \((2)\), we remark two facts: firstly, the process is continuous secondly, every stopping time \(T_i\) corresponds to the moment where the process leaves an \(n\)-simplex for another one (maximal simplex); in other words when the process across a \((n-1)\)-simplex.

2.2.2 Definition.

Let \(K\) be an admissible riemannian complex. For every continuous \(K\)-valued process the related sequence of the stopping times coming from proposition 2.2.1, is called the associated sequence of the given process.

And now we are ready to give a natural definition of complex-valued continuous semimartingale (resp. martingale).

2.2.3 Definition.

Let \(X\) be a continuous process with values in the admissible riemannian complex \(K\), \((T_i)\) its associated sequence and \(Y^i_t = X_{T_{i+1} \wedge T_i + t}\) be the time-changed process. The process \(X\) is called a semimartingale (resp. martingale) if and only if, for every \(i\), the process \(Y^i\) is a semimartingale (resp. martingale), for the filtration \(\mathcal{F}^i_t = \mathcal{F}_{T_i + t}\) and the probability \(\mathbb{P}_i = \mathbb{P}_{[.,/T_{i+1} > T_i]}\).

2.2.4 Proposition.

Let \(K\) denote an admissible riemannian complex, \(X\) be a \(K\)-valued continuous process and \(Y^i_t = X_{T_{i+1} \wedge T_i + t}\) be the time-changed process \((T_i)\) is the associated sequence of \(X\). Then the following assertions are equivalents:

1. \(X\) is a semimartingale (resp. a martingale).
2. For every \(f \in C^2(K)\) (simplexwise of class \(C^2\)), \(f \circ Y^i\) is a semimartingale (resp. a local martingale).

Proof.

The fact \((1) \Rightarrow (2)\) is by definition.

\((2) \Rightarrow (1):\)

Let \(X\) be a continuous process taking its values in the admissible complex \(K\), \((T_i)\) its associated sequence and \(Y^i_t = X_{T_{i+1} \wedge T_i + t}\) the time-changed process.

Let suppose that for all functions \(f \in C^2(K)\), \(f \circ Y^i\) is a semimartingale.
Let Δ denote an n-simplex of the complex K and f_Δ be a function of class C^2 with support in \mathbb{R}^n containing Δ. Set $g(x) = \begin{cases} f_\Delta(x), & \text{if } x \in \Delta \\ 0, & \text{unless} \end{cases}$. Since the process $g \circ Y^i$, if Y^i takes its values in Δ, is a semimartingale, then $f_\Delta \circ Y^i$ is a real semimartingale and this is true for every such function f_Δ. So by definition of smooth riemannian manifold-valued semimartingale, Y^i is a semimartingale.

3. ISOTROPIC TRANSPORT PROCESS

3.1 Construction.

In this paragraph, K will denote an admissible riemannian complex with dimension n and we will use all notations of the first section.

3.1.1 An intuitive approach.

Let ΣK denote the space of links of the complex K. Choose a point (x_0, v_0) from the space ΣK and assume that the point x_0 is in the topological interior of a maximal simplex Δ_0. Intuitively, a particle starting from the point x_0 travels geodesically, in direction v_0 chosen randomly, during exponentially distributed waiting time s_1 to a new position x_1 supposed in the interior of Δ_0. At x_1, the particle chooses a new direction v_1 in the link S_{x_1} over x_1 with the uniform probability $P[v_1 \in d\lambda] = \lambda x_1(d\lambda)$, where λ denotes the normalized Lebesgue measure on S_{x_1}. From the point x_1 and in the direction v_1, the particle travels geodesically during exponentially distributed waiting time s_2 to a position x_2 in the interior of the simplex Δ_0. So the particle continues its motion in the interior of Δ_0 until it hits transversally (because of the construction of the generalized geodesic flow on the admissible complexes) the border of the simplex Δ_0 at an interior point of a $(n-1)$-simplex adjacent to Δ_0. Note this hit point x_n. Starting now from x_n and choosing randomly a new direction in the link over x_n, the particle travels geodesically during exponentially waiting time s_n to a new position in the interior of a maximal simplex (which could be Δ_0) and so on.

3.1.2 Mathematical approach.

Right now, we will give a mathematical form to the random walk just described above.

Consider the product space $L = \Sigma K \times \mathbb{R}^+$ and the product σ-algebra $\mathfrak{F} = \mathcal{E} \times \mathcal{B}$, where \mathcal{E} and \mathcal{B} are respectively Borrel σ-algebra of ΣK and of \mathbb{R}^+. Note $\Omega = L^\mathbb{N}$ and $\mathfrak{G} = \mathfrak{F}^\mathbb{N}$, where \mathbb{N} is the set of positive entire numbers. Thus (L, \mathfrak{F}) and (Ω, \mathfrak{G}) are measurable spaces and the points $\omega \in \Omega$ are sequences $\{(x_l, v_l, t_l) \in \Sigma K \times \mathbb{R}^+; l \in \mathbb{N}\}$.

Let $\{(x_l, v_l, t_l) \in \Sigma K \times \mathbb{R}^+; l \in \mathbb{N}\}$ be a point of Ω and set $\hat{Y}_k(\omega) = (x_k, v_k, t_k), Z_k(\omega) = (x_k, v_k)$ and $\tau_k(\omega) = t_k$. The functions $\hat{Y}_k : (\Omega, \mathfrak{G}) \to (L, \mathfrak{F}), Z_k : (\Omega, \mathfrak{G}) \to (\Sigma K, \mathcal{E})$ and $\tau_k : (\Omega, \mathfrak{G}) \to (\mathbb{R}^+, \mathcal{B})$ are measurable.

Finally, we shall consider the following space of events:

$$\Omega' = \{ \omega \in \Omega \mid \forall k \in \mathbb{N}, Z_{k+1}(\omega) \neq Z_k(\omega), \tau_0 = 0, \tau_{k+1}(\omega) > \tau_k(\omega) \}.$$

Put $\xi(\omega) = \lim_{n \to \infty} \tau_n(\omega)$ (life time) and let $K_D = K \cup \{D\}$ denote the one point compactification. The space K is assumed semi-compact so we shall endow K_D with a metric d' such that the space (K_D, d') is compact and the restriction of d' to K coincides with the beginning metric of K.

Now, we will define the K-valued geodesically random walk which interests us. Let, for $t \geq 0$

$$Y_t(\omega) = \begin{cases} X_{Z_i(\omega)}(t - \tau_i(\omega)) & \text{if } \tau_i(\omega) \leq t \leq \tau_{i+1}(\omega) \\ D & \text{if } \xi(\omega) \leq t \end{cases},$$

where X is the K-projection of the generalized geodesic flow on the complex K. According to the latest definition, we have for every $\omega \in \Omega$, $Y_\infty = D$.

8
3.2 Markov property.

In the following paragraph, we will complete the preceding construction to define the admissible complex-valued isotropic transport process and then we will show that the last process is a strong Markov one.

Let \(K \) denote an admissible riemannian complex and define the next transition density on the measurable space \((L, \mathfrak{F})\) as :

\[
N(z, t; dz, ds) = \begin{cases}
0 & \text{if } t < s, \\
\lambda_x(dz)e^{-(s-t)}ds & \text{if } s \geq t,
\end{cases}
\]

with \(z = (x, v), \ dz = (x, dv) \) and \(\lambda_x \) is the uniform measure on the link \(S_xK \).

3.2.1 Proposition.

Let \(\gamma \) denote a probability measure on the measurable space \((L, \mathfrak{F})\). Then, there exists a probability measure \(P^\gamma \) on the measurable space \((\Omega, \mathfrak{F})\) such that the coordinate mappings \(\{\hat{Y}_n; n \in \mathbb{N}\} \) form a temporally homogeneous Markov process on the measured space \((\Omega, \mathfrak{F}, P^\gamma)\), with \(\gamma \) as initial distribution and \(N \) the transition function, i.e:

\[
P^\gamma(\hat{Y}_{n+1} \in A|\hat{Y}_0, \ldots, \hat{Y}_n) = \int_A N(Z_n, \tau_n; dz, ds),
\]

for all \(A \) belonging to \(\mathfrak{F} \) and \(n \in \mathbb{N} \).

Proof.

The proposition is an immediate corollary of I.Tulcea’s theorem (see [12] pp. 613-615).

If \(\gamma \) is the measure \(\lambda_x \otimes \delta_0 \), with \(\delta_0 \) the Dirac mass at \(0 \in \mathbb{R} \), then we will write \(P^{\lambda_x} \) or \(P^x \) for \(P^\gamma \). Consequently, we have for every \(x \in K \), \(\lambda^x(\Omega') = 1 \) and the process \(\{\hat{Y}_n; n \in \mathbb{N}\} \) will be Markov on the measured space \((\Omega', \mathfrak{F}', P^x)\). We will note \(\Omega \) the set of sequences \(\{(z_n, t_n) \in L; n \geq 0\} \) where \(z_{n+1} \neq z_n \) and \(0 = t_0 < t_1 < \ldots < t_n < \ldots \), and \(\mathfrak{F} \) will denote the \(\sigma \)-algebra of \(\Omega \) generated by \(\{\hat{Y}_n; n \in \mathbb{N}\} \). Thus, we will use in the following, the probability space(s) \((\Omega, \mathfrak{F}, P^x)\).

Right now, let \((Y_t)_{t \geq 0}\) denote the \(K \)-valued random walk constructed in the last section (3.1). For all \(\omega \in \Omega \), the map \(t \mapsto Y_t(\omega) \) is continuous on \(\mathbb{R}^+ \) and has left-hand limits on \([0, \xi(\omega)]\). We complete the \(\sigma \)-algebra \(\mathfrak{F} \) by adjoining a point \(\omega_D \) to \(\Omega \) with \(Y_t(\omega_D) = D \) for all \(t, \{\omega_D\} \in \mathfrak{F} \) and \(P^x(\{\omega_D\}) = 0 \) for all \(x \in K \). We set \(Z_n(\omega_D) = D \) and \(\tau_n(\omega_D) = \infty \) for all \(n \in \mathbb{N} \) and denote \(P^D \) the Dirac mass at \(\omega_D \).

Next we define the translation operators \((\theta_t)_{t \geq 0}\) as follows: for all \(t \geq 0 \), \(\theta_t \omega_D = \omega_D \); if \(t \geq \xi(\omega) \) then \(\theta_t \omega = \omega_D \), while if \(t \leq t < t_{k+1}, k \geq 0 \) then \(\theta_t \omega = \{(z_{n+k}, (t_{n+k} - t) \vee 0); n \geq 0\} \), where \(\omega = \{(z_n, t_n); n \geq 0\} \).

Thus, we have \(Y_s \circ \theta_t = Y_{s+t} \) for all \(s, t \in \mathbb{R}^+ \).

3.2.2 Definition.

We call the stochastic process \(Y = (\Omega, \mathfrak{F}, Y_t, \theta_t, P^x) \) the (an) isotropic transport process (motion) with values in the admissible riemannian complex \(K \).

Let \(\mathfrak{F}_n := \sigma\{\hat{Y}_i; 0 \leq i \leq n\} \) and \(\mathfrak{F}^0_t := \sigma\{Y_s; s \leq t\} \) denote respectively the \(\sigma \)-algebra of \(\Omega \) generated by \(\{\hat{Y}_i; 0 \leq i \leq n\} \) and the one generated by \(\{Y_s; s \leq t\} \).

3.2.3 Lemma.

Let \(\Lambda \in \mathfrak{F}^0_t \); then, for all \(n \geq 0 \), there exists \(\Lambda_n \in \mathfrak{F}_n \) such that :

\[
\Lambda \cap \{\tau_n \leq t < \tau_{n+1}\} = \Lambda_n \cap \{t < \tau_{n+1}\}.
\]
Proof.

Note :

$$\mathfrak{G}_t := \sigma\{\Lambda \in \mathfrak{F}_t^0 | (\forall n \geq 0)(\exists \Lambda_n \in \mathfrak{G}_n), \Lambda \cap \{\tau_n \leq t < \tau_{n+1}\} = \Lambda_n \cap \{t < \tau_{n+1}\}\}. $$

We can easily check that, for all $A \in \mathfrak{G}_S$, the sets $\{Y_s \in A\}_{s \leq t}$ belong to the σ-algebra \mathfrak{G}_t. Thus, we end the proof; indeed the sets $\{Y_s \in A\}_{s \leq t}$ generate the σ-algebra \mathfrak{F}_t^0.

We set, for real functions $g \in C_0(\Sigma K)$ and $f \in C_0(K)$ (or simply measurable functions):

1. $Pg(x) := \int_{\Sigma K} g(x, \eta) d\lambda_x(\eta)$.
2. $\forall t > 0, T^0_tf(x) := \int_{\Sigma K} f(X(x, \eta)(t)) d\lambda_x(\eta)$ and $T_tf(x) := E^x[f(Y_t)]$, the latest is the expectation with respect to Y_t.
3. $\forall \lambda > 0, R^0_\lambda f(x) := \int_{\mathbb{R}^+} e^{-\lambda t} T^0_tf(x) dt$ and $R_\lambda f(x) := \int_{\mathbb{R}^+} e^{-\lambda t} T_tf(x) dt$, respectively the resolvent operator of T^0_t and of T_t.

3.2.4 Proposition.

Let $f \in C^0(K)$, then, for all $\lambda > 0$ we have:

$$R_\lambda f = \sum_{n=0}^{\infty} (R^0_{\lambda+1})^{n+1} f,$$

where $(R^0_{n+1})^0 := Id$ the identity map.

Proof.

First we write:

$$R_\lambda f(x) = \int_0^{\tau_1} + \sum_{i=1}^{\infty} \int_{\tau_i}^{\tau_{i+1}} e^{-\lambda t} f(Y_t) dt.$$

Taking into account the distribution of τ_1 and the initial distribution of the process Y, the first integral becomes:

$$\int_0^{\infty} e^{-(1+\lambda)s} T^0_s f(x) ds = R^0_{1+\lambda} f(x).$$

For the second part of the decomposition, we will prove by induction argument that for all $i \geq 1$ the following equality:

$$\text{⑧} \quad \int_{\tau_i}^{\tau_{i+1}} e^{-\lambda t} f(Y_t) dt = (R^0_{\lambda+1})^{i+1} f(x).$$

Let’s see the case $i = 1$:

$$\int_{\tau_1}^{\tau_2} e^{-\lambda t} f(Y_t) dt = [e^{-\lambda \tau_1} \int_0^{\tau_2-\tau_1} e^{-\lambda t} f(Y_{t+\tau_1}) dt],$$

which is equal to:

$$\lfloor e^{-\lambda \tau_1} (R^0_{\lambda+1}) f(X_{Z_1}(0)) \rfloor = \lfloor e^{-\lambda \tau_1} (PR^0_{\lambda+1}) f(X_{Z_0}(\tau_1)) \rfloor.$$

Using the distribution of τ_1, we obtain:

$$(R^0_{\lambda+1})(R^0_{\lambda+1}) f(x).$$

Assume the property ⑧ until the order l, and see what happens at the order $l + 1$: 10
\[
\int_{\tau_{l+1}}^{\tau_{l+2}} e^{-\lambda t} f(Y_t) dt = \left[e^{-\lambda \tau_{l+1}} \int_0^{\tau_{l+2} - \tau_{l+1}} e^{-\lambda t} f(Y_{t+\tau_{l+1}}) dt \right],
\]
which is equal to:
\[
[e^{-\lambda \tau_{l+1}} (R^0_{\lambda+1}) f(X_{\tau_{l+1}}(0))] = [e^{-\lambda \tau_i} e^{-\lambda (\tau_{l+1} - \tau_i)} (PR^0_{\lambda+1}) f(X_{\tau_i}(\tau_{l+1} - \tau_i))].
\]

Using the distribution of \((\tau_{l+1} - \tau_i)\):
\[
= [e^{-\lambda \tau_i} (R^0_{\lambda+1}) (R^0_{\lambda+1}) f(X_{\tau_i}(0))],
\]
this latest expectation is equal to:
\[
\int_{\tau_i}^{\tau_{l+1}} e^{-\lambda t} R^0_{\lambda+1} f(Y_t) dt.
\]

Hence, using the recurrence hypothesis applied to the function \(R^0_{\lambda+1} f\), we obtain the equality \(\beth\) at the order \(l + 1\).

For the end of the proof, note that the series \(\sum_{n-0}^{\infty} (R^0_{\lambda+1})^n f\) converges uniformly because we have for all function \(f \in C^0(K)\), the estimation \(||R^0_{\lambda+1}|| \leq \frac{1}{\lambda + 1}\) (the sup norm), which is to be shown.

3.2.5 Lemma.

Let \(f\) be a measurable real (positive) function on \((K, \mathcal{B})\). Then, for all \(t \geq 0\) and \(\lambda > 0\), we have:
\[
E\{ \int_{t}^{\infty} e^{-\lambda u} f(Y_u) du | \mathcal{F}_t^0 \} = e^{-\lambda t} R_\lambda f(Y_t).
\]

3.2.6 Remark.

By the lemma 3.2.3 of this paragraph, to establish the lemma 3.2.5 it suffices to show the same equality(s) on the sets \(\Lambda_n \in \mathcal{F}_t^0\) with
\[
\Lambda_n \cap \{ \tau_n \leq t < \tau_{n+1} \} = \Lambda_n \cap \{ t < \tau_{n+1} \}.
\]
i.e:
\[
\beth \quad E\{ \int_{t}^{\infty} e^{-\lambda u} f(Y_u) du | \Lambda_n \} = E\{ e^{-\lambda t} R_\lambda f(Y_t) | \Lambda_n \}.
\]

Proof of lemma 3.2.5.

Consider the left side of the equality \(\beth\) and set it in the following way:
\[
E\{ \int_{t}^{\infty} e^{-\lambda u} f(Y_u) du | \Lambda_n \} = [(\int_t^{\tau_{n+1}} + \sum_{i=n+1}^{\infty} \int_{\tau_i}^{\tau_{i+1}}) e^{-\lambda u} f(Y_u) du | \Lambda_n].
\]

Using, the Markov property of the process \(\{\bar{Y}_n; n \geq 0\}\), the fact that \(\Lambda_n \subset \{ \tau_n \leq t \leq \tau_{n+1} \}\) and the exponentially distribution of the random variable \(\tau_{n+1} - t \wedge \tau_{n+1} - \tau_n\), the first integral of the decomposition becomes:
\[
[e^{-\lambda t} e^{-(\lambda - 1) t}] \int_0^{\infty} e^{-(\lambda + 1) u} P \{f(X_{\tau_n}((u + (t - \tau_n))) du | \Lambda_n]
\]
which is equal to:
\[
[e^{-\lambda t} e^{-(\lambda - 1) t} R^0_{\lambda+1} f(X_{\tau_n}(t - \tau_n)) | \Lambda_n].
\]
For the second half of the decomposition, we will show by induction argument that for all \(i \geq 1 \), we have the equality:

\[
\mathbb{E}^t_{\mathbb{R}_n^0} \left[\int_{\tau_{n+i+1}}^{\tau_{n+i}} e^{-\lambda u} f(Y_u) du \big| \Lambda_n \right] = [e^{-\lambda t} e^{-(t-\tau_n)} (R_{\lambda+1}^0)_{i+1}^i f(X_{Z_n}(t-\tau_n)) | \Lambda_n].
\]

Let see the case \(i = 1 \):

\[
\left[\int_{\tau_{n+1}}^{\tau_{n+2}} e^{-\lambda u} f(Y_u) du \big| \Lambda_n \right] = [e^{-\lambda \tau_{n+1}} (R_{\lambda+1}^0) f(X_{Z_{n+1}}(0)) | \Lambda_n] = [e^{-\lambda \tau_{n+1}} e^{-\lambda(t-\tau_n)} (R_{\lambda+1}^0) f(X_{Z_n}(\tau_{n+1} - \tau_n)) | \Lambda_n],
\]

which is the same as:

\[
[e^{-\lambda \tau_{n+1}} e^{-\lambda(t-\tau_n)} (R_{\lambda+1}^0) f(X_{Z_n}(\tau_{n+1} - t) + (t - \tau_n))) | \Lambda_n].
\]

Using the Markov property of \{\tilde{Y}_n; n \geq 0\} and the distribution of \((\tau_{n+1} - t) \land (\tau_{n+1} - \tau_n)\), we obtain:

\[
[e^{-\lambda t} e^{-(t-\tau_n)} (R_{\lambda+1}^0) f(X_{Z_n}(u + (t - \tau_n))) du | \Lambda_n],
\]

what is equal to:

\[
[e^{-\lambda t} e^{-(t-\tau_n)} R_{\lambda+1}^0 (R_{\lambda+1}^0) f(X_{Z_n}(t - \tau_n)) | \Lambda_n].
\]

Now assume that the property \(\mathbb{E}^t_{\mathbb{R}_n^0} \) comes true until the order \(l \), and let’s see what will happen at order \(l + 1 \).

\[
\left[\int_{\tau_{n+(l+1)}}^{\tau_{n+(l+2)}} e^{-\lambda u} f(Y_u) du \big| \Lambda_n \right] = [e^{-\lambda \tau_{n+(l+1)}} \int_{\tau_{n+(l+1)}}^{\tau_{n+(l+2)}} e^{-\lambda u} f(Y_{u+\tau_{n+(l+1)}}) du | \Lambda_n],
\]

what is equal to:

\[
[e^{-\lambda \tau_{n+(l+1)}} (R_{\lambda+1}^0) f(X_{Z_{n+(l+1)}}(0)) | \Lambda_n],
\]

which is equal to:

\[
[e^{-\lambda \tau_{n+l}} e^{-\lambda(\tau_{n+(l+1)} - \tau_{n+l})} (PR_{\lambda+1}^0) f(X_{Z_{n+l}}(\tau_{n+(l+1)} - \tau_{n+l})) | \Lambda_n].
\]

Then, using the distribution of \((\tau_{n+(l+1)} - \tau_{n+l})\) we get:

\[
= [e^{-\lambda \tau_{n+l}} (R_{\lambda+1}^0)(R_{\lambda+1}^0) f(X_{Z_{n+l}}(0)) | \Lambda_n],
\]

this latest expectation is equal to:

\[
\left[\int_{\tau_{n+l}}^{\tau_{n+(l+1)}} e^{-\lambda u} R_{\lambda+1}^0 f(Y_u) du \big| \Lambda_n \right].
\]

Thus, if we apply the recurrence hypothesis to the function \(R_{\lambda+1}^0 f \), we obtain the equality \(\mathbb{E}^t_{\mathbb{R}_n^0} \) at the order \(l + 1 \).
Up to now we have shown that the left side of the equality \(\Phi \) is equal to:

\[
[e^{-\lambda t} e^{-(t-\tau_n)} \{R_{\lambda+1} f(X_{Z_n}(t-\tau_n)) + \sum_{i=1}^{\infty} (R_{\lambda+1})^{i+1} f(X_{Z_n}(t-\tau_n))\}]|\Lambda_n].
\]

Thus by proposition 3.2.4 of this section, this sum is equal to:

\[
[e^{-\lambda t} e^{-(t-\tau_n)} R_{\lambda} f(X_{Z_n}(t-\tau_n))]|\Lambda_n].
\]

Using once again the Markov property of \(\{\bar{Y}_n; n \geq 0\} \), we get:

\[
[e^{-\lambda t} e^{-(t-\tau_n)} R_{\lambda} f(X_{Z_n}(t-\tau_n))]|\Lambda_n] = [e^{-\lambda t} R_{\lambda} f(Y_t)|\Lambda_n]
\]

which was to be proved.

Right now, we have collected all the ingredients for enunciating and proving the following theorem:

3.2.7 Theorem.

Let \(Y = (\Omega, \bar{\mathfrak{F}}_t, Y_t, \theta, P) \) be the isotropic transport process with values in the admissible riemannian complex \(K \). Then \(Y \) is a strong Markov process.

3.2.8 Remark ([14] I pp 97-100).

It suffices to show that the process \(Y \) is a Markov process because the right continuous (with right continuous trajectories) Markov process is always strongly Markov for the filtration \(\mathfrak{F}_{t+} \). But we know that, in case of continuous stochastic process, the filtration \(\mathfrak{F}_{t+} \) is equal to the filtration \(\mathfrak{F}_{t} \), which includes the case of the isotropic transport process (it is trajectories continuous).

Proof of theorem 3.2.7.

By lemma 3.2.5 of this section we have:

\[
E\{ \int_t^{\infty} e^{-\lambda u} f(Y_u)du|\mathfrak{F}_t \} = E_{Y_t} \{ \int_0^{\infty} e^{-\lambda(u+t)} f(Y_u)du \}.
\]

Then, if the function \(f \) is bounded we have the next equality:

\[
E\{ \int_t^{\infty} \varphi(u) f(Y_u)du|\mathfrak{F}_t \} = E_{Y_t} \{ \int_0^{\infty} \varphi(t+u) f(Y_u)du \},
\]

whenever the function \(\varphi \) is a linear combination of exponentials and hence, by uniform approximation, whenever \(\varphi \) is continuous and vanishes at infinity. Then, consider the following sequence of functions:

\[
\varphi_n(s + t + u) = \begin{cases}
0 & \text{if } \frac{1}{n} \leq u , \\
\frac{1}{n} - x & \text{if } 0 \leq u < \frac{1}{n} .
\end{cases}
\]

The sequence \((\varphi_n)_{n \geq 0} \) is a sequence of continuous functions vanishing at infinity and converging to the Dirac mass at \(s + t \), while the map \(u \mapsto f(Y_u) \) is a bounded (right) continuous function. Consequently, if we take the limit we obtain:

\[
E\{ f(Y_{t+s})du|\mathfrak{F}_t \} = E_{Y_t} \{ f(Y_s) \}.
\]

In other words, \(Y \) is Markov process. \(\square \)
4. Weak Convergence, Wiener measure and Brownian motion.

4.1 Construction.
Let $Y = (\Omega, \mathcal{F}_t^0, Y_t, \theta_t, P^x)$ be the isotropic transport process in the admissible riemannian complex K constructed in the last section. Set for a real $\eta > 0$ and $z = (x, v) \in \Sigma K$, $\eta z := (x, \eta v)$.

Define now a process Y^η from $Y = (\Omega, \mathcal{F}_t^0, Y_t, \theta_t, P^x)$ in the following way:

$$Y^\eta_t(\omega) = \begin{cases} X_{\eta Z_t} (\omega) \left(\frac{1}{\eta} - \tau_t(\omega)\right) & \text{if } \tau_t(\omega) \leq \frac{1}{\eta} \leq \tau_{t+1}(\omega), \\ D & \text{if } \xi(\omega) \leq \frac{1}{\eta}. \end{cases}$$

Thus the process $Y^\eta = (\Omega, \mathcal{F}_t^0, Y^\eta_t, \theta_t, P^x)$ is (trajectories) continuous and it is, as the process Y, strongly Markov.

Proposition.
Let K be an admissible riemannian and $C(\mathbb{R}^+, K)$ be the space of continuous paths in K. Then for each $\eta > 0$, the process Y^η generates a measure μ_η on the space $C(\mathbb{R}^+, K)$.

Proof.
For $\eta > 0$, set $P^\eta_{s,t}(p, A)$ with $p \in K$ and $A \in \mathcal{B}(K_D)$, the transition probability of the process Y^η (i.e. $P^\eta_{s,t}(p, A) := \text{Prob}(Y^\eta_{t+s} \in A; Y^\eta_s = p)$).

Consider the finite sets of reals $J = \{t_1 < t_2 < \ldots < t_n\} \subset (\mathbb{R}^+)^n$. Then, for each finite set $J = \{t_1 < t_2 < \ldots < t_n\}$, we define probability measure in the following way:

$$\text{for } B \subset K_D^n, \quad P^\eta_J(B) = \int_B P^x(dx_0) \int P^\eta_{0,t_1}(x_0, dx_1) \int \ldots \int P^\eta_{t_{n-1}, t_n}(x_{n-1}, dx_n).$$

Let $\Phi(\mathbb{R}^+)$ denote the set of the finite subset of \mathbb{R}^+. Then, the system $\{P^\eta_J; J \in \Phi(\mathbb{R}^+)\}$, and thanks to the Markov property of Y^η, is a projective system on $(K_D, \mathcal{B}(K_D))$ (i.e : if π_f (respectively π_J) is the natural projection of K^f (respectively Ω)) to K^J then $P^\eta_f(\pi_f^{-1} = P^\eta_J)$.

On the other hand, the trajectories of Y^η are continuous and the space K is Hausdorff and σ-compact. Consequently, and using the Kolmogorov theorem [5], we get a probability measure μ_η on the space $C(\mathbb{R}^+, K)$. \hfill \Box

4.2. Wiener measure.
Right now, we will announce the main theorem of this paragraph.

4.2.1 Theorem.
Let K denote an admissible riemannian complex, and consider the family $\{Y^\eta\}_{\eta > 0}$ of the isotropic transport processes constructed in the paragraph above and let $(\mu_\eta)_{\eta > 0}$ be the family of the generated probability measures on $C(\mathbb{R}^+, K)$. The space $C(\mathbb{R}^+, K)$ is provided with the compact-open topology. Then the family $(\mu_\eta)_{\eta > 0}$ has a convergent subsequence.

To prove the last theorem we need the following lemma:

4.2.2 Lemma.
Under the hypothesis of theorem 4.2.1, the family of the probability measures $(\mu_\eta)_{\eta > 0}$ is Tight, i.e :

$$\lim_{\eta \to 0} \text{Prob}\left\{ \sup_{c \to 0} \min_{0 \leq t_1 < t_2 \leq t + c} d(Y^\eta_{t_1}, Y^\eta_{t_2}) > \epsilon \right\} = 0.$$

4.2.3 Remark.
Before proceeding to look at the proof of the lemma, recall first the two following facts:

1. When the space $C(\mathbb{R}^+, K)$ is provided with the compact-open topology, the Tightness property is equivalent, following Stone [29], to the equality of the lemma 4.2.2.
According to an article of E. Jørgensen [19, lemma 1.4], if the following property:

\[
\forall \epsilon > 0, \exists \alpha > 0 \text{ such that, } \sup_{p \in K_D, \theta \geq \epsilon} P_{0,\theta}^\eta(p, B_D^\epsilon(p, \epsilon)) \leq \alpha,
\]

comes true then the equality of lemma 4.2.2 is also true.

Proof of lemma 4.2.2.

By remark 4.2.3, if we show the following:

\[
\forall \epsilon > 0, \exists \alpha > 0, \lim_{\eta \to 0} \sup_{0 < t} \frac{\text{Prob}\{Y_t^\eta \in B_D^\epsilon(p, \epsilon)\}}{t \eta^2} \leq \alpha,
\]

then the sequence \((\mu_\eta)_{\eta > 0}\) is Tight.

We will assume that \(\epsilon < \eta\) (otherwise, the probability needed should be null) and \(\frac{\epsilon}{\eta^2} < \tau_1\) (see the recurrence of lemma 3.2.5’s proof) which doesn’t affect the result. On the other hand, \(\epsilon\) is necessarily lower or equal than \(\frac{\epsilon}{\eta^2}\) unless the sought after probability should vanish and then, there is nothing to prove.

Thus, we have:

\[
\text{Prob}\{Y_t^\eta \in B_D^\epsilon(p, \epsilon)\} = E\{I_{B_D^\epsilon(p, \epsilon)}(Y_t^\eta)\} | \epsilon \leq \frac{t}{\eta^2} < \tau_1\}.
\]

Using the Markov property, we obtain:

\[
\text{Prob}\{Y_t^\eta \in B_D^\epsilon(p, \epsilon)\} = E\{e^{-\frac{t}{\eta^2}} \int_0^\infty PI_{B_D^\epsilon(p, \epsilon)}(X_{(p, \eta \xi)}(\frac{t}{\eta^2} + s))e^{-\gamma s} ds | \epsilon \leq \frac{t}{\eta^2}\},
\]

that is equal to:

\[
E\{e^{-\frac{t}{\eta^2}} R_1^0 I_{B_D^\epsilon(p, \epsilon)}(X_{(p, \eta \xi)}(\frac{t}{\eta^2})) | \epsilon \leq \frac{t}{\eta^2}\}.
\]

Using the fact that \(||R_1^0|| \leq 1\) we obtain the following estimation:

\[
E\{e^{-\frac{t}{\eta^2}} R_1^0 I_{B_D^\epsilon(p, \epsilon)}(X_{(p, \eta \xi)}(\frac{t}{\eta^2})) | \epsilon \leq \frac{t}{\eta^2}\} \leq e^{-\frac{t}{\eta^2}}.
\]

So for all \(t > 0\) we get:

\[
\frac{\text{Prob}\{Y_t^\eta \in B_D^\epsilon(p, \epsilon)\}}{t \eta^2} \leq e^{-\frac{t}{\eta^2}}.
\]

Thus, for all \(t > 0\), if \(\eta\) goes to zero, \(\frac{t}{\eta^2}\) goes also to zero, which was to be proved.

\[\square\]

Right now, we are ready to prove theorem 4.2.1.

Proof of theorem 4.2.1.

Consider the space \(C(\mathbb{R}^+, K)\) provided with the compact-open topology, where \(K\) is an admissible riemannian complex. Let \((\mu_\eta)_{\eta > 0}\) be the sequence of probability measures generated by the family of isotropic transport processes \(\{Y^\eta\}_{\eta > 0}\).

By lemma 4.2.1, the sequence \((\mu_\eta)_{\eta > 0}\) is Tight; moreover, the space \(C(\mathbb{R}^+, K)\) endowed with the compact-open topology is separable. Thus, using Prohorov’s theorem (see [5]), the sequence \((\mu_\eta)_{\eta > 0}\) is relatively compact. The proof is now complete.

\[\square\]

We showed above that the sequence \((\mu_\eta)_{\eta > 0}\) has a subsequence which converges to a probability measure. Let \(W\) denote this limit; then we set the following definition:
4.2.4 Definition. The measure W on the space $C(\mathbb{R}^+,K)$ is called a Wiener measure.

4.2.5 Example: The smooth case.

Assume K is a smooth riemannian manifold of dimension n and let Δ denote the operator of Laplace-Beltrami on K, then Δ is the infinitesimal generator of a Markov process, named the Brownian motion [16], and note it $\{B^x_t\}_{t<\zeta'}$. Let $(U_t)_{t>0}$ denote the semigroup associated to the Brownian motion. Suppose that, for all $f \in C_0(K)$, $U_tf \in C_0(K)$. Then we have the following theorem:

Theorem.
The sequence of processes $\{Y^n\}_{n>0}$ converge weakly to the process $\{B^x_t\}_{t<\zeta'}$.

Proof.
Set $T^n_tf(x) = E^x[f(Y^n_t)]$; following a result of Pinsky (see [27]), we have:

$$\forall f \in C_0(K), \lim_{n \to 0} T^n_tf = U_{\frac{1}{n}}f,$$

where n is the dimension of K.

By theorem 4.2.1, there exists a subsequence $(\mu_{n'})_{n'>0}$ of the sequence of probability measures $(\mu_n)_{n>0}$, such that $(\mu_{n'})_{n'>0}$ converges to a probability measure W on the space $C(\mathbb{R}^+,K)$.

Thus, by Stone’s theorem [29], W is then the classical Wiener measure generated by the Brownian motion $\{B^x_t\}_{t<\zeta'}$. □

4.3. Brownian motion.

By K we always denote an admissible riemannian complex, consider $\{Y^n\}_{n>0}$ the family of the isotropic transport processes and $\{\mu_n\}_{n>0}$ the corresponding sequence of probability measures.

Let $(\mu_{n_k})_k$ be a subsequence of the sequence $(\mu_n)_{n>0}$ which converges to the Wiener measure W.

Note, for $\eta_k > 0$ and for each finite set $J = \{t_1 < t_2 < \ldots < t_n\}$, $P^n_{J,k}$ the probability measure defined on the product space K^n, as follows:

$$\text{for } B \subset K^n_D, P^n_{J,k}(B) = \int_B P^x(dx_0) \int P^n_{0,t_1}(x_0,dx_1) \int \ldots \int P^n_{t_{n-1},t_n}(x_{n-1},dx_n).$$

4.3.1 Proposition.

By $\Phi(\mathbb{R}^+)$ we note the set of all finite subsets of \mathbb{R}^+. Then, for all J in the set $\Phi(\mathbb{R}^+)$, the sequence of probability measures $(P^n_{\Phi})_k$ has a subsequence converging to a probability measure μ_J on the space $K_D^{|J|}$ ($|J|$ is the cardinal of J). Moreover, the system $\{\mu_J; J \in \Phi(\mathbb{R}^+)\}$ is projective on the space $(K_D, \mathcal{B}(K_D))$.

Proof.
Recall that for all $s \in \mathbb{R}^+$, $t \in \mathbb{R}^+$ and all $p \in K$, the sequence of transition functions $(P^n_{s,t}(p,\cdot))_k$ ($P^n_{s,t}(p,A) := \text{Prob}\{Y^n_{t+s} \in A; Y^n_s = p\}$ where $A \in \mathcal{B}(K_D)$) defines a sequence of probability measures on the space $(K_D, \mathcal{B}(K_D))$.

Moreover, the space K_D is σ-compact; Thus, following Prohorov’s theorem [5], there exists a probability measure $\mu_{s,t}^p$ and a subsequence $(P^n_{s,t}(p,\cdot))_k$ converging weakly to $\mu_{s,t}^p$.

By a diagonal argument, we obtain, for all $J = \{t_1 < t_2 < \ldots < t_n\}$ in $\Phi(\mathbb{R}^+)$, a probability measure μ_J on the product space $K_D^{|J|}$ in the following way:

$$\text{for } B \subset K_D^{|J|}, \mu_J(B) = \int_B P^x(dx_0) \int \mu_{0,t_1}^{x_0}(dx_1) \int \ldots \int \mu_{t_{n-1},t_n}^{x_{n-1}}(dx_n),$$

consequently the proof is now complete. □

4.3.2 Remark.
The sequence $(\mu_{n_k})_k$ is weakly convergent to the Wiener measure W. Thus, for every set J belonging to $\Phi(\mathbb{R}^+)$, the finite dimensional distribution $W(\pi_J)^{-1}$ coincides with μ_J. In particular, for all $s > 0$, $t > 0$ and $p \in K_D$, we have $W^p(\pi_{(s,t)})^{-1} := \mu_{s,t}^p$. □
4.3.3 Corollary.

The function which maps a point \((t, p, \Gamma) \in \mathbb{R}^+ \times K_D \times \mathfrak{B}(K_D)\) to \(W(t, p, \Gamma) := W^p(\pi_{\{t, t\}})^{-1}(\Gamma)\) is a transition function on the measurable space \((K_D, \mathfrak{B}(K_D))\).

Proof.

The corollary is an immediate consequence of proposition 4.3.1 and remark 4.3.2.

Just now, we are ready to give the main theorem of this paragraph.

4.3.4 Theorem.

Let \((t, p, \Gamma) \mapsto W(t, p, \Gamma)\) denote the transition function on the measurable space \((K_D, \mathfrak{B}(K_D))\), corresponding to the Wiener measure on the space \(C(\mathbb{R}^+, K)\) (see corollary 4.3.3). Then there exists a continuous \(K_D\)-valued Markov process \(\{B_t^p\}_{t \geq 0}\) with \(W(t, p, \Gamma)\) as transition function.

Before proceeding to look at the proof, we first give the following definition:

4.3.5 Definition.

The continuous \(K_D\)-valued Markov process \(\{B_t^p\}_{t \geq 0}\), is called a Brownian motion.

Proof of theorem 4.3.4.

Using a corollary of the Kolmogorov’s theorem (see [14] I page 91 theorem 3.5), if we show that the transition functions \((t, p, \Gamma) \mapsto W(t, p, \Gamma)\) satisfy the following two conditions, for each compact \(\Gamma \subseteq K_D:\)

1. for all \(N > 0\), \(\lim_{y \rightarrow \infty} \sup_{t \leq N} W(t, y, \Gamma) = 0,\)
2. for all \(\epsilon > 0\), \(\lim_{t \downarrow 0} \sup_{p \in \Gamma} \frac{1}{t} W(t, p, B_D^c(p, \epsilon)) = 0,\)

then the conclusion of theorem 4.3.4 comes true.

For the first condition, consider a compact \(\Gamma \subseteq K_D\) (otherwise if \(\Gamma = K_D\) then the first condition is trivially satisfied). Let \((\mu_{\eta_k})_k\) be a sequence of measures associated to the sequence of isotropic processes which converges weakly to the Wiener measure \(W\) and let \(P_{t}^{\eta_k}(p, A) := \text{Prob}\{Y_t^{\eta_k} \in A; Y_0^{\eta_k} = p\}\) denote the associated transition functions.

Recall that, for each \(\eta > 0\), all trajectories of the random walk \(Y^\eta\) are concatenations of geodesic segments, with every geodesic segment’s length lower or equal to \(\eta\). Consequently, we have for each \(\eta_k > 0\), \(d(p, Y_t^{\eta_k}) \leq \eta_k t\) if \(Y_0^{\eta_k} = p\).

Let \(N > 0\) some (fixed) real, then for all \(t \leq N\), if \(Y_0^{\eta_k} = y\), \(d(y, Y_t^{\eta_k}) \leq \eta_k N\). Thus, if we consider the points \(y \in K_D\) with the distance \(d(y, \Gamma)\) strictly greater than \((\eta_k + \epsilon)N\), for some \(\epsilon > 0\), then the probability \(P_{t}^{\eta_k}(y, \Gamma)\) should vanish.

In a nutshell, we proved that, for all \(\eta_k > 0\), \(N > 0\) and \(y \in K_D:\)

For all \(\epsilon > 0\), there exists \(\alpha = (\eta_k + \epsilon)N\) such that if \(d(y, \Gamma) \geq \alpha\) then \(\sup_{t \leq N} P_{t}^{\eta_k}(y, \Gamma) < \epsilon\).

So if we take the limit (of the adequate subsequence) then the fact required is obtained.

For the second condition, we recall that throughout the proof of lemma 4.2.2 we obtained the following inequality:

\[\forall t > 0, \forall \eta_k > 0, \sup_{p \in K_D} \frac{\text{Prob}\{Y_t^{\eta_k} \in B_D^c(p, \epsilon)\}}{\eta_k t} \leq e^{\frac{-1}{\eta_k}}. \]

Then it is enough to let \(\eta_k\) and at the same time \(t\) go to zero, to obtain the second condition, which ends the proof.
4.4. Recurrent and transient behavior.

Usually, in the literature about the Brownian motion in the smooth case, the authors question the recurrent or transient behavior of this stochastic process.

It is known, for example, that the euclidian Brownian motion is recurrent when it is two dimensional and it is transient if its dimension is greater or equal to three. Moreover, we know that the noncompact hyperbolic surface valued Brownian motion is transient.

For more results and details, we recommend to the reader the papers of H.P. McKean, D. Sullivan [23] and T.J. Lyons, H.P. McKean [21].

4.4.1 The geometric behavior of the admissible riemannian complex valued Brownian motion.

Let K denote an admissible riemannian complex of dimension n and $p \in K$. We recall that the K-valued Brownian motion $\{B_t^p\}_{t \geq 0}$, was obtained as a weak limit of sequence of isotropic transport processes.

On the other hand, we have seen that the trajectories of the isotropic processes are concatenations of geodesic segments. When a trajectory joins (a.e.) transversally the $(n-1)$-skeleton of $(n-2)$-skeleton, it goes on choosing isotropically a new maximal face (i.e. all adjacent maximal faces have the same probability to be chosen).

Consequently, the K-valued Brownian motion $\{B_t^p\}_{t \geq 0}$ behaves, inside every n-simplex Δ_n, as the standard Brownian motion with values in riemannian n-dimensional manifold endowed with the metric g_{Δ_n}.

Moreover, the process hits (a.e.) "transversally" the $(n-1)$-skeleton of $(n-2)$-skeleton, then it goes on choosing isotropically maximal face. Thus, it results from this geometric description a new discreet random walk corresponding to the isotropic choices of the maximal faces.

Right now, the continuation is devoted to a rigorous mathematical construction of such discreet process.

The dual graph X of a complex K is 1-dimensional simplicial complex defined as follows:

Consider one point inside (topological interior) each n-simplex of K and, for every $(n-1)$-simplex a point in its topological interior, then, we connect the considered points with geodesic segments and let $E(X)$ denote the set of such segments. Thus, this dual graph consists of set $V_n(X)$ of vertices of degree $n+1$ (interior n-simplexes points) and a set $V_{n-1}(X)$ of vertices corresponding to the interior points of the $(n-1)$-simplexes, where every vertex has degree equal to the number of the n-simplexes adjacent to this vertex.

Consider now, the Markov chain (discreet Markov process) $\{C_n\}_{n \in \mathbb{N}}$ which has as a transition probability the function:

$$ p(x, y) = \begin{cases} \frac{1}{\deg x} & \text{if } x, y \in V_{n-1}(X) \text{ and there exists } z \in V_n(X) \text{ such that } xz, yz \in E(X), \\ 0 & \text{unless,} \end{cases} $$

where $\deg x$ is the degree of x and xz is an edge (geodesic segment) connecting x to z.

Thus the latest random walk is a discreet "jump" process on the set $V_{n-1}(X)$.

4.4.2 Brownian motion in an admissible complex with nonpositive curvature and with dimension at the most 2.

This subparagraph is devoted to study the transient or recurrent behavior of the Brownian motion in an admissible complex with nonpositive curvature (in the sense of Alexandrov) and with dimension at the most 2.

Just now give a definition of recurrent/transient process:

Definition.

Let $\{X_t^p\}_t$ denote a stochastic process in a metric space K. Then $\{X_t^p\}_t$ is said to be recurrent if, for every ball B_p containing the point p, the process $\{X_t^p\}_t$ returns to the ball B_p (and so infinitely) with probability equal to one; in other words, the process is transient.
Remark.
When the space K is a discreet space, we consider the point p instead of the ball B_p in the above definition.

Theorem.
Let K denote a 2-dimensional (respectively 1-dimensional) non-compact simply connected admissible riemannian complex with nonpositive curvature. Then, if for every 1-simplex (respectively a vertex) there is at least three 2-simplices (respectively 1-simplices) adjacent to it, the Brownian motion is transient.

Before proceeding to look at the proof of the theorem, let us first give a short treatise on simple random walk on a graph.

Let $X = (V(X), E(X))$ denote a connected locally finite graph (a 1-dimensional admissible riemannian complex), where $V(X)$ is the set of vertexes and $E(X)$ is the set of edges. By *simple random walk* on the graph X, we mean the Markov chain for which the transition probability $p(x, y)$ from vertex x to vertex y is given by the function:

$$p(x, y) = \begin{cases} \frac{1}{\deg x}, & \text{if } xy \in E(X), \\ 0, & \text{unless,} \end{cases}$$

where xy is an edge connecting x to y.

We say that X is recurrent (respectively transient) if the simple random walk is recurrent (respectively transient).

The word metric on the graph X is an intrinsic metric in which each edge has unit length.

Then we have the following proposition.

Proposition.
Let X denote a connected locally finite graph with uncountably many ends. Assuming that every vertex has degree greater or equal to three, then X is transient.

For the proof of this proposition, the reader can see [13, Chap 6].

Proof of the theorem.
Let K be an admissible complex and let X denote the dual graph of K. Now in the following, we will construct a graph Y from the graph X.

Let x_1 be a vertex belonging to the set $V_1(X)$ and $z_1 \in V_2(X)$ such that $x_1z_1 \in E(X)$. Recall that the degree of z_1 is equal to three. We delete an edge adjacent to z_1, different than x_1z_1. We do the same thing with the other faces adjacent to x_1.

Now go back to z_1, it is connected to another vertex $x_2 \in V_1(X)$ (x_1, z_1 and x_2 are all in the same 2-simplex). We do the same thing with x_2 as we have done with x_1. At the end of this construction, forgetting the vertexes of degree equal to two, and as a consequence of the hypothesis on the complex K, we get a graph Y isometrically equivalent to connected locally finite graph with uncountably many ends and whose each vertex degree is greater or equal to three. Moreover, the random walk coming from the isotropic choice of maximal faces by the Brownian motion induces a simple random walk on the graph Y.

Just now, suppose that the K-valued Brownian motion $\{B_t^p\}_{t \geq 0}$ is recurrent. We can suppose that the point p is in the interior of an edge. Take as compact neighborhood of the point p the union of all its adjacent 2-simplices and note this neighborhood B_p.

Thus, if $\{B_t^p\}_{t \geq 0}$ returns to the ball B_p with probability equal to one, then inevitably, the simple random walk on Y returns to the point p with probability 1. In other words, the graph Y is recurrent which contradicts the proposition, and so the theorem is now proven. \qed
References