United Nations Educational Scientific and Cultural Organization
and
International Atomic Energy Agency
THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

TRAFFIC FLOW IN 1D CELLULAR AUTOMATON MODEL
WITH OPEN BOUNDARIES

A. Benyoussef
Laboratoire de Magnétisme et Physique des Hautes Énergies,
Département de Physique, Faculté des Sciences,
B.P. 1014, Rabat, Morocco,

N. Boccara
DRECAM/SPEC, Centre d’Étude de Saclay,
91191 Gif-sur-Yvette Cedex, France
and
Department of Physics, University of Illinois, Chicago, IL 60607-7059, USA,

H. Chakib
Laboratoire de Magnétisme et Physique des Hautes Énergies,
Département de Physique, Faculté des Sciences,
B.P. 1014, Rabat, Morocco

and

H. Ez-Zahraouy
Laboratoire de Magnétisme et Physique des Hautes Énergies,
Département de Physique, Faculté des Sciences,
B.P. 1014, Rabat, Morocco,

The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

MIRAMARE – TRIESTE
September 2000

1Regular Associate of the Abdus Salam ICTP.
Abstract

We have studied the open boundaries cellular automaton models for highway one-line traffic flow by mean field approximation and simulations. Our contribution focuses on the effect of breaking probability and a maximum velocity (v_{max}) on density, flow and average velocity of cars moving in the middle of the road. The phase diagram is presented for $v_{\text{max}} = 1$ and $v_{\text{max}} > 1$. The maximal flow phase does not occur for $v_{\text{max}} > 1$ in contrast with the case $v_{\text{max}} = 1$ where this phase appears for $p \neq 0$. The first-order transition arises at $\alpha = \beta$ ($\alpha < \beta$) for $v_{\text{max}} = 1$ ($v_{\text{max}} > 1$), where α and β denote, respectively, the inside rate and the outside rate. The mean field approximation gives good results in comparison with simulations for $v_{\text{max}} > 1$, while for $v_{\text{max}} = 1$, the phase diagram obtained by simulations is predicted by the mean field approximation when $p \to 1$.
1 Introduction

Models of highway traffic flow have attracted much interest in recent years. Discrete models like cellular automata (CA) have become popular for modeling traffic because it is very simple to introduce basic phenomena and can be readily implemented on computers [1-4]. Much of the effort was concentrated on discrete stochastic CA models of traffic flow, first proposed by Nagel and Schreckenberg [3] and subsequently studied by other authors using a variety of techniques [4-7]. CA models exhibit a transition between a moving phase and a jamming phase in other traffic of a city as the car density is varied [8]. These models could be easily modified to deal with the effects of different kinds of realistic conditions, such as road blocks and traffic accidents [9,10], highway junctions [11], overpasses [12], vehicle accelerations [13], quenched disorderliness [14], stochastic delay due to driver’s reactions [7], anisotropy of car distributions [15]. Comparatively low computational cost of CA models made it possible to conduct large-scale real-time simulations of urban traffic in the city of Duisburg [16] and Dallas (Forth Worth) [17].

Nagel and Schreckenberg (NS) considered the effects of acceleration and stochastic delay of vehicles with high speed [3]. In the NS models, a car can move at most v_{max} sites in a time step, where v_{max} is the maximal velocity. The speed at a time step depends on the gap (number of empty sites) between successive cars. If the speed in the present time step is less than v_{max} and the gap ahead allows, the speed increases by one unit in the next time step. If the spacing ahead is less than the speed in the present time step, then the speed is reduced to the value allowed by the spacing. The speed of a car is reduced by one unit in the next time step with a probability exhibiting a randomization in realistic traffic flows.

Fukui and Ishibashi (FI) [18] introduced another variation on the basic model, which can be understood as a generalization of cellular automata rule 184. Rule 184, one of the elementary CA rules investigated by Wolfram [19]. It is one of the only two (symmetric) non-trivial elementary rules conserving the number of active sites [20] and, therefore, can be interpreted as a rule governing dynamics of particles (cars). The FI models considered that cars can move by at most v_{max} sites in one time step if they are not blocked by cars in front. More precisely, if the number of empty sites in front of a car is larger than v_{max} at time t, then it can move forward $v_{\text{max}} (v_{\text{max}} - 1)$ sites in the next time step with probability $1 - f (f)$. Here, the probability f represents the degree of stochastic delay. the FI model differs from the NS model in that the increase in speed may not be gradual and stochastic delay applies to the high-speed cars, the two models are identical for $v_{\text{max}} = 1$.

Our main contribution in this paper deals with the effect of boundaries on the traffic flow. The case $v_{\text{max}} = 1$ corresponds to the fully asymmetric exclusion model [21-23] where particles hop only in one direction. During any time interval (Δt), each particle (car) has a probability Δt of jumping to its right-hand neighbor if this neighboring site is empty. The particles could enter
the system with a given rate α (i.e., with a probability $\alpha \Delta t$), and could leave the system with a given rate β (i.e., with a probability $\beta \Delta t$). This model has been solved exactly in the random sequential regime [24-26]. Several phases were found for this model, namely, low density phase (moving phase), high density phase (jamming phase) and maximal current phase (maximal flow phase). The dynamic effect (i.e., sequential and parallel update) has been studied [27-29], the region of maximal current phase growth in the crossing from parallel ($\Delta t = 1$) to sequential ($\Delta t \rightarrow 1$) update.

2 Model

The NS model [3] is a probabilistic CA model of traffic flow on a one-lane highway. The road is divided into cells. Each cell can either be empty or occupied by most one car. The state of car j ($j = 1, ..., N$) is characterized by the instantaneous velocity v_j ($v_j = 0, 1, ..., v_{\text{max}}$). If d_i is the distance between car i and car $i + 1$ (cars are moving to the right), velocities are updated in parallel according to the following two subrules:

\begin{align*}
 v_i(t + 1/2) &= \min(v_i(t) + 1, d_i(t) - 1, v_{\text{max}}) \quad (1) \\
 v_i(t + 1) &= \max(v_i(t + 1/2) - 1, 0) \quad \text{with probability } p \quad (2)
\end{align*}

where $v_i(t)$ is the velocity of car i at time t, then, cars are moving according to the subrule:

\begin{align*}
 x_i(t + 1) &= x_i(t) + v_i(t + 1) \quad (3)
\end{align*}

where $x_i(t)$ is the position of car i at time t. The model contains three parameters: the maximum speed v_{max}, which is the same for cars, the breaking probability p, and the car density ρ.

If $p = 0$, the NS model is deterministic and the average velocity over the whole is exactly given by:

\begin{align*}
 \langle v \rangle &= \min(v_{\text{max}}, \frac{1}{\rho} - 1) \quad (4)
\end{align*}

This expression shows that, below a critical car density $\rho_c = \frac{1}{v_{\text{max}} + 1}$, all cars move with a velocity equal to v_{max}, while above ρ_c, the average velocity is less than v_{max}. This transition from free-moving regime to a congested regime is a second-order phase transition.

In this paper, we shall assume that the acceleration, which is equal to 1 in the NS model, has the largest possible value (v_{max}) as in the FI model [18], except that these authors apply random delays only to cars whose velocity is equal to v_{max}. That is, in our model, we just replace (1) by:

\begin{align*}
 v_i(t + 1/2) &= \min(d_i(t) - 1, v_{\text{max}}) \quad (5)
\end{align*}

Hence, for $v_{\text{max}} = 1$, the car can move one site or does not move. We denote by $\tau_1, \tau_2, ..., \tau_L$ the occupation numbers, while $\tau_i = 1$ ($\tau_i = 0$) means that site i is occupied (empty), and L the road size. During each time step, each car in the system has a probability $(1 - p)$ of jumping to
the empty adjacent site on its right. Cars are injected at the left boundary with a probability
\(\alpha(1 - p) \) and removed on the right with a probability \(\beta(1 - p) \). Thus if the system has the
configuration \(\tau_1(t), \tau_2(t), \ldots, \tau_L(t) \) at time \(t \) it will change at time \(t + 1 \) to the following:

For \(1 < i < L \):
\[
\begin{align*}
\tau_i(t + 1) &= 1 \quad \text{with probability } p_i \\
\tau_i(t + 1) &= 0 \quad \text{with probability } 1 - p_i
\end{align*}
\]

where
\[
\begin{align*}
p_i &= \tau_i(t) + (1 - \tau_i(t))\tau_{i-1}(t)(1 - p) - \tau_i(t)(1 - \tau_{i+1}(t))(1 - p) \\
\end{align*}
\]

The dynamics of the system are then given by the following equations:

For \(1 < i < L \):
\[
\begin{align*}
< \tau_i(t + 1) > - < \tau_i(t) > &= < (1 - p)\tau_{i-1}(t)(1 - \tau_i(t)) > \\
&\quad - < (1 - p)\tau_i(t)(1 - \tau_{i+1}(t)) > \\
&= (1 - p)P_{i-1}(10) - (1 - p)P_i(10)
\end{align*}
\]

\[
\begin{align*}
< \tau_1(t + 1) > - < \tau_1(t) > &= \alpha(1 - p) < (1 - \tau_1(t)) > \\
&\quad - < (1 - p)\tau_1(t)(1 - \tau_2(t)) > \\
&= \alpha(1 - p)P_1(0) - (1 - p)P_1(10)
\end{align*}
\]

In the case \(v_{\max} = 2 \), the car can move forward two (one) sites with a probability \(1 - p \) (\(p \))
if two sites ahead are empty, otherwise (only the adjacent cell is empty), it could move one cell
or remains immovable. The equations governing this case could be written as follows:

For \(2 < i < L - 1 \):
\[
\begin{align*}
\tau_i(t + 1) &= 1 \quad \text{with probability } p_i \\
\tau_i(t + 1) &= 0 \quad \text{with probability } 1 - p_i
\end{align*}
\]

where
\[
\begin{align*}
p_i &= \tau_i(t) + (1 - \tau_i(t))\tau_{i-1}(t)(1 - p) + \tau_{i-1}(t)(1 - \tau_{i+1}(t))(1 - p) \\
&\quad + \tau_{i-1}(t)(1 - \tau_{i+1}(t))p + \tau_{i-2}(t)(1 - \tau_{i-1}(t))(1 - p) \\
&\quad - \tau_i(t)(1 - \tau_{i+1}(t))\tau_{i+2}(t)(1 - p) + (1 - \tau_{i+1}(t))(1 - \tau_{i+2}(t))
\end{align*}
\]
\[\tau_2(t + 1) = 1 \quad \text{with probability } p_2 \]

where;

\[p_2 = \tau_2(t) + (1 - \tau_2(t))[(1 - \tau_3(t))(1 - p) + \tau_1(t)(1 - \tau_3(t))p - \tau_2(t)][(1 - \tau_3(t))(1 - \tau_4(t)) + (1 - \tau_3(t))(1 - \tau_4(t))] \quad (13) \]

\[\tau_2(t + 1) = 0 \quad \text{with probability } 1 - p_2 \]

\[\tau_1(t + 1) = 1 \quad \text{with probability } p_1 \]

where;

\[p_1 = \tau_1(t) + (1 - p)\alpha(1 - \tau_1(t)) - \tau_1(t)[(1 - \tau_2(t))\tau_3(t)(1 - p) + (1 - \tau_2(t))(1 - \tau_3(t))] \quad (14) \]

\[\tau_1(t + 1) = 0 \quad \text{with probability } 1 - p_1 \]

\[\tau_{L-1}(t + 1) = 1 \quad \text{with probability } p_{L-1} \]

where;

\[p_{L-1} = \tau_{L-1}(t) + (1 - \tau_{L-1}(t))[(1 - \tau_{L-2}(t))(1 - \tau_{L-1}(t))(1 - p) + \tau_{L-2}(t)(1 - \tau_{L-1}(t))(1 - p)] - \tau_{L-1}(t)(1 - \tau_{L}(t))(1 - p) \quad (15) \]

\[\tau_{L-1}(t + 1) = 0 \quad \text{with probability } 1 - p_{L-1} \]

\[\tau_L(t + 1) = 1 \quad \text{with probability } p_L \]

where;

\[p_L = \tau_L(t) + (1 - \tau_L(t))[(1 - \tau_{L-1}(t))(1 - p) + \tau_L(t)(1 - \tau_{L-1}(t))(1 - p)] - \beta(1 - p)\tau_L(t) \quad (16) \]

\[\tau_L(t + 1) = 0 \quad \text{with probability } 1 - p_L \]

The dynamics of the system are then given in the case \(v_{\text{max}} = 2 \) as follows:

\[\begin{align*}
\text{For } 2 < i < L - 1; \\
< \tau_i(t + 1) > & - < \tau_i(t) > = (1 - p)P_{i-1}(101) + pP_{i-1}(100) \\
& + (1 - p)P_{i-2}(100) - (1 - p)P_{i}(101) - P_{i}(100) \\
\end{align*} \quad (17) \]

\[\begin{align*}
< \tau_2(t + 1) > - < \tau_2(t) > & = (1 - p)P_1(101) + pP_1(100) \\
& - (1 - p)P_2(101) - P_2(100) \\
\end{align*} \quad (18) \]

\[\begin{align*}
< \tau_1(t + 1) > - < \tau_1(t) > & = \alpha(1 - p)P_1(0) \\
& - (1 - p)P_1(101) - P_1(100) \\
\end{align*} \quad (19) \]

\[\begin{align*}
< \tau_{L-1}(t + 1) > - < \tau_{L-1}(t) > & = (1 - p)P_{L-2}(101) + pP_{L-2}(100) \\
& + (1 - p)P_{L-3}(100) - (1 - p)P_{L-1}(10) \\
\end{align*} \quad (20) \]

\[\begin{align*}
< \tau_L(t + 1) > - < \tau_L(t) > & = (1 - p)P_{L-2}(100) + (1 - p)P_{L-1}(10) \\
& - (1 - p)P_L(1) \\
\end{align*} \quad (21) \]

Once these equations (eqs.(9-11) and eqs.(17-21)), one can calculate the time evolution of any quantity of interest. The problem however is that the computation of the one point functions
\(\tau_t \) requires the knowledge of the two point functions \(\tau_t \tau_{t+1} \) and \(\tau_{t-1} \tau_t \). The problem is an N-body problem in the sense that the calculation of any correlation function requires the knowledge of all the others, this makes the problem intractable. We would overcome this problem by neglecting the correlation (mean field theory) between cells, and the equations would be simplified when \(\tau_t \tau_j \) is altered by \(\tau_t \tau_j \).

The time evolution of the average occupation of each cell, the average velocity and the flow (i.e., current) would be studied in the next section using the time evolution of the dynamical equations by the mean field approximation (MFA) and using the numerical simulations. In our simulations the rule described above is updated in parallel, i.e., during one updating procedure the new car positions does not influence the rest and only previous positions have to be taken into account. In order to compute the average of any parameter \(u \) (\(\langle u \rangle \)), the values of \(u(t) \) \((t = n\Delta t, n \text{ an integer}) \) obtained in the steady state are averaged. Starting the simulations from random configurations, the system reaches a stationary state after a sufficiently large number of time steps. In all our simulations we averaged over 20—100 initial configurations. The parameters computed in this article are averaged over the cells \(\frac{L}{2} - 10, \frac{L}{2} - 9, ..., \frac{L}{2} + 10 \). Hence, the density is defined as the average occupation of 21 cells in the middle road. The average velocity (i.e. \(\langle v \rangle \)) and the flow (i.e. \(\phi \)) are obtained by averaging the velocities of cars and currents over 21 cells.

3 Results and discussions

3.1 \(v_{max} = 1 \)

This case corresponds to an asymmetric exclusion model [24-29], here we alter the probability of jump \(\Delta t \) by \(1 - p \) and performing our results for parallel dynamics. The model exhibits three phases: moving phase, jamming phase and maximal flow phase. The order parameter here is defined as the average velocity of cars instead of the density as studied in previous works [27-29]. The transition from moving phase to jamming phase (and vice versa) is a first order transition, while the passage from moving phase or jamming phase to the maximal flow phase (and vice versa) is a second order transition (Fig.1). In fact, in Figure (1a) we note that for \(\beta = 0.3 \), \(\langle v \rangle \) and \(\rho \) undergo a gap between two regimes, namely, \(\rho < 0.5 \) (moving phase) and \(\rho > 0.5 \) (jamming phase). In the case \(\beta = 0.8 \), \(\rho \) and \(\langle v \rangle \) vary continuously in low density regime, after that \(\rho \) and \(\langle v \rangle \) take a constant values corresponding to a maximal flow regime (\(\rho = \frac{1}{2} \)) as shown in Figure (1b) [3,4]. The phase diagram is shown in Figure 2 for several values of \(p \).

For \(p = 0 \), the maximal flow phase exists only at \(\alpha = \beta \), it is a deterministic case exhibiting in the steady state the configuration 101010... (i.e., \(\rho = \frac{1}{2} \)). Increasing the breaking probability, the maximal flow phase could be done by wide values of \(\alpha \) and \(\beta \); it occurs always at \(\rho = \frac{1}{2} \). The equilibrium between the entering and leaving rates in one hand and the average velocity of cars in other hand is the main factor to obtain the maximal flow phase. So, having a high velocity
of cars (i.e., low value of \(p \)) needs a high values of \(\alpha \) and \(\beta \) to perform a maximal flow (\(\rho = \frac{1}{2} \)), otherwise, the system will exhibit a jamming traffic when \(\alpha = \beta \) (first-order transition). The MFA is in excellent agreement with our simulations for \(p \rightarrow 1 \) [24-29]. The term of breaking probability (i.e., \(1 - p \)) arises only as a factor in the dynamical evolution of the MFA equations (eqs.(9-11)), his contribution does not affect the steady state but affect the time required to reach the steady state.

3.2 \(v_{max} = 2 \)

In this case the car could move one or two cells if two cells ahead are empty, otherwise (only the adjacent cell is empty), it could move one cell or remains immovable. Locking the time evolution of the MFA equations (eqs.(17-21)), we could note that the term of breaking probability plays a main role in the steady state. In order to check the effect of breaking probability, we show the comparison between the MFA and our simulations , respectively, in Figures 3-a and 3-b, where the average velocity varies as a function of \(\alpha \) for \(\beta = 0.7 \) and different values of \(p \). The gap between the moving phase and jamming phase occurs at same points for both MFA and simulations. However, in the moving phase, the average velocity obtained from the MFA equations decreases with increasing \(\alpha \), while it remains constant by varying \(\alpha \) within our simulations. For \(p = 0 \), the transition arises at \(\alpha = \beta \), increasing the breaking probability, the transition occurs at \(\alpha < \beta \). So, locking the equations (19) and (21) which exhibit, respectively, the entering rate and removing rate, we note that all the terms depends on the breaking probability except the term \(P_1(100) \) in the entering rate equation. Hence, the cars entering the road in the first cell could leave it independently on the breaking probability when the cell ahead is empty, this fact favors entering of cars since the first cell is often empty. Therefore, increasing the breaking probability the equilibrium between the entering and removing rates is destroyed and the number of cars entering the road is greater than the number of cars leaving it.

The maximal flow phase does not occur even for high breaking probability (Fig. 4). For \(v_{max} = 2 \) the maximal flow phase occurs at \(\rho = \frac{1}{3} \) [3,4] and corresponds to \(\phi = \frac{2}{3} \). We could check the absence of the maximal flow phase in the point \(\alpha = \beta = 1 \) for \(p = 0 \), this is a deterministic case which exhibits the configuration 100010001... (i.e., \(< v > = 2 \), \(\rho = \frac{1}{4} \) and \(\phi = \frac{3}{4} \)), this is clear that it presents one point in moving phase. For reaching this point, we show in Figure 5 the variation of \(\rho \) and \(\phi \) in the line \(\beta = 1 \) for deterministic case \(p = 0 \). The order parameter \(\rho \) increases uniformly without undergoing any gap until reaching a maximal density (at \(\alpha = 1 \)) less than \(\rho = \frac{1}{3} \). Increasing the breaking probability, the jamming phase arises before reaching \(\beta = 1 \), and the density at \(\alpha = \beta = 1 \) is greater than \(\rho = \frac{1}{2} \). The equilibrium between the entering and removing rates in one hand and the average velocity in other hand is never reached, which leads to an instability (i.e., the gap between jamming and moving phases) of the system at \(\rho = \frac{1}{4} \).

In Figure 6 we show the dependence of \(< v > \) upon \(\alpha \) for fixed values of \(p \) and \(\beta \) and different
values of v_{max} ($v_{\text{max}} > 1$). The first-order transition occurs at same value of α. This results confirm the arguments quoted above according to which the transition at $\alpha < \beta$ is merely caused by the possibility of cars in the first cell to leave it independently on the breaking probability.

4 Conclusion

In this paper, we have established the boundaries effect on the density and the flow of cars in the road by the MFA and simulations. The model studied here is based on the NS models with the maximal acceleration v_{max} (FI models), the cars could enter the road with a probability $\alpha(1 - p)$ and could remove it with a probability $\beta(1 - p)$. The system exhibits three phases for $v_{\text{max}} = 1$, namely, moving phase, jamming phase and the maximal flow phase. The first-order transition from moving phase to jamming one occurs at $\alpha = \beta$, the maximal flow phase appears at $\rho = \frac{1}{2}$ for high values of α and β, and the passage from the moving and jamming phases to it is a second-order transition. For $v_{\text{max}} = 2$, since the high velocity of cars the maximal flow phase disappears and the system exhibits only the first-order transition. The first order transition occurs at $\alpha < \beta$ for $p \neq 0$ and at $\alpha = \beta$ for $p = 0$. The MFA phase diagram is in good agreement with one obtained by simulations for $v_{\text{max}} = 2$. However, the order parameter $\langle v \rangle$ decreases with increasing ρ from the MFA equations, while it remains constant within our simulations. For $v_{\text{max}} = 1$, the MFA phase diagram coincide with one obtained by simulations for $p \rightarrow 1$, otherwise, the maximal flow phase region shrink with decreasing p, the maximal flow phase exist only at $\alpha = \beta = 1$ for $p = 0$.

Acknowledgments

One of the authors (H. Ez-Zahraouy) would like to thank UNESCO, IAEA and the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, for hospitality. He also wishes to thank the Arab Foundation for the Scholarship Association at the Abdus Salam ICTP, Italy, where this work was accomplished. This work was also supported by the program PARS Physique 035, Morocco.
REFERENCES

5 Figure captions

Figure 1- (a) Variation of density (ρ) and the average velocity ($< v >$); (b) Variation of the flow, as a function of α, for $v_{\text{max}} = 1$ and $p = 0.5$, and different values of β indicated in figures.

Figure 2- Phase diagram (α, β) in the case $v_{\text{max}} = 1$, obtained from MFA (continuous line) and simulations (dashed line) for different values of p indicated in figures.

Figure 3- Variation of $< v >$ as a function of α ($\beta = 0.7$) for various values of p. (a) MFA, (b) simulations.

Figure 4- Phase diagram (α, β) in the case $v_{\text{max}} = 2$, for different values of p.

Figure 5- Variation of $< v >$ as a function of α for $\beta = 1$ and $p = 0$.

Figure 6- Variation of $< v >$ as a function of α for $\beta = 0.7$ and $p = 0.5$, for various values of v_{max}.